JP2003272932A - Boosting transformer for driving magnetron - Google Patents

Boosting transformer for driving magnetron

Info

Publication number
JP2003272932A
JP2003272932A JP2002067068A JP2002067068A JP2003272932A JP 2003272932 A JP2003272932 A JP 2003272932A JP 2002067068 A JP2002067068 A JP 2002067068A JP 2002067068 A JP2002067068 A JP 2002067068A JP 2003272932 A JP2003272932 A JP 2003272932A
Authority
JP
Japan
Prior art keywords
ferrite core
transformer
winding
rod
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002067068A
Other languages
Japanese (ja)
Other versions
JP4212285B2 (en
Inventor
Kenji Yasui
健治 安井
Takeshi Kitaizumi
武 北泉
Makoto Mihara
誠 三原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2002067068A priority Critical patent/JP4212285B2/en
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to AT03701733T priority patent/ATE390031T1/en
Priority to PCT/JP2003/000279 priority patent/WO2003077603A2/en
Priority to EP03701733A priority patent/EP1483941B1/en
Priority to CNB038000156A priority patent/CN100512573C/en
Priority to AU2003202802A priority patent/AU2003202802A1/en
Priority to DE60319811T priority patent/DE60319811T2/en
Priority to US10/432,578 priority patent/US6956456B2/en
Publication of JP2003272932A publication Critical patent/JP2003272932A/en
Application granted granted Critical
Publication of JP4212285B2 publication Critical patent/JP4212285B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a boosting transformer wherein less frequency loss is produced and that is hardly saturated and is compact and easy to manufacture. <P>SOLUTION: A boosting transformer 20 is designed for a microwave oven. A primary winding 21, a secondary winding 22, and a heater winding 23 surround a bar-like ferrite core 26, respectively. They are piled up in the axial direction of the ferrite core 26. The ferrite core 26 is a metallic core that is formed by winding a long metallic thin plate by plural times like a square, and one inner diameter thereof is made larger than an outer diameter of the primary winding 21, the secondary winding 22 and the heater winding 23. The other square inner diameter thereof is made larger than a total piling height of them. Such an iron oxide powder resin core 27 is inserted to the bar-like ferrite core 26 from the outside of the primary winding 21, the secondary winding 22 and the heater winding 23. It is arranged opposite to the ferrite core 26 with a clearance G in-between in this state. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電子レンジなどの
ようにマグネトロンを用いた高周波誘電加熱に関するも
のであり、特にスイッチング電源によりマグネトロンを
駆動する昇圧トランスに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to high-frequency dielectric heating using a magnetron such as a microwave oven, and more particularly to a step-up transformer for driving the magnetron with a switching power supply.

【0002】[0002]

【従来の技術】図1は本発明が対象とする昇圧トランス
を用いたマグネトロン駆動電源の構成図である。図にお
いて、商用電源11からの交流は整流回路13によって
直流に整流され、整流回路13の出力側のチョークコイ
ル14とフィルタコンデンサ15で平滑され、インバー
タ16の入力側に与えられる。直流はインバータ16の
中の半導体スイッチング素子のオン・オフにより所望の
高周波(20〜40kHz)に変換される。インバータ
16は、直流を高速でスイッチングする例えば複数個の
パワーMOSFETが並列接続された2組のスイッチン
グ素子群と、これらのスイッチング素子群を駆動するド
ライブ回路とから成る。スイッチング素子群を構成する
パワーMOSFETのドレインはそれぞれ昇圧トランス
18の1次巻線182の一端と他端に接続され、これら
2つのスイッチング素子群を構成しているパワーMOS
FETのソース同士が接続され、さらにスイッチング素
子群を構成しているパワーMOSFETのゲートがスイ
ッチング素子ドライブ回路にそれぞれ接続されている。
パワーMOSFETで構成されるスイッチング素子群
は、インバータ制御回路61によって駆動され、昇圧ト
ランス18の1次側を流れる電流が高速でオン/オフに
スイッチングされる。制御回路161の入力信号は整流
回路13の1次側電流をCT17で検出し、その検出電
流はインバータ制御回路161に入力され、インバータ
16の制御に用いられる。
2. Description of the Related Art FIG. 1 is a block diagram of a magnetron drive power source using a step-up transformer, which is the object of the present invention. In the figure, the alternating current from the commercial power supply 11 is rectified into a direct current by the rectifier circuit 13, smoothed by the choke coil 14 and the filter capacitor 15 on the output side of the rectifier circuit 13, and given to the input side of the inverter 16. The direct current is converted into a desired high frequency (20 to 40 kHz) by turning on and off the semiconductor switching element in the inverter 16. The inverter 16 is composed of, for example, two sets of switching element groups in which a plurality of power MOSFETs are connected in parallel for switching direct current at high speed, and a drive circuit for driving these switching element groups. The drains of the power MOSFETs that form the switching element group are connected to one end and the other end of the primary winding 182 of the step-up transformer 18, respectively, and the power MOS that forms these two switching element groups.
The sources of the FETs are connected to each other, and the gates of the power MOSFETs that form the switching element group are connected to the switching element drive circuit.
The switching element group composed of power MOSFETs is driven by the inverter control circuit 61, and the current flowing through the primary side of the step-up transformer 18 is switched on / off at high speed. The input signal of the control circuit 161 detects the primary side current of the rectifier circuit 13 at CT17, and the detected current is input to the inverter control circuit 161 and used for controlling the inverter 16.

【0003】昇圧トランス18では1次巻線181にイ
ンバータ16の出力である高周波電圧が加えられ、2次
巻線182に巻線比に応じた高圧電圧が得られる。ま
た、昇圧トランス18の2次側に巻回数の少ない巻線1
83が設けられており、これはマグネトロン12のフィ
ラメント121の加熱用に用いられる。昇圧トランス1
8の2次巻線182はその出力を整流する倍電圧半波整
流回路19を備えている。倍電圧半波整流回路19は高
圧コンデンサ191及び2個の高圧ダイオード192,
193により構成され、正のサイクル(例えば、図にお
いて、2次巻線182の上端が正とする。)で高圧コン
デンサ191及び高圧ダイオード192が導通し、高圧
コンデンサ191の極板を図で左側を正に右側極板を負
に充電する。次に、負のサイクル(2次巻線182の下
端が正。)で高圧ダイオード193が導通し、マグネト
ロン12のアノード122−カソード121間には、先
に充電した高圧コンデンサ191の電圧と2次巻線18
2の電圧がプラスした倍の電圧が加わることとなる。
In the step-up transformer 18, a high frequency voltage output from the inverter 16 is applied to the primary winding 181, and a high voltage according to the winding ratio is obtained in the secondary winding 182. In addition, the winding 1 having a small number of turns on the secondary side of the step-up transformer 18
83 is provided and is used for heating the filament 121 of the magnetron 12. Step-up transformer 1
The secondary winding 182 of No. 8 includes a voltage doubler half-wave rectifier circuit 19 that rectifies the output. The double voltage half-wave rectifier circuit 19 includes a high voltage capacitor 191 and two high voltage diodes 192.
193, the high voltage capacitor 191 and the high voltage diode 192 are turned on in a positive cycle (for example, the upper end of the secondary winding 182 is positive in the figure), and the electrode plate of the high voltage capacitor 191 is moved to the left side in the figure. Charge the right side plate positively and negatively. Next, in a negative cycle (the lower end of the secondary winding 182 is positive), the high voltage diode 193 conducts, and between the anode 122 and the cathode 121 of the magnetron 12, the voltage of the previously charged high voltage capacitor 191 and the secondary voltage. Winding 18
A voltage twice as large as the voltage of 2 is added.

