JP2003274674A - Zero-voltage switching mode inverter - Google Patents

Zero-voltage switching mode inverter

Info

Publication number
JP2003274674A
JP2003274674A JP2002112674A JP2002112674A JP2003274674A JP 2003274674 A JP2003274674 A JP 2003274674A JP 2002112674 A JP2002112674 A JP 2002112674A JP 2002112674 A JP2002112674 A JP 2002112674A JP 2003274674 A JP2003274674 A JP 2003274674A
Authority
JP
Japan
Prior art keywords
switching element
voltage
switching
current
inverter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002112674A
Other languages
Japanese (ja)
Inventor
Akira Hasegawa
彰 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAKASAGO SEISAKUSHO KK
Takasago Ltd
Original Assignee
TAKASAGO SEISAKUSHO KK
Takasago Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAKASAGO SEISAKUSHO KK, Takasago Ltd filed Critical TAKASAGO SEISAKUSHO KK
Priority to JP2002112674A priority Critical patent/JP2003274674A/en
Publication of JP2003274674A publication Critical patent/JP2003274674A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inverter Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To maintain voltage of a switching element at a zero voltage by utilizing an operation of inductance before turning on the switching element in an inverter, to reduce a switching loss in switching, at the same time, to restrain rising of current, and hence to achieve the inverter having increased efficiency and low noise. <P>SOLUTION: In the inverter circuit, the two switching elements have opposite continuity characteristics that have a dead time and are opened and closed without simultaneously turning on, and are connected to an input power supply in series. Further, inductances L1 and L2 are connected in series to both polarities of the input power supply, the switching elements having the opposite continuity characteristics that have a capacitor C and the dead time and are opened and closed without simultaneously turning on are provided ahead, and power is supplied to a load from the center point of each switching element. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、インバータのソフ
トスイッチングに属する物である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to inverter soft switching.

【0002】[0002]

【従来の技術】図−1はフルブリッジ・インバータと呼
ばれているインバータ回路である。この回路は原理的
に、スイッチング素子に電源電圧以上の電圧が加わるこ
とがなく、しかもスイッチング素子に流れる電流の実効
値が小さい特徴があり、電力の大きいインバータとして
必要不可欠の回路方式である。しかし、このインバータ
回路は、スイッチング素子がONする直前、スイッチン
グ素子に電源電圧に相当する電圧が加わっていて、スイ
ッチング素子がONした瞬間、スイッチング素子の端子
間に蓄積された電荷を急激に放電するので、スイッチン
グ素子が切り替わる瞬間の過渡的な電圧や電流の変化が
ノイズ発生の大きな要因となるだけでなく、スイッチン
グする瞬間の損失に相当する電圧と電流の積も大きくな
り、インバータの効率が低下する原因となっていた。
2. Description of the Related Art FIG. 1 shows an inverter circuit called a full bridge inverter. In principle, this circuit is characterized by the fact that no voltage higher than the power supply voltage is applied to the switching element, and the effective value of the current flowing through the switching element is small, making it an indispensable circuit system for an inverter with high power. However, in this inverter circuit, a voltage corresponding to the power supply voltage is applied to the switching element immediately before the switching element is turned on, and the charge accumulated between the terminals of the switching element is rapidly discharged at the moment when the switching element is turned on. Therefore, not only transient voltage and current changes at the switching element switching moment are a major cause of noise generation, but also the product of voltage and current corresponding to the loss at the switching switching point becomes large, which reduces the inverter efficiency. Was the cause.

