JP2003264102A - Ceramic resistor and its manufacturing method - Google Patents

Ceramic resistor and its manufacturing method

Info

Publication number
JP2003264102A
JP2003264102A JP2003058318A JP2003058318A JP2003264102A JP 2003264102 A JP2003264102 A JP 2003264102A JP 2003058318 A JP2003058318 A JP 2003058318A JP 2003058318 A JP2003058318 A JP 2003058318A JP 2003264102 A JP2003264102 A JP 2003264102A
Authority
JP
Japan
Prior art keywords
resistor
ceramic
compound
mixing
ceramic resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003058318A
Other languages
Japanese (ja)
Other versions
JP2003264102A5 (en
Inventor
茂樹 ▼高▲谷
Shigeki Takatani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
K Tech Devices Corp
Original Assignee
K Tech Devices Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by K Tech Devices Corp filed Critical K Tech Devices Corp
Priority to JP2003058318A priority Critical patent/JP2003264102A/en
Publication of JP2003264102A publication Critical patent/JP2003264102A/en
Publication of JP2003264102A5 publication Critical patent/JP2003264102A5/ja
Pending legal-status Critical Current

Links

Landscapes

  • Apparatuses And Processes For Manufacturing Resistors (AREA)
  • Non-Adjustable Resistors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress resistance variations of a ceramic resistor that uses a resistor made of a chemical compound or a complex compound obtained by using metals of more than four kinds and/or a half metal simple substrate as the starting material and mixing and molding then sintering them. <P>SOLUTION: The mixing is carried out by using a first stirring blade (2) to make the starting material flow all around inside a mixer (1), and a second stirring blade (3) to release the starting material adhering inside the mixer (1). <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、セラミックを抵抗
体材料とするセラミック抵抗器及びその製造法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ceramic resistor using ceramic as a resistor material and a method for manufacturing the same.

【0002】[0002]

【従来の技術】Mg及びSiを含んだ4種類以上の金属
元素及び/又は半金属元素の化合物及び/又は複合化合
物からなるセラミックを抵抗体材料とするセラミック抵
抗器は、特開平2−272701号公報、特開平6−1
04102号公報にその開示がある。
2. Description of the Related Art A ceramic resistor using a ceramic made of a compound and / or a composite compound of four or more kinds of metal elements and / or metalloid elements containing Mg and Si as a resistor material is disclosed in Japanese Patent Application Laid-Open No. 2-272701. Japanese Patent Laid-Open No. 6-1
The disclosure is disclosed in Japanese Patent No. 04102.

【0003】この種のセラミック抵抗器は、高圧パルス
や大電力サージに対して耐久性があり、また主要な構成
材料がセラミックであることから、高温での使用に耐え
得るなど、他の抵抗器にはない利点を有している。
This type of ceramic resistor is durable against high-voltage pulses and high-power surges, and since its main constituent material is ceramic, it can withstand use at high temperatures. Has advantages not found in

【0004】[0004]

【発明が解決しようとする課題】上記公報に記載されて
いる製法では、4種類以上の出発原料(それぞれが異な
る元素の化合物)をボールミルで20時間混合する工程
がある。ここで仮に十分な混合がなされていれば、その
出発原料から量産により得られる同一規格の抵抗器の抵
抗値のばらつきは小さく抑えることができる筈である。
しかしながら前記抵抗値のばらつきを抑えるには、ボー
ルミルによる混合では不十分である。
In the production method described in the above publication, there is a step of mixing four or more kinds of starting materials (compounds of different elements) with a ball mill for 20 hours. If sufficient mixing is made here, it should be possible to suppress variations in resistance values of resistors of the same standard obtained by mass production from the starting materials.
However, in order to suppress the variation in the resistance value, mixing with a ball mill is not sufficient.

【0005】そこで本発明が解決しようとする課題は、
4種類以上の金属元素及び/又は半金属元素の化合物及
び/又は複合化合物からなるセラミックを抵抗体材料と
するセラミック抵抗器において、抵抗値のばらつきを抑
えることである。
The problem to be solved by the present invention is as follows.
In a ceramic resistor using a ceramic made of a compound and / or a composite compound of four or more kinds of metal elements and / or metalloid elements as a resistor material, it is to suppress variations in resistance value.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するた
め、本発明の、セラミックを抵抗体材料とするセラミッ
ク抵抗器の製造法は、4種類以上の金属及び/又は半金
属(Si等。但し以下、本明細書ではSiを便宜上金属
として扱う。)の単体、化合物又は複合化合物を出発原
料とし、当該出発原料を混合し、その後成形、焼成の過
程を経るセラミック抵抗器の製造法であって、前記混合
の過程が、前記出発原料を混合容器1内全体に亘り流動
させる手段と、前記混合容器1内の前記出発原料の凝集
を解く手段とによることを特徴とする。
In order to solve the above-mentioned problems, a method of manufacturing a ceramic resistor using ceramic as a resistor material according to the present invention includes four or more kinds of metals and / or semi-metals (such as Si. Hereinafter, in the present specification, Si is treated as a metal for convenience.) A simple substance, a compound or a composite compound is used as a starting material, the starting materials are mixed, and thereafter, a molding and firing process is performed. The mixing step is characterized by means for flowing the starting raw material throughout the mixing container 1 and means for deaggregating the starting raw material in the mixing container 1.

【0007】4種類以上の金属元素及び/又は半金属元
素の化合物及び/又は複合化合物からなるセラミックを
製造するに際しては、複数の出発原料を要するのが一般
的である。通常出発原料は粉体であり、それらを混合、
成形、焼成してセラミックが製造される。そこで4種類
以上の金属元素及び/又は半金属元素の化合物及び/又
は複合化合物からなるセラミックを製造するに際し、上
記混合の過程は重要な要因となる。その理由は、ある特
定の元素(出発原料)が凝集したままその後の成形、焼
成工程に供すると、目的とするセラミックの機能が得ら
れにくいためである。このようにセラミックを抵抗体材
料とするセラミック抵抗器等、セラミックの電気的特性
を利用する場合、前記過程は特に重要である。
In producing a ceramic composed of a compound and / or composite compound of four or more kinds of metal elements and / or metalloid elements, it is common to require a plurality of starting materials. Usually the starting materials are powders and they are mixed,
A ceramic is manufactured by molding and firing. Therefore, the process of mixing is an important factor in producing a ceramic composed of a compound and / or a composite compound of four or more kinds of metal elements and / or metalloid elements. The reason is that if a specific element (starting material) is agglomerated and subjected to the subsequent molding and firing steps, it is difficult to obtain the desired ceramic function. The above process is particularly important when utilizing the electrical characteristics of ceramics, such as ceramic resistors using ceramics as the resistor material.

【0008】従来のボールミルによる混合では、上記凝
集を解く効果が得られにくいと考えられる。その理由
は、(1)乾式混合の場合、凝集を誘発する静電気が発
生しやすい、(2)一旦混合容器内壁やボールミルに使
用されるセラミック製等のボールに強固に付着し、そこ
で特定の出発原料が凝集すると、その凝集を解くことが
容易ではない。これら(1)(2)の2つの理由がある
と考えられる。
It is considered that it is difficult to obtain the effect of releasing the agglomeration by mixing with a conventional ball mill. The reason is that (1) in the case of dry mixing, static electricity that induces agglomeration is likely to be generated, (2) once adhered firmly to the inner wall of the mixing container or a ball made of ceramic or the like used in a ball mill, and then there is a specific start. When the raw materials aggregate, it is not easy to break the aggregation. It is considered that there are two reasons (1) and (2).

