JP2003262391A - Hot-water supply system using hydrogen occluded alloy - Google Patents

Hot-water supply system using hydrogen occluded alloy

Info

Publication number
JP2003262391A
JP2003262391A JP2002063880A JP2002063880A JP2003262391A JP 2003262391 A JP2003262391 A JP 2003262391A JP 2002063880 A JP2002063880 A JP 2002063880A JP 2002063880 A JP2002063880 A JP 2002063880A JP 2003262391 A JP2003262391 A JP 2003262391A
Authority
JP
Japan
Prior art keywords
hydrogen
heat
hydrogen storage
chamber
storage alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002063880A
Other languages
Japanese (ja)
Other versions
JP3836738B2 (en
Inventor
Tsutomu Maruhashi
勤 丸橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rinnai Corp
Original Assignee
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rinnai Corp filed Critical Rinnai Corp
Priority to JP2002063880A priority Critical patent/JP3836738B2/en
Publication of JP2003262391A publication Critical patent/JP2003262391A/en
Application granted granted Critical
Publication of JP3836738B2 publication Critical patent/JP3836738B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain COP of not less than 1.0 by clearing not less than 80% of obtained heat value of heated water in regard to the heat value of combustion gas in a hot-water supply system using combustion of fuel. <P>SOLUTION: If a cold output is obtained by a two-stage cycle, the output can be obtained only in two stages during one cycle (a first, a second, a third hydrogen driving). However, in the hot-water supply system 1 adopting a heat pump using hydrogen occluded alloy, the supply hot-water output can be obtained in all stages during one cycle. A low temperature heating medium is heated by using exhaust heat of a combustion device 4 used for heating high temperature heating medium. Therefore, the discharging speed of hydrogen at the second and third hydrogen driving can be hastened, and the practical COP of the supply hot-water output can be improved. Consequently, in the hot-water supply system 1 supplying hot-water by using the combustion of the fuel, the practical COP of not less than 1.0 can be obtained. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、水素吸蔵合金の水
素の吸蔵と放出とを繰り返し行わせて、水素の吸蔵時に
生じる発熱作用を利用して出湯のための熱を得る水素吸
蔵合金を利用した給湯器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention uses a hydrogen storage alloy that causes a hydrogen storage alloy to repeatedly store and release hydrogen to obtain heat for tapping by utilizing an exothermic action generated during hydrogen storage. Regarding the hot water heater.

【0002】[0002]

【従来の技術】燃料(例えばガス)の燃焼を利用した給
湯器が知られている。この給湯器は、燃料の燃焼を行う
バーナと、このバーナによって生じる燃焼熱を燃焼ガス
とともに排気口へ導く通路と、この通路内に配置され
て、通路内を流れる燃焼熱と出湯される湯(水)とを熱
交換する熱交換器とを備えるものである。
2. Description of the Related Art A water heater using combustion of fuel (eg, gas) is known. This water heater has a burner that burns fuel, a passage that guides the combustion heat generated by the burner together with the combustion gas to an exhaust port, and a combustion heat that flows inside the passage and hot water that is discharged from the passage. And a heat exchanger for exchanging heat with water).

【0003】一方、水素吸蔵合金を利用したシステムと
して、水素吸蔵合金の水素の吸蔵と放出とを繰り返し行
わせて、水素の放出時に生じる吸熱作用を利用して冷熱
を得るとともに、水素の吸蔵時に生じる発熱作用を利用
して温熱を得るヒートポンプサイクルが知られている。
この水素吸蔵合金を利用したヒートポンプサイクルの一
例を、冷凍2段サイクルを用いて説明する。
On the other hand, as a system using a hydrogen storage alloy, hydrogen is absorbed and released by the hydrogen storage alloy repeatedly to obtain cold heat by utilizing the endothermic action generated at the time of release of hydrogen, and at the time of storage of hydrogen. A heat pump cycle is known in which heat is generated by utilizing the generated heat generation effect.
An example of a heat pump cycle using this hydrogen storage alloy will be described using a two-stage refrigeration cycle.