【0003】さらに、FETやIGBTのようなスイッ
チング素子を用いた場合、内臓ダイオードの逆回復時間
が大きくなり、この逆回復時間の間、交互にON−OF
Fするスイッチング素子の直列回路に過大なパルス電流
が流れ、この電流による損失の増加やノイズの発生もあ
り、電源電圧の高い場合は損失が増加するだけでなくス
イッチング素子の破壊を招く場合もあった。
Furthermore, when a switching element such as an FET or an IGBT is used, the reverse recovery time of the built-in diode becomes long, and during this reverse recovery time, the ON-OF is alternately turned on.
Excessive pulse current flows in the series circuit of the switching elements that perform F, and this current may increase loss and generate noise. When the power supply voltage is high, not only the loss may increase, but also the switching element may be destroyed. It was

【0004】[0004]

【発明が解決しようとする課題】上記のように従来の技
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention

【図1】では、変換効率が悪く、スイッチングノイズが
多い欠点があった。これらの問題を解決する為、
In FIG. 1, the conversion efficiency was poor and there were many switching noises. To solve these problems,

【図2】に示すように、直列スイッチ対の間にインダク
タンスL1、L2を設け、このインダクタンスに流れる
電流によって、遮断したスイッチング素子を逆方向にバ
イアスして、遮断したスイッチの電圧をほぼゼロに保
つ。この結果、理想的なゼロ電圧・スイッチング動作を
可能とするだけでなく、インダクタンスの作用でスイッ
チがONした時の電流の立ち上がりを制限し、スイッチ
ング素子または、整流器の逆回復時間や電荷蓄積効果に
よる効率の低下、ノイズ発生などのトラブルを防ぎ、高
効率で低ノイズのインバータを実現しようとするもので
ある。
As shown in FIG. 2, inductances L1 and L2 are provided between a pair of series switches, and a current flowing through the inductances biases the interrupted switching element in the reverse direction to make the voltage of the interrupted switch almost zero. keep. As a result, not only ideal zero voltage switching operation is possible, but also the rise of the current when the switch is turned on is limited by the action of the inductance, and the reverse recovery time of the switching element or the rectifier and the charge accumulation effect are caused. It is intended to realize a high-efficiency and low-noise inverter by preventing problems such as a decrease in efficiency and noise generation.

【0005】[0005]

【問題を解決する為の手段】図−2に示すように、デッ
ドタイムを有し同時にONしない条件で開閉する二つの
逆方向導通特性を持つスイッチング素子S1、S2を入
力電源に直列に接続し、更に入力電源の両極性に対して
直列にインダクタンスL1、L2を接続し、その先にコ
ンデンサCとデッドタイムを有し同時にONしない条件
で開閉する二つの逆方向導通特性を持つスイッチング素
子S3、S4を設け、それぞれのスイッチング素子の中
点から負荷に電力を供給する。この方法でスイッチング
素子がOFFの期間にL1またはL2の電流を逆方向に
流し、スイッチング素子の電圧をほぼゼロに保つように
動作させる。
[Means for Solving the Problem] As shown in FIG. 2, two switching elements S1 and S2 having a reverse conduction characteristic that have a dead time and open and close under the condition that they do not turn on at the same time are connected in series to an input power source. , A switching element S3 having two reverse conduction characteristics, in which inductances L1 and L2 are connected in series for both polarities of the input power source, and there is a dead time with the capacitor C at the end of the input power supply, and the switching elements S2 and C2 are opened and closed under the condition that they are not turned on at the same time. S4 is provided to supply power to the load from the middle point of each switching element. By this method, the current of L1 or L2 is made to flow in the reverse direction while the switching element is OFF, and the operation of maintaining the voltage of the switching element at substantially zero is performed.

【0006】[0006]

【作用】まず、図−2でスイッチS2、S3をOFFし
てある状態で、スイッチS1とS4を同時にONする
と、電流はS1から負荷(Load)、S4、L2の順
で流れ、負荷にはほぼ電源電圧に相当する電圧値が加わ
る。ON時間経過した時点で、S1、S4をOFFする
とL2に流れていた電流はダイオードD2、Load、
D3、Cの順で流れてコンデンサCの充電電流となり、
S1、S4が遮断する直前に流れていたL2の電流を維
持するように流れ、コイルL1に蓄積されていたエネル
ギーは効果的に電源側へ回収される動作となる。この結
果、ダイオードD2、D3は順方向にバイアスされ、そ
の電圧値はほぼゼロに保たれる。
First, when the switches S2 and S3 are turned off in FIG. 2 and the switches S1 and S4 are turned on at the same time, current flows from S1 to the load (Load), S4 and L2 in this order, and A voltage value approximately equivalent to the power supply voltage is added. When S1 and S4 are turned off when the ON time has passed, the current flowing in L2 is changed to the diode D2, Load,
It flows in the order of D3 and C to become the charging current of the capacitor C,
The current of L2 flowing immediately before the interruption of S1 and S4 is maintained, and the energy accumulated in the coil L1 is effectively recovered to the power supply side. As a result, the diodes D2 and D3 are forward biased, and the voltage value thereof is maintained at substantially zero.