【0009】そこで本発明に係る混合の過程は、出発原
料を混合容器1内全体に亘り流動させる手段と、混合容
器1内で前記出発原料の凝集を解く手段とによることを
特徴としている。出発原料を混合容器1内全体に亘り流
動させる手段とは、例えば図1に示す第1の攪拌羽根2
を比較的ゆっくり回転(1〜30rpm)させながら公
転(20〜50rpm)させる手段である。前記公転と
は、前記回転方向面に沿って回転軸を移動させることで
ある。
Therefore, the mixing process according to the present invention is characterized by means for flowing the starting materials throughout the mixing container 1 and means for releasing the agglomeration of the starting materials in the mixing container 1. The means for causing the starting material to flow throughout the mixing container 1 is, for example, the first stirring blade 2 shown in FIG.
Is a means for revolving (20 to 50 rpm) while relatively slowly rotating (1 to 30 rpm). The revolution is to move the rotation axis along the rotation direction surface.

【0010】また混合容器1内で前記出発原料の凝集を
解く手段とは、例えば図1に示す第2の攪拌羽根3を高
速回転(2000〜6000rpm)し、局部的に攪拌
させる手段である。また混合に要する時間も、その他の
各条件(回転・公転速度、被混合物の粘度等)により変
動するが、概ね10〜30分を要する。もっともそれ以
上の混合時間を費やしても構わないことは言うまでもな
い。
The means for releasing the agglomeration of the starting material in the mixing container 1 is, for example, means for locally stirring the second stirring blade 3 shown in FIG. 1 by rotating it at a high speed (2000 to 6000 rpm). The time required for mixing also varies depending on other conditions (rotation / revolution speed, viscosity of the material to be mixed, etc.), but it generally takes 10 to 30 minutes. Needless to say, it is acceptable to spend more mixing time.

【0011】上記出発原料を混合容器1内全体に亘り流
動させる手段により、まず大まかに容器内の出発原料の
分布を均一にする。また、それとともに凝集した特定出
発原料を順次後述する凝集を解く手段へと運ぶ。当該手
段は出発原料の凝集を解く機能は、あってもよいが求め
ない。次に上記混合容器1内の前記出発原料の凝集を解
く手段により、凝集した出発原料に衝撃を与える等して
分散させる。これら2つの手段の併用により、出発原料
の凝集を解消しながら混合容器1内全体に亘る出発原料
の均一な分布を実現できる。つまり非常に均一な混合状
態を実現できる。
First, the distribution of the starting material in the container is roughly made uniform by means of causing the starting material to flow throughout the mixing container 1. Further, along with it, the specific starting material that has aggregated is sequentially carried to a means for deagglomerating, which will be described later. The means may, but need not, have the function of deaggregating the starting material. Next, the aggregated starting materials in the mixing container 1 are dispersed by giving a shock to the aggregated starting materials by means of deagglomerating the starting materials. By using these two means together, it is possible to realize uniform distribution of the starting material throughout the mixing container 1 while eliminating the agglomeration of the starting material. That is, a very uniform mixed state can be realized.

【0012】このようにして得られた非常に均一な混合
状態の出発原料を成形・焼成して得られるセラミック抵
抗体材料を大量に製造した場合、それらの抵抗値のばら
つきを抑えることができる。その考えられる理由を以下
に記す。
When a large amount of ceramic resistor material obtained by molding and firing the thus obtained starting material in a very uniform mixed state is manufactured, it is possible to suppress variations in their resistance values. The possible reasons for this are described below.

【0013】セラミック抵抗体の導電機構は、元素同士
の共有結合の不完全さによって生じる自由電子や正孔
(キャリア)の移動によるものといえる。この共有結合
の不完全さは、異なる価数の化合物を形成する元素化合
物間での共有結合がなされる際に生じる。したがって特
定出発原料(同種金属又は同種金属化合物)の凝集箇所
がそのまま焼成・焼結されると、当該箇所はほぼ共有結
合が完全で、キャリアの移動がなされにくく、導電阻害
箇所となりやすい。また一般に、自由電子は正孔に比し
て移動しやすい。従って自由電子の移動が容易な箇所が
数多く形成されれば導電促進箇所になり得る。また正孔
についても、その形成の仕方によっては移動のし易さが
異なる。これら全ての要因を考慮すると、セラミック抵
抗体材料の抵抗値のばらつき抑制は、上記非常に均一な
混合状態が得られなければかなり困難であることが理解
できると思われる。
It can be said that the conduction mechanism of the ceramic resistor is due to movement of free electrons and holes (carriers) caused by imperfect covalent bonding between elements. This imperfection of covalent bond occurs when a covalent bond is formed between elemental compounds forming compounds having different valences. Therefore, if the agglomerated portion of the specific starting material (the same metal or the same metal compound) is directly fired and sintered, the covalent bond is almost complete at the portion, carrier migration is difficult to occur, and the portion is likely to become a conduction inhibition portion. In general, free electrons are easier to move than holes. Therefore, if a large number of places where free electrons can easily move are formed, they can become conduction promoting places. Also, the holes are easily moved depending on how they are formed. Considering all these factors, it can be understood that it is quite difficult to suppress the variation in the resistance value of the ceramic resistor material unless the above-mentioned very uniform mixed state is obtained.

【0014】本発明者は、上記均一な混合状態と、セラ
ミック抵抗体の抵抗温度特性との間に、ある程度の相関
関係があることを見出した。ここでいう抵抗温度特性
(TCR)とは、JIS C 5202 5.2.3に
準じた、周囲温度25℃及び125℃において抵抗値測
定される際の単位温度変化あたりの抵抗値変化量(単
位:ppm/℃)である。ここで上記均一な混合状態が
得られた場合は、従来に比して抵抗温度特性値が高くな
る(ここで、抵抗温度特性値が正の値に向かうことを
「高くなる」と表現する。)のである(図4)。
The present inventor has found that there is a certain degree of correlation between the uniform mixed state and the resistance temperature characteristic of the ceramic resistor. The resistance temperature characteristic (TCR) referred to here is the amount of change in resistance value per unit temperature change (unit: unit) when measuring resistance values at ambient temperatures of 25 ° C. and 125 ° C. according to JIS C 5202 5.2.3. : Ppm / ° C.). Here, when the above-mentioned uniform mixed state is obtained, the resistance temperature characteristic value becomes higher than that in the conventional case (here, the resistance temperature characteristic value moving toward a positive value is expressed as “becomes higher”). )) (Fig. 4).

【0015】4種類以上の金属元素及び/又は半金属元
素の化合物及び/又は複合化合物からなるセラミックを
抵抗体材料とするセラミック抵抗器において、抵抗値の
ばらつきを抑えることができる程度にまで上記均一な混
合状態が得られる抵抗温度特性値は、抵抗体材料の比抵
抗値が1kΩcm以下である場合、−1150ppm/
℃以上であり、抵抗体材料の比抵抗値が1kΩcm〜8
kΩcmである場合、−1300ppm/℃以上であ
り、抵抗体材料の比抵抗値が8kΩcm〜30kΩcm
である場合、−1450ppm/℃以上であり、抵抗体
材料の比抵抗値が30kΩcm〜70kΩcmである場
合、−1530ppm/℃以上であり、抵抗体材料の比
抵抗値が70kΩcm以上である場合、−1620pp
m/℃以上である。これら抵抗温度特性値は、上記均一
な混合状態が得られたかどうかの一つの指標となる。
In a ceramic resistor using a ceramic made of a compound and / or a composite compound of four or more kinds of metal elements and / or semi-metal elements as the resistor material, the above-mentioned uniformity can be achieved to the extent that the variation of the resistance value can be suppressed. The resistance-temperature characteristic value at which various mixed states are obtained is -1150 ppm / when the specific resistance value of the resistor material is 1 kΩcm or less.
℃ or more, the specific resistance value of the resistor material is 1 kΩcm to 8
When it is kΩcm, it is −1300 ppm / ° C. or higher, and the specific resistance value of the resistor material is 8 kΩcm to 30 kΩcm.
Is −1450 ppm / ° C. or higher, the specific resistance value of the resistor material is 30 kΩcm to 70 kΩcm, −1530 ppm / ° C. or higher, and the specific resistance value of the resistor material is 70 kΩcm or higher, − 1620pp
m / ° C or higher. These resistance temperature characteristic values serve as an index of whether or not the above-mentioned uniform mixed state is obtained.