【0004】冷凍2段サイクルは、同一平衡水素圧で水
素平衡温度が異なる高温度、中温度、低温度水素吸蔵合
金(以下、高、中、低温合金)のうちの高温合金を封入
する第1室、中温合金を封入する第2室、低温合金を封
入する第3室を備え、第1水素駆動→第2水素駆動→第
3水素駆動を繰り返し行うものであり、1サイクル中に
おいて第2、第3水素駆動の2段で冷熱出力を得るもの
である。
The refrigerating two-stage cycle is a first encapsulation of a high temperature alloy among high temperature, medium temperature and low temperature hydrogen storage alloys (hereinafter, high, medium and low temperature alloys) having the same equilibrium hydrogen pressure but different hydrogen equilibrium temperatures. A chamber, a second chamber for enclosing the medium temperature alloy, and a third chamber for enclosing the low temperature alloy, and is configured to repeatedly perform the first hydrogen drive → second hydrogen drive → third hydrogen drive. A cold heat output is obtained in the second stage driven by the third hydrogen.

【0005】なお、第1水素駆動は、第1室内の高温合
金と高温加熱用熱媒体とを熱交換して第1室内の高温合
金の吸蔵する水素を放出させるとともに、第3室内の低
温合金と水素吸蔵用熱媒体とを熱交換して第3室内の低
温合金に水素を吸蔵させるものである。また、第2水素
駆動は、第2室内の中温合金と水素吸蔵用熱媒体とを熱
交換して第2室内の中温合金に水素を吸蔵させるととも
に、第3室内の低温合金と低温加熱用熱媒体とを熱交換
して第3室内の低温合金の吸蔵する水素を放出させるも
のである。さらに、第3水素駆動は、第1室内の高温合
金と水素吸蔵用熱媒体とを熱交換して第1室内の高温合
金に水素を吸蔵させるとともに、第2室内の中温合金と
低温加熱用熱媒体とを熱交換して第2室内の中温合金の
吸蔵する水素を放出させるものである。
In the first hydrogen drive, the high temperature alloy in the first chamber and the heat medium for high temperature heating are heat-exchanged to release the hydrogen stored in the high temperature alloy in the first chamber and the low temperature alloy in the third chamber. And the heat storage medium for hydrogen storage are heat-exchanged to store hydrogen in the low temperature alloy in the third chamber. In the second hydrogen drive, the medium temperature alloy in the second chamber and the heat medium for hydrogen storage are heat-exchanged to store hydrogen in the medium temperature alloy in the second chamber, and the low temperature alloy in the third chamber and the heat for low temperature heating are stored. It exchanges heat with the medium to release hydrogen stored in the low temperature alloy in the third chamber. Further, the third hydrogen drive causes the high temperature alloy in the first chamber and the heat medium for hydrogen storage to exchange heat with each other so that the high temperature alloy in the first chamber stores hydrogen, and the medium temperature alloy in the second chamber and the heat for low temperature heating. It exchanges heat with the medium to release hydrogen stored in the medium temperature alloy in the second chamber.

【0006】[0006]

【発明が解決しようとする課題】近年、電気機器の分野
では「蒸気圧縮方式ヒートポンプ」として、炭酸ガスを
冷媒に用い、超臨界域で運転することで水の加熱に有利
な機器が開発され、家庭用の電気式給湯器としてCOP
3.0を可能とし、省エネ機器として市場に出回り始め
た。
In recent years, in the field of electric equipment, a "vapor compression heat pump" has been developed which is advantageous in heating water by using carbon dioxide as a refrigerant and operating in a supercritical region. COP as an electric water heater for home use
It enabled 3.0 and started to appear on the market as an energy-saving device.

【0007】しかし、上述した燃料の燃焼を利用した給
湯器では、燃焼ガスの熱量に対して水を加熱した温水の
取得熱量は、現状80%をクリアするのが主流である。
また、排出される排気ガスに含まれる熱を凝縮熱として
回収するコンデンス給湯器が登場し、温水の取得熱量が
95%に達している。しかし、燃料の燃焼熱を利用して
出湯する給湯器では、理論上においても温水の取得熱量
は100%(熱効率=COP1.0)が上限である。
However, in the above-described water heater utilizing combustion of fuel, the acquired heat quantity of hot water obtained by heating water with respect to the heat quantity of combustion gas is currently 80% or more.
In addition, a condensed water heater has appeared, which recovers the heat contained in the exhaust gas discharged as condensation heat, and the amount of heat obtained from hot water has reached 95%. However, in a water heater that discharges hot water using the heat of combustion of fuel, theoretically, the upper limit is 100% (heat efficiency = COP1.0) for the amount of heat obtained from hot water.

