JP2003277530A - Composite material and its production method - Google Patents

Composite material and its production method

Info

Publication number
JP2003277530A
JP2003277530A JP2002086494A JP2002086494A JP2003277530A JP 2003277530 A JP2003277530 A JP 2003277530A JP 2002086494 A JP2002086494 A JP 2002086494A JP 2002086494 A JP2002086494 A JP 2002086494A JP 2003277530 A JP2003277530 A JP 2003277530A
Authority
JP
Japan
Prior art keywords
fiber
composite material
resin
thermoplastic resin
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002086494A
Other languages
Japanese (ja)
Inventor
Mikiya Hayashibara
幹也 林原
Satoshi Nago
聰 名合
Yasuo Ota
康雄 大田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2002086494A priority Critical patent/JP2003277530A/en
Publication of JP2003277530A publication Critical patent/JP2003277530A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a thermoplastic resin fiber reinforced composite material having a high fiber content and a good impregnation state of a resin by a simple step. <P>SOLUTION: The thermoplastic resin fiber reinforced composite material is obtained by coating a monomer and/or an oligomer of a thermoplastic resin on the surfaces of high strength and high modulus organic fibers, and then polymerizing the monomer and/or the oligomer to effect integration. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、自動車、航空、建
設、土木、安全用品など広く産業資材として好適な、繊
維強化熱可塑性樹脂複合材に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fiber-reinforced thermoplastic resin composite material suitable for a wide range of industrial materials such as automobiles, aviation, construction, civil engineering and safety products.

【0002】[0002]

【従来の技術】従来の繊維強化熱可塑性樹脂複合材(以
下、FRTPと記す)には、概略、以下のようなものが
挙げられる。射出成形品は繊維長が10mm以下の短い
強化繊維にガラス繊維、炭素繊維をポリプロピレンなど
のオレフィン系樹脂、ポリエチレンテレフタレートなど
のポリエステル系樹脂、ポリアミド6などのポリアミド
系樹脂に15〜30vol%程度含有した樹脂ペレット
を溶融し、高速度で吐出流動させて成形したものであ
る。吐出圧縮成形品は射出成形品のように該樹脂ペレッ
トを溶融、押出ししたものを金型などに投入し、圧縮に
よって、比較的、高速に流動させて得られるものであ
る。上記の2つの成形品は樹脂の流動が速いため、複雑
形状に対応が可能で、一般の製品に多用されている。し
かし、その流動性を損なわないようにするため、強化繊
維の繊維長が10mm程度、繊維含有率が30vol%
程度と限界があり、強度、弾性率などの力学的特性に課
題が残る。これを回避するため、定温の金型を成形時に
高温にし、成形品取り出し時に低温にする方法がある
が、温度管理が困難で、また、成形サイクルが長くなる
ため歩留まりが非常に悪い。スタンピング成形品は繊維
長が25〜50mm程度の前述の強化繊維を集積し、バ
インダーなどで接着したチョップドマットや連続した前
述の強化繊維を平面状にランダムに集積し、バインダー
などで接着したスワールマットにフィルム状の樹脂を交
互に積層して、加熱溶融して、或る程度一体化したスタ
ンパブルシートと呼ばれる成形材料を遠赤外線ヒーター
などで樹脂を溶融状態にして、金型内に投入し、高い圧
力で強化繊維と樹脂を流動させることで得られるもので
ある。
2. Description of the Related Art A conventional fiber-reinforced thermoplastic resin composite material (hereinafter referred to as FRTP) is roughly as follows. The injection molded product contained glass fiber, carbon fiber in olefin resin such as polypropylene, polyester resin such as polyethylene terephthalate, polyamide resin such as polyamide 6 in an amount of about 15 to 30 vol% in a short reinforcing fiber having a fiber length of 10 mm or less. The resin pellets are melted and discharged and flowed at a high speed to be molded. A discharge compression-molded product is obtained by melting and extruding the resin pellets, like an injection-molded product, and putting the product into a mold or the like, and compressing the resin pellets to cause them to flow at a relatively high speed. Since the above two molded products have fast resin flow, they can cope with complicated shapes and are widely used for general products. However, in order not to impair its fluidity, the reinforcing fiber has a fiber length of about 10 mm and a fiber content of 30 vol%.
There are limits and extents, and problems remain in mechanical properties such as strength and elastic modulus. In order to avoid this, there is a method in which a mold having a constant temperature is heated to a high temperature at the time of molding and a mold is taken out at a low temperature. However, temperature control is difficult, and the molding cycle becomes long, so that the yield is very poor. The stamping molded product is a swirl mat in which the above-mentioned reinforcing fibers having a fiber length of about 25 to 50 mm are accumulated and chopped mats bonded with a binder or the like or continuous reinforcing fibers are randomly accumulated in a plane and bonded with a binder or the like. The film-like resin is laminated alternately on the resin, heated and melted, and a molding material called a stampable sheet that has been integrated to a certain extent is put into the mold by melting the resin with a far infrared heater or the like, It is obtained by flowing the reinforcing fiber and the resin under high pressure.

