JP2003269312A - Rate-of-flow adjusting system - Google Patents

Rate-of-flow adjusting system

Info

Publication number
JP2003269312A
JP2003269312A JP2002070208A JP2002070208A JP2003269312A JP 2003269312 A JP2003269312 A JP 2003269312A JP 2002070208 A JP2002070208 A JP 2002070208A JP 2002070208 A JP2002070208 A JP 2002070208A JP 2003269312 A JP2003269312 A JP 2003269312A
Authority
JP
Japan
Prior art keywords
water
power generation
micro
rate
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002070208A
Other languages
Japanese (ja)
Inventor
Masatsugu Endo
雅継 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Engineering Corp
Original Assignee
Toshiba Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Engineering Corp filed Critical Toshiba Engineering Corp
Priority to JP2002070208A priority Critical patent/JP2003269312A/en
Publication of JP2003269312A publication Critical patent/JP2003269312A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rate-of-flow adjusting system including a flow adjuster for adjusting the rate of flow and the pressure and making electric power generation with part of the potential energy and kinetic energy of fluid flowing in a water conduit pipe. <P>SOLUTION: The rate-of-flow adjusting system is equipped with a water delivery basin facility 15 in which water is reserved, the water conduit pipe 16 laid leading to a water using facility 17 installed below the water delivery basin facility, a micro-water wheel generator 11 having a water wheel part 12 inserted to and coupled with the middle of the conduit pipe for generating the electric power with the water, a power generation limiter 18 to control the generated power of the power, generation part 13 of the micro-water wheel generator, and a control means to change the rate of flow in the conduit pipe by setting and adjusting the generated power by the power generation controller. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、導水管内を流れる
流体の流量及び圧力の調整システムに関する。 【0002】 【従来の技術】従来の導水管内を流れる流体の流量や圧
力の調整には、図2に示すように、導水管22に挿入さ
れたボール弁21や仕切り弁により、導水管内の流路を
閉塞して流路の抵抗を変化させて行われる。 【0003】すなわち、導水管22内に流路を狭めるよ
うな障害物を挿入するか、導水管内に開通部分が変化す
るような弁体を挿入して、図2(a)に示す開通部分が
全開となるボール弁21aの状態で最大流量となり、同
図(b)に示すように弁体をを操作して、開通部分を減
少させたボール弁21bの状態では、流路断面の減少に
対応して流量が減少変化する。また、この狭窄部分で流
路摩擦や水流に渦が生じ、流体に潜在した位置エネルギ
ーや運動エネルギーが減少して、圧力降下を生じて、そ
の下流で圧力が減少する。 【0004】一方、コンピュータを利用した設計技術や
シミュレーション技術の進歩により、高効率の小型水車
の開発が進められて、この高性能の水車を利用したマイ
クロ水車発電機が広く普及し始めている。このマイクロ
水車発電機は、低落差水車発電機とも呼ばれ、落差が2
mから15m程度、流量が0.2m/秒から2m
秒程度の少水量の水路で動作し、5kWから100kW
の発電が行える。 【0005】 【発明が解決しようとする課題】上で述べた従来の流量
及び圧力調整装置では、導水管に流路を閉塞する抵抗の
変化で行われて、流路摩擦や渦として流水に潜在するエ
ネルギーが無駄に減少しているのみあった。 【0006】この発明は上記問題点を鑑みてなされたも
ので、流量・圧力の調整を行うと同時に、導水管内を流
れる流体の位置エネルギー及び運動エネルギーの一部
が、電力を発電する流量調整システムを提供することを
目的とする。 【0007】 【課題を解決するための手段】本発明の流量調整システ
ムは、水を貯める配水池施設と、この配水池施設よりも
下方に設けられた水需要施設との間に敷設された導水管
と、この導水管の中間部にその水車部が挿入連結され水
により発電するマイクロ水車発電機と、このマイクロ水
車発電機の発電部の発電電力を制御する発電制限器と、
前記発電制御器により前記発電電力を設定調整して、前
記導水管の流水量を変更する制御手段とを有することを
特徴とするものである。 【0008】 【発明の実施の形態】以下、本発明の実施形態を図面に
より詳細に説明する。 【0009】図1は、本発明の流量・圧力調整器の実施
形態を示す模式図である。 【0010】本実施形態は、高い位置にある上水の配水
池15と、下方に位置する上水の需要先17と、この間
に上水を流すために敷設された導水管16と、この導水
管16の途中にその水車部12が設置されたマイクロ水
車発電機11と、このマイクロ水車発電機11の発電部
13に接続される発電制御器18とから構成される。 【0011】導水管の途中に敷設されるマイクロ水車発
電機11は、低落差水車発電機で水車部12と発電部1
3とが同軸で結合されて、導水管16に接続されている
水車部12が流水により回転トルクを生じる。この回転
トルクが同軸で結合されている発電部13の発電機に伝