【0007】次のサイクルでスイッチS3、S2、をO
Nにすると、電流はL1、S3、Load、S2の順に
流れる。前期した理由でS3、S2がONする瞬間はす
でに電圧がゼロになっているので、スイッチング損失は
最小となる。ON時間経過した時点で、S3、S2をO
FFするとL1に流れていた電流はダイオードD1、L
1、Cの順で流れコンデンサCの充電電流、ダイオード
D4、Loadの順に流れ、S3、S2が遮断する直前
に流れていたL1の電流を維持するように流れる。この
結果、ダイオードD1、D4は順方向にバイアスされ、
その電圧値はほぼゼロに保たれる。次のサイクルでスイ
ッチS1、S4、をONにすると、電流はS1、Loa
d、S4 L2の順に流れる。前期した理由でS1、S
4がONする瞬間はすでに電圧がゼロになっているの
で、ここでもスイッチング損失は最小となる。
In the next cycle, the switches S3 and S2 are turned off.
When set to N, the current flows in the order of L1, S3, Load, S2. Since the voltage has already become zero at the moment when S3 and S2 are turned on for the reason described above, the switching loss becomes minimum. When the ON time has elapsed, turn S3 and S2 off.
When FF, the current flowing in L1 is the diode D1, L
The current flows in the order of 1 and C, the charging current of the capacitor C, the current of the diode D4 and the load, and the current of L1 flowing immediately before the interruption of S3 and S2. As a result, the diodes D1 and D4 are forward biased,
Its voltage value is kept near zero. When the switches S1 and S4 are turned on in the next cycle, the current is S1 and Loa.
d and S4 L2 flow in this order. S1 and S
Since the voltage has already become zero at the moment when 4 is turned on, the switching loss is minimized here as well.

【0008】以上と同じ繰り返しですべてのスイッチン
グ素子が遮断している場合の電圧はほぼゼロに保たれて
いるので、スイッチング素子がONした瞬間のスイッチ
ング損失は最小となる。しかもスイチング素子がONし
た瞬間は何の電圧変化もないので、ノイズの発生もな
く、ダイオードの逆回復電流の問題も起きない。さら
に、スイッチング素子がONした瞬間の電流立ち上がり
速度はL1とL2によって任意に遅らせることも可能と
なり、スイッチング素子に加わる過渡的なスイッチング
損失も大幅に減少させることが可能となる。一般的に、
スイッチング素子を流れる電流の立ち上がりをインダク
タンスの作用で遅らせて損失を減らすことは容易であ
る。しかし、電流の立ち上がりが遅れることによって過
渡的なスイッチング損失が減少しても、電流の立ち上が
りを抑える目的のインダクタンスに蓄積されたエネルギ
ーを効果的に利用することができない場合が多く、期待
したほど効率の改善が行われない場合が多い。本発明で
は、インダクタンスに蓄積されたエネルギーは前記説明
にあるようにコンデンサCを充電するように動作して効
果的に電源側へ戻されるので損失となることはなく、き
わめて高い効率を実現することができる。
Since the voltage when all the switching elements are cut off is kept substantially zero by the same repetition as the above, the switching loss at the moment when the switching elements are turned on becomes the minimum. Moreover, since there is no voltage change at the moment when the switching element is turned on, no noise is generated and the problem of reverse recovery current of the diode does not occur. Further, the current rising speed at the moment when the switching element is turned on can be arbitrarily delayed by L1 and L2, and the transient switching loss applied to the switching element can be greatly reduced. Typically,
It is easy to reduce the loss by delaying the rising of the current flowing through the switching element by the action of the inductance. However, even if the transitional switching loss is reduced due to the delay in the rising of the current, the energy stored in the inductance for suppressing the rising of the current cannot be effectively used in many cases, and the expected efficiency is improved. In many cases, the improvement is not made. In the present invention, the energy stored in the inductance operates to charge the capacitor C as described above and is effectively returned to the power supply side, so that no loss occurs and extremely high efficiency is realized. You can