【0003】この成形品は先に記した射出成形品、吐出
圧縮成形品より流動させ難いため複雑形状に向かない
が、繊維長が長くできるため、強度、弾性率などの力学
的特性は改善される。但し、流動させることが前提であ
るので繊維含有率が30vol%程度と限界がある。フ
ィラメントワインディング成形品は連続した強化繊維に
熱可塑性樹脂を予め付着、混繊などした成形材料をマン
ドレルと呼ばれる筒状物に加熱しながら巻き付け、必要
に応じて該成形材料をマンドレルの半径方向に押圧して
一体化させて得るものである。圧縮成形品は前述のスタ
ンパブルシートや強化繊維の織編物に熱可塑性樹脂のフ
ィルムなどと重ね合わせたり、粉末を付着したり、繊維
状にしたもので混繊、混織などした成形材料を加熱した
型内に投入し、圧縮を付与した状態で樹脂を溶融後、冷
却固化して得るものである。上記の2つの成形品は樹脂
の流動が少ないため、複雑形状の対応が困難であるが、
単純な平板などには好適で、連続した強化繊維を適用で
き、しかも、繊維含有率が60vol%近くにできるこ
とから、強度、弾性率などの力学的特性に優れる。しか
し、熱可塑性樹脂の溶融粘度が基本的に高いため、更
に、高い繊維含有率は困難であった。
This molded product is not suitable for a complicated shape because it is more difficult to flow than the injection molded product and the discharge compression molded product described above, but since the fiber length can be increased, mechanical properties such as strength and elastic modulus are improved. It However, since it is premised that the fiber is made to flow, the fiber content is limited to about 30 vol%. Filament winding molded products are made by continuously adhering a thermoplastic resin to continuous reinforcing fibers, winding a molding material such as mixed fiber while winding it around a cylindrical object called a mandrel, and pressing the molding material in the radial direction of the mandrel as necessary. It is obtained by integrating them. The compression molded product is the above-mentioned stampable sheet or woven or knitted fabric of reinforcing fibers, laminated with a thermoplastic resin film, powder is attached, or fibrous material is used to heat the molding material such as mixed fiber or mixed weave. It is obtained by charging the resin in a mold, melting the resin while applying compression, and then cooling and solidifying the resin. The above two molded products have little resin flow, so it is difficult to handle complicated shapes.
It is suitable for simple flat plates and the like, continuous reinforcing fibers can be applied, and since the fiber content can be close to 60 vol%, it has excellent mechanical properties such as strength and elastic modulus. However, since the melt viscosity of the thermoplastic resin is basically high, it was difficult to achieve a higher fiber content.

【0004】上記の成形方法以外に特表平11−510
863号公報に非極性と考えられているオレフィン系樹
脂を溶媒で膨潤させ、そこに同じ系の樹脂を絡ませるこ
とで接着性を改善するものが開示されている。このよう
に溶媒を用いて樹脂を浸透させることで高い繊維含有率
のFRTPの成形は可能であるが、工程が複雑で、しか
も、溶媒を回収する必要があり、実質的には困難であ
る。これらのFRTPに対して繊維強化熱硬化性樹脂複
合材(FRTSと記す)の場合、樹脂を低粘度の状態で
ある未硬化で強化繊維に浸漬するため、高い繊維含有率
の成形品が得られる。しかし、熱硬化製樹脂は硬化反応
が終了するとその後、二次成形が不可能であり、汎用性
に劣る。しかも、焼却廃棄が困難であるため、通常使用
に於いても、近年、忌避される傾向にある。
In addition to the above-mentioned molding method, Japanese Laid-Open Patent Publication No. 11-510
Japanese Laid-Open Patent Publication No. 863 discloses that an olefin resin, which is considered to be non-polar, is swollen with a solvent and a resin of the same system is entangled therein to improve the adhesiveness. Thus, it is possible to mold FRTP having a high fiber content by infiltrating the resin with a solvent, but the process is complicated and the solvent needs to be recovered, which is substantially difficult. In the case of a fiber-reinforced thermosetting resin composite material (referred to as FRTS) with respect to these FRTPs, the resin is dipped in the reinforced fiber in an uncured state having a low viscosity, so that a molded product having a high fiber content can be obtained. . However, the thermosetting resin is inferior in versatility since secondary molding is impossible after the curing reaction is completed. Moreover, since it is difficult to incinerate and dispose of it, in recent years, it tends to be avoided even in normal use.

【0005】[0005]

【発明が解決しようとする課題】上記のように従来のF
RTPは、FRTSに比べて、環境適合性に優れ、様々
な成形方法により、各分野に成形品を送り出している
が、基本的に熱可塑性樹脂は溶融粘度が高いため、強化
繊維を含有させることが困難で高い繊維含有率の成形品
が得られなかった。
As described above, the conventional F
RTP is more environmentally friendly than FRTS, and molded products are sent to various fields by various molding methods, but basically thermoplastic resins have high melt viscosity, so it is necessary to include reinforcing fibers. It was difficult to obtain a molded product having a high fiber content.

【0006】[0006]

【課題を解決するための手段】本発明者は更に鋭意検討
を行なった結果、簡易な工程で高い繊維含有率のFRT
Pを見出した。即ち、本発明は下記の構成からなる。 1.繊維表面に熱可塑性樹脂のモノマー及び/又はオリ
ゴマーを付与した後、重合することにより当該繊維と一
体化してなることを特徴とする複合材料。 2.繊維の体積含有率が60vf%以上であることを特
徴とする上記第1に記載の複合材料。 3.繊維が、高強度高弾性率の有機繊維であることを特
徴とする上記第1又は2に記載の複合材料。 4.繊維表面に熱可塑性樹脂のモノマー及び/又はオリ
ゴマーを付与し、次いで重合することを特徴とする複合
材料の製造方法。
As a result of further studies made by the present inventor, an FRT having a high fiber content in a simple process is obtained.
I found P. That is, the present invention has the following configurations. 1. A composite material characterized by being integrated with the fiber by polymerizing a monomer and / or oligomer of a thermoplastic resin on the surface of the fiber. 2. The composite material according to the first aspect, wherein the volume content of the fibers is 60 vf% or more. 3. 3. The composite material according to the above 1 or 2, wherein the fiber is an organic fiber having high strength and high elastic modulus. 4. A method for producing a composite material, which comprises applying a thermoplastic resin monomer and / or oligomer to a fiber surface, and then polymerizing the same.