【0004】以上、本発明が対象とする昇圧トランスを
用いたマグネトロン駆動電源の1例を示したが、駆動電
源はこれに限定されるものではなく、高周波を昇圧する
トランスを含むものであればどのようなものでもよい。
An example of a magnetron drive power supply using a boosting transformer, which is the subject of the present invention, has been described above, but the drive power supply is not limited to this, and any drive that includes a transformer for boosting high frequencies can be used. It can be anything.

【0005】[0005]

【発明が解決しようとする課題】電子レンジの小型化の
ニーズに伴い、昇圧トランスを小型化する必要があるた
め、それまでの低周波から上記のように高周波が用いら
れるようになった。トランスのコアとしては低周波では
小型化・飽和・コストの面で有利な金属コア(アモルフ
ァス、珪素鋼板)が用いられていたが、高周波下では金
属コアは高周波損失が大きいため用いられなくなり、こ
れに代わってフェライトコアが用いられるようになっ
た。
With the need for miniaturization of microwave ovens, it is necessary to miniaturize the step-up transformer, so that high frequencies have come to be used from the low frequencies up to then. As a core of a transformer, a metal core (amorphous, silicon steel plate), which is advantageous in terms of downsizing, saturation, and cost, was used at low frequencies, but at high frequencies, the metal core is no longer used because of its large high-frequency loss. Ferrite cores have come to be used instead of.

【0006】図6はフェライトコアを用いた昇圧トラン
スの1例を示すものである。図6において、一次巻線6
1、二次巻線62、ヒーター巻線63が2個の対向U字
型フェライトコア64、65の同一軸上に並列して置か
れていた。大電力を扱うことが多いマグネトロン駆動用
電源の場合、電力半導体の負荷軽減のため、電圧共振に
よる零ボルトスイッチング方式(以下、ZVS方式)を
用いるのが主流であり、このZVS方式では共振電圧を
得るために、昇圧トランスの結合係数を0.6から0.
85程度に設定することが必要であり、空隙Gを設けて
いる。しかしながら、2個の対向U字型フェライトコア
64,65を用いた従来の昇圧トランスの場合、マグネ
トロンの出力をさらに高出力化しようとすると昇圧トラ
ンスの一次側に流れるピーク電流をさらに増加させる必
要があり、そうするとフェライトコアでは飽和磁束密度
特性が悪いため飽和し易くなり、飽和させないためには
フェライトコアの大型化が必要となった。これは電源の
小型化という大前提の障害となっていた。本発明はこれ
らの課題を解決するもので、電源の小型化に寄与すると
ともに、高出力でも飽和することのない昇圧トランスを
提供することにある。
FIG. 6 shows an example of a step-up transformer using a ferrite core. In FIG. 6, the primary winding 6
1, the secondary winding 62, and the heater winding 63 were placed in parallel on the same axis of the two opposing U-shaped ferrite cores 64 and 65. In the case of a magnetron driving power source that often handles a large amount of power, a zero volt switching method (hereinafter, ZVS method) based on voltage resonance is mainly used to reduce the load on the power semiconductor. In this ZVS method, the resonance voltage is changed. In order to obtain the coupling coefficient of the step-up transformer from 0.6 to 0.
It is necessary to set it to about 85, and a gap G is provided. However, in the case of the conventional step-up transformer using the two opposed U-shaped ferrite cores 64 and 65, it is necessary to further increase the peak current flowing in the primary side of the step-up transformer in order to further increase the output of the magnetron. If so, the saturation magnetic flux density characteristic of the ferrite core is poor, so that the ferrite core is easily saturated, and it is necessary to increase the size of the ferrite core to prevent saturation. This has been an obstacle to the premise of downsizing the power supply. The present invention solves these problems, and it is an object of the present invention to provide a step-up transformer that contributes to downsizing of a power supply and does not saturate even at high output.

【0007】[0007]

