JP2003265946A - Heat exchange vessel - Google Patents

Heat exchange vessel

Info

Publication number
JP2003265946A
JP2003265946A JP2002069794A JP2002069794A JP2003265946A JP 2003265946 A JP2003265946 A JP 2003265946A JP 2002069794 A JP2002069794 A JP 2002069794A JP 2002069794 A JP2002069794 A JP 2002069794A JP 2003265946 A JP2003265946 A JP 2003265946A
Authority
JP
Japan
Prior art keywords
heat
vessel
exchanged
heat exchange
ejector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002069794A
Other languages
Japanese (ja)
Inventor
Takayuki Morii
高之 森井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TLV Co Ltd
Original Assignee
TLV Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TLV Co Ltd filed Critical TLV Co Ltd
Priority to JP2002069794A priority Critical patent/JP2003265946A/en
Publication of JP2003265946A publication Critical patent/JP2003265946A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a heat exchange vessel in which the whole object to be heat-exchanged can be heat-exchanged efficiently even when the amount of the object to be heat-exchanged is small. <P>SOLUTION: A vertically long reaction vessel 1 whose diameter is made smaller gradually to ward the bottom of the vessel is arranged. A jacket part 2 is arranged almost on the whole surface of the outer periphery of the vessel 1. A steam supplying pipe 3 for heating the vessel 1 and a cooling fluid supplying pipe 20 for cooling the vessel 1 are connected to the upper part of the part 2. An ejector 6 is connected to the lower part of the part 2. The ejector 6 is connected to a circulation pump 11 while a tank 10 is interposed between them. The whole object to be heat-exchanged can be heat-exchanged efficiently even when the amount of the object which is to be heat-exchanged and fed to the vessel 1 is small because the volume of the lower part of the vessel 1 is so small that the prescribed height can be kept and the large heat transfer area can be secured. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、石油・化学プラン
トや食品、医薬品等の各種工場で使用される熱処理のた
めの反応釜や処理槽等に関し、特に、小容量の被熱交換
物を熱処理するのに適した熱交換容器に関する。 【0002】 【従来の技術】従来の熱交換容器としては、例えば実開
平4−87736号公報に示されているものが用いられ
ていた。これは、反応釜の内周に熱伝導率の異なるグラ
スライニング層を設けることにより、反応釜内部の反応
物への加熱ムラを防止することができるものである。 【0003】 【発明が解決しようとする課題】上記従来の熱交換容器
では、釜内部に収容する反応物が少量の場合に、反応物
の全体を効率良く熱交換できない問題があった。反応物
が少量の場合は反応釜の低部に反応物が溜まってしま
い、釜内の反応物の高さが低いものとなり、反応釜の側
壁から受熱する面積が小さなものとなって効率良く熱交
換できないのである。 【0004】反対に、反応物が多量にある場合は、釜内
の反応物の高さも高くなって、反応釜の側壁から受熱す
る面積も大きくなり、比較的効率良く熱交換ができる。 【0005】本発明の課題は、被熱交換物が少量の場合
であっても、被熱交換物の全体を効率良く熱交換できる
熱交換容器を得ることである。 【0006】 【課題を解決するための手段】上記の課題を解決するた
めに講じた手段は、内部に被熱交換物を収容する略円筒
状容器へ加熱又は冷却流体を供給して、被熱交換物を直
接に又は間接に熱交換するものにおいて、容器を縦長形
状として、容器の下方へ行くに連れて径が小さくなるも
のである。 【0007】 【発明の実施の形態】熱交換容器を縦長形状として、容
器の下方へ行くに連れて径が小さくなるようにしたこと
によって、容器の下方部での容積が小さなものとなり、
小容量の被熱交換物であっても容器内で所定の高さを維
持して、容器側面からの熱交換面積が大きくなり被熱交
換物のほぼ全体を効率良く熱交換することができる。 【0008】 【実施例】本実施例においては図1に示すように熱交換
容器として反応釜1を用いた例を示す。内部に図示しな
い被熱交換物を収容する反応釜1は、逆円錐状で下方へ
行くに連れて径Hを小さくする。反応釜1の側面のほぼ
全体を覆うようにジャケット部2を取り付ける。このジ
ャケット部2へ加熱流体や冷却流体を供給して、反応釜
1内の被熱交換物を間接的に熱交換する。 【0009】反応釜1の上下のジャケット部2で覆われ
ない箇所は、被熱交換物の搬入口あるいは取出口とする
と共に、内部の被熱交換物を攪拌する図示しない攪拌翼
や温度センサの取り付け口とする。 【0010】ジャケット部2の上方に加熱流体源として
の蒸気を供給する蒸気供給管3を接続する。蒸気供給管
3にはバルブ4を取り付ける。一方、ジャケット部2の
下方に連通管5を介してエゼクタ6と接続する。連通管
5には、蒸気の凝縮した復水だけを出口側に排出して蒸
気は排出することのないスチームトラップ7と、そのバ
イパスバルブ8を平行に取り付ける。連通管5はその下
端がエゼクタ6の吸引室9と接続する。 【0011】エゼクタ6とタンク10と循環ポンプ11
を順次組み合わせてエゼクタ式組み合わせポンプとす
る。タンク10内に循環流体、通常は常温の水、を所定
量溜め置き、この水を循環ホンプ11でエゼクタ6から
タンク10へと循環させてエゼクタ6の吸引作用によっ
て吸引室9に吸引力を発生して、ジャケット部2内を所
定の圧力状態、即ち、大気圧以上の正圧状態あるいは大
気圧以下の負圧状態、に維持するものである。 【0012】タンク10には循環流体補給管12を、バ