【0016】つまり上記比抵抗値と抵抗温度特性値との
関係を満足することにより、4種類以上の金属元素及び
/又は半金属元素の化合物及び/又は複合化合物からな
るセラミックを抵抗体材料とするセラミック抵抗器にお
いて、抵抗値のばらつきを抑えることができる。
That is, by satisfying the relationship between the specific resistance value and the resistance temperature characteristic value, a ceramic made of a compound and / or a composite compound of four or more kinds of metal elements and / or metalloid elements is used as the resistor material. In the ceramic resistor, it is possible to suppress variations in resistance value.

【0017】前記抵抗体材料は、例えばMg及びSiが
含まれるものである。これら元素はいずれも入手が容易
な上、一般にこれらと他の金属元素及び/又は半金属元
素の化合物及び/又は複合化合物は、広範囲の比抵抗値
の抵抗体材料を作製し得る利点がある。
The resistor material contains, for example, Mg and Si. All of these elements are easily available, and in general, compounds and / or composite compounds of these elements and other metal elements and / or metalloid elements have an advantage that resistor materials having a wide range of specific resistance values can be produced.

【0018】また、Mg及びSiを必須とし、他の2種
類以上の金属元素及び/又は半金属元素の化合物や複合
化合物を抵抗体材料とする場合の当該金属元素は、例え
ばCa,Zn,Sr,Cd,Baから選ばれる少なくと
も1種(第1グループ)と、Sn,Al,Sb,Ga,
Pb,Cr,Mn,Geから選ばれる少なくとも1種
(第2グループ)と、Bi,Nb,Ta,V,W,Mo
から選ばれる少なくとも1種(第3グループ)との元素
が挙げられる。これら金属、半金属元素以外に不純物程
度の元素やその化合物及び/又はその他元素との複合化
合物が含まれている場合でも、それらが抵抗温度特性や
抵抗値ばらつき抑制の効果に大きな影響を与えない程度
の量であれば、それを用いたセラミック抵抗器は本発明
の範囲内である。
Further, when Mg and Si are indispensable and a compound or complex compound of other two or more kinds of metal elements and / or metalloid elements is used as the resistor material, the metal elements are, for example, Ca, Zn, Sr. , Cd, Ba, at least one kind (first group), Sn, Al, Sb, Ga,
At least one type (second group) selected from Pb, Cr, Mn, and Ge, and Bi, Nb, Ta, V, W, and Mo.
And at least one element (third group) selected from the above. In addition to these metals and metalloid elements, even when an impurity level element or a compound thereof and / or a complex compound with other elements is contained, they do not significantly affect the resistance temperature characteristics and the effect of suppressing resistance value variation. To the extent that they are present, ceramic resistors using them are within the scope of the invention.

【0019】上記第1グループは、アルカリ土類金属の
グループである。この中でCdは環境調和性の点でその
使用が問題視されている。また入手の容易さも考慮する
と、Ca,Zn,Baから選ばれる1種以上が特に好適
に使用できると考えられる。
The first group is a group of alkaline earth metals. Among them, the use of Cd is regarded as a problem from the viewpoint of environmental compatibility. Considering the availability, it is considered that one or more selected from Ca, Zn and Ba can be used particularly preferably.

【0020】また上記第2グループは、両性金属元素の
グループである。この中でPbは環境調和性の点でその
使用が問題視されている。また入手の容易さも考慮する
と、Sn,Al,Sb,Mnから選ばれる1種以上が特
に好適であると考えられる。
The second group is a group of amphoteric metal elements. Among them, the use of Pb is regarded as a problem in terms of environmental compatibility. Considering the availability, one or more selected from Sn, Al, Sb, and Mn are considered to be particularly suitable.

【0021】また上記第3グループは、三価又は五価の
化合物を形成し得る元素のグループである。入手のし易
さを考慮すると、Bi,V,Wから選ばれる1種以上が
特に好適であると考えられる。これら第1〜3のグルー
プ及びMg及びSiの化合物及び/又は複合化合物から
なるセラミックを抵抗体材料とすることにより、高圧パ
ルスや大電力サージに対して耐久性があり、広い比抵抗
値範囲の抵抗体を有するセラミック抵抗器を得ることが
できる。
The third group is a group of elements capable of forming a trivalent or pentavalent compound. Considering availability, it is considered that one or more selected from Bi, V, and W are particularly suitable. By using a ceramic made of these first to third groups and a compound and / or composite compound of Mg and Si as a resistor material, it has durability against a high voltage pulse and a large power surge, and has a wide specific resistance value range. A ceramic resistor having a resistor can be obtained.

【0022】[0022]

【発明の実施の形態】以下に本発明における実施形態の
一例を説明する。 (サンプルAの作製)MgO,SiO及びMgとSi
との複合化合物の混合物(i)と、CaCO (ii)
と、BaCO(iii)と、Snと(iv)、
Sb(v)を準備する。これらの重量配合比を
(i):(ii):(iii):(iv):(v)=1
4:78:1:2:4とし、これら金属化合物群を10
0重量部とした場合、それにCMC(カルボキシメチル
セルロース)及び水、エチレングリコールをそれぞれ1
重量部、21重量部、2重量部加え、これら出発原料群
を図1に示す混合容器1に入れる。その後混合容器1内
を減圧状態とし、その状態で第1の攪拌羽根2を2〜3
rpmで回転、40rpmで公転させ、混合容器1内全
体に亘り出発原料群を流動させた。また同時に第2の攪
拌羽根3を6000rpmで高速回転させ、前記出発原
料群を混合して出発原料群の凝集を解く。なお、第1の
攪拌羽根2の回転状態での最大径はφ240mm、第2
の攪拌羽根3の回転状態での最大径はφ40mm、公転
の径をφ60mmとした。ここで前記減圧の程度は、混
合されるペースト状の出発原料群から脱泡可能な程度と
した。また混合時間は約20分とする。これで出発原料
が、脱泡された粘土状となる。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below.
An example will be described. (Production of Sample A) MgO, SiOTwoAnd Mg and Si
A complex compound mixture (i) with CaCO Three(Ii)
And BaCOThree(Iii) and SnTwoOThreeAnd (iv),
SbTwoOThreePrepare (v). These weight ratios
(I) :( ii) :( iii) :( iv) :( v) = 1
4: 78: 1: 2: 4, and these metal compound groups are 10
If it is 0 parts by weight, CMC (carboxymethyl
Cellulose), water, ethylene glycol 1 each
Parts by weight, 21 parts by weight, 2 parts by weight in addition to these starting material groups
Is placed in the mixing container 1 shown in FIG. Then in the mixing container 1
Under reduced pressure, and in that state, the first stirring blade 2
Rotate at rpm, revolve at 40 rpm, and mix all in mixing container 1.
The starting material group was fluidized throughout the body. At the same time, the second
The stirring blade 3 is rotated at 6000 rpm at a high speed to
The raw material groups are mixed to release the agglomeration of the starting material group. The first
The maximum diameter of the stirring blade 2 in the rotating state is φ240 mm, the second diameter
The maximum diameter of the stirring blade 3 in the rotating state is φ40 mm,
The diameter was 60 mm. Here, the degree of pressure reduction is
The extent to which defoaming is possible from the pasty starting material group to be combined
did. The mixing time is about 20 minutes. This is the starting material
However, it becomes a defoamed clay-like material.