【課題を解決するための手段】請求項1記載のマグネト
ロン駆動用昇圧トランスの発明によれば、マグネトロン
に駆動電圧を供給する昇圧トランスであって、一次巻線
と二次巻線とがそれぞれ棒状フェライトコアを囲んで成
るマグネトロン駆動用昇圧トランスにおいて、口字状コ
アを前記一次巻線と二次巻線との外側から前記棒状フェ
ライトコアに向けて嵌挿した状態でかつ前記棒状フェラ
イトコアと空隙を置いて対向配置して成ることを特徴と
する。請求項2記載のマグネトロン駆動用昇圧トランス
の発明によれば、マグネトロンに駆動電圧を供給する昇
圧トランスであって、一次巻線と二次巻線とがそれぞれ
棒状フェライトコアを囲んで成るマグネトロン駆動用昇
圧トランスにおいて、口字状の一方の内径が前記一次巻
線と二次巻線のいずれの外径よりも大きくかつ該口字状
の他方の内径が前記一次巻線と二次巻線の重ね丈よりも
大きく形成して成る口字状コアを、該一次巻線と二次巻
線の外側から前記棒状フェライトコアに向けて嵌挿した
状態でかつ前記棒状フェライトコアと空隙を置いて対向
配置して成ることを特徴とする。以上の2発明によれ
ば、高周波損失が少ないフェライトコアをメインコアと
し、これと対向して飽和しないように空隙を設けて口字
状コアを磁気通路に用いたので、製造が簡単で、小型
で、堅固で、さらに各巻線の外側の機械的保護の働きも
するという効果がある。請求項3記載のマグネトロン駆
動用昇圧トランスの発明によれば、マグネトロンに駆動
電圧を供給する昇圧トランスであって、一次巻線と二次
巻線とがそれぞれ棒状フェライトコアを囲みかつ該棒状
フェライトコアの軸方向に重ね並置されて成るマグネト
ロン駆動用昇圧トランスにおいて、長尺金属薄板を口字
状に複数回巻回して成る金属コアであってかつ該口字状
の一方の内径が前記一次巻線と二次巻線のいずれの外径
よりも大きくかつ該口字状の他方の内径が前記一次巻線
と二次巻線の重ね丈よりも大きく形成して成る金属コア
を、該一次巻線と二次巻線の外側から前記棒状フェライ
トコアに向けて嵌挿した状態でかつ前記棒状フェライト
コアと空隙を置いて対向配置して成ることを特徴とす
る。以上の発明によれば、高周波損失が少ないフェライ
トコアをメインコアとし、飽和しないように空隙を設け
るとともに、これと対向して小型で、飽和磁束密度特性
がフェライトコアよりも高い金属コアを用いてしかも渦
電流の流れる方向に金属薄板を積層して渦電流を流れ難
くして高周波損失対策を講じ、かつ金属コアを口字状に
したので、製造が簡単で、小型で、堅固で、さらに各巻
線の外側の機械的保護の働きもするという効果がある。
請求項4記載の発明によれば、請求項1〜3のいずれか
1記載のマグネトロン駆動用昇圧トランスにおいて、前
記棒状フェライトコアが直方体形状であることを特徴と
する。以上の発明によれば、棒状フェライトコアと金属
コアとの間に形成される空隙が同じ幅となるので、結合
係数等の設計が容易となる。請求項5記載の発明によれ
ば、請求項4記載のマグネトロン駆動用昇圧トランスに
おいて、前記直方体形状のフェライトコアのうち前記金
属コアに対向する面の一部に突出部を形成し、該突出部
を前記金属コアに接触させたことを特徴とする。以上の
発明によれば、棒状フェライトコアと金属コアとの間に
スペーサを別途準備する必要がなく、したがってそれを
組み込む手間も省けるので、昇圧トランスの組み立てが
容易でかつコストダウンとなる。請求項6記載のマグネ
トロン駆動用昇圧トランスの発明によれば、マグネトロ
ンに駆動電圧を供給する昇圧トランスであって、一次巻
線と二次巻線とがそれぞれ棒状フェライトコアを囲んで
成るマグネトロン駆動用昇圧トランスにおいて、口字状
の一方の内径が前記一次巻線と二次巻線のいずれの外径
よりも大きくかつ該口字状の他方の内径が前記棒状フェ
ライトコアの長さよりも大きく形成して成る口字状コア
に前記棒状フェライトコアを前記巻線と共に嵌挿し前記
棒状フェライトコアの軸方向端部と前記金属コアとの間
に空隙を置いて対向配置して成ることを特徴とする。以
上の発明によれば、高周波損失が少ないフェライトコア
をメインコアとし、これと対向して飽和しないように空
隙を設けて口字状コアを磁気通路に用いたので、製造が
簡単で、小型で、堅固で、さらに各巻線の外側の機械的
保護の働きもするという効果がある。請求項7記載のマ
グネトロン駆動用昇圧トランスの発明によれば、マグネ
トロンに駆動電圧を供給する昇圧トランスであって、一
次巻線と二次巻線とがそれぞれ棒状フェライトコアを囲
んで成るマグネトロン駆動用昇圧トランスにおいて、口
字状金属薄板を厚み方向に複数個積層して成る金属コア
であってかつ該口字状の一方の内径が前記一次巻線と二
次巻線のいずれの外径よりも大きくかつ該口字状の他方
の内径が前記棒状フェライトコアの長さよりも大きく形
成して成る金属コアに前記棒状フェライトコアを前記巻
線と共に嵌挿し前記棒状フェライトコアの軸方向端部と
前記金属コアとの間に空隙を置いて対向配置して成るこ
とを特徴とする。以上の発明によれば、高周波損失が少
ないフェライトコアをメインコアとし、飽和しないよう
に空隙を設けるとともに、これと対向して小型で飽和し
難い金属コアを用いてしかも渦電流の流れる方向に金属
薄板を積層したので渦電流が流れ難くなり、かつ金属コ
アを口字状にしたので、製造が簡単で、堅固で、さらに
各巻線のガードの働きもするという効果がある。請求項
8記載の発明によれば、請求項6又は7記載のマグネト
ロン駆動用昇圧トランスにおいて、前記棒状フェライト
コアが円柱形状であることを特徴とする。以上の発明に
よれば、棒状フェライトコアを円柱形状としたことによ
り、製造が簡単化される効果がある。また、棒状フェラ
イトコアと金属コアとの間に形成される空隙が同じ幅と
なるので、結合係数等の設計が容易となる。請求項9記
載の発明によれば、請求項1〜8のいずれか1項記載の
マグネトロン駆動用昇圧トランスにおいて、磁気抵抗は
前記棒状フェライトコアと前記コア間の空隙により変更
されてなることを特徴とする。以上の発明によれば、昇
圧トランスの結合係数を任意に最適の係数に簡単に作り
出すことが可能となる。
According to the invention of a step-up transformer for driving a magnetron as set forth in claim 1, there is provided a step-up transformer for supplying a drive voltage to the magnetron, wherein the primary winding and the secondary winding are rod-shaped respectively. In a magnetron driving step-up transformer surrounding a ferrite core, a letter-shaped core is inserted from the outside of the primary winding and the secondary winding toward the rod-shaped ferrite core, and the air gap is formed between the rod-shaped ferrite core. Is placed to face each other. According to the invention of the step-up transformer for driving a magnetron as set forth in claim 2, the step-up transformer for supplying a drive voltage to the magnetron, wherein the primary winding and the secondary winding respectively surround a rod-shaped ferrite core for driving the magnetron. In the step-up transformer, one of the square-shaped inner diameters is larger than the outer diameter of either the primary winding or the secondary winding, and the other square-shaped inner diameter of the primary winding and the secondary winding is overlapped. A square-shaped core formed to have a size larger than the length is inserted into the rod-shaped ferrite core from the outside of the primary winding and the secondary winding, and is opposed to the rod-shaped ferrite core with a gap. It is characterized by consisting of. According to the above two inventions, since the ferrite core having a small high frequency loss is used as the main core, and the void-shaped core is provided so as to face the main core so as not to be saturated, and the square-shaped core is used for the magnetic path, the manufacturing is simple and the size is small. Thus, there is an effect that it is firm and also acts as a mechanical protection on the outside of each winding. According to the invention of the step-up transformer for driving a magnetron as set forth in claim 3, there is provided a step-up transformer for supplying a drive voltage to the magnetron, wherein the primary winding and the secondary winding respectively surround the rod-shaped ferrite core and the rod-shaped ferrite core. In a step-up transformer for driving a magnetron, which is juxtaposed side by side in the axial direction, a metal core is formed by winding a long thin metal plate in a square shape a plurality of times, and one inner diameter of the square shape is the primary winding. And a secondary winding, the inner diameter of which is larger than the outer diameter of any of the secondary windings and the inner diameter of the other of the square brackets is larger than the overlapping length of the primary winding and the secondary winding. And a state in which the rod-shaped ferrite core is fitted from the outside of the secondary winding toward the rod-shaped ferrite core and is opposed to the rod-shaped ferrite core with a gap. According to the above invention, a ferrite core having a small high frequency loss is used as a main core, and a void is provided so as not to be saturated, and a metal core that is small and has a saturation magnetic flux density characteristic higher than that of a ferrite core is used. Moreover, by stacking thin metal plates in the direction in which eddy currents flow to prevent eddy currents from flowing and taking measures against high-frequency loss, and by making the metal core into a square shape, it is easy to manufacture, is small in size, and is solid. It also has the effect of acting as a mechanical protection on the outside of the line.
According to the invention described in claim 4, in the step-up transformer for driving magnetron according to any one of claims 1 to 3, the rod-shaped ferrite core has a rectangular parallelepiped shape. According to the above invention, the voids formed between the rod-shaped ferrite core and the metal core have the same width, which facilitates the design of the coupling coefficient and the like. According to a fifth aspect of the present invention, in the magnetron driving step-up transformer according to the fourth aspect, a protrusion is formed on a part of a surface of the rectangular parallelepiped ferrite core facing the metal core, and the protrusion is formed. Is contacted with the metal core. According to the invention described above, it is not necessary to separately prepare a spacer between the rod-shaped ferrite core and the metal core, and therefore the labor for assembling it can be saved, so that the step-up transformer can be easily assembled and the cost can be reduced. According to the invention of a step-up transformer for driving a magnetron as set forth in claim 6, there is provided a step-up transformer for supplying a driving voltage to the magnetron, wherein the primary winding and the secondary winding respectively surround a rod-shaped ferrite core. In the step-up transformer, one inner diameter of the square shape is larger than both outer diameters of the primary winding and the secondary winding, and the other inner diameter of the square shape is larger than the length of the rod-shaped ferrite core. The rod-shaped ferrite core is inserted into the square-shaped core formed together with the winding, and the rod-shaped ferrite core and the metal core are opposed to each other with a gap between the axial end of the rod-shaped ferrite core and the metal core. According to the above invention, the ferrite core having a small high frequency loss is used as the main core, and the void-shaped core is used to face the main core so as not to be saturated, and the square-shaped core is used for the magnetic path. It has the effect of being robust and also providing mechanical protection on the outside of each winding. According to the invention of a step-up transformer for driving a magnetron as set forth in claim 7, the step-up transformer for supplying a drive voltage to the magnetron, wherein the primary winding and the secondary winding respectively surround a rod-shaped ferrite core. In a step-up transformer, a metal core is formed by laminating a plurality of letter-shaped thin metal plates in the thickness direction, and one of the letter-shaped inner diameters is larger than the outer diameter of either the primary winding or the secondary winding. The rod-shaped ferrite core is fitted together with the winding into a metal core formed by forming the other inner diameter of the rod-shaped ferrite core larger than the length of the rod-shaped ferrite core, and the axial end of the rod-shaped ferrite core and the metal. It is characterized in that it is arranged so as to face the core with a gap therebetween. According to the above invention, a ferrite core with a low high-frequency loss is used as a main core, and a gap is provided so as not to saturate. Since the thin plates are laminated, it becomes difficult for eddy currents to flow, and since the metal core is formed in a square shape, it is easy to manufacture, is robust, and has an effect that it also functions as a guard for each winding. According to the invention described in claim 8, in the step-up transformer for driving magnetron according to claim 6 or 7, the rod-shaped ferrite core has a columnar shape. According to the above invention, the rod-shaped ferrite core has a columnar shape, which has the effect of simplifying the manufacturing. Further, since the voids formed between the rod-shaped ferrite core and the metal core have the same width, it is easy to design the coupling coefficient and the like. According to a ninth aspect of the present invention, in the magnetron driving step-up transformer according to any one of the first to eighth aspects, the magnetic resistance is changed by the rod-shaped ferrite core and the gap between the cores. And According to the above-described invention, it is possible to easily create the coupling coefficient of the step-up transformer to an optimum coefficient.