【0009】[0009]

【実施例】図3はスイッチング素子にFETを利用した
実例である。FETはその構造から、逆方向の電圧電流
特性はダイオード特性を持つ場合が多く、図3では図2
に相当するD1〜D4はこのダイオード特性を利用して
いる。一般的に、FETの内臓ダイオードは逆回復時間
が比較的大きく、高い周波数で利用することはできな
い。このため、高周波で利用する場合はFETに直列に
回復時間の速いショットキーダイオードを直列につけて
逆方向の電流を阻止し、外部に高速ダイオードをつける
場合が多い。この方法は部品数も多く、コストも上が
る、しかも直列に入れたダイオードの電圧降下の分だけ
損失も増加する。本発明では、スイッチング素子がON
した瞬間はもともと、ゼロ電圧であり電圧変化がないの
で、ダイオードの逆回復時間の影響で電流が流れること
はないので、そのようなめんどうな処置は不要である。
EXAMPLE FIG. 3 shows an example of using a FET as a switching element. Due to the structure of the FET, the voltage-current characteristic in the reverse direction often has a diode characteristic.
D1 to D4 corresponding to (4) utilize this diode characteristic. Generally, the built-in diode of FET has a relatively long reverse recovery time and cannot be used at a high frequency. For this reason, when used at a high frequency, a Schottky diode having a fast recovery time is serially connected to the FET to block the reverse current, and a high speed diode is externally attached. This method has a large number of parts, increases the cost, and increases the loss due to the voltage drop of the diode connected in series. In the present invention, the switching element is ON
At that moment, since the voltage is originally zero voltage and there is no voltage change, current does not flow due to the influence of the reverse recovery time of the diode, and such troublesome measures are unnecessary.

【0010】図3でPv1〜Pv4はパルス電圧をFE
Tのゲートに供給し、FETのONするタイミングを制
御する。ここに加えるパルス電圧の条件は、S1とS2
またはS3とS4が同時にONしない条件と、S1また
はS2がOFFしてからS3またはS4がONするまで
の期間とS3またはS4がOFFしてからS1またはS
2がONするまでの期間に適当なデッドタイムを挿入す
る。このデッドタイムはFETのスイッチングスピード
に合わせ、上下のスイッチが同時にONしないように考
慮したものである。上記条件を守ればFETのゲートの
タイミングは他の方式によるゼロ電圧スイッチングの方
式と比較してはるかに自由度がある。S1〜S4のスイ
ッチをONするタイミングを変えて、インバータの出力
を自由に調節することが可能となり広い範囲でゼロ電圧
スイッチングが行われる。
In FIG. 3, Pv1 to Pv4 are pulse voltages FE
It is supplied to the gate of T to control the timing of turning on the FET. The conditions of the pulse voltage applied here are S1 and S2.
Or, the condition that S3 and S4 are not turned on at the same time, the period from when S1 or S2 is turned off until S3 or S4 is turned on, and the time when S3 or S4 is turned off and S1 or
Insert an appropriate dead time until 2 turns ON. This dead time is adjusted so that the upper and lower switches do not turn on at the same time according to the switching speed of the FET. If the above conditions are observed, the gate timing of the FET has much more freedom than the other zero voltage switching methods. The output of the inverter can be freely adjusted by changing the timing of turning on the switches S1 to S4, and zero voltage switching is performed in a wide range.