【0023】混合工程終了後の上記ペースト状(粘土
状)の出発原料群を一定の円筒形状に成形し、自然乾燥
後、最大1380℃で2時間維持させる、合計16時間
の大気中での焼成に供した。するとCMC及び水分が完
全に飛散し、金属化合物の焼結体、つまりセラミックと
なった。このセラミックを抵抗体として円筒の両端に銀
ペーストを塗布、固定して本発明のセラミック抵抗器を
得た。
After the completion of the mixing step, the pasty (clay-like) starting material group is formed into a fixed cylindrical shape, naturally dried, and then kept at 1380 ° C. for 2 hours, followed by firing in the atmosphere for a total of 16 hours. I went to Then, CMC and water were completely scattered, and a sintered body of a metal compound, that is, a ceramic was formed. Using this ceramic as a resistor, silver paste was applied and fixed on both ends of the cylinder to obtain a ceramic resistor of the present invention.

【0024】(サンプルBの作製)MgO,SiO
びMgとSiとの複合化合物の混合物(i)と、CaC
(ii)と、BaCO(iii)と、SnO
(iv)、Sb(v)と、Bi(vi)を
準備する。これらの重量配合比を(i):(ii):
(iii):(iv):(v):(vi)=66:1
3:4:11:1:4とし、これら金属化合物群を10
0重量部とした場合、それにCMC(カルボキシメチル
セルロース)及び水をそれぞれ2重量部、28重量部加
え、これら出発原料群を図1に示す混合容器1に入れ
る。その後はサンプルAと全く同様の過程を経て本発明
のセラミック抵抗器を得た。
(Preparation of Sample B) MgO, SiOTwoOver
And a mixture (i) of a composite compound of Mg and Si, and CaC
O Three(Ii) and BaCOThree(Iii) and SnOTwoWhen
(Iv), SbTwoOThree(V) and BiTwoOThree(Vi)
prepare. The weight mixing ratio of these is (i) :( ii):
(Iii) :( iv) :( v) :( vi) = 66: 1
3: 4: 11: 1: 4, and these metal compound groups are 10
If it is 0 parts by weight, CMC (carboxymethyl
2 parts by weight and 28 parts by weight of water, respectively.
Put these starting material groups in the mixing container 1 shown in FIG.
It After that, the same process as in Sample A is performed and the present invention is performed.
I got a ceramic resistor.

【0025】(サンプルaの作製)金属化合物群を10
0重量部とした場合の水量を約100重量部とした以外
は出発原料群及びそれらの配合比をサンプルAと全く同
様とした。その後これらの原料を円筒型混合容器に入
れ、径が30mmのセラミックボールを多数混入し、い
わゆるボールミルにより混合した。混合時間は20時間
とした。また混合後には脱水乾燥し、金属化合物群を1
00重量部とした場合、それにCMC、水、及びエチレ
ングリコールをそれぞれ1重量部、21重量部、2重量
部加える。そして成形可能な程度の粘度とするため、金
属化合物群を水を含んだCMC等と絡め合わせる程度に
大気圧下で40〜60分混錬機により混錬し、次いでそ
れを減圧下で脱泡処理し、その後はサンプルAと全く同
様の成形・焼成等の過程を経てサンプルaのセラミック
抵抗器を得た。
(Preparation of Sample a) The metal compound group was set to 10
The starting raw material group and the mixing ratio thereof were exactly the same as those of Sample A except that the amount of water when the amount was 0 part by weight was about 100 parts by weight. After that, these raw materials were put into a cylindrical mixing vessel, a large number of ceramic balls having a diameter of 30 mm were mixed, and mixed by a so-called ball mill. The mixing time was 20 hours. Also, after mixing, dehydration and drying are performed, and the metal compound group is set to 1
When the amount is 00 parts by weight, 1 part by weight, 21 parts by weight and 2 parts by weight of CMC, water and ethylene glycol are added thereto. Then, in order to obtain a viscosity that allows molding, the metal compound group is kneaded by a kneader for 40 to 60 minutes under atmospheric pressure to the extent that it is entangled with CMC containing water, and then defoamed under reduced pressure. Then, the ceramic resistor of sample a was obtained through the same steps of molding and firing as sample A.

【0026】(サンプルbの作製)金属化合物群を10
0重量部とした場合の水量を約100重量部とした以外
は出発原料及びそれらの配合比をサンプルBと全く同様
とした。その後はサンプルaと全く同様の過程を経て、
サンプルbのセラミック抵抗器を得た。
(Preparation of Sample b) The metal compound group was set to 10
The starting materials and their compounding ratio were exactly the same as those of Sample B, except that the amount of water when the amount was 0 part by weight was about 100 parts by weight. After that, through the same process as the sample a,
A ceramic resistor of sample b was obtained.

【0027】(各サンプルの評価)サンプルA,B,
a,bについてそれぞれ抵抗値を測定した(n=10
0)。図2にサンプルA,aについて、図3にサンプル
B,bについてそれぞれ抵抗値ばらつきをヒストグラム
として示した。これらの図から明らかなように、本発明
のサンプルAは従来技術の製法によるサンプルaに比し
て、本発明のサンプルBは従来技術の製法によるサンプ
ルbに比して、飛躍的に抵抗値ばらつきが抑制されてい
ることがわかる。
(Evaluation of each sample) Samples A, B,
The resistance value was measured for each of a and b (n = 10
0). FIG. 2 shows a histogram of the resistance values of Samples A and a and FIG. 3 of Samples B and b as histograms. As is clear from these figures, the sample A of the present invention has a much higher resistance value than the sample a manufactured by the conventional method, and the sample B of the present invention has a significantly higher resistance value than the sample b manufactured by the conventional method. It can be seen that the variation is suppressed.

【0028】また本発明のサンプルA、Bは、上述した
ように混合に要した時間が約20分であるのに対し、従
来技術によるサンプルa、bは、上述したように混合に
費やした時間が20時間だった。このことから、本発明
により、大幅にセラミック抵抗器の製造に要する時間を
短縮できていることがわかる。
The samples A and B of the present invention required about 20 minutes for mixing as described above, while the samples a and b according to the prior art required time for mixing as described above. Was 20 hours. From this, it is understood that the present invention can significantly reduce the time required for manufacturing the ceramic resistor.

【0029】(その他のサンプルの作製)上記サンプル
Aの製法において、MgO,SiO及びMgとSiと
の複合化合物の混合物と、CaCOと、BaCO
と、Snと、Sbとの重量配合比を調整
して、比抵抗値が1.5Ωcm(サンプルAの製法にて
得られる)、10Ωcm、100Ωcm、1kΩcm、
の抵抗体を有するセラミック抵抗器を作製した。
(Preparation of Other Samples) In the preparation method of Sample A, a mixture of MgO, SiO 2 and a complex compound of Mg and Si, CaCO 3 and BaCO are prepared.
3 , Sn 2 O 3 , and Sb 2 O 3 were adjusted in weight ratio to obtain specific resistance values of 1.5 Ωcm (obtained by the manufacturing method of Sample A), 10 Ωcm, 100 Ωcm, 1 kΩcm,
A ceramic resistor having a resistor was manufactured.

【0030】また上記サンプルBの製法において、Mg
O,SiO及びMgとSiとの複合化合物の混合物
と、CaCOと、BaCOと、SnOと、Sb
と、Biとの重量配合比を調整して、比抵抗
値が8kΩcm、30kΩcm、70kΩcm、160
kΩcm(サンプルBの製法にて得られる)の抵抗体を
有するセラミック抵抗器を作製した。
In addition, in the manufacturing method of the sample B, Mg
O, SiO 2, and a mixture of Mg and Si complex compounds, CaCO 3 , BaCO 3 , SnO 2 , and Sb 2
And O 3, by adjusting the ratio by weight of Bi 2 O 3, specific resistance 8kΩcm, 30kΩcm, 70kΩcm, 160
A ceramic resistor having a resistor of kΩcm (obtained by the manufacturing method of Sample B) was manufactured.