【0008】[0008]

【発明の実施の形態】以下、本発明の昇圧トランスにつ
いて図2〜図5を参照に説明する。図2は本発明の第1
の実施の形態に係る昇圧トランスを示す図で、(a)が
正面図、(b)が平面図、(c)が側面図、(d)が斜
視図である。図において、20が第1の実施の形態に係
る昇圧トランスで、21が一次巻線、22が二次巻線、
23がヒーター巻線である。一次巻線21は二次巻線2
2と比べて巻線断面が大きく巻き数は少ない。ヒーター
巻線23は二次巻線22と比べて巻数が極端に少ないの
で図には描かれていない。また、ヒーター巻線23は別
部品で構成されてもよいので、ここでの必須部品ではな
い。26は棒状フェライトコアで、ここでは直方体形状
を採用している。この直方体形状フェライトコア26の
周囲を一次巻線21と二次巻線22とヒーター巻線23
とがそれぞれ囲みかつコアの軸方向に重ね並置されてい
る。
BEST MODE FOR CARRYING OUT THE INVENTION A step-up transformer of the present invention will be described below with reference to FIGS. FIG. 2 shows the first of the present invention.
5A and 5B are views showing a step-up transformer according to the embodiment of the present invention, FIG. 7A is a front view, FIG. 7B is a plan view, FIG. In the figure, 20 is a step-up transformer according to the first embodiment, 21 is a primary winding, 22 is a secondary winding,
23 is a heater winding. The primary winding 21 is the secondary winding 2
Compared with 2, the winding cross section is large and the number of turns is small. The heater winding 23 has an extremely small number of turns as compared with the secondary winding 22, and is not shown in the drawing. Further, since the heater winding 23 may be configured as a separate component, it is not an essential component here. Reference numeral 26 is a rod-shaped ferrite core, which has a rectangular parallelepiped shape. Around the rectangular parallelepiped ferrite core 26, the primary winding 21, the secondary winding 22, and the heater winding 23
And are respectively surrounded and juxtaposed side by side in the axial direction of the core.

【0009】27は本発明により採用される金属コア
で、アモルファスや珪素鋼板などから成る長尺金属薄板
27aを図3(a)のように、口字状に複数回(10〜
40回程度)巻回し各層間を絶縁して作られている。し
かも、口字状金属コアの内径のうち、一方の内径(図2
(c)で金属コア27の左右方向の内径)が一次巻線2
1、二次巻線22、ヒーター巻線23のうちのどの外径
よりも大きくできており、かつ、他方の内径(図2
(c)で金属コア27の上下方向の内径)が一次巻線2
6と二次巻線22とヒーター巻線23の3巻線の重ね丈
よりも大きく形成されている。
Reference numeral 27 denotes a metal core adopted by the present invention. A long metal thin plate 27a made of an amorphous or silicon steel plate is formed in a letter shape a plurality of times (10 to 10) as shown in FIG. 3 (a).
It is wound around 40 times) to insulate each layer. Moreover, one of the inner diameters of the square-shaped metal core (see FIG.
In (c), the inner diameter of the metal core 27 in the left-right direction is the primary winding 2
The outer diameter is larger than any one of the primary winding 1, the secondary winding 22, and the heater winding 23, and the inner diameter of the other (see FIG. 2).
In (c), the inner diameter of the metal core 27 in the vertical direction) is the primary winding 2
6, the secondary winding 22, and the heater winding 23 are formed to be larger than the overlapping length of the three windings.

【0010】したがって、図のような金属コア27を図
2(d)で示すように、一次巻線21と二次巻線22と
ヒーター巻線23の外側からフェライトコア26に向け
て嵌挿し、棒状フェライトコア26との間にスペーサ
(図示なし)を置いて空隙Gを確保して対向配置してい
る。フェライトコア26と金属コア27の空隙は0.3
〜0.8mm程度となっている。
Therefore, as shown in FIG. 2 (d), the metal core 27 as shown in the figure is inserted from the outside of the primary winding 21, the secondary winding 22, and the heater winding 23 toward the ferrite core 26, A spacer (not shown) is placed between the rod-shaped ferrite core 26 and the rod-shaped ferrite core 26 to secure a gap G and to face each other. The gap between the ferrite core 26 and the metal core 27 is 0.3.
It is about 0.8 mm.

【0011】以上のような構成により、高周波損失が少
ないフェライトコアをメインコアとし、飽和しないよう
に空隙を設けるとともに、これと対向して小型で飽和し
難い金属コアを一次巻線21と二次巻線22とヒーター
巻線23の外側に配設しているので、フェライトコアの
みから成る従来の昇圧トランス(図6)と比べると大幅
に小型化に寄与することとなる。すなわち、従来の昇圧
トランスでは一次巻線21と二次巻線22とヒーター巻
線23の外側に配設されるフェライトコア部分64a、
65aはメインフェライトコア部分とほぼ同じ断面積で
構成されるので、一次巻線21と二次巻線22とヒータ
ー巻線23の外側に大きくはみ出しているのに対して、
本発明の第1の実施の形態に係る昇圧トランス20では
金属コアであるため断面積がフェライトコア部分と比べ
て極端に小さくできるため、一次巻線21と二次巻線2
2とヒーター巻線23の外側に大きくはみ出すことがな
い(図2(c)参照。)。
With the above-described structure, the ferrite core having a small high frequency loss is used as a main core, and a gap is provided so as not to saturate, and a small-sized metal core that is opposed to the ferrite core and is difficult to saturate is connected to the primary winding 21 and the secondary winding. Since it is arranged outside the winding wire 22 and the heater winding wire 23, it contributes to a significant reduction in size as compared with a conventional step-up transformer (FIG. 6) consisting of only a ferrite core. That is, in the conventional step-up transformer, the ferrite core portion 64a disposed outside the primary winding 21, the secondary winding 22, and the heater winding 23,
Since 65a has a cross-sectional area almost the same as that of the main ferrite core portion, it largely protrudes outside the primary winding 21, the secondary winding 22, and the heater winding 23.
Since the step-up transformer 20 according to the first embodiment of the present invention is a metal core, its cross-sectional area can be made extremely smaller than that of the ferrite core portion, so that the primary winding 21 and the secondary winding 2
2 and the outside of the heater winding 23 do not largely protrude (see FIG. 2C).

