JP2003262512A - Method and device for predicting internal dimension of calcined body - Google Patents

Method and device for predicting internal dimension of calcined body

Info

Publication number
JP2003262512A
JP2003262512A JP2002065394A JP2002065394A JP2003262512A JP 2003262512 A JP2003262512 A JP 2003262512A JP 2002065394 A JP2002065394 A JP 2002065394A JP 2002065394 A JP2002065394 A JP 2002065394A JP 2003262512 A JP2003262512 A JP 2003262512A
Authority
JP
Japan
Prior art keywords
molded body
internal
density
sintering
dimension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002065394A
Other languages
Japanese (ja)
Inventor
Takashi Ikeda
隆史 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP2002065394A priority Critical patent/JP2003262512A/en
Publication of JP2003262512A publication Critical patent/JP2003262512A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an instrument and method for measuring the inside of a molded body by which the measurement of a product of a ceramic or metallic material requiring sintering can be performed by only performing final inspection and, when the dimension of the product becomes a nonstandardized one, the processing operation after sintering work can be prevented from becoming useless and the final yield can be prevented from become worse and, in addition, the occurrence of useless steps and materials can be prevented by discovering defects before a sintering step. <P>SOLUTION: In a method of predicting the internal dimension of a calcined body obtained by calcining a molded body of a ceramic material, metallic material, etc., requiring sintering, the internal dimension of the molded body and the fluctuation of the internal density of the molded body are measured and the internal dimension of the calcined body is predicted from the measured results. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、セラミックス、金
属等の成形体の測定方法に係り、特に微細な内部寸法と
密度を測定する方法による焼成体の内部寸法予測方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring a molded body of ceramics, metal or the like, and more particularly to a method for predicting an internal dimension of a fired body by a method of measuring a fine internal dimension and density.

【0002】[0002]

【従来の技術】従来、焼成を要するセラミックス、金属
製品について、その焼成体に高精度の寸法公差が規格値
とされているものに関しては、焼成体の寸法を測定する
ことでその寸法を保証していた。また、製品内部の寸法
が必要な部位に関しては、焼成体の一つを必要な部位ま
で研削などの加工で切り出して測定を実施し、ロットの
代表値としていた。もしくはX線CT装置やMR装置な
どによる断層画像を処理することによって寸法を測定し
ていた。
2. Description of the Related Art Conventionally, for ceramics and metal products that require firing, for those whose fired body has a standard tolerance of high precision, the dimensions are guaranteed by measuring the dimensions of the fired body. Was there. In addition, regarding the part where the internal dimension of the product is required, one of the fired bodies was cut to the necessary part by processing such as grinding and the measurement was carried out, and it was set as the representative value of the lot. Alternatively, the dimensions are measured by processing a tomographic image by an X-ray CT apparatus, an MR apparatus, or the like.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
焼成後の寸法を測定する方法だけでは、寸法が規格値を
外していた場合にはその焼成体を廃棄処分にする他無
く、材料、焼成工程などに無駄を発生させることがあっ
た。
However, in the conventional method of measuring the dimension after firing, if the dimension is out of the standard value, the fired body must be discarded and the material and firing process must be performed. There was a waste of time.

【0004】また、成形体の時に寸法を測定していても
密度分布の差違を原因とする焼成による収縮変形によっ
て、焼成体の寸法が成形体の時と大きく異なることもあ
り、成形体時では寸法規格値に入っていても焼成体では
外れてしまうということが存在していた。
In addition, even when the dimensions of the compact are measured, the dimensions of the compact may differ greatly from those of the compact due to shrinkage deformation due to firing due to the difference in density distribution. Even if it was within the dimensional specification value, there was a problem that it would come off in the fired body.

【0005】さらに、測定対象が成形体内部の微細穴の
場合などは測定自体が大変困難な作業となっていた。
Further, when the object to be measured is a fine hole inside the molded body, the measurement itself is a very difficult work.