【0031】また上記サンプルaの製法において、Mg
O,SiO及びMgとSiとの複合化合物の混合物
と、CaCOと、BaCOと、Snと、Sb
との重量配合比を調整して、比抵抗値が1.5Ω
cm(サンプルaの製法にて僅かに得られる)、10Ω
cm、100Ωcm、1kΩcm、の抵抗体を有するセ
ラミック抵抗器を作製した。
In addition, in the manufacturing method of the sample a, Mg
O, SiO 2, and a mixture of Mg and Si complex compounds, CaCO 3 , BaCO 3 , Sn 2 O 3 , and Sb.
The specific resistance value is 1.5Ω by adjusting the mixing ratio by weight with 2 O 3.
cm (slightly obtained by the manufacturing method of sample a), 10 Ω
A ceramic resistor having a cm, 100 Ωcm, and 1 kΩcm resistor was produced.

【0032】また上記サンプルbの製法において、Mg
O,SiO及びMgとSiとの複合化合物の混合物
と、CaCOと、BaCOと、SnOと、Sb
と、Biとの重量配合比を調整して、比抵抗
値が8kΩcm、30kΩcm、70kΩcm、160
kΩcm(サンプルbの製法にて僅かに得られる)の抵
抗体を有するセラミック抵抗器を作製した。
In addition, in the manufacturing method of the sample b, Mg
O, SiO 2, and a mixture of Mg and Si complex compounds, CaCO 3 , BaCO 3 , SnO 2 , and Sb 2
And O 3, by adjusting the ratio by weight of Bi 2 O 3, specific resistance 8kΩcm, 30kΩcm, 70kΩcm, 160
A ceramic resistor having a resistor of kΩcm (slightly obtained by the manufacturing method of sample b) was manufactured.

【0033】上記重量配合比の調整の指針を当業者が実
施できる程度に説明する。MgO,SiO及びMgと
Siとの複合化合物の混合物と、CaCOと、BaC
と、Biの総配合比を増やすと、抵抗体の比
抵抗値を上げ、その他の出発原料の総配合比を増やす
と、逆に抵抗体の比抵抗値を下げる作用がある。これら
の配合比を調整することにより、目的とする比抵抗値の
抵抗体を得ることができる。
The guideline for adjusting the above-mentioned weight blending ratio will be described to the extent that one skilled in the art can implement it. A mixture of MgO, SiO 2 and a complex compound of Mg and Si, CaCO 3 , and BaC
Increasing the total compounding ratio of O 3 and Bi 2 O 3 increases the specific resistance value of the resistor, and increasing the total compounding ratio of other starting materials has the effect of decreasing the specific resistance value of the resistor. . By adjusting the compounding ratio of these, it is possible to obtain a resistor having a target specific resistance value.

【0034】(その他サンプルの抵抗温度特性)作製し
た上記その他サンプルについて、それぞれ25℃〜12
5℃の抵抗温度特性(TCR)値を測定した。図4にそ
れらの測定結果を示す(n=10)。
(Resistance-Temperature Characteristics of Other Samples) Each of the above-mentioned other samples prepared was 25 ° C.
The resistance temperature characteristic (TCR) value at 5 ° C. was measured. FIG. 4 shows the measurement results (n = 10).

【0035】同じ比抵抗値のサンプルについて、本発明
に係る出発原料混合方法で作製した抵抗体と、従来の出
発原料混合方法で作製した抵抗体とを比較すると、本発
明に係る混合方法で作製した抵抗体が、従来の混合方法
で作製した抵抗体よりも、いずれも150〜300pp
m/℃高い値を示していることがわかる。
For the samples having the same specific resistance value, comparing the resistor produced by the starting material mixing method according to the present invention with the resistor produced by the conventional starting material mixing method, it was produced by the mixing method according to the present invention. The produced resistors are 150 to 300 pp more than the resistors produced by the conventional mixing method.
It can be seen that the value is higher by m / ° C.

【0036】図4から、本発明に係る混合方法で作製し
た抵抗体は、概ね以下の(1)〜(5)に示す比抵抗値
と抵抗温度特性との関係を有していることが明らかにな
った。 (1)抵抗体材料の比抵抗値が1kΩcm以下である場
合、−1150ppm/℃以上。 (2)抵抗体材料の比抵抗値が1kΩcm〜8kΩcm
である場合、−1300ppm/℃以上。 (3)抵抗体材料の比抵抗値が8kΩcm〜30kΩc
mである場合、−1450ppm/℃以上。 (4)抵抗体材料の比抵抗値が30kΩcm〜70kΩ
cmである場合、−1530ppm/℃以上。 (5)抵抗体材料の比抵抗値が70kΩcm以上である
場合、−1620ppm/℃以上。
From FIG. 4, it is clear that the resistor produced by the mixing method according to the present invention has a relationship between the specific resistance value and the resistance temperature characteristic, which are generally shown in (1) to (5) below. Became. (1) When the specific resistance value of the resistor material is 1 kΩcm or less, -1150 ppm / ° C or more. (2) The specific resistance value of the resistor material is 1 kΩcm to 8 kΩcm
If above, -1300 ppm / ° C or higher. (3) The specific resistance value of the resistor material is 8 kΩcm to 30 kΩc
When it is m, it is -1450 ppm / ° C or higher. (4) The specific resistance value of the resistor material is 30 kΩcm to 70 kΩ
When it is cm, it is -1530 ppm / ° C or higher. (5) -1620 ppm / ° C or higher when the specific resistance value of the resistor material is 70 kΩcm or higher.

【0037】(本発明の実施の形態についての補足説
明)本例では出発原料群として、MgO,SiO及び
MgとSiとの複合化合物の混合物と、CaCOと、
BaCOと、Snと、Sbとを所定配合
比で混合し、焼成して得られたセラミック抵抗体と、M
gO,SiO,MgとSiとの複合化合物の混合物
と、CaOと、BaOと、SnOと、Sbと、
Biとを所定配合比で混合し、焼成して得られた
セラミック抵抗体についてのみ示した。しかし、本例で
示した以外の、4以上の金属や半金属元素を含むセラミ
ック抵抗体を本発明のセラミック抵抗器の製造法により
製造したとしても、やはり抵抗値のばらつきを低減する
効果があると考えられる。
(Supplementary Explanation of Embodiments of the Present Invention) In this example, as a starting material group, MgO, SiO 2 and a mixture of a composite compound of Mg and Si, CaCO 3 , and
BaCO 3 , Sn 2 O 3 , and Sb 2 O 3 are mixed in a predetermined mixing ratio and fired to obtain a ceramic resistor, and M
gO, SiO 2 , a mixture of a composite compound of Mg and Si, CaO, BaO, SnO 2 , Sb 2 O 3 , and
Only the ceramic resistor obtained by mixing Bi 2 O 3 with a predetermined compounding ratio and firing the mixture is shown. However, even if a ceramic resistor containing four or more metals or metalloid elements other than those shown in this example is manufactured by the method for manufacturing a ceramic resistor of the present invention, the effect of reducing the variation in resistance value is still obtained. it is conceivable that.

【0038】4以上の金属や半金属元素を含むセラミッ
ク抵抗体の例としては、Mg及びSiと、Ca,Zn,
Sr,Cd,Baから選ばれる少なくとも1種と、S
n,Al,Sb,Ga,Pb,Cr,Mn,Geから選
ばれる少なくとも1種及びBi,Nb,Ta,V,W,
Moから選ばれる少なくとも1種の元素を主成分とする
化合物及び/又は複合化合物からなるセラミック抵抗体
である。
Examples of ceramic resistors containing four or more metals or metalloid elements are Mg and Si, Ca, Zn,
At least one selected from Sr, Cd and Ba, and S
at least one selected from n, Al, Sb, Ga, Pb, Cr, Mn, and Ge, and Bi, Nb, Ta, V, W,
It is a ceramic resistor made of a compound and / or a composite compound containing at least one element selected from Mo as a main component.

【0039】例えば前述したサンプルBにおいて、微量
のWOを出発原料に加えたり、Biに代えて微
量のWOを出発原料の一つにしてもよい。この場合、
WO の配合比を増加させると、製造される抵抗体の比
抵抗値は増加する。
For example, in the above-mentioned sample B, a trace amount
WOThreeIs added to the starting materials,TwoOThreeInstead of
Amount of WOThreeMay be one of the starting materials. in this case,
WO ThreeIf the compounding ratio of
The resistance value increases.

【0040】また本例では出発原料混合時に混合容器内
を減圧状態にした。本例における混合物は水とCMCを
含み、これらによりペースト状となっている。従って混
合時に泡を形成しやすい。前記減圧状態とした主目的は
脱泡である。しかし必ずしも混合時に脱泡させる必要は
なく、混合工程終了後に脱泡工程を設けても良いし、成
形装置に減圧機能を設けることで成形時に脱泡させるよ
うにしても良い。この脱泡工程を混合工程等と同時に進
行させるのは、製造時間短縮が可能となるため好ましい
と考えられる。
In this example, the pressure inside the mixing container was reduced when the starting materials were mixed. The mixture in this example contains water and CMC, and is made into a paste by these. Therefore, bubbles are easily formed during mixing. The main purpose of the reduced pressure is defoaming. However, it is not always necessary to perform defoaming at the time of mixing, and a defoaming step may be provided after the completion of the mixing step, or a depressurizing function may be provided in the molding apparatus so that defoaming may be performed at the time of molding. It is considered preferable to proceed this defoaming step at the same time as the mixing step or the like, because this makes it possible to shorten the manufacturing time.

【0041】また本例では、出発原料を混合容器内全体
に亘り流動させる手段に、比較的ゆっくりと回転、公転
する攪拌羽根(図1における第1の攪拌羽根2)を用い
たが、これに限定されない。例えば餅つきのように大き
いハンマーでペースト状の出発原料群を叩いたりひっく
り返したりすることを繰り返すことで出発原料を混合容
器内全体に亘り流動させてもよい。
In this example, a stirring blade (first stirring blade 2 in FIG. 1) that rotates and revolves relatively slowly was used as the means for flowing the starting material throughout the mixing container. Not limited. For example, the starting raw material may be flowed throughout the mixing container by repeatedly tapping or turning the pasty starting raw material group with a large hammer such as mochi.

【0042】また本例では、混合容器内の出発原料の凝
集を解く手段として、回転径が比較的小さく、高速回転
する攪拌羽根(図1における第2の攪拌羽根3)を用い
たが、これに限定されない。例えば混合容器内部又は外
部から出発原料に対し、超音波を与えることで混合容器
内で出発原料の凝集を解いてもよい。
In this example, a stirring blade (second stirring blade 3 in FIG. 1) having a relatively small rotation diameter and rotating at a high speed was used as a means for releasing the agglomeration of the starting materials in the mixing container. Not limited to. For example, the starting material may be agglomerated in the mixing container by applying ultrasonic waves to the starting material from inside or outside the mixing container.

【0043】また本例では抵抗材料の成形形状を円筒状
としたが、平板状とし、抵抗器自体もチップ形状とし
て、面実装用マウンターの扱いやすさを考慮した形状と
しても良い。
In this example, the resistance material is formed into a cylindrical shape, but the resistance material may be formed into a flat plate shape, and the resistor itself may be formed into a chip shape in consideration of the ease of handling the surface mounting mounter.

【0044】また本例では混合の過程後、成形前の出発
原料を粘土状としたが、フレーク状、即ち出発原料が多
数の片状となった状態としてもよい。これは水分を少な
めにして本発明に係る混合の過程を経ることにより得る
ことができると考えられる。このフレーク状とする利点
は、粘土状とした場合の後工程の成形の際の作業性の不
利な点、例えば成形装置への供給量の調整が困難なこ
と、その供給作業を円滑に進行させ、自動化を図ること
が困難となること等を回避できることであると考えられ
る。
In the present example, after the mixing process, the starting material before molding was in the form of clay, but it may be in the form of flakes, that is, the starting material is in the form of a large number of flakes. It is considered that this can be obtained by reducing the water content and going through the mixing process according to the present invention. The advantage of the flake shape is that it has a disadvantage of workability in the case of molding in the subsequent step when it is made of clay, for example, it is difficult to adjust the supply amount to the molding device, and the supply work is smoothly advanced. It is considered that it is possible to avoid difficulty in automation and the like.

【0045】また本例では混合の過程の初期から混合容
器内に水分を導入しているが、必ずしもその必要はな
い。例えば本例におけるサンプルA及びサンプルBの出
発原料では、むしろ混合の過程の初期(20分間程度)
には水分を混合容器内に導入しない方が個々の出発原料
の凝集を抑えられることが明らかとなった。この場合の
混合条件は、混合の過程の初期に第1の攪拌羽根2を2
〜3rpmで回転、40rpmで公転させ、また第2の
攪拌羽根3を6000rpmで高速回転させ、前記出発
原料群を混合させ、その後混合容器内に水分を、サンプ
ルA、サンプルB相当の量導入し、10分間この攪拌を
維持し、その後第2の攪拌羽根を停止し第1の攪拌羽根
のみで10分間攪拌する条件である。この条件では静電
気の発生による出発原料の凝集も観測されず(多少は発
生していた蓋然性はあるが無視できる程度だったものと
考えられる。)、一層良好な混合状態が得られていた。
ここでいう混合状態の良否は、焼成工程後のセラミック
抵抗体の切断断面の元素分析により確認した。サンプル
A、サンプルBでは、出発原料の内、CaCOとBa
COと、Sn酸化物が極僅か凝集しているのが確認さ
れたが、ここでいう水分を導入しない状態での混合工程
により、それらの凝集が殆ど観測されなくなった。
In this example, water is introduced into the mixing container from the beginning of the mixing process, but this is not always necessary. For example, in the starting materials of Sample A and Sample B in this example, rather in the beginning of the mixing process (about 20 minutes)
In addition, it was clarified that coagulation of individual starting materials can be suppressed by not introducing water into the mixing container. The mixing condition in this case is that the first stirring blade 2 is set to 2 at the beginning of the mixing process.
Rotating at ˜3 rpm, revolving at 40 rpm, and rotating the second stirring blade 3 at high speed at 6000 rpm to mix the starting material group, and then introduce water into the mixing container in an amount corresponding to sample A and sample B. The conditions are such that this stirring is maintained for 10 minutes, then the second stirring blade is stopped, and stirring is performed for 10 minutes only with the first stirring blade. Under these conditions, no agglomeration of the starting material due to the generation of static electricity was observed (it is possible that some were generated but it was considered to be negligible), and a better mixing state was obtained.
The quality of the mixed state here was confirmed by elemental analysis of the cut cross section of the ceramic resistor after the firing step. In sample A and sample B, CaCO 3 and Ba
It was confirmed that CO 3 and the Sn oxide were slightly aggregated, but the aggregation was hardly observed by the mixing step in which the water was not introduced here.

【0046】当該凝集が極僅か観測された場合と、殆ど
観測されない場合とでは、焼成工程後のセラミックに微
細な空隙が観測されるか否かの差異があった。前者では
微細な空隙が観測され、後者では当該空隙が全く観測さ
れなかった。この理由は明らかではないが、凝集部分と
他の部分との熱収縮率の違い等が何等かの関与している
ものと考えられる。このような差異の有無は、前述した
抵抗温度特性(図4)、及び抵抗値のばらつき(図2、
図3)には影響を与えなかった。凝集にかかる部分が量
的に極僅かだったことによると考えられる。但し極僅か
ではあっても空隙の存在は、セラミックからなる抵抗体
強度を低めることとなると考えられる。ところが強度試
験の結果にも差異はなかった。空隙の存在比率が極めて
低かったためと考えられる。これら差異が無いとして
も、抵抗器を提供する者及び使用する者の両者が安心し
て当該抵抗器を取扱うには、空隙の存在が無いことが好
ましいことは言うまでもない。
There was a difference in whether or not minute voids were observed in the ceramic after the firing step, depending on whether the agglomeration was observed in a very small amount or when it was hardly observed. Fine voids were observed in the former, and no voids were observed in the latter. The reason for this is not clear, but it is considered that the difference in the heat shrinkage ratio between the aggregated portion and the other portion is involved in some reason. Whether or not there is such a difference depends on the resistance-temperature characteristic (FIG. 4) and the variation in resistance value (FIG. 2,
3) was not affected. It is considered that the portion involved in aggregation was extremely small in quantity. However, it is considered that the presence of voids, even if it is extremely small, reduces the strength of the resistor made of ceramic. However, there was no difference in the results of the strength test. It is considered that the existence ratio of voids was extremely low. Even if these differences do not exist, it goes without saying that it is preferable that there is no air gap so that both the person who provides the resistor and the person who uses the resistor can handle the resistor with peace of mind.