ルブ13を介して接続する。エゼクタ6で生じる吸引力
は、エゼクタ6内を流下する流体の温度に相当する飽和
圧力となることから、循環流体補給管12から流体を補
給して流体温度を適宜調節することによって、エゼクタ
6の吸引力を任意に制御することができるものである。 【0013】例えば、ジャケット部2内に80度Cの低
温蒸気を供給して、反応釜1を加熱する場合、エゼクタ
6の吸引力が、80度Cより僅かに低い温度における蒸
気の飽和圧力に相当する圧力の吸引力となるように、循
環流体の温度を調節することにより、所定の温度状態を
維持することができる。循環流体の温度を下げて、エゼ
クタ6の吸引圧力を低くすることにより、加熱蒸気温度
を更に低くすることもできる。 【0014】循環ポンプ11からの循環路14を分岐し
て余剰流体排出管15とバルブ16を取り付ける。バル
ブ16を開弁することによって、タンク10内の余剰流
体を系外に排出することができるものである。 【0015】循環路14を更に分岐して循環流体供給管
17をジャケット部2と接続する。循環流体供給管17
にはバルブ18を取り付ける。循環流体の一部の流体を
ジャケット部2へ供給することにより、反応釜1を蒸気
加熱に替えて冷却することもできるものである。 【0016】一方、ジャケット部2の右上部にはバルブ
19を介して冷却流体供給管20を接続する。この冷却
流体供給管20からジャケット部2へ冷却流体を供給す
ることによって、循環流体とは温度の異なる冷却を行う
ことができる。 【0017】反応釜1で熱交換を行う場合に、釜1内に
収容する被熱交換物の量が少量であっても、反応釜1底
部の容積が小さいために、被熱交換物は反応釜1の比較
的上部までを占めることによって、ジャケット部2との
接触面積が増えて、被熱交換物の全体が効率良く熱交換
される。 【0018】例えば反応釜1を加熱する場合は、バルブ
4を開弁して加熱用の蒸気をジャケット部2へ供給する
と共に、循環ポンプ11を駆動してエゼクタ6の吸引力
によってジャケット部2内を所定の圧力状態とすること
により、ジャケット部2内の所定温度の加熱用蒸気によ
って反応釜1は加熱される。反応釜1を加熱して熱を奪
われた蒸気は凝縮して復水となり、連通管5とスチーム
トラップ7又はバイパスバルブ8からエゼクタ6に吸引
されタンク10に至る。 【0019】加熱に替えて反応釜1を冷却する場合は、
蒸気供給管3からの蒸気の供給を停止し、バルブ18を
開弁して循環ポンプ11から循環流体の一部をジャケッ
ト部2へ供給することによって、循環流体によって顕熱
冷却される。更に、エゼクタ6の吸引力によってジャケ
ット部2内が所定の低圧状態であると、供給された循環
流体が蒸発気化することによる潜熱冷却が行われて、反
応釜1内の被熱交換物は所定温度まで冷却される。反応
釜1を冷却することによって生じた気化蒸気及び気化し
なかった循環流体は、バルブ8を介してエゼクタ6に吸
引されタンク10に至る。 【0020】冷却流体供給管20からジャケット部2へ
冷却流体を供給することによって、循環流体とは温度の
異なった冷却を同様に実施することができる。 【0021】本実施例においては、反応釜1の外周にジ
ャケット部2を設けて、反応釜1内を間接的に熱交換す
る例を示したが、被熱交換物の種類によっては、反応釜
1内へ蒸気や冷却流体を供給して直接に熱交換すること
もできる。 【0022】 【発明の効果】本発明の熱交換容器では、容器を縦長形
状として、容器の下方へ行くに連れて径が小さくなるよ
うにしたことによって、小容量の被熱交換物であっても
容器内で所定の高さを維持して、容器側面からの熱交換
面積が大きくなり被熱交換物の全体を効率良く熱交換す
ることができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reaction vessel, a treatment tank, and the like for heat treatment used in petroleum / chemical plants, foods, pharmaceuticals, and various other factories. And a heat exchange container suitable for heat-treating a small-capacity heat exchange target. 2. Description of the Related Art As a conventional heat exchange vessel, for example, the one disclosed in Japanese Utility Model Laid-Open Publication No. 4-87736 has been used. This is to provide a glass lining layer having a different thermal conductivity on the inner periphery of the reactor to prevent uneven heating of the reactant inside the reactor. [0003] In the conventional heat exchange container described above, there is a problem that when the amount of the reactant contained in the kettle is small, the entire reactant cannot be efficiently heat-exchanged. When the amount of the reactant is small, the reactant accumulates in the lower part of the reactor, the height of the reactant in the reactor becomes low, and the area receiving heat from the side wall of the reactor becomes small, so that the heat is efficiently heated. It cannot be exchanged. [0004] Conversely, when there are a large amount of reactants, the height of the reactants in the kettle also increases, and the area receiving heat from the side wall of the reactor increases, so that heat exchange can be performed relatively efficiently. [0005] It is an object of the present invention to provide a heat exchange vessel which can efficiently exchange heat with the entire heat exchanged object even when the heat exchanged amount is small. Means taken to solve the above-mentioned problem is to supply a heating or cooling fluid to a substantially cylindrical container containing a heat-exchanged material therein, and In the case of directly or indirectly exchanging heat with the exchanged material, the container has a vertically long shape, and the diameter decreases toward the bottom of the container. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The heat exchange container has a vertically long shape and the diameter decreases toward the bottom of the container, so that the volume at the lower portion of the container is reduced.