【0006】本発明は、上記課題を解決するためになさ
れたもので、本発明の目的は、不良を焼結前に発見し無
駄な工程や材料を発生させない、成形体内部測定装置お
よび方法を提供することにある。
The present invention has been made to solve the above problems, and an object of the present invention is to provide an apparatus and method for measuring the inside of a molded body, which is capable of finding defects before sintering and not causing unnecessary steps and materials. To provide.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に請求項1は、前記焼結時に変形を起こす要因となる物
性として、成形体内部の密度分布が大きな要因の一つで
あるため、その測定することによって変形を予測し、成
形体内部の寸法測定値と合わせたデータと、密度のバラ
ツキと焼結による形状変化についての蓄積データとを比
較することによって焼成後の形状および寸法を詳細に予
測することが可能となるため焼結工程に進めるかの判断
をすることができ、無駄な工程や材料が発生することを
防ぐことできる。
In order to achieve the above object, the first aspect of the present invention is that the density distribution inside the compact is one of the major factors as a physical property that causes deformation during the sintering. The deformation is predicted by the measurement, and the shape and dimensions after firing are detailed by comparing the data combined with the dimension measurement value inside the molded body and the accumulated data on the variation in density and the shape change due to sintering. Therefore, it is possible to judge whether or not to proceed to the sintering step, and it is possible to prevent wasteful steps and materials from being generated.

【0008】請求項2は成形体から焼成体への焼結時に
変形を起こす要因となる物性を、X線CT画像を利用し
て成形体時に測定することで、焼成体の形状および寸法
を予測することが可能となるため、焼結工程に進めるか
の判断をすることができ、無駄な工程や材料が発生する
ことを防ぐことができる。
The second aspect of the present invention is to predict the shape and size of the fired body by measuring the physical properties that cause deformation during sintering from the green body to the fired body by using the X-ray CT image during the formation of the fired body. Therefore, it is possible to judge whether to proceed to the sintering step, and it is possible to prevent unnecessary steps and materials from being generated.

【0009】請求項3は、前記材料の密度算出法とし
て、X線CT画像の濃淡がX線の透過のしやすさを表す
のでその透過のしやすさはすなわち密度の大小を表すこ
とになるため、成形体の内部密度を測定することができ
るようになる。
According to a third aspect of the present invention, the density calculation method for the material is that the density of the X-ray CT image indicates the ease with which X-rays are transmitted, and thus the ease with which the X-rays can be transmitted represents the magnitude of the density. Therefore, it becomes possible to measure the internal density of the molded body.

【0010】請求項4は、前記成形体の内部寸法および
内部密度を該装置で測定し、事前に作成した密度分布と
変形量のデータベースを用いることにより、焼結後の焼
成体の形状および寸法を予測することが可能となる。
According to a fourth aspect of the present invention, the shape and size of the sintered body after sintering are measured by measuring the internal size and internal density of the molded body with the apparatus and using a database of density distribution and deformation amount created in advance. Can be predicted.

【0011】[0011]

【発明の実施の形態】本実施例では、図3のようなセラ
ミックスフェルールの製作を例にとって説明する。セラ
ミックフェルールの製品に関して規格によっては端面部
から数mmの位置の外径と内径の同心度に公差があった
り、内部における最大同心度に公差があるものが存在す
る。
BEST MODE FOR CARRYING OUT THE INVENTION In this embodiment, production of a ceramic ferrule as shown in FIG. 3 will be described as an example. Depending on the standard of ceramic ferrule products, there are tolerances in the concentricity of the outer and inner diameters at a position of a few mm from the end face, and there are tolerances in the maximum concentricity inside.

【0012】図4に外径に対する内径の同心度が変化す
る原因である内径の曲がりについての例を示す。その公
差に関して、最大でも同心度0.01mm程度であり、無
駄な成形体を焼結工程に進ませないためにも、成形体の
測定からの高精度な形状および寸法の予測が必要とな
る。焼成体の寸法を予測するために、成形体の内部寸法
のみの測定であると、図5のように成形体では外径に対
する内径の同心度が規格内に入っているが、焼結をして
みると密度のバラツキによる焼結収縮のバラツキで変形
が生じるような寸法変化を予測することができない。
FIG. 4 shows an example of the bending of the inner diameter which is the cause of the change in the concentricity of the inner diameter with respect to the outer diameter. Concerning the tolerance, the concentricity is about 0.01 mm at the maximum, and it is necessary to accurately predict the shape and size from the measurement of the molded body in order to prevent the wasteful molded body from proceeding to the sintering step. In order to predict the dimension of the fired body, if only the internal dimension of the molded body is measured, as shown in Fig. 5, the concentricity of the inner diameter with respect to the outer diameter is within the standard, but sintering is not performed. As a result, it is impossible to predict a dimensional change that causes deformation due to variations in sintering shrinkage due to variations in density.