【0047】また更に良好な混合状態、つまり特定の出
発原料の凝集の更なる低減は、サンプルA、サンプルB
においては、出発原料の内、BaCOの粒径を予め小
さくすることで実現できた。この理由も明らかではない
が、BaCOの粒径は他に比して僅かながら大きかっ
たことに起因すると考えられる。当該凝集が非常に極僅
か観測された場合と、全く観測されない場合とでは、焼
成工程後のセラミックに局部的且つ微細な変色部が観測
されるか否かの差異があった。前者では変色部が観測さ
れ、後者では当該変色部が全く観測されなかった。元素
分析により当該変色部が主としてBa化合物からなるこ
とが確認された。このような変色部の有無は、前述した
抵抗温度特性(図4)、及び抵抗値のばらつき(図2、
図3)には当然に影響を与えなかった。凝集にかかる部
分が量的に非常に極僅かだったことによると考えられ
る。
In addition, a better mixing state, that is, a further reduction in the agglomeration of the specific starting materials, can be obtained by using Sample A, Sample B
In the above, it was possible to realize by previously reducing the particle size of BaCO 3 among the starting materials. Although the reason for this is not clear, it is considered that the particle size of BaCO 3 is slightly larger than the others. There was a difference in whether or not a very small amount of discoloration was observed in the ceramic after the firing step, depending on whether the very small amount of aggregation was observed or not. In the former, the discolored part was observed, and in the latter, the discolored part was not observed at all. It was confirmed by elemental analysis that the discolored portion was mainly composed of a Ba compound. The presence / absence of such a discolored portion depends on the above-described resistance-temperature characteristic (FIG. 4) and resistance value variation (FIG. 2,
Naturally, it did not affect (Fig. 3). It is considered that the portion involved in aggregation was very small in quantity.

【0048】[0048]

【発明の効果】以上のように、本発明により、4種類以
上の金属元素及び/又は半金属元素の化合物及び/又は
複合化合物からなるセラミックを抵抗体材料とするセラ
ミック抵抗器において、抵抗値のばらつきを大幅に抑え
ることができた。また、本発明のセラミック抵抗器の製
造法により、従来に比して大幅に製造に要する時間を短
縮することができた。
As described above, according to the present invention, in a ceramic resistor using a ceramic made of a compound and / or a composite compound of four or more kinds of metal elements and / or metalloid elements as a resistance material, The variation was able to be suppressed significantly. In addition, the manufacturing method of the ceramic resistor of the present invention can significantly reduce the time required for manufacturing as compared with the conventional method.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る攪拌装置を示す図である。FIG. 1 is a diagram showing a stirring device according to the present invention.

【図2】本発明のセラミック抵抗器と、従来のセラミッ
ク抵抗器との抵抗値ばらつきを示した図である。
FIG. 2 is a diagram showing resistance value variations between the ceramic resistor of the present invention and a conventional ceramic resistor.

【図3】本発明のセラミック抵抗器と、従来のセラミッ
ク抵抗器との抵抗値ばらつきを示した図である。
FIG. 3 is a diagram showing variations in resistance values of the ceramic resistor of the present invention and a conventional ceramic resistor.

【図4】セラミック抵抗材料の比抵抗値と抵抗温度特性
(TCR)との関係を、従来の混合方法及び本発明に係
る混合方法によるものについて示した図である。
FIG. 4 is a diagram showing a relationship between a specific resistance value of a ceramic resistance material and a resistance temperature characteristic (TCR) by a conventional mixing method and a mixing method according to the present invention.

【符号の説明】[Explanation of symbols]

1.混合容器 2.第1の攪拌羽根 3.第2の攪拌羽根 1. Mixing container 2. First stirring blade 3. Second stirring blade