【0007】本発明の繊維とはFRTPに適用可能な強
化繊維であり熱可塑性樹脂の融点あるいは軟化点あるい
は重合温度以上で分解しないものを選択することが必要
である。その適用される繊維としては椰子繊維などの天
然繊維、レーヨンなどのポリノジック繊維を始め、チラ
ノ繊維などの金属繊維、ガラス繊維、バザルト繊維、炭
素繊維などの無機繊維が挙げられるが、複合材料として
求められる高強度、高弾性率の観点から15cN/dt
ex以上の強度、400cN/dtex以上の弾性率、
更には20cN/dtex以上の強度、500cN/d
tex以上の弾性率を有する繊維が望ましい。また、軽
量の観点、ならびに、環境適合性の観点からポリエチレ
ンテレフタレート樹脂、ポリプロピレン樹脂、ポリアミ
ド樹脂などを使用した有機材料が好ましく、より軽量を
求める場合はポリオレフィン系の繊維が好ましく、更に
好ましくは、超高分子量ポリエチレン繊維が挙げられ
る。また、耐熱性、耐衝撃性、耐薬品性などが求められ
る場合はポリパラフェニレンテレフタルアミド(パラア
ラミド)繊維、ポリエーテルイミド繊維、ポリフェニレ
ンサルファイド繊維、ポリエーテルエーテルケトン繊維
などが選択でき、更に、新しく開発されたポリパラフェ
ニレンベンゾビスチアゾールやポリパラフェニレンベン
ゾビスオキサゾール等のポリベンザゾール繊維などが適
用できる。また、今後、新たに開発される繊維について
も例えば、珪素系高分子素材なども本発明に適用でき
る。
The fiber of the present invention is a reinforcing fiber applicable to FRTP, and it is necessary to select a fiber which does not decompose at the melting point or softening point of the thermoplastic resin or at the polymerization temperature or higher. The fibers to be applied include natural fibers such as palm fibers, polynosic fibers such as rayon, metal fibers such as tyranno fibers, glass fibers, basalt fibers, and inorganic fibers such as carbon fibers, but they are required as composite materials. 15cN / dt from the viewpoint of high strength and high elastic modulus
strength of ex or more, elastic modulus of 400 cN / dtex or more,
Furthermore, strength of 20 cN / dtex or more, 500 cN / d
A fiber having an elastic modulus of tex or more is desirable. Further, from the viewpoint of light weight, and from the viewpoint of environmental compatibility, polyethylene terephthalate resin, polypropylene resin, an organic material using a polypropylene resin or the like is preferable, when more lightweight is desired, a polyolefin-based fiber is preferable, and more preferably, High molecular weight polyethylene fibers may be mentioned. If heat resistance, impact resistance, chemical resistance, etc. are required, polyparaphenylene terephthalamide (para-aramid) fiber, polyetherimide fiber, polyphenylene sulfide fiber, polyether ether ketone fiber, etc. can be selected. Polybenzazole fibers such as the developed polyparaphenylenebenzobisthiazole and polyparaphenylenebenzobisoxazole can be applied. Further, for newly developed fibers in the future, for example, a silicon-based polymer material can be applied to the present invention.

【0008】本発明のFRTPを得る場合、繊維の表面
に熱可塑性樹脂のモノマー、かつ/または、オリゴマー
を繊維に塗布した後に重合させることが必要である。な
お、固体の場合、溶媒などに溶解して塗布する、あるい
は、バインダーなどを用いて強化繊維に担持させる、更
に、繊維に塗した後に該繊維の周囲をフィルムなどで包
むなどの手段があるが、一般的な液体状のモノマー、ま
たは、オリゴマーを用いるのがよく、常温で水のように
流動性が高いことが好ましい。なお、ここで記載するモ
ノマーとは単一分子よりなるもの、すなわち、単量体で
あり、オリゴマーとは、2量体以上の低重合度の重合物
を示す。該モノマー、及び、オリゴマーは付加反応によ
って、重合体を生成する単位物質の総称であるが、その
中でも、先に記載した熱可塑性樹脂を生成するものであ
り、ブタジエン、スチレン、アクリロニトリル、エチレ
ン、塩化ビニルなどが例示できる。また、ε−カプロラ
クタムや、ω−アミノカプロン酸がナイロン6の、ω−
ヘキサメチレンジアミン、アジピン酸がナイロン66、
メタクリル酸メチルがポリメチルメタアクリレートのも
のとして例示できる。モノマー、または、オリゴマー、
ならびに、重合開始剤、及び、触媒は先に示した熱可塑
性樹脂に合わせて適宜選択するものであるが、重合時に
モノマー、または、オリゴマーが揮発する場合、設備を
密閉系にしたり、減圧するなどして、周囲に拡散するこ
とを回避する処置を施すようにしなければならない。あ
るいは、分子量の大きいモノマー、または、オリゴマー
を選択し、揮発を回避することが肝要である。
To obtain the FRTP of the present invention, it is necessary to coat the fiber with a monomer and / or oligomer of a thermoplastic resin on the surface of the fiber and then polymerize the same. In the case of a solid, there are means such as coating by dissolving it in a solvent or the like, supporting it on a reinforcing fiber by using a binder, or wrapping the fiber with a film after coating the fiber. It is preferable to use a general liquid monomer or oligomer, and it is preferable that it has high fluidity like water at room temperature. The monomer described here is a monomer composed of a single molecule, that is, a monomer, and the oligomer means a polymer having a low degree of polymerization of a dimer or more. The monomers and oligomers are generic terms for a unit substance that produces a polymer by an addition reaction. Among them, the ones that produce the thermoplastic resin described above include butadiene, styrene, acrylonitrile, ethylene, and chloride. Vinyl etc. can be illustrated. In addition, ε-caprolactam and ω-aminocaproic acid are nylon-6, ω-
Hexamethylenediamine and adipic acid are nylon 66,
Methyl methacrylate can be exemplified as that of polymethylmethacrylate. Monomer or oligomer,
Also, the polymerization initiator and the catalyst are appropriately selected according to the thermoplastic resin shown above, but when the monomer or the oligomer volatilizes during the polymerization, the equipment is closed system, the pressure is reduced, etc. Therefore, it is necessary to take measures to avoid the diffusion to the surroundings. Alternatively, it is important to select a high molecular weight monomer or oligomer to avoid volatilization.

【0009】更に、事前に熱可塑性樹脂の選択時に、重
合反応における副反応物に留意して、製品設計すること
が肝要である。加えて、モノマー、または、オリゴマ
ー、ならびに、重合開始剤、及び、触媒などの混合物を
強化繊維に含浸しながら、あるいは、含浸後に反応開始
温度以上にして重合させるが、この場合、反応速度に留
意して、成形条件を決定することが肝要である。
Further, it is important to design the product by paying attention to side reaction products in the polymerization reaction when selecting the thermoplastic resin in advance. In addition, polymerization is carried out while impregnating the reinforcing fiber with a mixture of a monomer or an oligomer, a polymerization initiator, and a catalyst, or at a temperature not lower than the reaction initiation temperature after impregnation. In this case, note the reaction rate. Therefore, it is important to determine the molding conditions.