【0012】しかも、高周波下での金属コアの欠点であ
る高周波損失については、図3(a)のように長尺の金
属薄板27aを10〜40回巻回したものを用い、渦電
流が流れる方向を多数回巻回して成る金属薄板層を横切
る方向に合わせたので、渦電流は1枚の金属薄板の断面
積内でしか流れることができず、そして1枚の金属薄板
の断面積の抵抗値が大きいため、渦電流はほとんど流れ
ることができなくなる。したがって、高周波下であって
もこのような構成の金属コアを上記のような配置とする
ことによって初めて高周波損失が小さくなり、フェライ
トコアと金属コアの長所を兼ね備えた昇圧トランスを得
ることができる。また、昇圧トランスのフェライトコア
が直方体形状であるので、フェライトコア26と金属コ
ア27との互いの対向部分が平行となるので、その間に
形成される空隙Gが同じ幅となるため、結合係数等の設
計が容易となる。さらに、コ字状の金属コアを口字状金
属コアをに代えて使用することも考えられるが、口字状
金属コアの方がコ字状金属コアよりも製造が簡単とな
り、また口字状の金属コアが各巻線を外側から一部包む
ので各巻線の機械的な保護の働きもするという副次的な
効果も得られる。なお、上記実施の形態では、一次巻線
21と二次巻線22とヒーター巻線23とがそれぞれ棒
状のフェライトコアを囲みかつコアの軸方向に重ね並置
されている構成となっているが、本発明はこれに限られ
るものではなく、棒状のフェライトコアを中心に3つの
巻線が、第1巻線の外側に第2巻線、その外側に第3巻
線となる同心状配置の構成としてもよい。
Regarding the high frequency loss, which is a drawback of the metal core under high frequency, an eddy current flows by using a long thin metal plate 27a wound 10 to 40 times as shown in FIG. 3 (a). Since the direction is aligned with the direction across the sheet metal layer formed by winding a number of times, the eddy current can flow only within the cross sectional area of one sheet metal, and the resistance of the cross sectional area of one sheet metal is Due to the large value, almost no eddy current can flow. Therefore, even under a high frequency, the high frequency loss is reduced only by arranging the metal core having such a configuration as described above, and it is possible to obtain a step-up transformer having advantages of both the ferrite core and the metal core. Further, since the ferrite core of the step-up transformer has a rectangular parallelepiped shape, the mutually facing portions of the ferrite core 26 and the metal core 27 are parallel to each other, and the gap G formed therebetween has the same width, so that the coupling coefficient, etc. The design becomes easy. It is also possible to use a U-shaped metal core instead of the U-shaped metal core, but the U-shaped metal core is easier to manufacture than the U-shaped metal core, and the U-shaped metal core is also used. Since the metal core of (1) wraps each winding part from the outside, it also has a secondary effect of mechanically protecting each winding. In the above embodiment, the primary winding 21, the secondary winding 22, and the heater winding 23 surround the rod-shaped ferrite core and are arranged side by side in the axial direction of the core. The present invention is not limited to this, and the three windings centering around the rod-shaped ferrite core are the second winding outside the first winding and the third winding outside the first winding. May be

【0013】図4は本発明の第2の実施の形態に係る昇
圧トランスを示す図で、(a)が正面図、(b)が平面
図、(c)が側面図、(d)が斜視図である。図におい
て、40が第2の実施の形態に係る昇圧トランスで、2
1が一次巻線、22が二次巻線、23がヒーター巻線
で、図2のそれと同じである。すなわち、一次巻線21
は二次巻線22と比べて巻線断面が大きく巻き数は少な
い。ヒーター巻線23は二次巻線22と比べて巻数が極
端に少ないので図には描かれていない。26は直方体形
状フェライトコアで、この周囲を一次巻線21と二次巻
線22とヒーター巻線23とがそれぞれ囲みかつコアの
軸方向に重ね並置されている。27は金属コアで図2の
それと同じである。すなわち、図3(a)のように、長
尺金属薄板27aを口字状に10〜40回程度巻回して
作られており、しかも口字状金属コアの内径のうちは、
一方の内径(図4(c)で金属コア27の左右方向の内
径)が一次巻線21、二次巻線22、ヒーター巻線23
のうちのどの外径よりも大きくできており、かつ、他方
の内径(図4(c)で金属コア27の上下方向の内径)
が一次巻線26と二次巻線22とヒーター巻線23の3
巻線の重ね丈よりも大きく形成されている。
FIG. 4 is a diagram showing a step-up transformer according to a second embodiment of the present invention. (A) is a front view, (b) is a plan view, (c) is a side view, and (d) is a perspective view. It is a figure. In the figure, reference numeral 40 is a step-up transformer according to the second embodiment.
Reference numeral 1 is a primary winding, 22 is a secondary winding, and 23 is a heater winding, which are the same as those in FIG. That is, the primary winding 21
Has a larger winding cross section and a smaller number of turns than the secondary winding 22. The heater winding 23 has an extremely small number of turns as compared with the secondary winding 22, and is not shown in the drawing. Reference numeral 26 denotes a rectangular parallelepiped-shaped ferrite core, which is surrounded by a primary winding 21, a secondary winding 22, and a heater winding 23, and is arranged side by side in the axial direction of the core. 27 is a metal core which is the same as that of FIG. That is, as shown in FIG. 3 (a), the long thin metal plate 27 a is wound in a square shape about 10 to 40 times, and the inside diameter of the square metal core is
One of the inner diameters (the inner diameter in the left-right direction of the metal core 27 in FIG. 4C) is equal to the primary winding 21, the secondary winding 22, and the heater winding 23.
Is larger than any of the outer diameters, and the inner diameter of the other (the inner diameter of the metal core 27 in the vertical direction in FIG. 4C).
There are 3 of the primary winding 26, the secondary winding 22, and the heater winding 23.
It is formed larger than the lap length of the winding.

【0014】そして、本発明の第2の実施の形態に係る
昇圧トランスでは、その直方体形状フェライトコア26
の金属コア27に対向する面の一部に突出部26aを形
成している。この突出部26aの高さは図2の空隙Gと
ほぼ同じとしてある。直方体形状フェライトコア26と
金属コア27との間に確保すべき空隙Gをこの突出部2
6aによって確保することができるので、図2の場合の
ようなスペーサを用いる必要がなくなり、スペーサを別
途準備する必要にそれを組み込む工程も省けるので、昇
圧トランスの組み立てが容易となる。また、この突出部
26aは磁路の通過方向の横断面積を小さく選ぶことに
よって、僅かな磁束で飽和するようにしてあり、磁気短
絡回路は形成されないようにしてある。
The step-up transformer according to the second embodiment of the present invention has a rectangular parallelepiped ferrite core 26.
The protrusion 26 a is formed on a part of the surface facing the metal core 27. The height of the protruding portion 26a is substantially the same as the height of the gap G in FIG. A gap G to be secured between the rectangular parallelepiped-shaped ferrite core 26 and the metal core 27 is formed in the protrusion 2
Since it can be secured by 6a, it is not necessary to use the spacer as in the case of FIG. 2, and the step of assembling the spacer when it is separately prepared can be omitted, so that the step-up transformer can be easily assembled. Further, the projecting portion 26a is designed to be saturated with a slight magnetic flux by selecting a small cross-sectional area in the passage direction of the magnetic path, so that a magnetic short circuit is not formed.

【0015】図4では、突出部26aは直方体形状フェ
ライトコア26の側面の中央部に1個形成しているが、
直方体形状フェライトコア26の側面の両端部にそれぞ
れ1個形成して、2点で金属コア27に接触させること
によって、組み立ての安定性をさらによくすることも可
能である。
In FIG. 4, one protrusion 26a is formed at the center of the side surface of the rectangular parallelepiped ferrite core 26.
It is also possible to further improve the stability of assembly by forming one at each end of the side surface of the rectangular parallelepiped-shaped ferrite core 26 and contacting the metal core 27 at two points.

【0016】図5は本発明の第3の実施の形態に係る昇
圧トランスを示す図で、(a)が正面図、(b)が平面
図、(c)が側面図、(d)が斜視図である。図におい
て、50が第2の実施の形態に係る昇圧トランスで、2
1が一次巻線、22が二次巻線、23がヒーター巻線
で、図2のそれと同じである。すなわち、一次巻線21
は二次巻線22と比べて巻線断面が大きく巻き数は少な
い。ヒーター巻線23は二次巻線22と比べて巻数が極
端に少ないので図には描かれていない。
FIG. 5 is a diagram showing a step-up transformer according to a third embodiment of the present invention. (A) is a front view, (b) is a plan view, (c) is a side view, and (d) is a perspective view. It is a figure. In the figure, reference numeral 50 is a step-up transformer according to the second embodiment.
Reference numeral 1 is a primary winding, 22 is a secondary winding, and 23 is a heater winding, which are the same as those in FIG. That is, the primary winding 21
Has a larger winding cross section and a smaller number of turns than the secondary winding 22. The heater winding 23 has an extremely small number of turns as compared with the secondary winding 22, and is not shown in the drawing.

