JP2003262482A - Heat transfer material and system - Google Patents

Heat transfer material and system

Info

Publication number
JP2003262482A
JP2003262482A JP2002061537A JP2002061537A JP2003262482A JP 2003262482 A JP2003262482 A JP 2003262482A JP 2002061537 A JP2002061537 A JP 2002061537A JP 2002061537 A JP2002061537 A JP 2002061537A JP 2003262482 A JP2003262482 A JP 2003262482A
Authority
JP
Japan
Prior art keywords
heat
phase change
heat transfer
heat storage
transfer material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002061537A
Other languages
Japanese (ja)
Inventor
Akira Kishimoto
章 岸本
Takeshi Umehara
猛 梅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2002061537A priority Critical patent/JP2003262482A/en
Publication of JP2003262482A publication Critical patent/JP2003262482A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Manufacturing Of Micro-Capsules (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat transfer material improving a heat transfer efficiency using phase change heat storage substance and reducing the power of a pump for transferring it. <P>SOLUTION: This heat transfer material is formed by adding the phase change heat storage substance 4 having a phase change temperature in a temperature range between a heat feeder side heat feed temperature and a heat use device side heat dissipation temperature and a polymer substance 6 for reducing a flow resistance, to aqueous liquid 2. The addition of the phase change heat storage substance changing its phase in a prescribed temperature range can absorb/dissipate large heat capacity via the heat transfer material. The addition of the polymer substance allows the whole fluid as the heat transfer material to show viscoelasticity and reduce the flow resistance. The polymer substance to be added is preferably polyethylene oxide. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、冷熱及び/又は温
熱を搬送するのに用いる熱搬送材及びこの熱搬送材を用
いた熱搬送システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat carrier material used for carrying cold heat and / or warm heat, and a heat carrier system using this heat carrier material.

【0002】[0002]

【従来の技術】従来、冷熱及び/又は温熱を搬送する熱
搬送材として、熱搬送材としての水に相変化蓄熱物質を
安定分散させたものが提案されている。この熱搬送材
は、冷熱及び/又は温熱を供給する熱供給装置とこの熱
を利用する熱利用装置との間を循環され、熱供給装置に
て供給された冷熱及び/又は温熱を熱利用装置にて放出
し、熱搬送材中の相変化蓄熱物質は、熱供給装置の熱供
給温度と熱利用装置の熱放出温度との温度範囲において
相変化を起こして蓄えた冷熱及び/又は温熱を放出す
る。
2. Description of the Related Art Heretofore, as a heat carrier for carrying cold heat and / or warm heat, there has been proposed one in which a phase change heat storage substance is stably dispersed in water as the heat carrier. The heat carrier is circulated between a heat supply device that supplies cold heat and / or warm heat and a heat use device that uses this heat, and the cold heat and / or warm heat supplied by the heat supply device is used as a heat use device. The phase change heat storage substance in the heat carrier material releases the cold heat and / or the warm heat that has accumulated due to the phase change in the temperature range between the heat supply temperature of the heat supply device and the heat release temperature of the heat utilization device. To do.

【0003】この種の熱搬送材としては、例えば、テト
ラデカン、ペンタデカン、パラフィンワックスなどの蓄
熱材料を、メラミン樹脂、ポリウレタン樹脂、ポリアク
リル樹脂、ポリメタクリル酸樹脂などからなるマイクロ
カプセル内に収容した構造の潜熱蓄熱マイクロカプセル
(所謂、相変化蓄熱物質)を、水に安定分散させたもの
が知られている。このような相変化蓄熱物質を用いた熱
搬送方式は、相変化を伴わない顕熱のみを利用した熱搬
送方式に比べ、融点を挟む狭い温度範囲で多量の熱エネ
ルギーを蓄えて搬送することができ、熱搬送材として水
だけを用いた場合に比して、少ない流量で多量の熱量を
搬送できる利点を有する。このような相変化蓄熱物質を
用いた熱搬送方法は、例えば、特開平5−117642
号公報、特開平5−163486号公報、特開平5−2
15369号公報などにより提案されている。
As a heat transfer material of this type, for example, a heat storage material such as tetradecane, pentadecane, paraffin wax, etc. is contained in a microcapsule made of melamine resin, polyurethane resin, polyacrylic resin, polymethacrylic acid resin or the like. It is known that the latent heat storage microcapsules (so-called phase change heat storage substance) are stably dispersed in water. Such a heat transfer method using a phase change heat storage material can store and transfer a large amount of heat energy in a narrow temperature range sandwiching the melting point, as compared with a heat transfer method using only sensible heat without phase change. As a result, there is an advantage that a large amount of heat can be conveyed with a small flow rate as compared with the case where only water is used as the heat carrier. A heat transfer method using such a phase change heat storage material is disclosed in, for example, Japanese Patent Laid-Open No. 5-117642.
Japanese Patent Laid-Open No. 5-163486, Japanese Laid-Open Patent Publication No. 5-2
It is proposed by Japanese Patent Publication No. 15369.