達されて、電力を発生する。 【0012】この時の発電量は、次式のように表され
る。 【0013】発電量(kW)=9.8×流量(m
s)×落差(m)×発電効率 なお、係数9.8は重力加速度常数であり、発電効率は
水車効率と発電機効率の積である。 【0014】本実施形態では、従来の流量調整弁等が設
置される場所に、マイクロ水車発電機11を接続するの
で、位置的に上流にある配水池15から、上水が導水管
16を流れる時に、水車部12の水車を回転させて、さ
らに下流の上水の需要先17へ流れる。この時に発電部
13により発電された電力は、発電部13に接続される
発電制御器18を介して電力の供給先へ送電される。 【0015】上水の需要先17に対し、上水供給に制限
がない通常の時には、発電制御器18の制御設定値は
“最大"に設定されて、配水池15の高さ(送水圧)と
需要先17の上水使用量でこの送水系がバランスする流
量Qsが流れて、前述の発電量の式に基いて発電量Ps
が電力供給先へ送電される。 【0016】次に、夏期や冬期の渇水期に需要先17へ
の配水を制限する場合には、前述の発電量の式により、
落差及び発電効率は物理的に変化しないため、発電制御
器18の制御設定値を有限値設定して、発電電力量を制
限することにより、流量を制限することができる。すな
わち、流量の制限値Qaを上式に代入して発電量Paを
算出し、前記発電制御器18の制御設定値にこのPaを
設定して、マイクロ水車発電機11を運転する。この設
定により、マイクロ水車発電機11の出力が下がって、
水車部12の回転が遅くなって流量がQaに制限されて
流れる。下流の需要先17が、流量Qaに制限される前
と同量の水量を使用していると、流量がQaに制限され
るので、マイクロ水車発電機11より下流では圧力が、同
じく制限されて下がる。 【0017】なお、上記の本実施形態では、配水池と需
要先とで構成される市中の上水の給配水システムの例で
説明したが、ビル等に設置された屋上貯水槽と同ビル内
の給水栓とで構成される屋内給排水システムでも規模が
異なるのみで、同様に実施できる。 【0018】本発明の上記の実施形態によれば、導水管
に接続したマイクロ水車発電機により、その発電電力を
制限して、導水管内の流水量を制限することができると
共に、別途マイクロ水車発電機による流水量に対応した
電力を同時に供給できる利点がある。 【0019】ところで、従来の上水の給配水系では、位
置的に上部に設置される配水池23だけでは、配水圧力
が不足する場合が多く生じるので、導水管22の途中に
加圧ポンプが設置されることがある。一般に、マイクロ
水車発電機には、その機構構造上、これに電力を通電す
れば水車ポンプとして機能動作するものがある。この実
施形態で設置するマイクロ水車発電機11に、前述のポ
ンプとしても機能するタイプのマイクロ水車発電機を使
用すれば、需要先17の給水圧が低下してこれを昇圧す
る必要が生じた場合に、電力を供給する接続に変更すれ
ば給水圧力を上昇させることもできる利点がある。 【0020】 【発明の効果】以上、説明したように本発明によるマイ
クロ水車発電機を用いる流量及び圧力調整装置では、マ
イクロ水車発電機を接続した導水管の水の流量・圧力の
調整を行える。さらに同時に、導水管内を流れる水によ
る電力の発電を行える。また、ポンプとしても作動する
形式のマイクロ水車発電機を接続した場合には、このマ
イクロ水車発電機を設置した下流の導水管内の水圧を加
圧することもできる利点がある。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a system for adjusting a flow rate and a pressure of a fluid flowing in a water pipe. 2. Description of the Related Art As shown in FIG. 2, the flow rate and pressure of a fluid flowing in a conventional water pipe are controlled by a ball valve 21 and a gate valve inserted into the water pipe 22 as shown in FIG. This is performed by closing the passage and changing the resistance of the passage. [0003] That is, an obstacle that narrows the flow path is inserted into the water pipe 22 or a valve body whose opening portion changes is inserted into the water pipe, so that the opening shown in FIG. In the state of the ball valve 21a which is fully open, the maximum flow rate is reached, and the state of the ball valve 21b in which the opening portion is reduced by operating the valve body as shown in FIG. As a result, the flow rate decreases and changes. In addition, a vortex is generated in the flow path friction and the water flow in the constricted portion, and the potential energy and kinetic energy latent in the fluid decrease, causing a pressure drop, and the pressure decreases downstream. On the other hand, with the advance of design technology and simulation technology using a computer, development of a high-efficiency small water turbine has been promoted, and a micro-turbine generator using this high-performance water turbine has begun to spread widely. This micro turbine generator is also called a low head turbine generator and has a head of 2
m to about 15 m, and the flow rate is 0.2 m 3 / sec to 2 m 3 /
Operates in a water channel with a small amount of water of about 2 seconds, 5 kW to 100 kW