【0017】そして、本発明の第3の実施の形態に係る
昇圧トランスでは、円柱状フェライトコア56を用い、
この周囲を一次巻線21と二次巻線22とヒーター巻線
23とがそれぞれ囲みかつコアの軸方向に重ね並置され
ている。さらに、昇圧トランスの金属コアは、図3
(b)のように、口字状金属薄板57aを厚み方向に複
数個(10〜40個)絶縁性接着剤を用いて積層して成
るものである。そして、口字状金属コアの内径のうち、
一方の内径(図5(c)で金属コア57の左右方向の内
径)が一次巻線21、二次巻線22、ヒーター巻線23
のうちのどの外径よりも大きく、かつ、他方の内径(図
5(c)で金属コア27の上下方向の内径)が円柱状フ
ェライトコア56の長さよりも大きく形成してある。こ
のような金属コア57を図5(d)のように円柱状フェ
ライトコア56に嵌挿し円柱状フェライトコア56の軸
方向端部と空隙Gを置いて対向配置している。
Then, in the step-up transformer according to the third embodiment of the present invention, the cylindrical ferrite core 56 is used,
A primary winding 21, a secondary winding 22, and a heater winding 23 surround this periphery, and are arranged side by side in the axial direction of the core. Furthermore, the metal core of the step-up transformer is shown in FIG.
As shown in (b), a plurality of (10 to 40) square-shaped metal thin plates 57a are laminated in the thickness direction using an insulating adhesive. And, of the inner diameter of the square-shaped metal core,
One inner diameter (the inner diameter in the left-right direction of the metal core 57 in FIG. 5C) is the primary winding 21, the secondary winding 22, the heater winding 23.
The inner diameter (the inner diameter in the vertical direction of the metal core 27 in FIG. 5C) of any one of them is larger than the length of the cylindrical ferrite core 56. Such a metal core 57 is inserted into the cylindrical ferrite core 56 as shown in FIG. 5D, and is arranged so as to face the axial end of the cylindrical ferrite core 56 with a gap G therebetween.

【0018】以上のような構成により、高周波損失が少
ないフェライトコアをメインコアとし、飽和しないよう
に空隙を設けるとともに、これと対向して小型で飽和し
難い金属コアを一次巻線21と二次巻線22とヒーター
巻線23とフェライトコア56の外側に配設しているの
で、フェライトコア56のみから成る従来の昇圧トラン
ス(図6)と比べると大幅に小型化に寄与することとな
る。すなわち、第3の実施の形態に係る昇圧トランス5
0では金属コアであるため断面積がフェライトコア部分
と比べて極端に小さくでき、一次巻線21と二次巻線2
2とヒーター巻線23の外側に大きくはみ出すことがな
い(図2(c)参照。)。
With the above-described structure, the ferrite core having a small high frequency loss is used as the main core, and the air gap is provided so as not to be saturated, and the small and hard metal core which is opposed to this is provided with the primary winding 21 and the secondary winding. Since the winding 22, the heater winding 23, and the ferrite core 56 are arranged outside the ferrite core 56, the size of the coil can be greatly reduced as compared with a conventional step-up transformer (FIG. 6) including only the ferrite core 56. That is, the step-up transformer 5 according to the third embodiment
In 0, since it is a metal core, the cross-sectional area can be made extremely smaller than that of the ferrite core portion, and the primary winding 21 and the secondary winding 2
2 and the outside of the heater winding 23 do not largely protrude (see FIG. 2C).

【0019】しかも、高周波下での金属コア57の欠点
である高周波損失については、図3(b)のように金属
薄板27aを10〜40個積層したものを用い、渦電流
が流れる方向を多数個積層して成る金属薄板層を横切る
方向に合わせたので、渦電流は1枚の金属薄板の断面積
内でしか流れることができず、そして1枚の金属薄板の
断面積の抵抗値が大きいため、渦電流はほとんど流れる
ことができなくなる。したがって、高周波下であっても
このような構成の金属コア57を上記のような配置とす
ることによって初めて高周波損失が小さくなり、フェラ
イトコアと金属コアの長所を兼ね備えた昇圧トランスを
得ることができる。また、昇圧トランスのフェライトコ
アが円柱形状であるので直方体よりも製造が簡単とな
り、しかも磁束の通過する空隙Gはフェライトコア56
と金属コア57との互いの対向部分が平行となるので、
その間に形成される空隙Gが同じ幅となるため、結合係
数等の設計が容易となる。さらに、口字状の金属コア5
7がフェライトコア56および各巻線21、22、23
を外側から一部包むのでこれらの機械的な保護の働きも
する。なお、図3の口字状の金属コア27,57が高周
波損失等から見てベストモードではあるが、必ずしも金
属コアでなくてもよく、高周波損失が少ない材質のもの
であればよく、例えばフェライト等で口字状のコアを形
成して、図2、図4、図5のように用いてももちろん構
わない。
As for the high frequency loss, which is a drawback of the metal core 57 under high frequency, a stack of 10 to 40 metal thin plates 27a is used as shown in FIG. Since the metal thin plate layers formed by stacking the individual metal plates are aligned in the direction crossing, the eddy current can flow only within the cross sectional area of one metal thin plate, and the resistance value of the cross sectional area of one metal thin plate is large. Therefore, almost no eddy current can flow. Therefore, even under a high frequency, the high frequency loss is reduced only by arranging the metal core 57 having such a configuration as described above, and a step-up transformer having the advantages of both the ferrite core and the metal core can be obtained. . Further, since the ferrite core of the step-up transformer has a columnar shape, it is easier to manufacture than the rectangular parallelepiped, and the air gap G through which the magnetic flux passes is defined by the ferrite core 56.
Since the opposing portions of the metal core 57 and the metal core 57 are parallel to each other,
Since the gap G formed between them has the same width, the design of the coupling coefficient and the like becomes easy. Furthermore, a bracket-shaped metal core 5
7 is a ferrite core 56 and each winding 21, 22, 23
It also wraps a part of it from the outside, so it also serves as a mechanical protection for these. Although the square-shaped metal cores 27 and 57 in FIG. 3 are in the best mode from the viewpoint of high-frequency loss and the like, they may not necessarily be metal cores and may be made of a material with low high-frequency loss, such as ferrite. It is needless to say that a square-shaped core may be formed by using the above method and used as shown in FIG. 2, FIG. 4, and FIG.