【0004】このような潜熱蓄熱マイクロカプセル(相
変化蓄熱物質)を分散させた分散液の調製にあたって
は、例えば、蓄熱材料とメラミン樹脂のプレポリマーと
を、共に水中に分散乳化させつつ重合させて、蓄熱材料
を主材とするコアの外周部に、ポリマー被膜からなるカ
プセル外層を形成した構成の潜熱蓄熱マイクロカプセル
を形成し、このように形成した潜熱蓄熱マイクロカプセ
ルを水中に安定分散させることによってその分散液を得
ることができる。
In preparing a dispersion liquid in which such latent heat storage microcapsules (phase change heat storage substance) are dispersed, for example, a heat storage material and a prepolymer of a melamine resin are both polymerized while being dispersed and emulsified in water. By forming a latent heat storage microcapsule having a structure in which a capsule outer layer made of a polymer coating is formed on the outer periphery of a core mainly composed of a heat storage material, and stably dispersing the latent heat storage microcapsule thus formed in water, The dispersion can be obtained.

【0005】[0005]

【発明が解決しようとする課題】このような潜熱蓄熱マ
イクロカプセル分散液、即ち相変化蓄熱物質を含む熱搬
送材は、潜熱蓄熱マイクロカプセルを水溶液中に分散さ
せている理由により、その粘度が水自体に比して高く、
その粘度は、潜熱蓄熱マイクロカプセルの水に対する添
加濃度が大きいほど、大きくなる傾向にある。
The latent heat storage microcapsule dispersion liquid, that is, the heat carrier material containing the phase change heat storage substance, has a viscosity of water because of the reason that the latent heat storage microcapsules are dispersed in the aqueous solution. Higher than itself,
The viscosity tends to increase as the concentration of the latent heat storage microcapsules added to water increases.

【0006】この分散液の粘度が大きくなるということ
は、潜熱蓄熱マイクロカプセル分散液を用いて熱供給装
置から熱利用装置(熱需要設備)にポンプにより配管を
介して輸送する際に、このポンプの動力が大きくなるこ
とを意味する。一般に、ポンプの動力は、送給する流体
の粘度の0.25乗に比例することが知られている。例
えば、潜熱蓄熱マイクロカプセル分散液の粘度が水の1
0倍になったとすると、ポンプの動力は水の約1.8倍
となる。このように、潜熱蓄熱マイクロカプセル分散液
を熱搬送媒体として利用すると、水自体用いた場合に比
較して、潜熱蓄熱マイクロカプセルの潜熱利用により、
単位体積当たりの熱密度を増加させて熱搬送の効率を高
めることは可能となる反面、ポンプの動力も増加してし
まう問題がある。
The fact that the viscosity of the dispersion liquid becomes large means that when the latent heat storage microcapsule dispersion liquid is used to transport the heat from the heat supply device to the heat utilization device (heat demand equipment) through the pipe, the pump is used. It means that the power of is increased. It is generally known that the power of a pump is proportional to the viscosity of the fluid to be fed to the power of 0.25. For example, the latent heat storage microcapsule dispersion has a viscosity of 1
If it becomes 0 times, the power of the pump becomes about 1.8 times that of water. In this way, when the latent heat storage microcapsule dispersion is used as the heat carrier medium, compared with the case of using water itself, the latent heat storage microcapsules utilize the latent heat,
Although it is possible to increase the heat transfer efficiency by increasing the heat density per unit volume, there is a problem that the power of the pump also increases.

【0007】本発明の目的は、上述した事実に鑑み、相
変化蓄熱物質を用いて熱搬送効率を高めることができる
とともに、それを搬送するためのポンプの動力をも削減
することができる熱搬送材及び熱搬送システムを提供す
ることである。
In view of the above-mentioned facts, the object of the present invention is to improve the heat transfer efficiency by using the phase change heat storage substance and to reduce the power of the pump for transferring it. A material and heat transfer system.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明者らは、鋭意検討した結果、相変化蓄熱物
質を分散させた水溶液に流動抵抗低減効果を有する高分
子物質を添加することによって、水と比較して、高粘性
になることに起因する相変化蓄熱物質を含む水溶液を搬
送するためのポンプの動力を著しく低減させることを見
出し、本発明を完成させるに至った。
[Means for Solving the Problems] In order to achieve the above object, the inventors of the present invention have made earnest studies and, as a result, added a polymer substance having a flow resistance reducing effect to an aqueous solution in which a phase change heat storage substance is dispersed. By doing so, it was found that the power of the pump for carrying the aqueous solution containing the phase change heat storage substance due to the high viscosity is remarkably reduced as compared with water, and the present invention has been completed.

【0009】本発明の構成及び作用を述べる前に、流動
抵抗低減効果を有する高分子について説明すると、水に
所定の高分子物質を数10〜数100ppm溶解させる
と、高分子物質同士のネットワークにより、粘弾性を示
すといわれており、このような特性を示す高分子溶液の
摩擦低減方法は、例えば、T. Mizushina et al, Journa
l of Chemical Engineering of Japan, Vol. 7, No. 3,
162 (1974)など詳細に報告されている。
Before describing the constitution and operation of the present invention, a polymer having a flow resistance reducing effect will be described. When a predetermined polymer substance is dissolved in water in the range of several tens to several hundreds ppm, a network of the polymer substances is formed. , It is said to exhibit viscoelasticity, and a method for reducing friction of a polymer solution having such characteristics is described in, for example, T. Mizushina et al, Journa.
l of Chemical Engineering of Japan, Vol. 7, No. 3,
162 (1974).

【0010】本発明は、水性液体に、熱供給装置側の熱
供給温度と熱利用装置側の熱放出温度との温度範囲に相
変化温度を持つ相変化蓄熱物質と、流動抵抗を低減させ
るための高分子物質とが添加されていることを特徴とす
る熱搬送材である。
According to the present invention, in order to reduce the flow resistance of an aqueous liquid, a phase change heat storage substance having a phase change temperature in the temperature range between the heat supply temperature on the heat supply device side and the heat release temperature on the heat utilization device side. And a polymer substance of 1) are added.

【0011】本発明の熱搬送材の特徴構成は、所定の温
度範囲で相変化する相変化蓄熱物質、例えば有機化合物
からなる蓄熱材料を主材とする蓄熱部と、熱搬送流体中
に分散可能にする被覆ポリマー層とを備えた相変化蓄熱
物質(潜熱蓄熱マイクロカプセル)を水などの水性液体
に分散させ、この分散させた水溶液に更に流動抵抗低減
効果を有する高分子物質を添加してあることにある。こ
れによって、相変化物質の蓄熱部の蓄熱材料が相変化し
つつ熱を蓄えるので熱搬送材を介して大きな熱量を吸放
出することができるとともに、相変化蓄熱物質の被覆ポ
リマーにより、水性液体中に相変化蓄熱物質を実質上均
一に分散させることが可能となる。加えて、流動抵抗低
減効果を有する高分子物質が添加されているので、相変
化蓄熱物質を水性液体に混合した後に粘度が増大したと
しても、熱搬送材としての流体全体が粘弾性を示すよう
になり、従って、この熱搬送材を配管などを通して流動
させたとしても、その流動抵抗が小さくなり、その結
果、熱搬送材を送給するためのポンプの動力を少なくす
ることが可能となる。
The heat transfer material of the present invention is characterized in that it can be dispersed in a heat transfer fluid, and a heat storage part mainly composed of a phase change heat storage material that changes its phase in a predetermined temperature range, for example, a heat storage material made of an organic compound. A phase-change heat storage material (latent heat storage microcapsules) having a coating polymer layer to be dispersed is dispersed in an aqueous liquid such as water, and a polymer substance having a flow resistance reducing effect is further added to the dispersed aqueous solution. Especially. As a result, the heat storage material of the heat storage part of the phase change material stores heat while changing the phase, so that a large amount of heat can be absorbed and released via the heat transfer material, and the coating polymer of the phase change heat storage material allows It is possible to disperse the phase change heat storage substance substantially uniformly. In addition, since a polymer substance having a flow resistance reducing effect is added, even if the viscosity increases after the phase change heat storage substance is mixed with the aqueous liquid, the entire fluid as a heat carrier material exhibits viscoelasticity. Therefore, even if this heat carrier material is made to flow through a pipe or the like, its flow resistance is reduced, and as a result, it is possible to reduce the power of the pump for feeding the heat carrier material.

【0012】添加する高分子物質は、ポリエチレンオキ
サイドであるのが好ましく、流体全体に粘弾性を付与し
てその流動抵抗を低減することができる。
The polymer substance to be added is preferably polyethylene oxide, which can impart viscoelasticity to the entire fluid and reduce its flow resistance.

【0013】[0013]

【発明の実施の形態】図1は、本発明に従う熱搬送材の
一例を示し、この熱搬送材は、水などの水性液体2を主
成分とし、この水性液体2に相変化蓄熱物質4と、高分
子物質6が安定分散されている。相変化蓄熱物質4は、
蓄熱材料としての相変化を伴う有機化合物8と、樹脂製
被膜材10とから構成され、有機化合物8が樹脂製被覆
材10内に収容された微小潜熱蓄熱マイクロカプセルを
構成している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an example of a heat carrier material according to the present invention. This heat carrier material contains an aqueous liquid 2 such as water as a main component, and the aqueous liquid 2 contains a phase change heat storage substance 4. The polymer substance 6 is stably dispersed. The phase change heat storage material 4 is
The organic compound 8 as a heat storage material accompanied by a phase change and a resinous coating material 10 constitute a minute latent heat storage microcapsule in which the organic compound 8 is housed in the resinous coating material 10.

【0014】次に、熱搬送材の各成分の材料について、
更に詳細に説明する。蓄熱材料としての有機化合物8
は、テトラデカン、ペンタデカン、ヘキサデカンなどの
直鎖のパラフィン(脂肪族炭化水素)、ベンゼン、p−
キシレンなどの芳香族化合物、ノナン酸、デカン酸など
の直鎖のカルボン酸の単一物もしくは混合物、エステル
化合物などの有機化合物単一物もしくは混合物などが使
用される。
Next, regarding the material of each component of the heat transfer material,
Further details will be described. Organic compounds as heat storage materials 8
Is a linear paraffin (aliphatic hydrocarbon) such as tetradecane, pentadecane, hexadecane, benzene, p-
An aromatic compound such as xylene, a linear carboxylic acid such as nonanoic acid or decanoic acid, or a mixture thereof, an organic compound such as an ester compound, or a mixture thereof are used.

【0015】樹脂製被覆材10を構成するカプセル材料
としては、メラミン樹脂、尿素樹脂、フェノール樹脂、
ナイロンなどの縮合系ポリマーや、ポリスチレン、ポリ
メタクリル酸メチルなどのアクリル系ポリマーなどが使
用される。
The capsule material constituting the resin coating material 10 includes melamine resin, urea resin, phenol resin,
Condensation polymers such as nylon and acrylic polymers such as polystyrene and polymethylmethacrylate are used.

【0016】また、高分子物質6は、特に限定されるも
のではなく、ポリエチレンオキサイド、ポリメタクリル
酸メチルなどが使用される。更に、水性液体2として
は、これまで説明してきた水などが使用される。この場
合、必要に応じて、エチレングリコール、プロピレング
リコール、各種無機塩類、防腐剤、各種劣化防止剤、分
散補助剤、比重調整剤、湿潤剤などを添加するようにし
てもよい。
Further, the polymer substance 6 is not particularly limited, and polyethylene oxide, polymethylmethacrylate or the like is used. Further, as the aqueous liquid 2, the water described so far is used. In this case, ethylene glycol, propylene glycol, various inorganic salts, preservatives, various deterioration preventing agents, dispersion aids, specific gravity adjusting agents, wetting agents and the like may be added as necessary.

【0017】分散液全体(熱搬送材)における高分子物
質6の添加量に関しては、少ないと流動抵抗低減効果が
発現せず、また多すぎると粘度が増大し、これもまた流
動抵抗低減効果が発現しない。よって、高分子物質6の
添加量は、1〜500ppmであるのが好ましく、5〜
200ppmであるのがさらに好ましい。
With respect to the amount of the polymer substance 6 added to the entire dispersion (heat carrier), if the amount is small, the flow resistance reducing effect will not be exhibited, and if it is too large, the viscosity will increase, which also has the flow resistance reducing effect. Does not develop. Therefore, the addition amount of the polymer substance 6 is preferably 1 to 500 ppm,
More preferably, it is 200 ppm.

【0018】このような熱搬送材は、熱供給装置(図示
せず)にて発生したした熱(冷熱及び/又は温熱)を熱
利用装置(図示せず)に搬送するたために用いられ、熱
供給装置、熱利用装置並びにこれらを接続する送給流路
及び戻り流路(これらは配管などから構成される)を通
して循環される。そして、熱搬送材の相変化蓄熱物質4
は、熱供給装置側の熱供給温度と熱利用装置側の熱放出
温度との温度範囲において相変化し、このように相変化
することによって、大きな熱エネルギーを吸放出するこ
とができる。
Such a heat transfer material is used to transfer the heat (cold heat and / or warm heat) generated in the heat supply device (not shown) to the heat utilization device (not shown). It is circulated through a supply device, a heat utilization device, and a supply flow path and a return flow path (which are configured by pipes or the like) connecting these. And the phase change heat storage material 4 of the heat carrier material
Undergoes a phase change in the temperature range between the heat supply temperature on the heat supply device side and the heat release temperature on the heat utilization device side, and by this phase change, a large amount of heat energy can be absorbed and released.

【0019】実施例及び比較例 本発明の熱搬送材の流動抵抗低減効果を確認するため
に、次の通りの流動抵抗評価実験を行った。図2は、こ
の流動抵抗評価実験に用いた評価装置の構成を簡略的に
示す図であり、図2を参照してこの評価装置について説
明すると、この評価装置は、媒体タンク11、プレート
式熱交換器14及び冷温水発生器15を備えている。媒
体タンク11に熱搬送材を充填し、ポンプ12により、
媒体タンク11内の熱搬送材を配管18(流路を構成す
る)を通して循環させる。配管18は、塩化ビニル(V
P管)製の呼び径25Aの円管である。冷温水発生機1
5により冷温水を発生させ、この冷温水をプレート式熱
交換器14を通して循環し、この熱交換器14において
冷温水と熱搬送材との間で熱交換し、この熱交換によ
り、熱搬送材を間接的に所定の温度に調整する。熱搬送
材が配管18を流れる際の温度は、白金測温抵抗体16
により測定し、その測定値がモニターできるようになっ
ている。流動抵抗低減効果は、配管18における差圧計
測区間A(この評価装置では2mに設定されている)に
設置された微差圧計17により、圧力損失との関連で評
価した。また、ポンプ12にはインバータが接続されて
おり、電磁流量計13により、配管18を通して熱搬送
材が所定流量で流れるように設定される。
Examples and Comparative Examples In order to confirm the effect of reducing the flow resistance of the heat transfer material of the present invention, the following flow resistance evaluation experiment was conducted. FIG. 2 is a diagram schematically showing a configuration of an evaluation device used in the flow resistance evaluation experiment. The evaluation device will be described with reference to FIG. It is provided with an exchanger 14 and a cold / hot water generator 15. The medium tank 11 is filled with the heat carrier material, and the pump 12
The heat transfer material in the medium tank 11 is circulated through the pipe 18 (which constitutes a flow path). The pipe 18 is made of vinyl chloride (V
It is a circular pipe made of P pipe and having a nominal diameter of 25A. Cold / hot water generator 1
5, hot and cold water is generated, the cold and hot water is circulated through the plate heat exchanger 14, and heat is exchanged between the cold and hot water and the heat transfer material in the heat exchanger 14. By this heat exchange, the heat transfer material is Is indirectly adjusted to a predetermined temperature. The temperature at which the heat transfer material flows through the pipe 18 is the platinum resistance temperature detector 16
It is possible to monitor the measured value. The flow resistance reduction effect was evaluated in relation to the pressure loss by the fine differential pressure gauge 17 installed in the differential pressure measurement section A (which is set to 2 m in this evaluation device) in the pipe 18. Further, an inverter is connected to the pump 12, and the electromagnetic flow meter 13 is set so that the heat transfer material flows at a predetermined flow rate through the pipe 18.

【0020】実施例1として、次の通りの熱搬送材を用
いた。まず、n−ペンタデカンを40g、スチレン10
g及び重合開始剤(2,2アゾビス(2,4ジメチルバ
レロニトリル))0.8gを室温で5分間攪拌混合し、
有機化合物混合液を調整した。
As Example 1, the following heat transfer material was used. First, 40 g of n-pentadecane and styrene 10
g and a polymerization initiator (2,2 azobis (2,4 dimethylvaleronitrile)) 0.8 g with stirring at room temperature for 5 minutes,
An organic compound mixture was prepared.

【0021】次に、ポリビニルアルコール0.1%水溶
液160gに上述した有機化合物混合液の全量を添加
し、粒径3〜5μmのエマルジョンを形成した。尚、こ
のとき、ポリビニルアルコール水溶液を、8000rp
mで激しく攪拌させながら有機化合物混合液を添加し、
このように撹拌させながら添加することにより、有機化
合物混合液は乳化された。そして、このエマルジョンを
攪拌条件の下で60℃で5時間保持し、スチレンの重合
反応を促した。この状態で、n−ペンタデカン及びスチ
レンは、n−ペンタデカンからなる蓄熱部と、ポリスチ
レンからなる被覆層を備えたマイクロカプセル体になっ
て水溶液中に分散しているものと考えられる。
Next, the entire amount of the above-mentioned organic compound mixed liquid was added to 160 g of a 0.1% aqueous solution of polyvinyl alcohol to form an emulsion having a particle size of 3 to 5 μm. At this time, the polyvinyl alcohol aqueous solution was 8000 rp.
Add the organic compound mixture while stirring vigorously at m.
By adding with stirring, the organic compound mixture was emulsified. Then, this emulsion was kept under stirring conditions at 60 ° C. for 5 hours to promote the polymerization reaction of styrene. In this state, n-pentadecane and styrene are considered to be dispersed in the aqueous solution as a microcapsule body having a heat storage part made of n-pentadecane and a coating layer made of polystyrene.

【0022】以上の合成操作を繰り返し、マイクロカプ
セル分散液を合計10kg調製した。そして、この分散
液に、ポリエチレンオキサイド(平均分子量:3470
000)を100ppm添加し、この分散液を実施例1
の熱搬送材として用いた。
The above synthetic procedure was repeated to prepare a total of 10 kg of microcapsule dispersion. Then, polyethylene oxide (average molecular weight: 3470) was added to this dispersion.
000) was added at 100 ppm, and this dispersion was used in Example 1
Was used as a heat carrier.

【0023】実施例2として、次の熱搬送材を用いた。
まず、メラミン粉末5gに37%ホルムアルデヒド水溶
液6.5gと水10gを加え、pHを8に調整した後、
約70℃まで加熱し、メラミン−ホルムアルデヒド初期
縮合物を得た。次に、pHを4.5に調整した5%のス
チレン−無水マレイン酸共重合体のナトリウム塩水溶液
100g中に、相変化を伴う有機化合物としてn−ペン
タデカン80gを激しく攪拌しながら添加し、平均粒径
が5μmなるまで乳化を行った。そのエマルジョンにメ
ラミンーホルムアルデヒド初期縮合物を全量添加し、7
0℃で2時間攪拌した後、pHを9に調整してカプセル
化を終了した。
As Example 2, the following heat transfer material was used.
First, after adding 37 g formaldehyde aqueous solution 6.5 g and water 10 g to 5 g of melamine powder to adjust pH to 8,
By heating to about 70 ° C., a melamine-formaldehyde initial condensate was obtained. Next, 80 g of n-pentadecane as an organic compound accompanied by a phase change was added to 100 g of a 5% styrene-maleic anhydride copolymer sodium salt aqueous solution whose pH was adjusted to 4.5 with vigorous stirring. The emulsification was carried out until the particle size became 5 μm. Add all the melamine-formaldehyde initial condensate to the emulsion,
After stirring at 0 ° C. for 2 hours, the pH was adjusted to 9 and the encapsulation was completed.

【0024】以上の合成操作を繰り返し、分散液を合計
10kg調製した。そして、この分散液に、ポリエチレ
ンオキサイド(平均分子量:3470000)を100
ppm添加し、この分散液を実施例2の熱搬送材として
用いた。
The above synthetic operation was repeated to prepare a total of 10 kg of the dispersion liquid. And to this dispersion liquid, 100 parts of polyethylene oxide (average molecular weight: 3470000) was added.
ppm was added and this dispersion was used as the heat carrier in Example 2.

【0025】比較例1として、実施例1において、マイ
クロカプセル分散液を合成した後に、ポリエチレンオキ
サイドを添加しない以外は全て同じ条件で分散液を作成
し、この分散液を比較例1の熱搬送材として用いた。
As Comparative Example 1, after synthesizing the microcapsule dispersion in Example 1, a dispersion was prepared under the same conditions except that polyethylene oxide was not added, and this dispersion was used as the heat carrier material of Comparative Example 1. Used as.

【0026】また、比較例2として、実施例2におい
て、マイクロカプセル分散液を合成した後に、ポリエチ
レンオキサイドを添加しない以外は全て同じ条件で分散
液を作成し、この分散液を比較例2の熱搬送材として用
いた。
Further, as Comparative Example 2, after synthesizing the microcapsule dispersion liquid in Example 2, a dispersion liquid was prepared under the same conditions except that polyethylene oxide was not added, and this dispersion liquid was heated by the heat of Comparative Example 2. Used as a carrier.

【0027】実施例1及び2並びに比較例1及び2につ
いての流動抵抗評価実験の結果は、図3に示す通りであ
った。図3は、実施例1,2及び比較例1,2の熱搬送
材の流速とその流速における単位長さ当たりの圧力損失
との関係を示している。尚、この流動抵抗評価実験のと
きの各熱搬送材の温度は7℃であった。
The results of the flow resistance evaluation experiments for Examples 1 and 2 and Comparative Examples 1 and 2 are shown in FIG. FIG. 3 shows the relationship between the flow velocity of the heat transfer materials of Examples 1 and 2 and Comparative Examples 1 and 2 and the pressure loss per unit length at the flow velocity. The temperature of each heat transfer material in this flow resistance evaluation experiment was 7 ° C.

【0028】図3から明らかなように、実施例1及び2
の熱搬送材の圧力損失は、比較例1及び2の熱搬送材の
圧力損失と比較し、同一流速条件下において著しく低下
しており、ポリエチレンオキサイドを添加することによ
って流動抵抗を大幅に低減することができることが確認
できた。このことから、水よりも熱密度が大きいマイク
ロカプセル分散液(相変化蓄熱物質分散液)を熱搬送材
に用いる場合においても、流動抵抗を低減する高分子物
質を添加することにより、流動抵抗を増加させることな
く、少ない動力エネルギーで熱搬送材をポンプ輸送でき
ることが分かる。
As is apparent from FIG. 3, Examples 1 and 2
The pressure loss of the heat transfer material of No. 2 is significantly lower than that of the heat transfer materials of Comparative Examples 1 and 2 under the same flow rate condition, and the flow resistance is significantly reduced by adding polyethylene oxide. It was confirmed that it was possible. Therefore, even when a microcapsule dispersion liquid (phase change heat storage substance dispersion liquid) having a heat density higher than that of water is used as a heat carrier, it is possible to improve the flow resistance by adding a polymer substance that reduces the flow resistance. It can be seen that the heat carrier can be pumped with less power energy without increasing it.

【0029】また、上述した流動抵抗評価装置を用い、
実施例1の熱搬送材において、添加するポリエチレンオ
キサイドの添加濃度を変化させたときの圧力損失を調べ
た。この評価実験におては、熱搬送材の流速が1.5m
/sとなるようして行った。この評価結果は、図4に示
す通りであり、図4は、マイクロカプセル分散液に添加
したポリエチレンオキサイドの濃度と単位長さ当たりの
圧力損失との関係を示している。図4に示す通り、ポリ
エチレンオキサイドを数ppm〜数100ppmの微量
を添加することによって、圧力損失を約70%低減させ
ることができることが分かった。
Further, using the above-mentioned flow resistance evaluation device,
In the heat carrier material of Example 1, the pressure loss when the addition concentration of polyethylene oxide to be added was changed was examined. In this evaluation experiment, the flow velocity of the heat carrier is 1.5 m.
/ S. The evaluation result is as shown in FIG. 4, which shows the relationship between the concentration of polyethylene oxide added to the microcapsule dispersion and the pressure loss per unit length. As shown in FIG. 4, it was found that the pressure loss can be reduced by about 70% by adding a trace amount of polyethylene oxide of several ppm to several hundred ppm.

【0030】[0030]

【発明の効果】本発明の熱搬送材及びこの熱搬送材を用
いた熱搬送システムによれば、水性液体に相変化蓄熱部
材及び高分子物質が添加されているので、熱搬送材を介
して大きな熱量を吸放出することができるとともに、熱
搬送材としての流体全体に粘弾性を持たせ、その流動抵
抗を小さくすることができ、その結果、熱搬送材を送給
するためのポンプの動力を少なくすることが可能とな
る。
According to the heat carrier material of the present invention and the heat carrier system using this heat carrier material, since the phase change heat storage member and the polymer substance are added to the aqueous liquid, the heat carrier material is used. A large amount of heat can be absorbed and released, and the entire fluid as a heat carrier can be made viscoelastic to reduce its flow resistance. As a result, the power of the pump for feeding the heat carrier can be reduced. Can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の熱搬送材の一例を概念的に示す簡略図
である。
FIG. 1 is a simplified diagram conceptually showing an example of a heat carrier of the present invention.

【図2】流動抵抗評価実験に用いた流動抵抗評価装置を
概念的に示す簡略図である。
FIG. 2 is a schematic diagram conceptually showing a flow resistance evaluation apparatus used in a flow resistance evaluation experiment.

【図3】各種熱搬送材の流速と単位長さ当たりの圧力損
失の関係を示す図である。
FIG. 3 is a diagram showing a relationship between flow velocities of various heat transfer materials and pressure loss per unit length.

【図4】熱搬送材に添加する高分子物質の濃度と単位長
さ当たりの圧力損失との関係を示す図である。
FIG. 4 is a diagram showing the relationship between the concentration of a polymer substance added to a heat transfer material and the pressure loss per unit length.

【符号の説明】[Explanation of symbols]

2 水性液体 4 相変化蓄熱物質 6 高分子物質 8 有機化合物 10 樹脂製被膜材 2 Aqueous liquid 4 Phase change heat storage material 6 Polymer 8 organic compounds 10 Resin coating material

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 水性液体に、熱供給装置側の熱供給温度
と熱利用装置側の熱放出温度との温度範囲に相変化温度
を持つ相変化蓄熱物質と、流動抵抗を低減させるための
高分子物質とが添加されていることを特徴とする熱搬送
材。
1. A phase change heat storage material having a phase change temperature in an aqueous liquid in a temperature range between a heat supply temperature on the heat supply unit side and a heat release temperature on the heat utilization unit side, and a high temperature change material for reducing flow resistance. A heat carrier which is characterized in that a molecular substance is added.
【請求項2】 前記高分子物質がポリエチレンオキサイ
ドである請求項1記載の熱搬送材。
2. The heat carrier according to claim 1, wherein the polymer substance is polyethylene oxide.
【請求項3】 請求項1および2の熱搬送材を用いる熱
搬送システム。
3. A heat transfer system using the heat transfer material according to claim 1.
JP2002061537A 2002-03-07 2002-03-07 Heat transfer material and system Pending JP2003262482A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002061537A JP2003262482A (en) 2002-03-07 2002-03-07 Heat transfer material and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002061537A JP2003262482A (en) 2002-03-07 2002-03-07 Heat transfer material and system

Publications (1)

Publication Number Publication Date
JP2003262482A true JP2003262482A (en) 2003-09-19

Family

ID=29195788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002061537A Pending JP2003262482A (en) 2002-03-07 2002-03-07 Heat transfer material and system

Country Status (1)

Country Link
JP (1) JP2003262482A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1645424A1 (en) * 2004-10-04 2006-04-12 Océ-Technologies B.V. Sheet handling device with temperature controlled sheet support plate
US7475973B2 (en) 2004-10-04 2009-01-13 Oce-Technologies B.V. Sheet handling device with a temperature controlled sheet support plate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1645424A1 (en) * 2004-10-04 2006-04-12 Océ-Technologies B.V. Sheet handling device with temperature controlled sheet support plate
US7475973B2 (en) 2004-10-04 2009-01-13 Oce-Technologies B.V. Sheet handling device with a temperature controlled sheet support plate

Similar Documents

Publication Publication Date Title
Su et al. Review of solid–liquid phase change materials and their encapsulation technologies
Graham et al. Highly stable energy capsules with nano-SiO2 Pickering shell for thermal energy storage and release
ES2338180T3 (en) MICROCAPSULES MODIFIED BY POLYELECTROLYTES.
US5687706A (en) Phase change material storage heater
CN101678307A (en) Microcapsules, their use and processes for their manufacture
JP2008507605A (en) Microcapsule manufacturing method using latent heat storage material
KR20090085649A (en) Microcapsules, their use and processes for their manufacture
Karthikeyan et al. Review of thermal energy storage of micro-and nanoencapsulated phase change materials
Mert et al. Preparation and characterization of paraffin microcapsules for energy‐saving applications
US20220082337A1 (en) Heat storage using phase change material coated with nanoparticles
CN106753261A (en) A kind of microencapsulated phase change material and preparation method thereof
CN106634857A (en) Improved microcapsule phase-change material and preparation method thereof
Rao et al. Preparation and thermal properties of microencapsulated phase change material for enhancing fluid flow heat transfer
CN106957635A (en) The microcapsule phase-change particle and preparation method of composite Nano copper and nano-graphene piece
EP3824239A1 (en) Thermal management system
JP2003262482A (en) Heat transfer material and system
US20040029472A1 (en) Method and compound fabric with latent heat effect
Patil et al. A review of the thermal storage of phase change material, morphology, synthesis methods, characterization, and applications of microencapsulated phase change material
JP4668541B2 (en) Thermal storage material, method for producing the same, heating or cooling system, thermal storage article, and copolymer
JPH11152466A (en) Heat storage microcapsule
JPH11152465A (en) Heat-accumulator and its production
JP2002275456A (en) Heat-transporting material and heat-transporting system using the same
JP3871349B2 (en) Method for producing microcapsule dispersion for heat transfer in a circuit for air conditioning
JPH10251627A (en) Composite particle, its production and heat transfer medium
JPH08259932A (en) Heat-storing material microcapsule