【0010】本発明に適用される熱可塑性樹脂は一般に
結晶性熱可塑性樹脂と呼ばれるナイロン6、ナイロン6
6に代表されるポリアミド系樹脂、ポリエチレンテレフ
タレート、ポリブチレンテレフタレートに代表されるポ
リエステル系樹脂、ポリエチレン、ポリプロピレンに代
表されるポリオレフィン系樹脂、更には、シンジオタク
チック・ポリスチレン、ポリアセタールなどが挙げられ
る。加えて、高い耐熱性を備えたポリフェニレンサルフ
ァイド、ポリエーテルエーテルケトン、液晶性ポリマ
ー、フッ素樹脂、ポリエーテルニトリルなどが挙げられ
る。上記の結晶性熱可塑性樹脂に対してソフトセグメン
トとして分子量300〜5000のポリエ−テル系グリ
コ−ル、ポリエステル系グリコ−ル、ポリカ−ボネ−ト
系グリコ−ル等をブロック共重合したポリエステル系エ
ラストマ−、ポリアミド系エラストマ−、ポリウレタン
系エラストマ−などの熱可塑性弾性樹脂も挙げられる。
The thermoplastic resin applied to the present invention is nylon 6 or nylon 6 which is generally called crystalline thermoplastic resin.
Examples thereof include polyamide resins represented by 6, polyethylene terephthalate, polyester resins represented by polybutylene terephthalate, polyolefin resins represented by polyethylene and polypropylene, and syndiotactic polystyrene and polyacetal. In addition, polyphenylene sulfide having high heat resistance, polyether ether ketone, liquid crystalline polymer, fluororesin, polyether nitrile and the like can be mentioned. Polyester elastomer obtained by block-copolymerizing the above-mentioned crystalline thermoplastic resin with a soft segment having a molecular weight of 300 to 5,000 such as polyether glycol, polyester glycol and polycarbonate glycol. -, Polyamide elastomers, polyurethane elastomers and other thermoplastic elastic resins are also included.

【0011】また、一般に非晶性熱可塑性樹脂と呼ばれ
るポリカーボネート、変性ポリフェニレンエーテルや高
い耐熱性を有するポリサルホン、ポリエーテルサルホ
ン、ポリアリレート、ポリアミドイミド、ポリエーテル
イミド、熱可塑性ポリイミドなどが挙げられる。なお、
一般に、流動性に問題があると云われるこれらの非晶性
熱可塑性樹脂に対して、本発明は好適である。強化繊維
と熱可塑性樹脂の組み合わせについては、目的に応じて
選択する必要があるが、強化繊維と類似した熱可塑性樹
脂を選択することが、強化繊維と樹脂との接着性能や使
用後の分別廃棄などの面で好適である。
In addition, examples include polycarbonate, which is generally called amorphous thermoplastic resin, modified polyphenylene ether, polysulfone having high heat resistance, polyether sulfone, polyarylate, polyamideimide, polyetherimide, and thermoplastic polyimide. In addition,
The present invention is suitable for these amorphous thermoplastic resins which are generally said to have a problem in fluidity. It is necessary to select the combination of the reinforcing fiber and the thermoplastic resin according to the purpose, but it is important to select a thermoplastic resin similar to the reinforcing fiber in order to improve the adhesive performance between the reinforcing fiber and the resin and the separation and disposal after use. It is suitable in terms of

【0012】[0012]

【実施例】以下に本発明の実施例、ならびに、本文中、
及び、実施例中の評価方法について記述する。 (1)複合材料の繊維含有率と空洞率 JIS K 7075「炭素繊維強化プラスチックの繊
維含有率及び空洞率試験方法」、ならびに、JIS K
7052「ガラス繊維強化プラスチックの繊維含有率
測定方法」に準拠して、繊維の供給量とFRTPの重量
比、ならびに、密度より繊維(体積)含有率は求めた。 (2)含浸状態 任意に選択した断面を光学顕微鏡などで観察し、周囲長
の50%以上が樹脂と接触した状態の強化繊維の含有量
で示すもので、ここでは70%以上を良、70%未満の
ものを不良とした。 (実施例1〜4) 高分子量ポリエチレン繊維(東洋紡績(株)製「ダイニ
ーマ:SK60」)をテトラフルオロエチレン製フレー
ムに一方向に巻き付け、これをモノマーとしてメタクリ
ル酸メチル、反応開始剤としてα,α'-アゾビス-イソブ
チルニトリル(6wph)をガラス製容器内(約20
℃)で混合したものに浸漬した後、テトラフルオロエチ
レン被覆した平板金型に敷設した。更に厚さ2mmのス
ペーサーを置いて、テトラフルオロエチレン被覆した平
板金型で挟み、周囲を速乾性シール剤で封入してから、
プレス成形機(熱盤温度65℃)上で加熱圧縮し、該混
合物を重合させた。なお、図1に示すような形態で行な
い、該繊維の巻き付け本数を変更して実施例1〜4の複
合材料を得た。
EXAMPLES Examples of the present invention, and in the text below,
And the evaluation method in the examples will be described. (1) Fiber content rate and void rate of composite material JIS K 7075 "Test method for fiber content rate and void rate of carbon fiber reinforced plastic" and JIS K
7052 "Method for measuring fiber content of glass fiber reinforced plastic", the fiber (volume) content was determined from the fiber supply amount and the FRTP weight ratio and the density. (2) Impregnated state An arbitrarily selected cross section is observed by an optical microscope or the like, and the content of the reinforcing fiber in a state where 50% or more of the peripheral length is in contact with the resin is shown. Here, 70% or more is good, 70 Those less than% were regarded as defective. (Examples 1 to 4) A high molecular weight polyethylene fiber ("Dyneema: SK60" manufactured by Toyobo Co., Ltd.) was wound around a tetrafluoroethylene frame in one direction, and this was used as a monomer, methyl methacrylate, and a reaction initiator α, α'-azobis-isobutylnitrile (6 wph) in a glass container (about 20
After immersing in the mixture at 0 ° C.), it was laid in a flat mold coated with tetrafluoroethylene. After placing a spacer with a thickness of 2 mm, sandwiching it with a flat plate mold coated with tetrafluoroethylene, and sealing the periphery with a quick-drying sealant,
The mixture was heated and compressed on a press molding machine (heating plate temperature 65 ° C.) to polymerize the mixture. In addition, it carried out in the form as shown in FIG. 1 and changed the number of winding of this fiber, and obtained the composite material of Examples 1-4.