【0020】[0020]

【発明の効果】以上、本発明の昇圧トランスによれば、
高周波損失が少ないフェライトコアをメインコアとし、
飽和しないように空隙を設けるとともに、これと対向し
て小型で、飽和磁束密度特性がフェライトコアよりも高
い金属コアを用いてしかも渦電流の流れる方向に金属薄
板を積層して渦電流を流れ難くし、かつ金属コアを口字
状にしたので、製造が簡単で、小型で、堅固で、さらに
各巻線の外側の機械的保護の働きもするという効果があ
る。また、直方体形状のフェライトコアのうち金属コア
に対向する面の一部に突出部を形成したので、スペーサ
を別途準備する必要も、それを組み込む手間も省けるの
で、昇圧トランスの組み立てが容易となる。また、棒状
フェライトコアと金属コアとの間に形成される空隙を適
当に選ぶことで、昇圧トランスの結合係数を任意に最適
の係数に簡単に作り出すことが可能となる。
As described above, according to the step-up transformer of the present invention,
Ferrite core with less high frequency loss is used as the main core,
A void is provided to prevent saturation, and a metal core that is small and has a saturation magnetic flux density characteristic higher than that of a ferrite core is used to face it, and it is difficult to flow eddy current by laminating thin metal plates in the direction of eddy current flow. In addition, since the metal core is formed in a square shape, it is easy to manufacture, is small in size, is solid, and has the effect of mechanically protecting the outside of each winding. Further, since the protrusion is formed on a part of the surface of the rectangular parallelepiped-shaped ferrite core that faces the metal core, it is not necessary to separately prepare a spacer and the labor for incorporating the spacer can be omitted, so that the step-up transformer can be easily assembled. . Further, by appropriately selecting the air gap formed between the rod-shaped ferrite core and the metal core, it becomes possible to easily create the coupling coefficient of the step-up transformer to an arbitrary optimum coefficient.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明が対象とする昇圧トランスを用いたマグ
ネトロン駆動電源の構成図である。
FIG. 1 is a configuration diagram of a magnetron drive power source using a step-up transformer, which is a target of the present invention.

【図2】本発明の第1の実施の形態に係る昇圧トランス
を示す図で、(a)が正面図、(b)が平面図、(c)
が側面図、(d)が斜視図である。
FIG. 2 is a diagram showing a step-up transformer according to a first embodiment of the present invention, (a) is a front view, (b) is a plan view, and (c).
Is a side view, and (d) is a perspective view.

【図3】本発明で用いる金属コアの形成法を説明する図
である。
FIG. 3 is a diagram illustrating a method for forming a metal core used in the present invention.

【図4】本発明の第2の実施の形態に係る昇圧トランス
を示す図で、(a)が正面図、(b)が平面図、(c)
が側面図、(d)が斜視図である。
FIG. 4 is a diagram showing a step-up transformer according to a second embodiment of the present invention, (a) is a front view, (b) is a plan view, and (c).
Is a side view, and (d) is a perspective view.

【図5】本発明の第3の実施の形態に係る昇圧トランス
を示す図で、(a)が正面図、(b)が平面図、(c)
が側面図、(d)が斜視図である。
FIG. 5 is a diagram showing a step-up transformer according to a third embodiment of the present invention, (a) is a front view, (b) is a plan view, and (c).
Is a side view, and (d) is a perspective view.

【図6】従来の主流トランスであるフェライトコアの昇
圧トランスを示す図である。
FIG. 6 is a diagram showing a conventional ferrite core step-up transformer that is a mainstream transformer.

【符号の説明】[Explanation of symbols]

11 商用電源 12 マグネトロン 122 アノード 121 カソード 13 整流回路 14 チョークコイル 15 フィルタコンデンサ 16 インバータ 161 インバータ制御回路 17 CT 18 昇圧トランス 181 1次巻線 182 2次巻線 183 フィラメント加熱用巻線 19 倍電圧半波整流回路 191 高圧コンデンサ 192、193 高圧ダイオード 20 第1の実施の形態に係る昇圧トランス 21 一次巻線 22 二次巻線 23 ヒーター巻線 26 直方体形状フェライトコア 26a 突出部 27 金属コア 27a 長尺金属薄板 56 円柱状フェライトコア 57 金属コア 57a 口字状金属薄板 G 空隙 11 Commercial power supply 12 magnetron 122 Anode 121 cathode 13 Rectifier circuit 14 choke coil 15 Filter capacitor 16 inverter 161 Inverter control circuit 17 CT 18 step-up transformer 181 primary winding 182 secondary winding 183 Filament heating winding 19 times voltage half-wave rectifier circuit 191 High Voltage Capacitor 192,193 High voltage diode 20 Step-up transformer according to the first embodiment 21 primary winding 22 Secondary winding 23 heater winding 26 Rectangular parallelepiped ferrite core 26a protrusion 27 Metal core 27a Long metal thin plate 56 cylindrical ferrite core 57 Metal core 57a Bracket-shaped thin metal plate G void