【0011】図4は本発明を利用したDC−DCコンバ
ータの実例である。この出力電圧や電流を基準電圧と比
較して、フイードバック信号としてPv1〜Pv4を制
御すれば、高効率でノイズの少ない定電圧または定電流
電源を実現できる。コンデンサCcはインバータ出力電
圧の正のサイクルと負のサイクルとの電圧積分値が異な
る場合に直流成分が発生し、変圧器に偏磁が起きること
を防止する目的で挿入してある。また、ダイオードDd
1、Dd2とRdは変圧器の1次電圧のピーク値をクラ
ンプする。各スイッチがOFFした時の電圧の立ち上が
り速度を下げるには、各スイッチング素子に並列にコン
デンサを追加することもできる。ゼロ電圧スイッチング
動作が行われていない場合はこのコンデンサに蓄積され
たエネルギーは損失となり、効率が低下する。コンデン
サを付加しなくても、スイッチング素子の端子間容量に
蓄積された分でも効率の低下をもたらすが、本発明では
この損失がないので、高い効率と低いノイズのインバー
タを実現できる。
FIG. 4 is an example of a DC-DC converter utilizing the present invention. If this output voltage or current is compared with a reference voltage and Pv1 to Pv4 are controlled as feedback signals, a constant voltage or constant current power supply with high efficiency and low noise can be realized. The capacitor Cc is inserted for the purpose of preventing a DC bias from being generated in the transformer when the positive and negative cycles of the output voltage of the inverter are different from each other in terms of the voltage integration value, and thus biasing the transformer. Also, the diode Dd
1, Dd2 and Rd clamp the peak value of the primary voltage of the transformer. In order to reduce the rising speed of the voltage when each switch is turned off, a capacitor can be added in parallel with each switching element. When the zero voltage switching operation is not performed, the energy stored in this capacitor becomes a loss and the efficiency is reduced. Even if the capacitor is not added, the efficiency is lowered even by the amount accumulated in the inter-terminal capacitance of the switching element. However, since the present invention does not have this loss, an inverter with high efficiency and low noise can be realized.

【0012】[0012]

【発明の効果】かくして、インダクタンスに流れる電流
を利用してその電圧をゼロ電圧に保ち各スイッチング素
子がONする瞬間の過渡的なスイッチング損失をゼロに
することができる。さらに、スイッチング素子がONし
てからの電流立ち上がり速度も付加したインダクタンス
の値で自由に制御可能であり、スイッチング素子がOF
Fした瞬間の電圧の立ち上がり速度もスイッチング素子
へ並列にコンデンサを入れる方法で効率を低下させるこ
となく自由に設定が可能であり、効率の上昇と低ノイズ
のインバータを実現できる。本発明のポイントとなるイ
ンダクタンスL1、L2は非常に小さな値でも画期的な
効果があり、装置の寸法にほとんど影響を与えない。ま
た、その値も他の方式と比較して、自由度があり設計も
容易である。また、インダクタンスL1、L2を同一磁
心に捲き、さらに小型化することも可能である。
As described above, by utilizing the current flowing through the inductance, the voltage can be kept at zero voltage and the transient switching loss at the moment when each switching element is turned on can be made zero. Furthermore, the current rising speed after the switching element is turned on can be freely controlled by the value of the added inductance.
The rising speed of the voltage at the instant of F can be freely set without lowering the efficiency by the method of inserting a capacitor in parallel with the switching element, and it is possible to increase the efficiency and realize an inverter with low noise. The inductances L1 and L2, which are the key points of the present invention, have an epoch-making effect even with a very small value, and have almost no influence on the size of the device. In addition, the value is more flexible and easier to design than other methods. It is also possible to wind the inductances L1 and L2 around the same magnetic core to further reduce the size.

【図面の簡単な説明】[Brief description of drawings]

]

【図1】従来のフルブリッジ型インバータの原理図であ
る。S1〜S4はスイッチで、D1〜D4は逆電圧素子
用整流器である。Eiは入力電源、Loadは負荷であ
る。
FIG. 1 is a principle diagram of a conventional full-bridge type inverter. S1 to S4 are switches, and D1 to D4 are rectifiers for reverse voltage elements. Ei is an input power source, and Load is a load.