【0013】(比較例1〜4)高分子量ポリエチレン繊
維(東洋紡績(株)製「ダイニーマ:SK60」)を開
繊バーにて充分開繊した後、実施例1〜4と同様にテト
ラフルオロエチレン製フレームに一方向に巻き付けた。
その際に実施例1〜4と同様のモノマーとしてメタクリ
ル酸メチル、反応開始剤としてα,α'-アゾビス-イソブ
チルニトリル(6wph)をガラス製容器内(約20
℃)で混合し、65℃で重合した後、粉末にしたものを
該繊維の間に付与し、テトラフルオロエチレン被覆した
平板金型に敷設した。更に厚さ2mmのスペーサーを置
いて、テトラフルオロエチレン被覆した平板金型で挟
み、周囲を速乾性シール剤で封入してから、プレス成形
機(熱盤温度110℃)上で加熱圧縮し、比較例1〜4
の複合材料を得た。
(Comparative Examples 1 to 4) High molecular weight polyethylene fibers ("Dyneema: SK60" manufactured by Toyobo Co., Ltd.) were sufficiently opened with an opening bar, and then tetrafluoroethylene was used in the same manner as in Examples 1 to 4. Wrapped around the frame in one direction.
At that time, methyl methacrylate as a monomer and α, α′-azobis-isobutylnitrile (6 wph) as a reaction initiator were used in a glass container (about 20%) as in Examples 1 to 4.
After mixing at 65 ° C. and polymerizing at 65 ° C., the powdered product was applied between the fibers and laid on a flat mold coated with tetrafluoroethylene. Furthermore, a spacer with a thickness of 2 mm is placed, sandwiched between flat plate molds coated with tetrafluoroethylene, and the periphery is sealed with a quick-drying sealant, which is then heated and compressed on a press molding machine (heating plate temperature 110 ° C.) for comparison. Examples 1-4
A composite material of

【0014】[0014]

【表1】 [Table 1]

【0015】(実施例5〜8)高分子量ポリエチレン繊
維(東洋紡績(株)製「ダイニーマ:SK60」)によ
る布帛(平織:経緯15本/2.54cm)を実施例1
〜4と同様の混合物(モノマーとしてメタクリル酸メチ
ル、反応開始剤としてα,α'-アゾビス-イソブチルニト
リル(6wph)、容器内(約20℃)で混合したも
の)に浸漬させた後、テトラフルオロエチレン被覆した
平板金型に敷設した。更に厚さ2mmのスペーサーを置
いて、テトラフルオロエチレン被覆した平板金型で挟
み、周囲を速乾性シール剤で封入してから、プレス成形
機(熱盤温度65℃)上で加熱圧縮し、該混合物を重合
させた。なお、該布帛の積層枚数を変更して実施例5〜
8の複合材料を得た。
(Examples 5 to 8) A cloth (plain weave: 15 wefts / 2.54 cm) made of high molecular weight polyethylene fibers ("Dyneema: SK60" manufactured by Toyobo Co., Ltd.) was used in Example 1
~ 4, after dipping in the same mixture (methyl methacrylate as a monomer, α, α'-azobis-isobutylnitrile (6 wph) as a reaction initiator, mixed in a container (about 20 ° C)), tetrafluoro It was laid on a flat mold coated with ethylene. Further, a spacer having a thickness of 2 mm is placed, sandwiched between flat plate molds coated with tetrafluoroethylene, and the periphery is sealed with a quick-drying sealant, and then heated and compressed on a press molding machine (heating plate temperature 65 ° C.), The mixture was polymerized. In addition, by changing the number of laminated layers of the cloth,
A composite material of 8 was obtained.

【0016】(比較例5〜8)実施例5〜8と同様に高
分子量ポリエチレン繊維(東洋紡績(株)製「ダイニー
マ:SK60」)による布帛(平織:経緯15本/2.
54cm)に比較例1〜4と同様の重合物(メタクリル
酸メチルとα,α'-アゾビス-イソブチルニトリル(6w
ph)を混合し、65℃で重合)の粉末を付与して、テ
トラフルオロエチレン被覆した平板金型に敷設した。更
に厚さ2mmのスペーサーを置いて、テトラフルオロエ
チレン被覆した平板金型で挟み、周囲を速乾性シール剤
で封入してから、プレス成形機(熱盤温度110℃)上
で加熱圧縮し、比較例5〜8の複合材料を得た。
(Comparative Examples 5-8) As in Examples 5-8, a cloth (plain weave: 15 wefts / two wefts) made of high molecular weight polyethylene fibers ("Dyneema: SK60" manufactured by Toyobo Co., Ltd.).
Polymers similar to Comparative Examples 1 to 4 (54 cm) (methyl methacrylate and α, α′-azobis-isobutylnitrile (6 w
ph) was mixed, and the powder of (polymerization at 65 ° C.) was applied, and the powder was laid on a flat mold coated with tetrafluoroethylene. Furthermore, a spacer with a thickness of 2 mm is placed, sandwiched between flat plate molds coated with tetrafluoroethylene, and the periphery is sealed with a quick-drying sealant, which is then heated and compressed on a press molding machine (heating plate temperature 110 ° C.) for comparison. The composite materials of Examples 5-8 were obtained.