Power generation. [0005] In the conventional flow rate and pressure adjusting device described above, the flow rate is controlled by a change in resistance to block the flow path in the water pipe, and the flow rate friction and / or vortices are generated in the flowing water. Energy was wasted and wasted. SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and a flow rate adjusting system that adjusts the flow rate and pressure, and at the same time, a part of the potential energy and kinetic energy of the fluid flowing in the water pipe generates electric power. The purpose is to provide. [0007] The flow control system according to the present invention comprises a water supply facility installed between a reservoir facility for storing water and a water demand facility provided below the reservoir facility. A water pipe, a micro-turbine generator whose water turbine section is inserted and connected to an intermediate portion of the water pipe, and generates power by water; and a power generation limiter that controls power generated by the power generation section of the micro-turbine generator.
Control means for setting and adjusting the generated power by the power generation controller to change a flow rate of the water guide pipe. An embodiment of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a schematic diagram showing an embodiment of a flow / pressure regulator according to the present invention. In this embodiment, a water supply reservoir 15 at a high position, a water supply destination 17 at a lower position, a water conduit 16 laid for flowing the water therebetween, and a water conduit The water turbine 16 includes a micro-turbine generator 11 in which the water turbine unit 12 is installed, and a power generation controller 18 connected to the power generation unit 13 of the micro-turbine generator 11. The micro-turbine generator 11 laid in the middle of the water pipe is a low-drop turbine generator, which is a water turbine unit 12 and a power generation unit 1.
3 is coaxially coupled, and the water wheel section 12 connected to the water pipe 16 generates a rotating torque by flowing water. This rotational torque is transmitted to the generator of the power generation unit 13 that is coaxially coupled to generate electric power. The amount of power generated at this time is expressed by the following equation. Power generation (kW) = 9.8 × Flow rate (m 3 /
s) × head (m) × power generation efficiency The coefficient 9.8 is a gravitational acceleration constant, and the power generation efficiency is the product of the turbine efficiency and the generator efficiency. In this embodiment, since the micro-turbine generator 11 is connected to a place where a conventional flow control valve or the like is installed, clean water flows from the water distribution reservoir 15 located upstream in the water conduit 16. At times, the water wheel of the water wheel section 12 is rotated and further flows downstream to the water demanding destination 17. At this time, the power generated by the power generation unit 13 is transmitted to a power supply destination via a power generation controller 18 connected to the power generation unit 13. In the normal case where there is no restriction on water supply to the water supply destination 17, the control set value of the power generation controller 18 is set to “maximum” and the height of the reservoir 15 (water supply pressure) is set. And the flow rate Qs at which the water supply system balances with the water usage of the demand destination 17 flows.