【0013】そこで、今回は成形体の内部寸法と密度の
バラツキを測定すると事とした。寸法に関しては今回、
マイクロフォーカスX線CT装置による断層画像から算
出した。この方法における信頼性の確認として画像から
の寸法と実際の切り出しによる破壊測定を比較したとこ
ろ、3μm程度の誤差で測定することができた。
Therefore, this time, it was decided to measure the variations in the internal dimensions and density of the molded body. Regarding the dimensions this time,
It was calculated from a tomographic image by a microfocus X-ray CT apparatus. As a confirmation of the reliability in this method, when the dimensions from the image and the fracture measurement by actual cutting were compared, it was possible to measure with an error of about 3 μm.

【0014】また、密度に関してもその断層画像を利用
して分布などを求めた。その方法としては、まず密度の
異なり、値としても既知であり、成形体に近い密度の2
つのセラミックス製品を同装置、同条件で測定し、画像
として取り出す。そして、その画像の濃淡である階調と
セラミックスの密度を関連付ける。
With respect to the density, the distribution and the like were obtained using the tomographic image. As a method, first, the density is different, and the value is known, and the density of 2
Two ceramic products are measured with the same equipment and under the same conditions and taken out as an image. Then, the gradation, which is the shade of the image, is associated with the density of the ceramics.

【0015】ただし、この関係は被測定物の材質、測定
条件などによって決まるものであるため、任意に決める
ことができる。それから、実際の成形体を同じX線CT
装置、同じ条件にて測定し、画像として取り出しその画
像から密度を算出した。この寸法と密度のバラツキの測
定値および蓄積された密度分布と焼結後の形状変化量の
データを用いることにより、焼結後の形状、寸法を予測
することが可能となる。したがって、事前に今回の場合
は、同じセラミックス材料での多量のパターンで密度バ
ラツキを持たせた成形体において焼成後の形状変化量を
測定したデータを蓄積しておくことが必要である。この
方法として、故意に密度バラツキを持たせた成形体サン
プルをX線CT装置にて内部寸法と密度バラツキを測定
し、焼結後にもX線CT装置で内部寸法を測定すること
によって、成形体の内部寸法および密度バラツキと焼結
による形状変形量に関するデータベースを構築してい
く。上記のような方法を採用することによって、焼結後
に規定の寸法に入らないような成形体形状のものを焼結
工程に流すことが無くなり、無駄な作業などを発生する
ことが防ぐことができるようになった。
However, since this relationship is determined by the material of the object to be measured, measurement conditions, etc., it can be determined arbitrarily. Then, using the same X-ray CT for the actual compact
The measurement was conducted under the same conditions as the apparatus, and the image was taken out and the density was calculated from the image. It is possible to predict the shape and dimension after sintering by using the measured values of the variation in the dimension and density, the accumulated density distribution, and the data of the shape change amount after sintering. Therefore, in the case of this time, it is necessary to store in advance data of the amount of change in shape after firing in a molded body having the same ceramic material and having a large number of patterns with density variations. As this method, the internal dimension and the density variation of a molded body sample intentionally having a density variation are measured by an X-ray CT apparatus, and the internal dimension is measured by an X-ray CT apparatus even after sintering. We will build a database on the internal dimension and density variation of the and the amount of shape deformation due to sintering. By adopting the method as described above, it is possible to prevent wasteful work from being generated by eliminating the flow of a molded product having a shape that does not fall within the specified dimensions after sintering in the sintering process. It became so.

【0016】さらに、セラミックスの場合は焼結してい
ない成形体の状態であれば、再造粒することにより再度
成形させることができるため、原料の面でも無駄を防ぐ
ことができた。
Further, in the case of ceramics, if it is in the state of a non-sintered compact, it can be re-formed by re-granulating, so that waste of raw materials can be prevented.

【0017】[0017]

【発明の効果】本発明は上記構成により次の効果を発揮
する。
The present invention has the following effects due to the above configuration.

【0018】請求項1は、内部寸法と内部の密度バラツ
キを測定することにより、焼結後の形状および寸法を詳
細に予測することができるので、無駄に成形体を焼結さ
せたり、廃棄処分となって材料を廃棄することを無くす
ことができる。
According to the first aspect of the present invention, the shape and size after sintering can be predicted in detail by measuring the internal size and the internal density variation, so that the compact is wastefully sintered or discarded. Therefore, it is possible to eliminate the waste of the material.