Even if the heat exchange object has a small capacity, the predetermined height is maintained in the container, the heat exchange area from the container side surface is increased, and almost the entire heat exchange object can be efficiently exchanged. FIG. 1 shows an example in which a reaction vessel 1 is used as a heat exchange vessel as shown in FIG. The diameter of the reaction vessel 1 containing a heat exchange product (not shown) is reduced as it goes downward in an inverted conical shape. The jacket 2 is attached so as to cover almost the entire side surface of the reaction vessel 1. A heating fluid or a cooling fluid is supplied to the jacket portion 2 to indirectly exchange heat with the heat exchange target in the reactor 1. The portions not covered by the upper and lower jacket portions 2 of the reactor 1 are used as inlets and outlets for the heat exchange target, as well as stirring blades and temperature sensors (not shown) for stirring the internal heat exchange target. It will be a mounting opening. A steam supply pipe 3 for supplying steam as a heating fluid source is connected above the jacket portion 2. A valve 4 is attached to the steam supply pipe 3. On the other hand, it is connected to the ejector 6 through the communication pipe 5 below the jacket portion 2. A steam trap 7 which discharges only condensed steam condensed to the outlet side and does not discharge steam, and a bypass valve 8 thereof are attached to the communication pipe 5 in parallel. The lower end of the communication pipe 5 is connected to the suction chamber 9 of the ejector 6. The ejector 6, the tank 10, and the circulation pump 11
Are sequentially combined to form an ejector-type combination pump. A predetermined amount of a circulating fluid, usually normal-temperature water, is stored in the tank 10, and the water is circulated from the ejector 6 to the tank 10 by the circulation pump 11, and a suction force is generated in the suction chamber 9 by the suction action of the ejector 6. Then, the inside of the jacket portion 2 is maintained at a predetermined pressure state, that is, a positive pressure state above the atmospheric pressure or a negative pressure state below the atmospheric pressure. A circulating fluid supply pipe 12 is connected to the tank 10 via a valve 13. Since the suction force generated by the ejector 6 becomes a saturation pressure corresponding to the temperature of the fluid flowing down in the ejector 6, the fluid is replenished from the circulating fluid replenishing pipe 12 and the fluid temperature is appropriately adjusted, whereby the ejector 6 The suction force can be arbitrarily controlled. For example, when the reactor 1 is heated by supplying low-temperature steam of 80 ° C. into the jacket portion 2, the suction force of the ejector 6 is reduced to the saturated pressure of the steam at a temperature slightly lower than 80 ° C. A predetermined temperature state can be maintained by adjusting the temperature of the circulating fluid so that a suction force of a corresponding pressure is obtained. By lowering the temperature of the circulating fluid and lowering the suction pressure of the ejector 6, the temperature of the heated steam can be further lowered. The circulation path 14 from the circulation pump 11 is branched and a surplus fluid discharge pipe 15 and a valve 16 are attached. By opening the valve 16, the surplus fluid in the tank 10 can be discharged out of the system. The circulation path 14 is further branched, and the circulation fluid supply pipe 17 is connected to the jacket 2. Circulating fluid supply pipe 17