Is transmitted to the power supply destination. Next, in the case of restricting water distribution to the demand destination 17 during a drought period in summer or winter, the above-mentioned equation of power generation is used.
Since the head and the power generation efficiency do not physically change, the flow rate can be limited by setting the control set value of the power generation controller 18 to a finite value and limiting the amount of generated power. That is, the power generation amount Pa is calculated by substituting the flow rate limit value Qa into the above equation, the Pa is set as the control set value of the power generation controller 18, and the micro water turbine generator 11 is operated. With this setting, the output of the micro-turbine generator 11 decreases,
The rotation of the water wheel section 12 is slowed down and the flow rate is limited to Qa and flows. If the downstream demand 17 uses the same amount of water as before the flow rate is restricted to the flow rate Qa, the flow rate is restricted to Qa, so that the pressure downstream of the micro-turbine generator 11 is also restricted. Go down. In the above-described embodiment, an example of a city water supply / distribution system composed of a distribution reservoir and a demand destination has been described. An indoor water supply / drainage system composed of an internal water tap can also be implemented in the same manner, except for the scale. According to the above embodiment of the present invention, the power generated by the micro-turbine generator connected to the water pipe can be limited to restrict the amount of water flowing in the water pipe, and the micro-turbine power generator can be used separately. There is an advantage that the electric power corresponding to the amount of flowing water by the machine can be simultaneously supplied. By the way, in the conventional water supply and distribution system, the water distribution pressure is often insufficient only with the water reservoir 23 installed in the upper part of the position. May be installed. In general, there is a micro-turbine generator that functions as a water turbine pump when electric power is supplied to the micro-turbine generator due to its mechanical structure. If a micro-turbine generator of the type that also functions as the above-described pump is used for the micro-turbine generator 11 installed in this embodiment, the water supply pressure of the demand destination 17 decreases and it becomes necessary to increase the pressure. Furthermore, there is an advantage that the feedwater pressure can be increased by changing to a connection for supplying electric power. As described above, in the flow rate and pressure adjusting device using the micro turbine generator according to the present invention, the flow rate and pressure of water in the water pipe connected to the micro turbine generator can be adjusted. At the same time, power can be generated by the water flowing in the water pipe. In addition, when a micro-turbine generator of a type that also operates as a pump is connected, there is an advantage that the water pressure in a downstream water pipe installed with the micro-turbine generator can be increased.