【0017】[0017]

【表2】 [Table 2]

【0018】(実施例9)ポリベンゾール繊維(東洋紡
績(株)製「ザイロン:AS」)による布帛(平織:経
緯30本/2.54cm)の積層したものを実施例5〜
8と同様の該混合物(モノマーとしてメタクリル酸メチ
ル、反応開始剤としてα,α'-アゾビス-イソブチルニト
リル(6wph)、容器内(約20℃)で混合したも
の)にテトラフルオロエチレン被覆した平板金型に敷設
した。更に厚さ2mmのスペーサーを置いて、同様のテ
トラフルオロエチレン被覆した平板金型で挟み、周囲を
速乾性シール剤で封入してから、プレス成形機(熱盤温
度65℃)上で加熱圧縮し、該混合物を重合させ、実施
例9の複合材料を得た。
(Example 9) A laminate of fabrics (plain weave: 30 wefts / 2.54 cm) made of polybenzol fiber ("Zylon: AS" manufactured by Toyobo Co., Ltd.) was laminated.
Flat metal coated with tetrafluoroethylene on the same mixture as in Example 8 (methyl methacrylate as a monomer, α, α'-azobis-isobutylnitrile (6 wph) as a reaction initiator, mixed in a container (about 20 ° C)) Laid in a mold. Then, place a spacer with a thickness of 2 mm, sandwich it with a flat metal mold coated with the same tetrafluoroethylene, and seal the periphery with a quick-drying sealant, and then heat and compress it on a press molding machine (heating plate temperature 65 ° C). Then, the mixture was polymerized to obtain a composite material of Example 9.

【0019】(比較例9)実施例9と同様にポリベンゾ
ール繊維(東洋紡績(株)製「ザイロン」)による布帛
(平織:経緯30本/2.54cm)の積層したものを
比較例5〜8と同様に重合物(メタクリル酸メチルと
α,α'-アゾビス-イソブチルニトリル(6wph)を混
合し、65℃で重合)の粉末を付与して、テトラフルオ
ロエチレン被覆した平板金型に敷設した。更に厚さ2m
mのスペーサーを置いて、テトラフルオロエチレン被覆
した平板金型で蓋をし、周囲を速乾性シール剤で封入し
てから、プレス成形機(熱盤温度110℃)上で加熱圧
縮し、比較例9の複合材料を得た。
(Comparative Example 9) In the same manner as in Example 9, a laminate of a fabric (plain weave: 30 wefts / 2.54 cm) made of polybenzol fiber ("Zylon" manufactured by Toyobo Co., Ltd.) was laminated. Powder of polymer (mixing methyl methacrylate and α, α′-azobis-isobutylnitrile (6 wph) and polymerizing at 65 ° C.) was applied in the same manner as in No. 8, and laid on a tetrafluoroethylene-coated flat plate mold. . 2m thick
m spacer was placed, the lid was covered with a flat plate mold coated with tetrafluoroethylene, and the periphery was sealed with a quick-drying sealant, followed by heating and compression on a press molding machine (heating plate temperature 110 ° C.). A composite material of 9 was obtained.

【0020】(実施例10)ポリエステル繊維(東洋紡
績(株)製」)による不織布(繊度14dtex:目付
400g/m2 )の積層したものを実施例9と同様に該
混合物(モノマーとしてメタクリル酸メチル、反応開始
剤としてα,α'-アゾビス-イソブチルニトリル(6wp
h)、容器内(約20℃)で混合したもの)に浸漬させ
た後、テトラフルオロエチレン被覆した平板金型に敷設
した。更に厚さ2mmのスペーサーを置いて、同様のテ
トラフルオロエチレン被覆した平板金型で蓋をし、周囲
を速乾性シール剤で封入してから、プレス成形機(熱盤
温度65℃)上で加熱圧縮し、該混合物を重合させ、実
施例10の複合材料を得た。
Example 10 A mixture of non-woven fabrics (fineness 14 dtex: basis weight 400 g / m 2 ) made of polyester fibers (manufactured by Toyobo Co., Ltd.) was laminated in the same manner as in Example 9 (methyl methacrylate as a monomer). , Α, α'-azobis-isobutylnitrile (6wp as a reaction initiator)
h), after being dipped in a container (mixed in a container (about 20 ° C.)), it was laid in a flat mold coated with tetrafluoroethylene. Further, place a spacer with a thickness of 2 mm, cover with a similar tetrafluoroethylene-coated flat plate mold, and seal the periphery with a quick-drying sealant, then heat on a press molding machine (heating plate temperature 65 ° C). Pressed and polymerized the mixture to obtain the composite material of Example 10.

【0021】(比較例10)実施例10と同様にポリエ
ステル繊維(東洋紡績(株)製」)による不織布(繊度
14dtex:目付400g/m2 )の積層したものを
比較例5〜8と同様に重合物(メタクリル酸メチルと
α,α'-アゾビス-イソブチルニトリル(6wph)を混
合し、65℃で重合)の粉末を付与して、テトラフルオ
ロエチレン被覆した平板金型に敷設した。更に厚さ2m
mのスペーサーを置いて、テトラフルオロエチレン被覆
した平板金型で蓋をし、周囲を速乾性シール剤で封入し
てから、プレス成形機(熱盤温度110℃)上で加熱圧
縮し、比較例10の複合材料を得た。
(Comparative Example 10) As in Example 10, a laminate of non-woven fabric (fineness 14 dtex: basis weight 400 g / m 2 ) made of polyester fiber (manufactured by Toyobo Co., Ltd.) was laminated in the same manner as Comparative Examples 5-8. A powder of a polymer (methyl methacrylate and α, α′-azobis-isobutylnitrile (6 wph) were mixed and polymerized at 65 ° C.) was applied, and the powder was laid on a tetrafluoroethylene-coated flat plate mold. 2m thick
m spacer was placed, the lid was covered with a flat plate mold coated with tetrafluoroethylene, and the periphery was sealed with a quick-drying sealant, followed by heating and compression on a press molding machine (heating plate temperature 110 ° C.). Ten composite materials were obtained.

【0022】[0022]

【表3】 [Table 3]

【0023】以上の実施例1〜10と比較例1〜10の
素材、加工条件、ならびに、評価結果を表1〜3に記載
する。表1における実施例1〜4と比較例1〜4から本
発明の複合材料は高い繊維含有率において、含浸状態が
良好で、しかも、低い空洞率のものが得られている。一
方、比較例では繊維含有率が増加するに従い、含浸状態
が悪化し、また、空洞率が高いものしか得られないこと
が分かる。表2における実施例5〜8と比較例5〜8か
ら本発明の複合材料は繊維の形態が変わっても高い繊維
含有率で、含浸状態が良好であり、しかも、低い空洞率
のものが得られている。一方、比較例では先ほどと同様
に繊維含有率が増加するに従い、含浸状態が悪化し、ま
た、空洞率が低下したものしか得られないことが分か
る。表3における実施例9〜10と比較例9〜10から
本発明の複合材料は繊維の素材が変わっても高い繊維含
有率で、含浸状態が良好であり、しかも、低い空洞率の
ものが得られている。一方、比較例では先ほどと同様に
繊維含有率が増加するに従い、含浸状態が悪化し、ま
た、空洞率が高いものしか得られないことが分かる。一
般に複合材料では、繊維間同志の連続性が力学的特性を
得るために必要であり、これを満たすため、繊維束内に
於いて、樹脂が含浸することが重要である。この含浸状
態については、任意に選択した断面を光学顕微鏡などで
観察し、繊維周囲長の50%以上が樹脂と接触した状態
の強化繊維の含有量で示した場合、70%以上が好まし
く、更には、80%以上であることがより好ましいが、
繊維含有率が増加するほど、繊維間に樹脂が入り込みに
くくなり、空間率が増加するが、本発明のFRTPは樹
脂の含浸が困難な高い繊維含有率において、本発明の効
果である高い含浸状態が得られ、空間率が小さい。以上
の結果から、繊維の表面に熱可塑性樹脂のモノマー及び
/又はオリゴマーを繊維に塗布した後に重合させて、一
体化した本発明の複合材料は高い繊維含有率を有し、し
かも、力学特性を左右する含浸状態が良好で、更に、空
洞率も低いため、強化繊維ならびにマトリックスの熱可
塑性樹脂の能力を最大限に発現できるものと期待でき
る。このようなFTRPは一方向繊維強化型の場合、光
ファイバーやワイヤーハーネスなどを補強する補強材と
して、海洋や湖などで使用するロープ、自転車のスポー
クやテニスのガットなどの素材、ジオテキスタイル用の
線材、ヨット、カヌー、グライダーなどのレジャースポ
ーツ用品のラインなどに適用することができる。また、
布帛などの2次元強化型の場合、強化繊維の特性を活か
し、耐衝撃材や振動減衰材など、あらゆる方面に適用す
ることが可能である。更に、繊維の形態、及び、離型の
制限が許す限り、本発明の成形方法を適用することで、
様々な形状に対応させることが可能である。
The materials, processing conditions, and evaluation results of Examples 1 to 10 and Comparative Examples 1 to 10 described above are shown in Tables 1 to 3. From Examples 1 to 4 and Comparative Examples 1 to 4 in Table 1, the composite materials of the present invention have a high fiber content, a good impregnation state, and a low void ratio. On the other hand, in the comparative example, it can be seen that as the fiber content increases, the impregnated state deteriorates and only those having a high void ratio can be obtained. From Examples 5 to 8 and Comparative Examples 5 to 8 in Table 2, the composite material of the present invention has a high fiber content even if the morphology of the fibers is changed, the impregnated state is good, and the void content is low. Has been. On the other hand, in the comparative example, it can be seen that as the fiber content increases, the impregnated state deteriorates and the void ratio decreases only as in the previous case. From Examples 9 to 10 and Comparative Examples 9 to 10 in Table 3, the composite material of the present invention has a high fiber content even if the material of the fiber is changed, the impregnation state is good, and the void content is low. Has been. On the other hand, in the comparative example, it can be seen that as the fiber content increases, the impregnated state deteriorates and only those having a high void ratio can be obtained in the same manner as above. Generally, in a composite material, continuity between fibers is required to obtain mechanical properties, and in order to satisfy this, it is important that the resin is impregnated in the fiber bundle. Regarding the impregnated state, when an arbitrarily selected cross section is observed with an optical microscope or the like, and when the content of the reinforcing fiber in a state where 50% or more of the fiber perimeter is in contact with the resin, 70% or more is preferable, and further, Is more preferably 80% or more,
As the fiber content increases, it becomes more difficult for resin to enter between the fibers, and the void ratio increases. However, the FRTP of the present invention has a high fiber content which makes it difficult to impregnate the resin, which is an effect of the present invention. And the porosity is small. From the above results, the composite material of the present invention, in which the monomer and / or oligomer of the thermoplastic resin is applied to the surface of the fiber and then polymerized to be integrated, has a high fiber content and yet has a high mechanical property. Since the impregnated state which influences is good and the void ratio is also low, it can be expected that the capabilities of the reinforcing fiber and the thermoplastic resin of the matrix can be maximized. In the case of unidirectional fiber reinforced type, such FTRP is used as a reinforcing material for reinforcing optical fibers and wire harnesses, such as ropes used in the ocean and lakes, materials such as bicycle spokes and tennis gut, wire materials for geotextile, It can be applied to the line of leisure sports equipment such as yachts, canoes and gliders. Also,
In the case of a two-dimensional reinforced type such as a cloth, it is possible to apply it to various fields such as an impact resistant material and a vibration damping material by utilizing the characteristics of the reinforced fiber. Further, by applying the molding method of the present invention, as long as the morphology of the fiber and the limitation of the mold release allow.
It is possible to correspond to various shapes.

【0024】[0024]

【発明の効果】本発明によると、簡易な工程により、繊
維含有率が高く、樹脂の含浸状態が良好な自動車、航
空、建設、土木、安全用品など広く産業資材として好適
な熱可塑性樹脂繊維強化複合材料を得ることを可能とし
た。
EFFECTS OF THE INVENTION According to the present invention, a thermoplastic resin fiber reinforced, which has a high fiber content and a good resin impregnation state, is suitable for a wide range of industrial materials such as automobiles, aviation, construction, civil engineering, and safety products by a simple process. It was possible to obtain a composite material.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に適用する実施例の一形態を示す概略図
である。
FIG. 1 is a schematic view showing one form of an embodiment applied to the present invention.