Is mounted with a valve 18. By supplying a part of the circulating fluid to the jacket 2, the reactor 1 can be cooled instead of steam heating. On the other hand, a cooling fluid supply pipe 20 is connected to the upper right portion of the jacket 2 via a valve 19. By supplying the cooling fluid from the cooling fluid supply pipe 20 to the jacket portion 2, cooling at a temperature different from that of the circulating fluid can be performed. When heat exchange is performed in the reaction vessel 1, even if the quantity of the heat exchanged substance accommodated in the reaction vessel 1 is small, the heat exchanged substance is not reacted because the volume at the bottom of the reaction vessel 1 is small. By occupying a relatively upper portion of the shuttle 1, the contact area with the jacket portion 2 is increased, and the entire heat exchange object is efficiently exchanged with heat. For example, when heating the reactor 1, the valve 4 is opened to supply heating steam to the jacket 2, and the circulating pump 11 is driven to draw the inside of the jacket 2 by the suction force of the ejector 6. Is brought into a predetermined pressure state, whereby the reactor 1 is heated by the heating steam at a predetermined temperature in the jacket portion 2. The steam deprived of heat by heating the reactor 1 is condensed and condensed, and is sucked by the ejector 6 from the communication pipe 5 and the steam trap 7 or the bypass valve 8 to reach the tank 10. When the reactor 1 is cooled instead of heating,
The supply of steam from the steam supply pipe 3 is stopped, the valve 18 is opened, and a part of the circulating fluid is supplied from the circulating pump 11 to the jacket portion 2, whereby the circulating fluid cools the sensible heat. Further, when the inside of the jacket portion 2 is at a predetermined low pressure state by the suction force of the ejector 6, latent heat cooling is performed by evaporating the supplied circulating fluid, and the heat exchange target in the reaction vessel 1 is cooled to a predetermined temperature. Cool to temperature. The vaporized vapor generated by cooling the reactor 1 and the circulating fluid not vaporized are sucked into the ejector 6 via the valve 8 and reach the tank 10. By supplying the cooling fluid from the cooling fluid supply pipe 20 to the jacket portion 2, cooling at a temperature different from that of the circulating fluid can be similarly performed. In this embodiment, an example has been shown in which the jacket portion 2 is provided on the outer periphery of the reaction vessel 1 to indirectly exchange heat inside the reaction vessel 1. It is also possible to supply steam or a cooling fluid into 1 and directly exchange heat. According to the heat exchange container of the present invention, the container has a vertically long shape, and the diameter is reduced toward the lower part of the container. Also, the predetermined height is maintained in the container, the heat exchange area from the container side surface is increased, and the entire heat exchanged object can be efficiently heat-exchanged.