【図面の簡単な説明】 【図1】本発明の発電機による流量・圧力調節器の構成
を示す図。 【図2】従来の流量・圧力調節器による流量・圧力調節
を示す図。 【符号の説明】 11・・・マイクロ水車発電機、 12・・・水車部、 13・・・発電部、 15,23・・・上部に位置する配水池、 16,22・・・導水管、 17,24・・・上水の需要先、 18・・・発電制御器、 21a・・・全開の弁体、 21b・・・開口部分が減少している弁体。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing a configuration of a flow rate / pressure regulator using a generator according to the present invention. FIG. 2 is a diagram showing flow rate / pressure adjustment by a conventional flow rate / pressure regulator. [Description of Signs] 11: Micro turbine generator, 12: Turbine unit, 13: Power generation unit, 15, 23 ... Reservoir located at the top, 16, 22 ... Water pipe, 17, 24: demand for water supply, 18: power generation controller, 21a: valve element that is fully open, 21b: valve element with a reduced opening.

Claims (1)

【特許請求の範囲】 【請求項1】 水を貯める配水池施設と、 この配水池施設よりも下方に設けられた水需要施設との
間に敷設された導水管と、 この導水管の中間部にその水車部が挿入連結され水によ
り発電するマイクロ水車発電機と、 このマイクロ水車発電機の発電部の発電電力を制御する
発電制限器と、 前記発電制御器により前記発電電力を設定調整して、前
記導水管の流水量を変更する制御手段とを有することを
特徴とする流量調整システム。
Claims: 1. A water distribution pipe facility laid between a distribution reservoir facility for storing water, a water demanding facility provided below the distribution reservoir facility, and an intermediate portion of the water distribution pipe. A micro-turbine generator, the turbine portion of which is inserted and connected to generate water by water; a power generation limiter for controlling the power generation of a power generation unit of the micro-turbine generator; and the power generation controller setting and adjusting the generated power. And a control means for changing a flow rate of the water guide pipe.
JP2002070208A 2002-03-14 2002-03-14 Rate-of-flow adjusting system Pending JP2003269312A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002070208A JP2003269312A (en) 2002-03-14 2002-03-14 Rate-of-flow adjusting system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002070208A JP2003269312A (en) 2002-03-14 2002-03-14 Rate-of-flow adjusting system

Publications (1)

Publication Number Publication Date
JP2003269312A true JP2003269312A (en) 2003-09-25

Family

ID=29200846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002070208A Pending JP2003269312A (en) 2002-03-14 2002-03-14 Rate-of-flow adjusting system

Country Status (1)

Country Link
JP (1) JP2003269312A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110632962A (en) * 2018-06-21 2019-12-31 格兰富控股联合股份公司 Control system and method for controlling water supply from at least two separate input lines to a water supply network sector
JP2020502411A (en) * 2016-12-19 2020-01-23 エー.オン、スベリゲ、アクチボラグE.ON Sverige Aktiebolag Flow controller

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020502411A (en) * 2016-12-19 2020-01-23 エー.オン、スベリゲ、アクチボラグE.ON Sverige Aktiebolag Flow controller
CN110632962A (en) * 2018-06-21 2019-12-31 格兰富控股联合股份公司 Control system and method for controlling water supply from at least two separate input lines to a water supply network sector

Similar Documents

Publication Publication Date Title
TW200716853A (en) Control system and control method of gas turbine
JP4069010B2 (en) Air conditioning equipment and energy recovery device mounting method
JP2003269312A (en) Rate-of-flow adjusting system
CN113062827B (en) Industrial circulating water system residual pressure power generation device
ATE514125T1 (en) THROTTLE VALVE DEVICE
CN202252130U (en) Novel energy-saving constant temperature faucet
TW305016B (en)
JP6421850B2 (en) Hydropower system
JP2004234431A (en) Automatic controller of valve
JP2884032B2 (en) Output adjustment device for small hydro power plant
JP5936076B2 (en) Motor drive control valve
CN201701117U (en) Energy-efficient constant-temperature tap of shower head
JP2002115643A (en) Small hydraulic power generating facility
CN209340525U (en) A kind of controllable pipeline airflow direction and positioning device
JP5171414B2 (en) Steam power generation system
JP3261632B2 (en) A method for controlling the supply of air to the suction pipe of a water turbine in a falling head power plant.
JP2003074987A (en) Combustion apparatus
JPS61232385A (en) Water level control device of intake pond for hydro-electric power plant
JP2000274343A (en) Power generating device
JP2006029201A (en) Pump water turbine and method for operating the same
JP6414239B2 (en) Hydropower system
IT1307394B1 (en) VALVE UNIT FOR THE ADJUSTMENT OF THE FUEL FLOW RATE IN FUNCTION OF THE WATER FLOW, IN PARTICULAR FOR WATER HEATERS.
JPS5997451A (en) Hot water supply controlling device
CN111561595A (en) Automatic regulating temp. control valve
TWM319996U (en) Improved turbine flow guider of a hydraulic power generator

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040319

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050307

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080909

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091006