【符号の説明】[Explanation of symbols]

1:テトラフルオロエチレン製フレーム、2:テトラフ
ルオロエチレン被服平板金型、3:繊維
1: Tetrafluoroethylene frame, 2: Tetrafluoroethylene coated flat plate mold, 3: Fiber

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B29K 105:06 C08L 101:00 C08L 101:00 B29C 67/14 W Fターム(参考) 4F072 AB04 AB05 AB06 AB07 AB09 AB10 AB11 AB22 AD04 AD05 AD37 AD42 AD44 AD46 AG03 AH05 AH18 4F205 AB25 AD16 AH17 AH31 AH43 HA08 HA25 HA34 HB01 HC12 HF01 HK03 HK04 4L033 AA05 AB05 AC11 AC15 BA19 CA18 Front page continuation (51) Int.Cl. 7 Identification code FI theme code (reference) B29K 105: 06 C08L 101: 00 C08L 101: 00 B29C 67/14 WF term (reference) 4F072 AB04 AB05 AB06 AB07 AB09 AB10 AB11 AB22 AD04 AD05 AD37 AD42 AD44 AD46 AG03 AH05 AH18 4F205 AB25 AD16 AH17 AH31 AH43 HA08 HA25 HA34 HB01 HC12 HF01 HK03 HK04 4L033 AA05 AB05 AC11 AC15 BA19 CA18

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 繊維表面に熱可塑性樹脂のモノマー及び
/又はオリゴマーを付与した後、重合することにより当
該繊維と一体化してなることを特徴とする複合材料。
1. A composite material characterized by being integrated with the fiber by applying a monomer and / or oligomer of a thermoplastic resin to the surface of the fiber and then polymerizing the monomer.
【請求項2】 繊維の体積含有率が60vf%以上であ
ることを特徴とする請求項1に記載の複合材料。
2. The composite material according to claim 1, wherein the volume content of the fibers is 60 vf% or more.
【請求項3】 繊維が、高強度高弾性率の有機繊維であ
ることを特徴とする請求項1又は2に記載の複合材料。
3. The composite material according to claim 1, wherein the fiber is an organic fiber having high strength and high elastic modulus.
【請求項4】 繊維表面に熱可塑性樹脂のモノマー及び
/又はオリゴマーを付与し、次いで重合することを特徴
とする複合材料の製造方法。
4. A method for producing a composite material, which comprises applying a monomer and / or oligomer of a thermoplastic resin to a fiber surface and then polymerizing the same.
JP2002086494A 2002-03-26 2002-03-26 Composite material and its production method Pending JP2003277530A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002086494A JP2003277530A (en) 2002-03-26 2002-03-26 Composite material and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002086494A JP2003277530A (en) 2002-03-26 2002-03-26 Composite material and its production method

Publications (1)

Publication Number Publication Date
JP2003277530A true JP2003277530A (en) 2003-10-02

Family

ID=29233080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002086494A Pending JP2003277530A (en) 2002-03-26 2002-03-26 Composite material and its production method

Country Status (1)

Country Link
JP (1) JP2003277530A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014007522A1 (en) 2012-07-05 2014-01-09 Georgia Tech Research Corporation Method for processing single nylon 6 composites

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014007522A1 (en) 2012-07-05 2014-01-09 Georgia Tech Research Corporation Method for processing single nylon 6 composites
KR20150027783A (en) * 2012-07-05 2015-03-12 조지아 테크 리서치 코오포레이션 Method for Processing Single Nylon 6 Composites
JP2015522682A (en) * 2012-07-05 2015-08-06 ジョージア テック リサーチ コーポレイション Processing method of single nylon 6 composite material
EP2870203A4 (en) * 2012-07-05 2016-03-09 Georgia Tech Res Inst Method for processing single nylon 6 composites
KR101710143B1 (en) 2012-07-05 2017-02-27 조지아 테크 리서치 코오포레이션 Method for Processing Single Nylon 6 Composites

Similar Documents

Publication Publication Date Title
Edwards An overview of the technology of fibre-reinforced plastics for design purposes
Vaidya et al. Processing of fibre reinforced thermoplastic composites
Cabrera et al. Processing of all-polypropylene composites for ultimate recyclability
JP5706402B2 (en) Method for delivering a thermoplastic resin and / or a crosslinkable resin to a composite laminate structure
KR101832017B1 (en) Compatible carrier for secondary toughening
US4931358A (en) Fiber-reinforced thermoplastic panels
US20090004460A1 (en) Nanoparticle-Containing Thermoplastic Composites and Methods of Preparing Same
KR880013692A (en) Fiber Reinforced Polymerization Molded Body
CN101312820A (en) A method for producing a fibre-reinforced product
TWI586540B (en) Functional film for well-impregnated composites and method of manufacturing composites using the same
JP2006213059A (en) Method for manufacturing frp composite
JP2019511617A (en) Method for producing parts made of composite material comprising a reinforcing agent
KR101961103B1 (en) Carbon riber and mesh structure tight processing carbon fiber prepreg and manufacturing method of the same
JP2003277530A (en) Composite material and its production method
JP4959101B2 (en) Fiber-reinforced thermoplastic composite molded article and molding method thereof
Wakeman et al. Composites manufacturing–thermoplastics
Masri et al. Review of Manufacturing Process of Natural Fiber Reinforced Polymer Composites
Zulkepli et al. Review of manufacturing process for good quality of composite assessment
WO2021124977A1 (en) Fiber-reinforced resin hollow molded body and method for producing same
US20220143879A1 (en) Dual expanding foam for closed mold composite manufacturing
NL2014282B1 (en) Consolidation Cycle.
TW201618962A (en) Sandwich components composed of poly(meth)acrylate-based foam bodies and reversibly crosslinkable composites
GB1567367A (en) Fibre reinforces composites
JP3128738B2 (en) FRP composed of a single material and its manufacturing method
JPH0538717A (en) Composite sheet for reinforcing reaction injection molded body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070419