【図面の簡単な説明】 【図1】本発明の熱交換容器の実施例を示す構成図。 【符号の説明】 1 反応釜 2 ジャケット部 3 蒸気供給管 6 エゼクタ 10 タンク 11 循環ポンプ 17 循環流体供給管 20 冷却流体供給管 [Brief description of the drawings] FIG. 1 is a configuration diagram showing an embodiment of a heat exchange container of the present invention. [Explanation of symbols] 1 reactor 2 Jacket part 3 Steam supply pipe 6 Ejector 10 tanks 11 Circulation pump 17 Circulating fluid supply pipe 20 Cooling fluid supply pipe

Claims (1)

【特許請求の範囲】 【請求項1】 内部に被熱交換物を収容する略円筒状容
器へ加熱又は冷却流体を供給して、被熱交換物を直接に
又は間接に熱交換するものにおいて、容器を縦長形状と
して、容器の下方へ行くに連れて径が小さくなることを
特徴とする熱交換容器。
Claims 1. A method of supplying a heating or cooling fluid to a substantially cylindrical container containing a heat exchange object therein to directly or indirectly exchange heat with the heat exchange object. A heat exchange container characterized in that the container has a vertically long shape, and the diameter decreases toward the bottom of the container.
JP2002069794A 2002-03-14 2002-03-14 Heat exchange vessel Pending JP2003265946A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002069794A JP2003265946A (en) 2002-03-14 2002-03-14 Heat exchange vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002069794A JP2003265946A (en) 2002-03-14 2002-03-14 Heat exchange vessel

Publications (1)

Publication Number Publication Date
JP2003265946A true JP2003265946A (en) 2003-09-24

Family

ID=29200535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002069794A Pending JP2003265946A (en) 2002-03-14 2002-03-14 Heat exchange vessel

Country Status (1)

Country Link
JP (1) JP2003265946A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008539291A (en) * 2005-04-29 2008-11-13 チバ ホールディング インコーポレーテッド Production of polymer in a conical reactor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008539291A (en) * 2005-04-29 2008-11-13 チバ ホールディング インコーポレーテッド Production of polymer in a conical reactor

Similar Documents

Publication Publication Date Title
JP4500444B2 (en) Temperature control method and temperature control apparatus
US5743034A (en) Household steam appliance having a scale-preventing device
JP2006258316A (en) Heating/cooling device
JP2003265947A (en) Heat exchange apparatus
JP2003265946A (en) Heat exchange vessel
CN205667838U (en) A kind of reactor with heating-cooling device
JP7299891B2 (en) Improved ampoule evaporator and vessel
JP2007330896A (en) Heating and cooling device
CN214141653U (en) Evaporation and condensation all-in-one machine
JPS6357719B2 (en)
JPH07163865A (en) Heating and cooling apparatus
CN209896182U (en) Solid oxide fuel cell system and water vapor generating device thereof
JP2009018274A (en) Heating/cooling apparatus
JP2006255503A (en) Heating/cooling apparatus
KR20130085223A (en) Portable heating apparatus
JP4451173B2 (en) Sealed heat exchanger
CN218784808U (en) Rapid heating reaction kettle
US2841217A (en) Absorbent regenerator and thermal recirculator and method of operating same
KR200141806Y1 (en) Cold and hot waterer
CN214141654U (en) Evaporation pot
JPH102631A (en) Evaporative cooling device
CN116789214A (en) Seawater desalination system utilizing waste heat of underwater server
CN210195864U (en) Expansion kettle
KR101870762B1 (en) Cooling and heating water mat using heat pipe principles
JP6344868B2 (en) Hydrogen water generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20041217

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20070914

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070925

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080212