【図2】本発明によるインバータの原理図である。S1
〜S4はスイッチで、D1〜D4は逆電圧素子用整流器
である。Eiは入力電源、Loadは負荷である。L
1、L2はこの電流を利用して、OFF期間のスイッチ
ング素子をゼロ電圧に保つ作用と、スイッチング素子が
ONした後の電流立ち上がり速度を調整する。
FIG. 2 is a principle diagram of an inverter according to the present invention. S1
S4 are switches, D1 to D4 are rectifiers for reverse voltage elements. Ei is an input power source, and Load is a load. L
1 and L2 use this current to adjust the action of keeping the switching element at zero voltage during the OFF period and the current rising speed after the switching element is turned ON.

【図3】本発明の実施例で、スイッチング素子にFET
を利用した例である。S1〜S4はFETでありそれぞ
れPv1〜Pv4は駆動回路である。(逆電圧素子用整
流器はFETのダイオード特性を利用している)Eiは
入力電源、Loadは負荷である。L1、L2はこの電
流を利用して、OFF期間のスイッチング素子をゼロ電
圧に保つ作用と、スイッチング素子がONした後の電流
立ち上がり速度を調整する。
FIG. 3 is an example of the present invention, in which the switching element is an FET
This is an example of using. S1 to S4 are FETs, and Pv1 to Pv4 are drive circuits, respectively. (The rectifier for the reverse voltage element utilizes the diode characteristic of the FET.) Ei is the input power supply and Load is the load. L1 and L2 utilize this current to adjust the action of keeping the switching element at zero voltage during the OFF period and the current rising speed after the switching element is turned ON.

【図4】本発明の実施例で、図3のインバータをDC−
DCコンバータに応用した場合の実施回路図である。S
1〜S4はFETでありそれぞれPv1〜Pv4は駆動
回路である。(逆電圧素子用整流器はFETのダイオー
ド特性を利用している)Dd1、Dd2ダイオード、R
dは抵抗器で変圧器の1次電圧のピーク値をクランプす
る。Eiは入力電源、L1、L2はこの電流を利用し
て、OFF期間のスイッチング素子をゼロ電圧に保つ作
用と、スイッチング素子がONした後の電流立ち上がり
速度を調整する。Tは変圧器、Recは整流器、Lfは
フイルタ用チョークコイル、Coはフイルタ用コンデン
サ、CcはDC遮断用コンデンサである。
FIG. 4 is a diagram illustrating an example of the present invention in which the inverter of FIG.
It is an implementation circuit diagram at the time of applying to a DC converter. S
1 to S4 are FETs, and Pv1 to Pv4 are drive circuits, respectively. (The rectifier for the reverse voltage element utilizes the diode characteristics of FET) Dd1, Dd2 diode, R
d is a resistor that clamps the peak value of the primary voltage of the transformer. Ei is an input power supply, and L1 and L2 utilize this current to adjust the action of keeping the switching element at zero voltage during the OFF period and the current rising speed after the switching element is turned ON. T is a transformer, Rec is a rectifier, Lf is a choke coil for filters, Co is a capacitor for filters, and Cc is a DC blocking capacitor.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】図−2に示すように、デッドタイムを有し
同時にONしない条件で開閉する二つの逆方向導通特性
を持つスイッチング素子S1、S2を入力電源に直列に
接続し、更に入力電源の両極性に対して直列にインダク
タンスL1、L2を接続し、その先にコンデンサCとデ
ッドタイムを有し同時にONしない条件で開閉する二つ
の逆方向導通特性を持つスイッチング素子S3、S4を
設け、それぞれのスイッチング素子の中点から負荷に電
力を供給するインバータ回路。
1. As shown in FIG. 2, two switching elements S1 and S2 having a reverse conduction characteristic that open and close under the condition that they have no dead time and do not turn on at the same time are connected in series to an input power source, and further, an input power source. Inductors L1 and L2 are connected in series for both polarities of, and two switching elements S3 and S4 having a dead time and a reverse conduction characteristic that opens and closes under the condition that they do not turn on at the same time with the capacitor C are provided. An inverter circuit that supplies power to the load from the middle point of each switching element.
【請求項2】図−2に示すように、デッドタイムを有し
同時にONしない条件で開閉する二つの逆方向導通特性
を持つスイッチング素子S1、S2を入力電源に直列に
接続し、更に入力電源の両極性に対して直列にインダク
タンスL1、L2を接続し、その先にコンデンサCとデ
ッドタイムを有し同時にONしない条件で開閉する二つ
の逆方向導通特性を持つスイッチング素子S3、S4を
設け、それぞれのスイッチング素子の中点から負荷に電
力を供給するインバータ回路でそれぞれのスイッチング
素子のON時間を制御して出力を調整する機能を持った
インバータ装置。
2. As shown in FIG. 2, two switching elements S1 and S2 having a reverse conduction characteristic which have a dead time and open / close under the condition that they do not turn on at the same time are connected in series to an input power source, and further, an input power source. Inductors L1 and L2 are connected in series for both polarities of, and two switching elements S3 and S4 having a dead time and a reverse conduction characteristic that opens and closes under the condition that they do not turn on at the same time with the capacitor C are provided. An inverter device that has the function of controlling the ON time of each switching element and adjusting the output with an inverter circuit that supplies power from the midpoint of each switching element to the load.
JP2002112674A 2002-03-12 2002-03-12 Zero-voltage switching mode inverter Pending JP2003274674A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002112674A JP2003274674A (en) 2002-03-12 2002-03-12 Zero-voltage switching mode inverter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002112674A JP2003274674A (en) 2002-03-12 2002-03-12 Zero-voltage switching mode inverter