【0019】請求項2は、X線CT装置で成形体の内部
画像を撮影することにより、非破壊で測定ができ、また
製品として規定の寸法内になるかを予測することができ
るので、無駄に成形体を焼結させたり、廃棄処分となっ
て材料を廃棄することも無くなり、測定した成形体で合
格品はそのまま焼成に進めることができる。
According to the second aspect of the present invention, by taking an internal image of the molded body with the X-ray CT apparatus, it is possible to perform nondestructive measurement, and it is possible to predict whether or not the size will be within a specified dimension as a product. There is no need to sinter the molded body or dispose of the material by discarding it, and the measured molded body that has passed can be directly subjected to firing.

【0020】請求項3は、X線CT画像の濃淡はX線の
透過のしやすさをあらわすので、すなわち透過度合いに
直接関係する密度をあらわすことになり、相対的に密度
のバラツキを測定することができる。密度既知の材質を
少なくとも2つ以上測定することにより、同材質のもの
の密度やそのバラツキも測定することができる。
According to the third aspect of the present invention, the light and shade of the X-ray CT image expresses the ease of transmitting X-rays, that is, the density directly related to the degree of transmission, and the relative density variation is measured. be able to. By measuring at least two materials having known densities, the density of the same material and its variation can be measured.

【0021】請求項4は、該装置により成形体の内部寸
法と密度を測定することにより、焼結後の形状および寸
法を詳細に予測することができるので、無駄に成形体を
焼結させたり、廃棄処分となって材料を廃棄することも
無くなり、測定した成形体で合格品はそのまま焼成に進
めることができる。
According to a fourth aspect of the present invention, since the shape and dimensions after sintering can be predicted in detail by measuring the internal dimensions and the density of the compact by the apparatus, the compact can be wastefully sintered. Also, there is no need to dispose of the material as it is disposed of, and it is possible to proceed to firing the acceptable molded product as it is with the measured molded body.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の予測方法の概念を示す図である。FIG. 1 is a diagram showing the concept of a prediction method of the present invention.

【図2】本発明の予測方法を製造工程に導入した場合の
工程を示す概略図である。
FIG. 2 is a schematic view showing a process when the prediction method of the present invention is introduced into a manufacturing process.

【図3】本発明の実施例のセラミックフェルール長手方
向に中心を通る断面図である。
FIG. 3 is a sectional view through the center of the ceramic ferrule in the longitudinal direction of the example of the present invention.

【図4】本発明の実施例であるセラミックフェルール内
径変位の例を示す図である。
FIG. 4 is a diagram showing an example of a ceramic ferrule inner diameter displacement which is an embodiment of the present invention.

【図5】本発明の実施例であるセラミックフェルールの
成形体と焼成体の変形を示す図である。
FIG. 5 is a diagram showing the deformation of the molded body and the fired body of the ceramic ferrule according to the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…セラミックスフェルール本体、 2…セラミックフェルール外径部、 3…セラミックフェルール内径部 1 ... Ceramic ferrule body, 2 ... Ceramic ferrule outer diameter part, 3 ... Ceramic ferrule inner diameter

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 セラミックスや金属などの焼結を要する
材料を成形した成形体を焼成して得られる焼成体内部寸
法の予測方法において、焼結前の前記成形体の内部寸法
を測定するとともに、焼結前の前記成形体の内部密度を
測定することを特徴とする焼成体内部寸法の予測方法。
1. In a method of predicting an internal dimension of a fired body obtained by firing a molded body formed by molding a material such as ceramics or metal that requires sintering, while measuring the internal dimension of the molded body before sintering, A method for predicting an internal dimension of a fired body, which comprises measuring an internal density of the molded body before sintering.
【請求項2】 前記内部寸法および密度の測定にX線C
Tを用いたことを特徴とする請求項1記載の焼成体内部
寸法の予測方法。
2. An X-ray C for measuring the internal dimensions and density.
The method for predicting the internal size of a fired body according to claim 1, wherein T is used.
【請求項3】 前記内部密度の測定は、該X線CT装置
により前記成形体内部の断面を撮像し、撮像された画像
の濃淡より内部密度を測定することを特徴とする請求項
1,2記載の焼成体内部寸法の予測方法。
3. The measurement of the internal density is performed by imaging the cross section of the inside of the molded body by the X-ray CT apparatus and measuring the internal density from the density of the captured image. The method for predicting the internal dimensions of the fired body described.
【請求項4】 材料を成形した成形体を焼成して得られ
る焼成体内部寸法の予測装置において、焼結前の前記成
形体の内部寸法を測定する寸法測定手段と焼結前の前記
成形体の内部密度を測定する密度測定手段とを設けたこ
とを特徴とする成形体内部寸法の予測装置。
4. In a device for predicting an internal dimension of a fired body obtained by firing a molded body obtained by molding a material, a dimension measuring means for measuring an internal dimension of the molded body before sintering, and the molded body before sintering. And a density measuring unit for measuring the internal density of the molded article.
JP2002065394A 2002-03-11 2002-03-11 Method and device for predicting internal dimension of calcined body Pending JP2003262512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002065394A JP2003262512A (en) 2002-03-11 2002-03-11 Method and device for predicting internal dimension of calcined body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002065394A JP2003262512A (en) 2002-03-11 2002-03-11 Method and device for predicting internal dimension of calcined body