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】Pb及びCdを除く4種類以上の金属元素
及び/又は半金属元素の化合物及び/又は複合化合物か
らなるセラミックを抵抗体材料とするセラミック抵抗器
において、 当該抵抗体材料の比抵抗値が1kΩcm以下であって、 当該抵抗器が−1150ppm/℃以上の抵抗温度特性
を示すことを特徴とするセラミック抵抗器。
1. A ceramic resistor using a ceramic made of a compound and / or a composite compound of four or more kinds of metal elements and / or semi-metal elements excluding Pb and Cd as a resistor material, and the specific resistance of the resistor material. A ceramic resistor having a value of 1 kΩcm or less and having a resistance temperature characteristic of -1150 ppm / ° C or more.
【請求項2】Pb及びCdを除く4種類以上の金属元素
及び/又は半金属元素の化合物及び/又は複合化合物か
らなるセラミックを抵抗体材料とするセラミック抵抗器
において、 当該抵抗体材料の比抵抗値が1kΩcm〜8kΩcmで
あって、 当該抵抗器が−1300ppm/℃以上の抵抗温度特性
を示すことを特徴とするセラミック抵抗器。
2. A ceramic resistor using a ceramic made of a compound and / or a composite compound of four or more kinds of metal elements and / or semi-metal elements excluding Pb and Cd as a resistor material, and the specific resistance of the resistor material. A ceramic resistor having a value of 1 kΩcm to 8 kΩcm, and the resistor exhibits a resistance temperature characteristic of -1300 ppm / ° C or higher.
【請求項3】Pb及びCdを除く4種類以上の金属元素
及び/又は半金属元素の化合物及び/又は複合化合物か
らなるセラミックを抵抗体材料とするセラミック抵抗器
において、 当該抵抗体材料の比抵抗値が8kΩcm〜30kΩcm
であって、 当該抵抗器が−1450ppm/℃以上の抵抗温度特性
を示すことを特徴とするセラミック抵抗器。
3. A ceramic resistor having a ceramic made of a compound and / or a composite compound of four or more kinds of metal elements and / or metalloid elements excluding Pb and Cd as a resistor material, and the specific resistance of the resistor material. Value is 8 kΩcm to 30 kΩcm
A ceramic resistor, wherein the resistor exhibits a resistance temperature characteristic of -1450 ppm / ° C or higher.
【請求項4】Pb及びCdを除く4種類以上の金属元素
及び/又は半金属元素の化合物及び/又は複合化合物か
らなるセラミックを抵抗体材料とするセラミック抵抗器
において、 当該抵抗体材料の比抵抗値が30kΩcm〜70kΩc
mであって、 当該抵抗器が−1530ppm/℃以上の抵抗温度特性
を示すことを特徴とするセラミック抵抗器。
4. A ceramic resistor having a ceramic made of a compound and / or a composite compound of four or more kinds of metal elements and / or semi-metal elements excluding Pb and Cd as a resistor material, and the specific resistance of the resistor material. Value is 30kΩcm-70kΩc
m, the ceramic resistor having a resistance temperature characteristic of -1530 ppm / ° C. or higher.
【請求項5】Pb及びCdを除く4種類以上の金属元素
及び/又は半金属元素の化合物及び/又は複合化合物か
らなるセラミックを抵抗体材料とするセラミック抵抗器
において、 当該抵抗体材料の比抵抗値が70kΩcm以上であっ
て、 当該抵抗器が−1620ppm/℃以上の抵抗温度特性
を示すことを特徴とするセラミック抵抗器。
5. A ceramic resistor using a ceramic made of a compound and / or a composite compound of four or more kinds of metal elements and / or semi-metal elements excluding Pb and Cd as a resistor material, and the specific resistance of the resistor material. A ceramic resistor having a value of 70 kΩcm or more and having a resistance temperature characteristic of -1620 ppm / ° C or more.
【請求項6】抵抗体材料がMg及びSiを含む化合物及
び/又は複合化合物であることを特徴とする請求項1〜
5のいずれかに記載のセラミック抵抗器。
6. The resistor material is a compound containing Mg and Si and / or a composite compound.
5. The ceramic resistor according to any one of 5 above.
【請求項7】Mg及びSiと、Ca,Zn,Sr,Ba
から選ばれる少なくとも1種と、Sn,Al,Sb,G
a,Cr,Mn,Geから選ばれる少なくとも1種及び
Bi,Nb,Ta,V,W,Moから選ばれる少なくと
も1種の元素を主成分とする化合物及び/又は複合化合
物からなるセラミックを抵抗体材料とすることを特徴と
する請求項1〜5のいずれかに記載のセラミック抵抗
器。
7. Mg and Si, Ca, Zn, Sr, Ba
At least one selected from Sn, Al, Sb and G
Ceramics made of a compound and / or a composite compound containing at least one element selected from a, Cr, Mn and Ge and at least one element selected from Bi, Nb, Ta, V, W and Mo as a resistor. The ceramic resistor according to any one of claims 1 to 5, which is made of a material.
【請求項8】Pb及びCdを除く4種類以上の金属及び
/又は半金属の単体、化合物又は複合化合物を出発原料
とし、当該出発原料を混合し、その後成形、焼成して得
られるセラミックを抵抗体材料とするセラミック抵抗器
の製造法において、 前記混合の過程が、前記出発原料を混合容器内全体に亘
り流動させる手段と、前記混合容器内の前記出発原料の
凝集を解く手段とによることを特徴とするセラミック抵
抗器の製造法。
8. A ceramic obtained by using, as a starting material, a simple substance, a compound or a complex compound of four or more kinds of metals and / or semimetals excluding Pb and Cd, mixing the starting materials, and then molding and firing the mixture. In the method for manufacturing a ceramic resistor as a body material, the step of mixing depends on the means for causing the starting material to flow throughout the mixing container and the means for deaggregating the starting material in the mixing container. Characteristic ceramic resistor manufacturing method.
【請求項9】出発原料の凝集を解く手段が、高速回転羽
根であることを特徴とする請求項8記載のセラミック抵
抗器の製造法。
9. The method of manufacturing a ceramic resistor according to claim 8, wherein the means for deagglomerating the starting material is a high-speed rotating blade.
【請求項10】混合の過程を、混合容器内を減圧状態と
して実施することを特徴とする請求項8又は9記載のセ
ラミック抵抗器の製造法。
10. The method of manufacturing a ceramic resistor according to claim 8, wherein the mixing step is carried out under reduced pressure in the mixing container.
【請求項11】混合の過程の初期には混合容器内に水分
を導入せずに混合し、所定時間後には混合容器内へ水分
を導入して混合することを特徴とする請求項8〜10の
いずれかに記載のセラミック抵抗器の製造法。
11. The mixing is performed without introducing water into the mixing container in the initial stage of the mixing process, and the water is introduced into the mixing container after a predetermined time and mixing is performed. A method of manufacturing a ceramic resistor according to any one of 1.
【請求項12】混合の過程終了後、成形前の出発原料が
フレーク状又は粘土状であることを特徴とする請求項8
〜11のいずれかに記載のセラミック抵抗器の製造法。
12. The flaky or clay-like starting material after the completion of the mixing process and before molding.
12. The method for manufacturing a ceramic resistor according to any one of 1 to 11.
【請求項13】出発原料がMg及びSiと、Ca,Z
n,Sr,Baから選ばれる少なくとも1種と、Sn,
Al,Sb,Ga,Cr,Mn,Geから選ばれる少な
くとも1種及びBi,Nb,Ta,V,W,Moから選
ばれる少なくとも1種の元素を主成分とする化合物及び
/又は複合化合物からなることを特徴とする請求項8〜
12のいずれかに記載のセラミック抵抗器の製造法。
13. Starting materials are Mg and Si, and Ca and Z.
at least one selected from n, Sr, and Ba, Sn,
Consists of a compound and / or a composite compound containing at least one element selected from Al, Sb, Ga, Cr, Mn, and Ge and at least one element selected from Bi, Nb, Ta, V, W, and Mo as a main component. 9. The method according to claim 8, wherein
13. The method for manufacturing a ceramic resistor according to any one of 12.
JP2003058318A 2000-11-27 2003-03-05 Ceramic resistor and its manufacturing method Pending JP2003264102A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003058318A JP2003264102A (en) 2000-11-27 2003-03-05 Ceramic resistor and its manufacturing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000360197 2000-11-27
JP2000-360197 2000-11-27
JP2003058318A JP2003264102A (en) 2000-11-27 2003-03-05 Ceramic resistor and its manufacturing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002544732A Division JP3578275B2 (en) 2000-11-27 2001-11-07 Manufacturing method of ceramic resistors

Publications (2)

Publication Number Publication Date
JP2003264102A true JP2003264102A (en) 2003-09-19
JP2003264102A5 JP2003264102A5 (en) 2005-06-30

Family

ID=29217651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003058318A Pending JP2003264102A (en) 2000-11-27 2003-03-05 Ceramic resistor and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2003264102A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005317258A (en) * 2004-04-27 2005-11-10 Nippon Seiki Co Ltd Organic el panel and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005317258A (en) * 2004-04-27 2005-11-10 Nippon Seiki Co Ltd Organic el panel and its manufacturing method

Similar Documents

Publication Publication Date Title
JP3749620B2 (en) Method for controlling firing shrinkage of ceramic molded body
JP6049509B2 (en) Manufacturing method of ceramic heater, heater electrode and ceramic heater
CN101805178A (en) High-energy ball milling preparation method of barium titanate-based semiconductor ceramics
WO1996036058A1 (en) Lateral high-resistance additive for zinc oxide varistor, zinc oxide varistor produced using the same, and process for producing the varistor
JP2004155601A (en) Piezoelectric ceramic composition
JP2002037665A (en) Hollow ceramic powder for thermal spraying and method for producing the same
JP2006118032A (en) Flake copper powder provided with copper oxide coat layer, method for producing flake copper powder provided with copper oxide coat layer and conductive slurry comprising flake copper powder provided with copper oxide coat layer
JP3578275B2 (en) Manufacturing method of ceramic resistors
JP2003264102A (en) Ceramic resistor and its manufacturing method
CN114394819B (en) High-reliability chip NTC thermistor material and preparation method and application thereof
US3831269A (en) Method of making thin film thermistor
JPH11251108A (en) Thermistor element and its manufacture
JPH03167713A (en) Conductive paste burnable at low temperature and burning method thereof
CN1967734B (en) Laminated sheet-like variable resistor production method
JP4048634B2 (en) Method for manufacturing non-linear resistor
JPS6243956B2 (en)
JPH08119720A (en) Alumina ceramic and its production
JPH10152372A (en) Barium titanate-based semiconductor porcelain and its production
JPH10312908A (en) Side high-resistance agent for zinc oxide varistor and zinc oxide varistor provided therewith
JPH04287980A (en) Superconductive screen printing ink and manufacture of superconductive thick film using this ink
JP3111208B2 (en) Manufacturing method of lead-based composite perovskite ceramics
JPH09110520A (en) Ferrite sintered compact
JP2584237B2 (en) Manufacturing method of ceramic sintered body
JPH10335171A (en) Manufacture of ceramic slurry
JPH05258914A (en) Manufacture of voltage non-linear resistor

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041019

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060516

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060919