Publications (1)

Publication Number Publication Date
JP2003274674A true JP2003274674A (en) 2003-09-26

Family

ID=29207599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002112674A Pending JP2003274674A (en) 2002-03-12 2002-03-12 Zero-voltage switching mode inverter

Country Status (1)

Country Link
JP (1) JP2003274674A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110071652A (en) * 2019-06-17 2019-07-30 西南石油大学 A kind of low-leakage current five switchs non-isolated single-phase photovoltaic grid-connected inverter and grid-connected system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110071652A (en) * 2019-06-17 2019-07-30 西南石油大学 A kind of low-leakage current five switchs non-isolated single-phase photovoltaic grid-connected inverter and grid-connected system

Similar Documents

Publication Publication Date Title
US6870747B2 (en) Control circuit for synchronous rectifiers in DC/DC converters to reduce body diode conduction losses
US6198260B1 (en) Zero voltage switching active reset power converters
US6771518B2 (en) DC converters
KR101324806B1 (en) Boost and up-down switching regulator with synchronous freewheeling mosfet
US5132889A (en) Resonant-transition DC-to-DC converter
US6256214B1 (en) General self-driven synchronous rectification scheme for synchronous rectifiers having a floating gate
US6236191B1 (en) Zero voltage switching boost topology
KR100852550B1 (en) A method and circuit for self-driven synchronous rectification
US6804125B2 (en) Isolated drive circuitry used in switch-mode power converters
US6989997B2 (en) Quasi-resonant DC-DC converters with reduced body diode loss
US6483721B2 (en) Resonant power converter
US5307005A (en) Zero current switching reverse recovery circuit
US20090196072A1 (en) Phase-shifted dual-bridge DC/DC converter with wide-range ZVS and zero circulating current
JP2008533959A (en) Switchable power converter and method of operating the same
US7508175B2 (en) System and method for reducing body diode conduction
US7535733B2 (en) Method of controlling DC-to-DC converter whereby switching control sequence applied to switching elements suppresses voltage surges at timings of switch-off of switching elements
TWI542131B (en) Switchable buck converter with?zero voltage switching capability operating with a stabilized switching frequency
EP3509203B1 (en) Converter with zvs
KR20020079776A (en) Self-driven synchronous rectification circuit for low output voltage dc-dc converters
US20030063482A1 (en) Apparatus and method for turning off bjt used as synchronous rectifier
TWI565205B (en) Power converter device
US10348205B1 (en) Coupled-inductor cascaded buck converter with fast transient response
JPH05207740A (en) Dc/dc converter circuit
US6449179B1 (en) Multi-level quasi-resonant power inverter
JP2003274674A (en) Zero-voltage switching mode inverter