Publications (1)

Publication Number Publication Date
JP2003262512A true JP2003262512A (en) 2003-09-19

Family

ID=29197721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002065394A Pending JP2003262512A (en) 2002-03-11 2002-03-11 Method and device for predicting internal dimension of calcined body

Country Status (1)

Country Link
JP (1) JP2003262512A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009200166A (en) * 2008-02-20 2009-09-03 Tdk Corp Manufacturing method of ceramic electronic component
JP2012527616A (en) * 2009-05-20 2012-11-08 エシコン・インコーポレイテッド X-ray microscopy for characterizing the shape and dimensions of surgical suture needle holes
JP2021107301A (en) * 2019-12-27 2021-07-29 京セラ株式会社 Shrinkage rate prediction device, shrinkage rate prediction system, method for controlling shrinkage rate prediction device, and method for producing ceramic product

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009200166A (en) * 2008-02-20 2009-09-03 Tdk Corp Manufacturing method of ceramic electronic component
JP2012527616A (en) * 2009-05-20 2012-11-08 エシコン・インコーポレイテッド X-ray microscopy for characterizing the shape and dimensions of surgical suture needle holes
JP2021107301A (en) * 2019-12-27 2021-07-29 京セラ株式会社 Shrinkage rate prediction device, shrinkage rate prediction system, method for controlling shrinkage rate prediction device, and method for producing ceramic product
JP7290564B2 (en) 2019-12-27 2023-06-13 京セラ株式会社 Shrinkage rate prediction device, shrinkage rate prediction system, shrinkage rate prediction device control method, ceramic product manufacturing method

Similar Documents

Publication Publication Date Title
CN110799286B (en) Method and apparatus for additive manufacturing
Moylan et al. An additive manufacturing test artifact
Schwentenwein et al. Lithography-based ceramic manufacturing: A novel technique for additive manufacturing of high-performance ceramics
CN107283846B (en) Method for testing exposure time of 3D printing resin
Chhabra et al. Obtaining desired surface roughness of castings produced using ZCast direct metal casting process through Taguchi's experimental approach
Davies et al. High bandwidth thermal microscopy of machining AISI 1045 steel
Kozior et al. Dimensional and shape accuracy of foundry patterns fabricated through photo-curing
JP2003262512A (en) Method and device for predicting internal dimension of calcined body
Pirling et al. Residual stress distribution in seamless tubes determined experimentally and by FEM
CN107225668B (en) Method for manufacturing ceramic structure
Du Plessis X‐ray tomography for the advancement of laser powder bed fusion additive manufacturing
Josupeit et al. Three-dimensional in-process temperature measurement of laser sintered part cakes
Westerheide et al. Advances in characterisation of machined green compacts
Boardman et al. Strength of additively manufactured alumina with different debinding and sintering heat treatments
Johnson et al. Needs assessment for nondestructive testing and materials characterization for improved reliability in structural ceramics for heat engines
US5815253A (en) Method and apparatus for estimating performance of gas tube
Nissen et al. Methodology for determining design rules for helical channels in glass components produced by selective laser sintering
JP2018521298A (en) Non-voided contaminant-based reference standard and fabrication method for nondestructive inspection
Weaver Additive Manufacturing and Inspection Difficulties
Neel et al. X-Ray Computed Tomography Application Research
McClung et al. On-Line NDE for Control and Modeling of Ceramic Processing
Tawfik et al. Characterisation of powder-filled defects in additive manufactured surfaces using X-ray CT
Murray et al. New numerical evaluation techniques for laser processed ceramic substrates
Iovea et al. Development of a non-destructive testing system for the automated inspection of ceramic armour plates and parts
KR102002072B1 (en) Specimen consisting of ceramics to measure mechanical strength of tube-shaped ceramic components and method for manufacturing the same