フロントページの続き (72)発明者 三原 誠 大阪府門真市大字門真1006番地 松下電器 産業株式会社内Continued front page    (72) Inventor Makoto Mihara             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 マグネトロンに駆動電圧を供給する昇圧
トランスであって、一次巻線と二次巻線とがそれぞれ棒
状フェライトコアを囲んで成るマグネトロン駆動用昇圧
トランスにおいて、 口字状コアを前記一次巻線と二次巻線との外側から前記
棒状フェライトコアに向けて嵌挿した状態でかつ前記棒
状フェライトコアと空隙を置いて対向配置して成ること
を特徴とするマグネトロン駆動用昇圧トランス。
1. A step-up transformer for supplying a drive voltage to a magnetron, wherein a primary winding and a secondary winding surround a rod-shaped ferrite core, respectively. A step-up transformer for driving a magnetron, characterized in that the winding transformer and the secondary winding are fitted and inserted from the outside toward the rod-shaped ferrite core and opposed to the rod-shaped ferrite core with a gap.
【請求項2】 マグネトロンに駆動電圧を供給する昇圧
トランスであって、一次巻線と二次巻線とがそれぞれ棒
状フェライトコアを囲んで成るマグネトロン駆動用昇圧
トランスにおいて、 口字状の一方の内径が前記一次巻線と二次巻線のいずれ
の外径よりも大きくかつ該口字状の他方の内径が前記一
次巻線と二次巻線の重ね丈よりも大きく形成して成る口
字状コアを、該一次巻線と二次巻線の外側から前記棒状
フェライトコアに向けて嵌挿した状態でかつ前記棒状フ
ェライトコアと空隙を置いて対向配置して成ることを特
徴とするマグネトロン駆動用昇圧トランス。
2. A step-up transformer for supplying a drive voltage to a magnetron, wherein a primary winding and a secondary winding each surround a rod-shaped ferrite core, the step-up transformer for driving the magnetron, wherein one of the inner diameters of the U-shape Is a letter shape in which is larger than the outer diameter of either of the primary winding and the secondary winding and the inner diameter of the other of the letter shape is larger than the overlapping length of the primary winding and the secondary winding. A magnetron driving device, characterized in that the core is fitted and inserted from the outside of the primary winding and the secondary winding toward the rod-shaped ferrite core and is opposed to the rod-shaped ferrite core with a gap. Step-up transformer.
【請求項3】 マグネトロンに駆動電圧を供給する昇圧
トランスであって、一次巻線と二次巻線とがそれぞれ棒
状フェライトコアを囲みかつ該棒状フェライトコアの軸
方向に重ね並置されて成るマグネトロン駆動用昇圧トラ
ンスにおいて、 長尺金属薄板を口字状に複数回巻回して成る金属コアで
あってかつ該口字状の一方の内径が前記一次巻線と二次
巻線のいずれの外径よりも大きくかつ該口字状の他方の
内径が前記一次巻線と二次巻線の重ね丈よりも大きく形
成して成る金属コアを、該一次巻線と二次巻線の外側か
ら前記棒状フェライトコアに向けて嵌挿した状態でかつ
前記棒状フェライトコアと空隙を置いて対向配置して成
ることを特徴とするマグネトロン駆動用昇圧トランス。
3. A step-up transformer for supplying a drive voltage to a magnetron, wherein a primary winding and a secondary winding surround a rod-shaped ferrite core and are arranged side by side in the axial direction of the rod-shaped ferrite core. A step-up transformer for use in a metal core formed by winding a long thin metal plate a plurality of times in a square shape, and one inner diameter of the square shape is larger than the outer diameter of either the primary winding or the secondary winding. A rod-shaped ferrite core from the outside of the primary winding and the secondary winding, the metal core being formed larger than the primary winding and the secondary winding so that the inner diameter of the other of the square shape is larger than that of the primary winding and the secondary winding. A step-up transformer for driving a magnetron, wherein the step-up transformer for driving a magnetron is arranged so as to be inserted into the core and to face the rod-shaped ferrite core with a gap.
【請求項4】 前記棒状フェライトコアが直方体形状で
あることを特徴とする請求項1〜3のいずれか1項記載
のマグネトロン駆動用昇圧トランス。
4. The step-up transformer for driving a magnetron according to claim 1, wherein the rod-shaped ferrite core has a rectangular parallelepiped shape.
【請求項5】 前記直方体形状のフェライトコアのうち
前記金属コアに対向する面の一部に突出部を形成し、該
突出部を前記金属コアに接触させたことを特徴とする請
求項4記載のマグネトロン駆動用昇圧トランス。
5. A protrusion is formed on a part of a surface of the rectangular parallelepiped-shaped ferrite core facing the metal core, and the protrusion is brought into contact with the metal core. Step up transformer for driving magnetron.
【請求項6】 マグネトロンに駆動電圧を供給する昇圧
トランスであって、一次巻線と二次巻線とがそれぞれ棒
状フェライトコアを囲んで成るマグネトロン駆動用昇圧
トランスにおいて、 口字状の一方の内径が前記一次巻線と二次巻線のいずれ
の外径よりも大きくかつ該口字状の他方の内径が前記棒
状フェライトコアの長さよりも大きく形成して成る口字
状コアに前記棒状フェライトコアを前記巻線と共に嵌挿
し前記棒状フェライトコアの軸方向端部と前記金属コア
との間に空隙を置いて対向配置して成ることを特徴とす
るマグネトロン駆動用昇圧トランス。
6. A step-up transformer for supplying a drive voltage to a magnetron, wherein a primary winding and a secondary winding each surround a rod-shaped ferrite core, wherein the step-up transformer for driving the magnetron has one of a square bore Is a rod-shaped ferrite core formed by forming the rod-shaped ferrite core having an outer diameter larger than the outer diameter of either the primary winding or the secondary winding and a second inner diameter larger than the length of the rod-shaped ferrite core. A magnetron driving step-up transformer, characterized in that it is inserted together with the winding and is arranged to face each other with a gap between the axial end of the rod-shaped ferrite core and the metal core.
【請求項7】 マグネトロンに駆動電圧を供給する昇圧
トランスであって、一次巻線と二次巻線とがそれぞれ棒
状フェライトコアを囲んで成るマグネトロン駆動用昇圧
トランスにおいて、 口字状金属薄板を厚み方向に複数個積層して成る金属コ
アであってかつ該口字状の一方の内径が前記一次巻線と
二次巻線のいずれの外径よりも大きくかつ該口字状の他
方の内径が前記棒状フェライトコアの長さよりも大きく
形成して成る金属コアに前記棒状フェライトコアを前記
巻線と共に嵌挿し前記棒状フェライトコアの軸方向端部
と前記金属コアとの間に空隙を置いて対向配置して成る
ことを特徴とするマグネトロン駆動用昇圧トランス。
7. A step-up transformer for supplying a driving voltage to a magnetron, wherein a primary winding and a secondary winding each surround a rod-shaped ferrite core. A plurality of metal cores stacked in the same direction, and one inner diameter of the square shape is larger than the outer diameter of either the primary winding or the secondary winding, and the other inner diameter of the square shape is The rod-shaped ferrite core is fitted together with the winding into a metal core formed to have a length larger than that of the rod-shaped ferrite core, and the metal core and the axial end of the rod-shaped ferrite core are opposed to each other with a gap therebetween. A step-up transformer for driving a magnetron, which is characterized in that
【請求項8】 前記棒状フェライトコアが円柱形状であ
ることを特徴とする請求項6又は7記載のマグネトロン
駆動用昇圧トランス。
8. The step-up transformer for driving a magnetron according to claim 6, wherein the rod-shaped ferrite core has a cylindrical shape.
【請求項9】 磁気抵抗は前記棒状フェライトコアと前
記コア間の空隙により変更されてなることを特徴とする
請求項1〜8のいずれか1項記載のマグネトロン駆動用
昇圧トランス。
9. The step-up transformer for driving a magnetron according to claim 1, wherein the magnetic resistance is changed by the rod-shaped ferrite core and an air gap between the cores.
JP2002067068A 2002-03-12 2002-03-12 Step-up transformer for magnetron drive Expired - Fee Related JP4212285B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2002067068A JP4212285B2 (en) 2002-03-12 2002-03-12 Step-up transformer for magnetron drive
PCT/JP2003/000279 WO2003077603A2 (en) 2002-03-12 2003-01-15 Magnetron drive boosting transformer
EP03701733A EP1483941B1 (en) 2002-03-12 2003-01-15 Magnetron drive boosting transformer
CNB038000156A CN100512573C (en) 2002-03-12 2003-01-15 Boosting transformer for driving magnetron
AT03701733T ATE390031T1 (en) 2002-03-12 2003-01-15 CONTROL MEANS FOR A VOLTAGE-BOOSTING TRANSFORMER
AU2003202802A AU2003202802A1 (en) 2002-03-12 2003-01-15 Magnetron drive boosting transformer
DE60319811T DE60319811T2 (en) 2002-03-12 2003-01-15 CONTROL MEANS FOR A TRANSFORMER WITH VOLTAGE INCREASE
US10/432,578 US6956456B2 (en) 2002-03-12 2003-01-15 Magnetron drive boosting transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002067068A JP4212285B2 (en) 2002-03-12 2002-03-12 Step-up transformer for magnetron drive

Publications (2)

Publication Number Publication Date
JP2003272932A true JP2003272932A (en) 2003-09-26
JP4212285B2 JP4212285B2 (en) 2009-01-21

Family

ID=29198576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002067068A Expired - Fee Related JP4212285B2 (en) 2002-03-12 2002-03-12 Step-up transformer for magnetron drive

Country Status (1)

Country Link
JP (1) JP4212285B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015204431A (en) * 2014-04-16 2015-11-16 コーセル株式会社 Magnetic core and inductor element using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015204431A (en) * 2014-04-16 2015-11-16 コーセル株式会社 Magnetic core and inductor element using the same

Also Published As

Publication number Publication date
JP4212285B2 (en) 2009-01-21

Similar Documents

Publication Publication Date Title
TW202004790A (en) Magnetic component and switch power device
JP2004111528A (en) Step-up transformer for magnetron drive
US20030095026A1 (en) Transformer
JP4886110B2 (en) In particular, power transformers for power switching regulators for stud welding equipment
EP1483941B1 (en) Magnetron drive boosting transformer
US6891738B2 (en) Power-supply unit for electronic oven
US20110032062A1 (en) Transformer improved in leakage inductance
JPH08316054A (en) Thin transformer
JP2003272932A (en) Boosting transformer for driving magnetron
WO2019013131A1 (en) Planar transformer and dcdc converter
JP3796647B2 (en) DC / DC converter
JP4838842B2 (en) Transformer having laminated winding structure
JP4212284B2 (en) Step-up transformer for magnetron drive
US11783986B2 (en) Resonant coils with integrated capacitance
WO2019131883A1 (en) Welding transformer
JP2019046828A (en) Transformer and switching power supply
JP2001237128A (en) Shell type power transformer and power converter using the same
US20230360850A1 (en) Converter component and converter
JP3061052B1 (en) Step-up transformer for magnetron drive
JP2009176989A (en) Transformer unit for resonance type switching power supply circuit
WO2022102611A1 (en) Transformer unit
KR102131584B1 (en) Structure or Method of Transformer Core for Saturation Flux Reduction
JP2022150081A (en) leakage transformer
JP2005129588A (en) Magnetically coupled element
JP2005129589A (en) Magnetically coupled element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060315

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070507

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071114

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071121

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071128

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071205

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071212

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081001

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081028

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees