JP2003262434A - Evaporator - Google Patents

Evaporator

Info

Publication number
JP2003262434A
JP2003262434A JP2002065460A JP2002065460A JP2003262434A JP 2003262434 A JP2003262434 A JP 2003262434A JP 2002065460 A JP2002065460 A JP 2002065460A JP 2002065460 A JP2002065460 A JP 2002065460A JP 2003262434 A JP2003262434 A JP 2003262434A
Authority
JP
Japan
Prior art keywords
refrigerant
evaporator
inlet
passage
sectional area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002065460A
Other languages
Japanese (ja)
Inventor
Tomoo Honda
知生 本多
Hirotsugu Takeuchi
裕嗣 武内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2002065460A priority Critical patent/JP2003262434A/en
Publication of JP2003262434A publication Critical patent/JP2003262434A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0012Ejectors with the cooled primary flow at high pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/18Optimization, e.g. high integration of refrigeration components

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Jet Pumps And Other Pumps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To fully exhibit the capacity of an evaporator for an ejector cycle. <P>SOLUTION: The total refrigerant passage cross-sectional area on the refrigerant inlet 32 side out of a refrigerant passage 31a is made smaller than that on the refrigerant outlet 33 side. A sharp decrease in flow velocity of a refrigerant can thereby be prevented, so that a considerable lowering of a heat transfer rate of the refrigerant and a tube can be prevented to fully exhibit the capacity of the evaporator 30. Furthermore, since the decrease of flow velocity of the refrigerant can be prevented, the refrigerator oil is prevented from sticking to the internal wall of the tube 31, and in its turn, a sufficient quantity of refrigerator oil can be returned to a compressor. The lowering of the heat transfer rate caused by the refrigerator oil sticking to the internal wall can thereby be prevented while preventing the occurrence of defectiveness such as seizure of the compressor. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、低温側の熱を高温
側に移動させる蒸気圧縮式冷凍機のうち、冷媒を減圧膨
張させながら膨張エネルギーを圧力エネルギーに変換し
て圧縮機の吸入圧を上昇させるエジェクタを有する蒸気
圧縮式冷凍機である、エジェクタサイクルに適用される
蒸発器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vapor compression refrigerator for moving heat on a low temperature side to a high temperature side, converting expansion energy into pressure energy while decompressing and expanding a refrigerant to reduce suction pressure of the compressor. The present invention relates to an evaporator applied to an ejector cycle, which is a vapor compression refrigerator having an ejector to be raised.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】エジェ
クタサイクルでは、例えば特開平6−11197号公報
に示されるように、エジェクタを流出した冷媒は気液分
離器に流入し、気液分離器にて分離された液相冷媒が蒸
発器に供給され、気液分離器にて分離された気相冷媒が
圧縮機に吸入されるので、エジェクタサイクルの蒸発器
には、ほぼ液相冷媒のみが流入する。
2. Description of the Related Art In an ejector cycle, as shown in, for example, Japanese Unexamined Patent Publication No. 6-11197, the refrigerant flowing out of the ejector flows into a gas-liquid separator and enters the gas-liquid separator. The liquid-phase refrigerant separated by this is supplied to the evaporator, and the gas-phase refrigerant separated by the gas-liquid separator is sucked into the compressor, so that almost only liquid-phase refrigerant flows into the evaporator of the ejector cycle. To do.

【0003】また、蒸発器では冷媒が液相状態から気相
状態に変化するので、蒸発器の冷媒入口側と冷媒出口側
とで冷媒通路断面積が同じであると、冷媒流速が冷媒入
口側と冷媒出口側とで大きく相違してしまい、冷媒入口
側における冷媒とチューブとの熱伝達率と冷媒出口側に
おける冷媒とチューブとの熱伝達率が相違していしまう
ので、蒸発器の能力を十分に発揮させることができな
い。
Further, since the refrigerant changes from the liquid phase state to the vapor phase state in the evaporator, if the refrigerant passage cross-sectional area is the same between the refrigerant inlet side and the refrigerant outlet side of the evaporator, the refrigerant flow velocity becomes the refrigerant inlet side. And the refrigerant outlet side are significantly different, and the heat transfer coefficient between the refrigerant and the tube on the refrigerant inlet side and the heat transfer coefficient between the refrigerant and the tube on the refrigerant outlet side are different. Can not be demonstrated to.

【0004】本発明は、上記点に鑑み、エジェクタサイ
クル用の蒸発器において、その能力を十分に発揮させる
ことを目的とする。
In view of the above points, it is an object of the present invention to fully exert its capacity in an evaporator for an ejector cycle.

【0005】[0005]

【課題を解決するための手段】本発明は、上記目的を達
成するために、請求項1に記載の発明では、冷媒を減圧
膨張させながら膨張エネルギーを圧力エネルギーに変換
して圧縮機の吸入圧を上昇させるエジェクタ(40)を
有する蒸気圧縮式冷凍機に適用される蒸発器であって、
冷媒入口(32)から冷媒出口(33)に至る冷媒通路
(31a)のうち、冷媒入口(32)側における総冷媒
通路断面積は、冷媒出口(33)側における総冷媒通路
断面積より小さいことを特徴とする。
In order to achieve the above object, the present invention is, in the invention as set forth in claim 1, in which expansion energy is converted into pressure energy while decompressing and expanding the refrigerant, and suction pressure of the compressor. An evaporator applied to a vapor compression refrigerator having an ejector (40) that raises
Of the refrigerant passages (31a) from the refrigerant inlet (32) to the refrigerant outlet (33), the total refrigerant passage sectional area on the refrigerant inlet (32) side is smaller than the total refrigerant passage sectional area on the refrigerant outlet (33) side. Is characterized by.

【0006】蒸発器では、液相冷媒が気相冷媒に変化す
るので、冷媒出口(33)側における冷媒体積は、冷媒
入口(32)側における冷媒体積より大きくなる。この
ため、冷媒入口(32)と冷媒出口(33)とで冷媒の
質量流量が略一定と仮定したときに、冷媒入口(32)
側と冷媒出口(33)側とで冷媒通路断面積が同じであ
ると、冷媒入口(32)側における冷媒流速が冷媒出口
(33)における冷媒流速に比べて大きく低下し、冷媒
入口(32)側において冷媒と冷媒通路(31a)の内
壁との熱伝達率が大きく低下する。
In the evaporator, since the liquid-phase refrigerant changes to the gas-phase refrigerant, the refrigerant volume on the refrigerant outlet (33) side becomes larger than the refrigerant volume on the refrigerant inlet (32) side. Therefore, when it is assumed that the mass flow rate of the refrigerant at the refrigerant inlet (32) and the refrigerant outlet (33) is substantially constant, the refrigerant inlet (32)
Side and the refrigerant outlet (33) side have the same refrigerant passage cross-sectional area, the refrigerant flow velocity on the refrigerant inlet (32) side is significantly lower than the refrigerant flow velocity on the refrigerant outlet (33), and the refrigerant inlet (32) On the side, the heat transfer coefficient between the refrigerant and the inner wall of the refrigerant passage (31a) is greatly reduced.

【0007】これに対して、本発明では、冷媒通路(3
1a)のうち冷媒入口(32)側における総冷媒通路断
面積が、冷媒出口(33)側における総冷媒通路断面積
より小さくなるように構成されているので、冷媒入口
(32)側における冷媒流速が大きく低下することを防
止でき、冷媒入口(32)側において冷媒と冷媒通路
(31a)の内壁の熱伝達率が大きく低下してしまうこ
とを防止できる。したがって、蒸発器の能力を十分に発
揮させることができる。
On the other hand, in the present invention, the refrigerant passage (3
1a) is configured such that the total refrigerant passage cross-sectional area on the refrigerant inlet (32) side is smaller than the total refrigerant passage cross-sectional area on the refrigerant outlet (33) side, so that the refrigerant flow velocity on the refrigerant inlet (32) side. Can be prevented from being greatly reduced, and the heat transfer coefficient between the refrigerant and the inner wall of the refrigerant passage (31a) on the refrigerant inlet (32) side can be prevented from being greatly decreased. Therefore, the capacity of the evaporator can be fully exerted.

【0008】また、本発明では、冷媒通路(31a)の
うち冷媒入口(32)側における総冷媒通路断面積を小
さくして冷媒流速が低下することを防止しているので、
冷凍機油が冷媒通路(31a)の内壁に付着してしまう
ことを防止できる。
Further, in the present invention, the total refrigerant passage sectional area on the refrigerant inlet (32) side of the refrigerant passage (31a) is made small to prevent the refrigerant flow velocity from decreasing.
It is possible to prevent refrigerating machine oil from adhering to the inner wall of the refrigerant passage (31a).

【0009】延いては、十分な量の冷凍機油を蒸気圧縮
式冷凍機の圧縮機に戻すことができるので、圧縮機が焼
き付く等の不具合が発生することを未然に防止しつつ、
内壁に付着した冷凍機油により熱伝達率が低下すること
を防止できる。
Furthermore, since a sufficient amount of refrigerating machine oil can be returned to the compressor of the vapor compression refrigerating machine, it is possible to prevent problems such as seizure of the compressor from occurring.
It is possible to prevent the heat transfer coefficient from decreasing due to the refrigerating machine oil adhering to the inner wall.

【0010】なお、冷媒通路(31a)のうち冷媒入口
(32)側における総冷媒通路断面積を、冷媒出口(3
3)側における総冷媒通路断面積より小さくなるように
構成するに当たっては、請求項2に記載の発明のごと
く、冷媒通路(31a)を構成するチューブ(31)の
うち、冷媒入口(32)側におけるチューブ(31)の
通路断面積は、冷媒出口(33)側における通路断面積
より小さくしてもよい。
The total cross-sectional area of the refrigerant passage (31a) on the refrigerant inlet (32) side is defined by the refrigerant outlet (3).
When the structure is made smaller than the total cross-sectional area of the refrigerant passage on the 3) side, the refrigerant inlet (32) side of the tubes (31) constituting the refrigerant passage (31a) is defined as in the invention according to claim 2. The passage cross-sectional area of the tube (31) may be smaller than the passage cross-sectional area on the refrigerant outlet (33) side.

【0011】さらに、請求項3に記載の発明のごとく、
冷媒通路(31a)を構成する複数本のチューブ(3
1)のうち、冷媒入口(32)側におけるチューブ(3
1)の本数は、冷媒出口(33)側におけるチューブ
(31)の本数より少なくしてもよい。
Further, as in the invention described in claim 3,
A plurality of tubes (3 forming the refrigerant passage (31a)
1) tube (3) on the refrigerant inlet (32) side
The number of 1) may be smaller than the number of tubes (31) on the refrigerant outlet (33) side.

【0012】因みに、上記各手段の括弧内の符号は、後
述する実施形態に記載の具体的手段との対応関係を示す
一例である。
Incidentally, the reference numerals in the parentheses of the above means are examples showing the correspondence with the concrete means described in the embodiments described later.

【0013】[0013]

【発明の実施の形態】(第1実施形態)本実施形態は、
本発明に係るエジェクタサイクルを車両用空調装置に適
用したものであって、図1はエジェクタサイクルの模式
図であり、図2(a)は本実施形態に係る蒸発器30の
外観斜視図であり、図2(b)は蒸発器30の冷媒流れ
を示す模式図である。
BEST MODE FOR CARRYING OUT THE INVENTION (First Embodiment)
The ejector cycle according to the present invention is applied to a vehicle air conditioner, FIG. 1 is a schematic view of the ejector cycle, and FIG. 2A is an external perspective view of an evaporator 30 according to the present embodiment. 2 (b) is a schematic diagram showing a refrigerant flow in the evaporator 30. As shown in FIG.

【0014】図1中、圧縮機10は走行用エンジンから
動力を得て冷媒を吸入圧縮する周知の可変容量型の圧縮
機であり、放熱器20は圧縮機10から吐出した冷媒と
室外空気とを熱交換して冷媒を冷却する高圧側熱交換器
である。
In FIG. 1, a compressor 10 is a well-known variable displacement type compressor that receives power from a running engine to suck and compress a refrigerant, and a radiator 20 discharges the refrigerant and the outdoor air. Is a high-pressure side heat exchanger for exchanging heat to cool the refrigerant.

【0015】因みに、本実施形態では、冷媒としてフロ
ンを採用しているので、放熱器20内の冷媒圧力は冷媒
の臨界圧力以下であり、放熱器20にて冷媒が凝縮す
る。
By the way, in this embodiment, since Freon is used as the refrigerant, the refrigerant pressure in the radiator 20 is equal to or lower than the critical pressure of the refrigerant, and the radiator 20 condenses the refrigerant.

【0016】また、蒸発器30は室内に吹き出す空気と
液相冷媒とを熱交換させて液相冷媒を蒸発させることに
より冷媒を蒸発させて室内に吹き出す空気を冷却する低
圧側熱交換器であり、この蒸発器30は、図2(a)に
示すように、冷媒通路を構成する複数本のチューブ31
を蛇行させるととともに、巨視的に見たときの冷媒入口
32から冷媒出口33に至る冷媒通路31a(図2
(b)の太い矢印)が、少なくとも1回Uターンするよ
うに構成されたものである。
The evaporator 30 is a low-pressure side heat exchanger that cools the air blown out into the room by evaporating the refrigerant by evaporating the liquid phase refrigerant by exchanging heat between the air blowing out into the room and the liquid phase refrigerant. As shown in FIG. 2A, the evaporator 30 includes a plurality of tubes 31 that form a refrigerant passage.
Together with meandering, the refrigerant passage 31a (see FIG. 2) from the refrigerant inlet 32 to the refrigerant outlet 33 when viewed macroscopically.
The thick arrow in (b) is configured to make a U-turn at least once.

【0017】具体的には、図2(b)に示すように、冷
媒入口32が設けられた入口側ヘッダタンク34に連通
する複数本のチューブ31、冷媒出口33が設けられた
出口側ヘッダタンク35に連通する複数本のチューブ3
1、及び全てのチューブ31と連通して巨視的に見たと
きの冷媒通路31aUターンさせるヘッダタンク36、
並びにチューブ31の外表面に空気との伝熱面積を増大
させる薄板状のフィン37等をろう付け接合又は拡管等
の機械的接合したものであり、本実施形態では、冷媒通
路31aのうち冷媒入口32側における総冷媒通路断面
積が、冷媒出口33側における総冷媒通路断面積より小
さくなるように、入口側ヘッダタンク34に連通するチ
ューブ31の本数を、出口側ヘッダタンク35に連通す
るチューブ31の本数より少なくしている。
Specifically, as shown in FIG. 2B, a plurality of tubes 31 communicating with an inlet side header tank 34 provided with a refrigerant inlet 32 and an outlet side header tank provided with a refrigerant outlet 33. Multiple tubes 3 communicating with 35
1, and a header tank 36 that communicates with all the tubes 31 and turns the refrigerant passage 31aU when viewed macroscopically,
In addition, thin plate-like fins 37 that increase the heat transfer area with air are mechanically joined to the outer surface of the tube 31 by brazing or expanding, and in this embodiment, the refrigerant inlet 31 of the refrigerant passage 31a. The number of tubes 31 communicating with the inlet-side header tank 34 is equal to the number of tubes 31 communicating with the inlet-side header tank 34 so that the total refrigerant passage sectional area on the 32 side is smaller than the total refrigerant passage sectional area on the refrigerant outlet 33 side. It is less than the number of.

【0018】さらに、チューブ31の内壁面には、撥油
性を有する撥油膜が形成されており、この撥油膜は、冷
凍機油の表面張力より小さい表面張力を有する材料から
なるもので、本実施形態では、シリコン系樹脂又はフッ
素系樹脂にて撥油膜31aが形成されている。
Further, an oil repellent film having oil repellency is formed on the inner wall surface of the tube 31, and this oil repellent film is made of a material having a surface tension smaller than that of refrigerating machine oil. In, the oil repellent film 31a is formed of silicon resin or fluorine resin.

【0019】また、図1中、エジェクタ40は冷媒を減
圧膨張させて蒸発器30にて蒸発した気相冷媒を吸引す
るとともに、膨張エネルギーを圧力エネルギーに変換し
て圧縮機10の吸入圧を上昇させるものである。
Further, in FIG. 1, the ejector 40 expands the refrigerant under reduced pressure to suck the vapor phase refrigerant evaporated in the evaporator 30, and converts the expansion energy into pressure energy to raise the suction pressure of the compressor 10. It is what makes me.

【0020】なお、エジェクタ40は、図3に示すよう
に、流入する高圧冷媒の圧力エネルギーを速度エネルギ
ーに変換して冷媒を等エントロピー的に減圧膨張させる
ノズル41、ノズル41から噴射する高い速度の冷媒流
により蒸発器30にて蒸発した気相冷媒を吸引しなが
ら、ノズル41から噴射する冷媒流とを混合する混合部
42、及びノズル41から噴射する冷媒と蒸発器30か
ら吸引した冷媒とを混合させながら速度エネルギーを圧
力エネルギーに変換して冷媒の圧力を昇圧させるディフ
ューザ43等からなるものである。
As shown in FIG. 3, the ejector 40 converts the pressure energy of the inflowing high-pressure refrigerant into velocity energy to decompress and expand the refrigerant in an isentropic manner. While sucking the vapor phase refrigerant evaporated in the evaporator 30 by the refrigerant flow, the mixing section 42 that mixes with the refrigerant flow injected from the nozzle 41, and the refrigerant injected from the nozzle 41 and the refrigerant sucked from the evaporator 30 The diffuser 43 and the like are configured to increase the pressure of the refrigerant by converting velocity energy into pressure energy while mixing.

【0021】因みに、本実施形態では、ノズル41から
噴出する冷媒の速度を音速以上まで加速するために、通
路途中に通路面積が最も縮小した喉部を有するラバール
ノズル(流体工学(東京大学出版会)参照)を採用して
いる。
Incidentally, in the present embodiment, in order to accelerate the velocity of the refrigerant ejected from the nozzle 41 to a speed higher than the sonic velocity, a Laval nozzle having a throat portion with the smallest passage area in the middle of the passage (Fluid Engineering (The University of Tokyo Press) (See) is adopted.

【0022】なお、混合部42においては、ノズル41
から噴射する冷媒流の運動量と、蒸発器30からエジェ
クタ40に吸引される冷媒流の運動量との和が保存され
るように混合するので、混合部42においても冷媒の静
圧が上昇する。一方、ディフューザ43においては、通
路断面積を徐々に拡大することにより、冷媒の動圧を静
圧に変換するので、エジェクタ40においては、混合部
42及びディフューザ43の両者にて冷媒圧力を昇圧す
る。そこで、混合部42とディフューザ43とを総称し
て昇圧部と呼ぶ。
In the mixing section 42, the nozzle 41
Since the sum of the momentum of the refrigerant flow injected from the and the momentum of the refrigerant flow sucked from the evaporator 30 to the ejector 40 is stored, the static pressure of the refrigerant also rises in the mixing section 42. On the other hand, in the diffuser 43, the dynamic pressure of the refrigerant is converted into the static pressure by gradually increasing the passage cross-sectional area, so in the ejector 40, the refrigerant pressure is increased by both the mixing section 42 and the diffuser 43. . Therefore, the mixing section 42 and the diffuser 43 are generically called a boosting section.

【0023】また、図1中、気液分離器50はエジェク
タ40から流出した冷媒が流入するとともに、その流入
した冷媒を気相冷媒と液相冷媒とに分離して冷媒を蓄え
る気液分離手段であり、気液分離器50の気相冷媒流出
口は圧縮機10の吸引側に接続され、液相冷媒流出口は
蒸発器30側の流入側に接続される。
Further, in FIG. 1, the gas-liquid separator 50 receives the refrigerant flowing out of the ejector 40 and separates the inflowing refrigerant into a gas-phase refrigerant and a liquid-phase refrigerant to store the refrigerant therein. The gas-phase refrigerant outlet of the gas-liquid separator 50 is connected to the suction side of the compressor 10, and the liquid-phase refrigerant outlet is connected to the inflow side of the evaporator 30.

【0024】なお、図4はエジェクタサイクルの全体の
マクロ的作動を示すp−h線図であり、そのマクロ的作
動は周知のエジェクタサイクルと同じであるので、本実
施形態では、エジェクタサイクル全体のマクロ的作動の
説明は省略する。因みに、図4の●で示される符号は、
図1に示す●で示される符号位置における冷媒の状態を
示すものである。
FIG. 4 is a p-h diagram showing the macro operation of the ejector cycle as a whole. Since the macro operation is the same as that of the known ejector cycle, in the present embodiment, the ejector cycle as a whole is operated. The description of the macro operation is omitted. By the way, the symbol shown by ● in FIG.
It shows the state of the refrigerant at the symbol position shown by ● shown in FIG.

【0025】次に、本実施形態の特徴を述べる。Next, the features of this embodiment will be described.

【0026】蒸発器30では、液相冷媒が気相冷媒に変
化するので、冷媒出口33側における冷媒体積は、冷媒
入口32側における冷媒体積より大きくなる。このた
め、冷媒入口32と冷媒出口33とで冷媒の質量流量が
略一定と仮定したときに、冷媒入口32側と冷媒出口3
3側とで冷媒通路断面積が同じであると、冷媒入口32
側における冷媒流速が冷媒出口33における冷媒流速に
比べて大きく低下し、冷媒入口32側において冷媒とチ
ューブとの熱伝達率が大きく低下する。
In the evaporator 30, since the liquid-phase refrigerant is changed to the vapor-phase refrigerant, the refrigerant volume on the refrigerant outlet 33 side becomes larger than the refrigerant volume on the refrigerant inlet 32 side. Therefore, when it is assumed that the mass flow rate of the refrigerant between the refrigerant inlet 32 and the refrigerant outlet 33 is substantially constant, the refrigerant inlet 32 side and the refrigerant outlet 3
If the refrigerant passage cross-sectional area is the same on the 3rd side, the refrigerant inlet 32
The flow velocity of the refrigerant on the side of the coolant is significantly lower than the flow velocity of the refrigerant on the side of the coolant outlet 33, and the heat transfer coefficient between the coolant and the tube is significantly reduced on the side of the coolant inlet 32.

【0027】これに対して、本実施形態では、冷媒通路
31aのうち冷媒入口32側における総冷媒通路断面積
が、冷媒出口33側における総冷媒通路断面積より小さ
くなるように構成されているので、冷媒入口32側にお
ける冷媒流速が大きく低下することを防止でき、冷媒入
口32側において冷媒とチューブとの熱伝達率が大きく
低下してしまうことを防止できる。したがって、蒸発器
30の能力を十分に発揮させることができる。
On the other hand, in this embodiment, the total refrigerant passage sectional area on the refrigerant inlet 32 side of the refrigerant passage 31a is smaller than the total refrigerant passage sectional area on the refrigerant outlet 33 side. It is possible to prevent the refrigerant flow velocity on the refrigerant inlet 32 side from being greatly reduced, and to prevent the heat transfer coefficient between the refrigerant and the tube from being greatly reduced on the refrigerant inlet 32 side. Therefore, the capacity of the evaporator 30 can be fully exerted.

【0028】なお、温度式膨張弁等の減圧手段により等
エンタルピー的に冷媒を減圧する蒸気圧縮式冷凍機(以
下、膨張弁サイクルと呼ぶ。)用の蒸発器においても、
エジェクタサイクルと同様に、冷媒入口側において熱伝
達率が低下するものの、膨脹弁サイクルでは、膨張弁に
て減圧された気液二相状態の冷媒が蒸発器に流れ込み、
かつ、その流れ込む冷媒の約80%が気相冷媒であり、
残り約20%が液相冷媒であるので、仮に、膨脹弁サイ
クル用の蒸発器を、本実施形態と同様に、冷媒入口側に
おける総冷媒通路断面積が、冷媒出口側における総冷媒
通路断面積より小さくなるように構成しても、開発コス
トに見合う十分な効果を得ることができない。
The evaporator for a vapor compression refrigerator (hereinafter referred to as an expansion valve cycle), which depressurizes the refrigerant isosterically by a pressure reducing means such as a temperature type expansion valve, is also applicable.
Similar to the ejector cycle, although the heat transfer coefficient decreases on the refrigerant inlet side, in the expansion valve cycle, the refrigerant in the gas-liquid two-phase state depressurized by the expansion valve flows into the evaporator,
Moreover, about 80% of the flowing refrigerant is a vapor phase refrigerant,
Since the remaining about 20% is the liquid-phase refrigerant, the total refrigerant passage cross-sectional area on the refrigerant inlet side is the same as that of the evaporator for the expansion valve cycle. Even if it is configured to be smaller, a sufficient effect commensurate with the development cost cannot be obtained.

【0029】これに対して、エジェクタサイクルでは、
ほぼ液相冷媒のみが蒸発器30に流入するので、膨脹弁
サイクルに比べて大きな効果、すなわち開発コストに見
合う十分な効果を得ることができる。
On the other hand, in the ejector cycle,
Since almost only the liquid-phase refrigerant flows into the evaporator 30, it is possible to obtain a large effect as compared with the expansion valve cycle, that is, a sufficient effect commensurate with the development cost.

【0030】ところで、圧縮機10内を潤滑する冷凍機
油は、冷媒に混合されて圧縮機10に供給されるので、
蒸発器30において冷媒流速が低いと、冷凍機油がチュ
ーブ31の内壁に付着してしまい、十分な量の冷凍機油
を圧縮機10に戻すことができず、圧縮機10が焼き付
く等の不具合が発生するおそれがある。
By the way, the refrigerating machine oil that lubricates the interior of the compressor 10 is mixed with the refrigerant and supplied to the compressor 10.
When the flow velocity of the refrigerant in the evaporator 30 is low, the refrigerating machine oil adheres to the inner wall of the tube 31, so that a sufficient amount of the refrigerating machine oil cannot be returned to the compressor 10, causing a problem such as seizure of the compressor 10. May occur.

【0031】これに対して、本実施形態では、冷媒通路
31aのうち冷媒入口32側における総冷媒通路断面積
を小さくして冷媒流速が低下することを防止しているの
で、冷凍機油がチューブ31の内壁に付着してしまうこ
とを防止できる。
On the other hand, in this embodiment, the total refrigerant passage cross-sectional area on the refrigerant inlet 32 side of the refrigerant passage 31a is made small to prevent the refrigerant flow velocity from decreasing, so that the refrigerating machine oil is cooled by the tube 31. Can be prevented from adhering to the inner wall of the.

【0032】延いては、十分な量の冷凍機油を圧縮機1
0に戻すことができるので、圧縮機10が焼き付く等の
不具合が発生することを未然に防止しつつ、内壁に付着
した冷凍機油により熱伝達率が低下することを防止でき
る。
In addition, a sufficient amount of refrigerating machine oil is supplied to the compressor 1
Since it can be returned to 0, it is possible to prevent a problem such as seizure of the compressor 10 from occurring and prevent the heat transfer coefficient from being lowered by the refrigerating machine oil adhering to the inner wall.

【0033】さらに、本実施形態では、チューブ31の
内壁に撥油膜を設けているので、冷凍機油がチューブ3
1の内壁に付着してしまうことを確実に防止できる。
Further, in this embodiment, since the oil repellent film is provided on the inner wall of the tube 31, the refrigerating machine oil is used as the tube 3
It can be surely prevented from adhering to the inner wall of 1.

【0034】(第2実施形態)本実施形態は、図5に示
すように、入口側ヘッダタンク34に連通するチューブ
31の本数と、出口側ヘッダタンク35に連通するチュ
ーブ31の本数とを同じとした状態で、冷媒入口32側
におけるチューブ31の通路断面積を、冷媒出口33側
における通路断面積より小さくすることにより、冷媒通
路31aのうち冷媒入口32側における総冷媒通路断面
積が、冷媒出口33側における総冷媒通路断面積より小
さくなるように構成したものである。
(Second Embodiment) In this embodiment, as shown in FIG. 5, the number of tubes 31 communicating with the inlet header tank 34 is the same as the number of tubes 31 communicating with the outlet header tank 35. In this state, by making the passage sectional area of the tube 31 on the refrigerant inlet 32 side smaller than the passage sectional area on the refrigerant outlet 33 side, the total refrigerant passage sectional area of the refrigerant passage 31a on the refrigerant inlet 32 side becomes It is configured to be smaller than the total refrigerant passage cross-sectional area on the outlet 33 side.

【0035】これにより、第1実施形態と同様に、蒸発
器30の能力をい十分に発揮させつつ、十分な量の冷凍
機油を圧縮機10に戻すことができる。
As a result, like the first embodiment, a sufficient amount of refrigerating machine oil can be returned to the compressor 10 while the capacity of the evaporator 30 is fully exerted.

【0036】(その他の実施形態)上述の実施形態で
は、本発明に係るエジェクタを用いた蒸気圧縮式冷凍機
を車両用空調装置に適用したが、本発明の適用はこれに
限定されるものでない。
(Other Embodiments) In the above-described embodiment, the vapor compression refrigerator using the ejector according to the present invention is applied to a vehicle air conditioner, but the application of the present invention is not limited to this. .

【0037】また、上述の実施形態では、チューブ31
を銅製としたが、本発明はこれに限定されるものではな
く、例えばアルミニウム合金製としてもよい。
Further, in the above embodiment, the tube 31
However, the present invention is not limited to this, and may be made of, for example, an aluminum alloy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施形態に係るエジェクタサイクルの
模式図である。
FIG. 1 is a schematic diagram of an ejector cycle according to an embodiment of the present invention.

【図2】(a)は本発明の第1実施形態に係るエジェク
タサイクルに適用される蒸発器の斜視図であり、(b)
は本発明の第1実施形態に係るエジェクタサイクルに適
用される蒸発器の冷媒流れを示す模式図である。
FIG. 2A is a perspective view of an evaporator applied to the ejector cycle according to the first embodiment of the present invention, and FIG.
FIG. 3 is a schematic diagram showing a refrigerant flow of an evaporator applied to the ejector cycle according to the first embodiment of the present invention.

【図3】本発明の実施形態に係るエジェクの模式図であ
る。
FIG. 3 is a schematic diagram of an eject according to an embodiment of the present invention.

【図4】p−h線図である。FIG. 4 is a p-h diagram.

【図5】本発明の第2実施形態に係るエジェクタサイク
ルに適用される蒸発器の冷媒流れを示す模式図である。
FIG. 5 is a schematic diagram showing a refrigerant flow of an evaporator applied to an ejector cycle according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

30…蒸発器、31…チューブ、32…冷媒入口、33
…冷媒出口、34…入口側ヘッダタンク、35…出口側
ヘッダタンク、36…ヘッダタンク、37…フィン。
30 ... Evaporator, 31 ... Tube, 32 ... Refrigerant inlet, 33
... Refrigerant outlet, 34 ... Inlet side header tank, 35 ... Outlet side header tank, 36 ... Header tank, 37 ... Fins.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 冷媒を減圧膨張させながら膨張エネルギ
ーを圧力エネルギーに変換して圧縮機の吸入圧を上昇さ
せるエジェクタ(40)を有する蒸気圧縮式冷凍機に適
用される蒸発器であって、 冷媒入口(32)から冷媒出口(33)に至る冷媒通路
(31a)のうち、前記冷媒入口(32)側における総
冷媒通路断面積は、前記冷媒出口(33)側における総
冷媒通路断面積より小さいことを特徴とする蒸発器。
1. An evaporator applied to a vapor compression refrigerator having an ejector (40) for converting expansion energy into pressure energy while decompressing and expanding the refrigerant to increase suction pressure of the compressor, the refrigerant comprising: Of the refrigerant passages (31a) from the inlet (32) to the refrigerant outlet (33), the total refrigerant passage sectional area on the refrigerant inlet (32) side is smaller than the total refrigerant passage sectional area on the refrigerant outlet (33) side. An evaporator characterized by the following.
【請求項2】 前記冷媒通路(31a)を構成するチュ
ーブ(31)のうち、前記冷媒入口(32)側における
前記チューブ(31)の通路断面積は、前記冷媒出口
(33)側における通路断面積より小さいことを特徴と
する請求項1に記載の蒸発器。
2. The passage cross-sectional area of the tube (31) on the refrigerant inlet (32) side among the tubes (31) constituting the refrigerant passage (31a) has a passage cutoff on the refrigerant outlet (33) side. The evaporator according to claim 1, which is smaller than an area.
【請求項3】 前記冷媒通路(31a)を構成する複数
本のチューブ(31)のうち、前記冷媒入口(32)側
における前記チューブ(31)の本数は、前記冷媒出口
(33)側における前記チューブ(31)の本数より少
ないことを特徴とする請求項1に記載の蒸発器。
3. The number of the tubes (31) on the refrigerant inlet (32) side among the plurality of tubes (31) forming the refrigerant passage (31a) is the number on the refrigerant outlet (33) side. Evaporator according to claim 1, characterized in that it has less than the number of tubes (31).
JP2002065460A 2002-03-11 2002-03-11 Evaporator Pending JP2003262434A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002065460A JP2003262434A (en) 2002-03-11 2002-03-11 Evaporator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002065460A JP2003262434A (en) 2002-03-11 2002-03-11 Evaporator

Publications (1)

Publication Number Publication Date
JP2003262434A true JP2003262434A (en) 2003-09-19

Family

ID=29197754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002065460A Pending JP2003262434A (en) 2002-03-11 2002-03-11 Evaporator

Country Status (1)

Country Link
JP (1) JP2003262434A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008002796A (en) * 2006-06-26 2008-01-10 Denso Corp Ejector type refrigeration cycle
CN1967098B (en) * 2005-11-18 2011-09-07 乐金电子(天津)电器有限公司 Distribution unit of combined air conditioner for use in room with air conditioner
JP2014501381A (en) * 2010-12-30 2014-01-20 ピーディーエックス テクノロジーズ エルエルシー Cooling system controlled by refrigerant quality in the evaporator
JPWO2016009565A1 (en) * 2014-07-18 2017-04-27 三菱電機株式会社 Refrigeration cycle equipment

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1967098B (en) * 2005-11-18 2011-09-07 乐金电子(天津)电器有限公司 Distribution unit of combined air conditioner for use in room with air conditioner
JP2008002796A (en) * 2006-06-26 2008-01-10 Denso Corp Ejector type refrigeration cycle
JP4591413B2 (en) * 2006-06-26 2010-12-01 株式会社デンソー Ejector refrigeration cycle
JP2014501381A (en) * 2010-12-30 2014-01-20 ピーディーエックス テクノロジーズ エルエルシー Cooling system controlled by refrigerant quality in the evaporator
JPWO2016009565A1 (en) * 2014-07-18 2017-04-27 三菱電機株式会社 Refrigeration cycle equipment

Similar Documents

Publication Publication Date Title
US7823401B2 (en) Refrigerant cycle device
JP4032875B2 (en) Ejector cycle
JP3966157B2 (en) Ejector
US8523091B2 (en) Ejector
CN1189711C (en) Injection circulation
US7694529B2 (en) Refrigerant cycle device with ejector
US7726150B2 (en) Ejector cycle device
JP2004012097A (en) Heat exchanger
US6877339B2 (en) Ejector cycle
JP2003329336A (en) Gas-liquid separator for steam-compression type refrigerating cycle and ejector cycle
JP4000966B2 (en) Vapor compression refrigerator
JP2003139098A (en) Ejector
US6829905B2 (en) Ejector cycle and arrangement structure thereof in vehicle
WO2013061501A1 (en) Centrifugal distributor for coolant, and refrigeration cycle device
JP2004239493A (en) Heat pump cycle
JP2002349977A (en) Heat pump cycle
US20030167793A1 (en) Vapor-compression type refrigerating machine and heat exchanger therefor
JP2003262434A (en) Evaporator
US6918266B2 (en) Ejector for vapor-compression refrigerant cycle
JP3603552B2 (en) Nozzle device
JP2003185275A (en) Ejector type decompression device
JP2003262432A5 (en) Vapor compression refrigerator
US6978637B2 (en) Ejector cycle with insulation of ejector
JP3941646B2 (en) Ejector type decompression device
US6862897B2 (en) Vapor-compression refrigerant cycle with ejector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040413

A977 Report on retrieval

Effective date: 20060925

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061010

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070220