【0008】このため、燃料の燃焼を利用した給湯器で
は、ランニングコストが格安となるヒートポンプ式の採
用が不可欠と考えられる。ここで、水素吸蔵合金を利用
した上記冷凍2段サイクルでは、第1水素駆動→第2水
素駆動→第3水素駆動の1サイクル中において第1、第
2、第3水素駆動の3段で温熱出力を得ることができ
る。
For this reason, it is considered indispensable to adopt a heat pump type which makes the running cost low in a water heater utilizing combustion of fuel. Here, in the above-mentioned two-stage cycle of refrigeration using a hydrogen storage alloy, heat is generated in three stages of the first, second, and third hydrogen drives during one cycle of the first hydrogen drive → second hydrogen drive → third hydrogen drive. You can get the output.

【0009】この水素吸蔵合金を利用した冷凍2段サイ
クルでは、上述したように、冷熱出力は1サイクル中
(第1水素駆動→第2水素駆動→第3水素駆動の3段
中)において第2、第3水素駆動の2段で得られるのに
対し、温熱出力は1サイクル中(3段中)において第
1、第2、第3水素駆動の3段で得られるため、冷熱出
力よりも、温熱出力の方が高いCOPが期待できる。
In the two-stage refrigeration cycle using this hydrogen storage alloy, as described above, the cold heat output is the second during the first cycle (in the three stages of the first hydrogen drive → second hydrogen drive → third hydrogen drive). , While the third hydrogen-driven two stages are obtained, while the thermal output is obtained in the first, second, and third hydrogen-driven three stages in one cycle (three stages), it is better than the cold heat output. A COP with a higher thermal output can be expected.

【0010】しかし、現状では、第1水素駆動におい
て、第1室内の高温合金の吸蔵する水素を放出させる高
温加熱用熱媒体を、加熱手段(燃焼装置)によって加熱
しているが、第2水素駆動において第3室内の低温合金
の吸蔵する水素を放出させる低温加熱用熱媒体も、第3
水素駆動において第2室内の中温合金の吸蔵する水素を
放出させる低温加熱用熱媒体も、ともに室内や屋外等で
吸熱させるものであるため、第2、第3水素駆動では、
大きな圧力差が生じにくく、高いCOPを得ることがで
きなかった。
However, under the present circumstances, in the first hydrogen drive, the heating medium (combustion device) is used to heat the high temperature heating heat medium for releasing the hydrogen stored in the high temperature alloy in the first chamber. The heat medium for low temperature heating, which releases hydrogen stored in the low temperature alloy in the third chamber during driving,
Since the heat medium for low-temperature heating that releases hydrogen stored in the medium temperature alloy in the second chamber in hydrogen driving also absorbs heat both indoors and outdoors, in the second and third hydrogen driving,
A large pressure difference was hard to occur, and a high COP could not be obtained.

【0011】[0011]

【発明の目的】本発明は、上記の事情に鑑みてなされた
もので、その目的は燃料の燃焼熱を利用した給湯器にお
いて、COP1.0以上を得ることが可能な水素吸蔵合
金を利用した給湯器の提供にある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and an object thereof is to use a hydrogen storage alloy capable of obtaining a COP of 1.0 or more in a water heater utilizing combustion heat of fuel. In the provision of a water heater.

【0012】[0012]

【課題を解決するための手段】本発明の水素吸蔵合金を
利用した給湯器は、上記の目的を達成するために、次の
技術的手段を採用した。 (請求項1の手段)水素吸蔵合金を利用した給湯器は、
同一平衡水素圧で水素平衡温度が高い高温度水素吸蔵合
金を封入する第1室を備えるとともに、同一平衡水素圧
で水素平衡温度が低い低温度水素吸蔵合金を封入する第
2室を備え、前記第1室内の高温度水素吸蔵合金と高温
加熱用熱媒体とを熱交換して前記第1室内の高温度水素
吸蔵合金の吸蔵する水素を放出させるとともに、前記第
2室内の低温度水素吸蔵合金と水素吸蔵用熱媒体とを熱
交換して前記第2室内の低温度水素吸蔵合金に水素を吸
蔵させる第1水素駆動と、前記第1室内の高温度水素吸
蔵合金と水素吸蔵用熱媒体とを熱交換して前記第1室内
の高温度水素吸蔵合金に水素を吸蔵させるとともに、前
記第2室内の低温度水素吸蔵合金と低温加熱用熱媒体と
を熱交換して前記第2室内の低温度水素吸蔵合金の吸蔵
する水素を放出させる第2水素駆動とを交互に行い、前
記第1水素駆動時において得られる水素吸蔵用熱媒体の
熱、および前記第2水素駆動時において得られる水素吸
蔵用熱媒体の熱の双方の熱で出湯を行うものであって、
前記第1水素駆動時に用いられる高温加熱用熱媒体は、
燃料の燃焼を行う燃焼装置の発生する燃焼熱によって加
熱されるように設けられるとともに、前記第2水素駆動
時に用いられる低温加熱用熱媒体は、大気熱の他、前記
燃焼装置の発生した燃焼熱のうち、高温加熱用熱媒体を
加熱した後の排熱を利用して加熱されるように設けられ
ることを特徴としている。
The water heater using the hydrogen storage alloy of the present invention employs the following technical means in order to achieve the above object. (Means of claim 1) A water heater using a hydrogen storage alloy,
A first chamber enclosing a high temperature hydrogen storage alloy having a high hydrogen equilibrium temperature at the same equilibrium hydrogen pressure, and a second chamber enclosing a low temperature hydrogen storage alloy having a low hydrogen equilibrium temperature at the same equilibrium hydrogen pressure; The high temperature hydrogen storage alloy in the first chamber and the heat medium for high temperature heating are heat-exchanged to release the hydrogen stored in the high temperature hydrogen storage alloy in the first chamber and the low temperature hydrogen storage alloy in the second chamber. A first hydrogen drive for exchanging heat between the heat storage medium and the heat storage medium for hydrogen storage to store hydrogen in the low temperature hydrogen storage alloy in the second chamber; and a high temperature hydrogen storage alloy and the heat storage medium for hydrogen storage in the first chamber. Of the low temperature hydrogen storage alloy in the second chamber and the heat medium for low temperature heating to exchange the low temperature hydrogen storage alloy in the second chamber with the low temperature hydrogen storage alloy in the second chamber. Temperature Releases hydrogen stored in the hydrogen storage alloy. The second hydrogen drive is alternately performed, and the heat of the hydrogen storage heat medium obtained during the first hydrogen drive and the heat of the hydrogen storage heat medium obtained during the second hydrogen drive are both used. Is for tapping,
The heating medium for high temperature heating used when driving the first hydrogen is
The low-temperature heating heat medium that is provided so as to be heated by the combustion heat generated by the combustion device that burns the fuel and that is used when driving the second hydrogen is not only atmospheric heat but also the combustion heat generated by the combustion device. Among them, it is characterized in that it is provided so as to be heated by utilizing the exhaust heat after heating the heating medium for high temperature heating.

【0013】(請求項2の手段)水素吸蔵合金を利用し
た給湯器は、同一平衡水素圧で水素平衡温度が異なる高
温度、中温度、低温度水素吸蔵合金のうちの高温度水素
吸蔵合金を封入する第1室、中温度水素吸蔵合金を封入
する第2室、低温度水素吸蔵合金を封入する第3室を備
え、前記第1室内の高温度水素吸蔵合金と高温加熱用熱
媒体とを熱交換して前記第1室内の高温度水素吸蔵合金
の吸蔵する水素を放出させるとともに、前記第3室内の
低温度水素吸蔵合金と水素吸蔵用熱媒体とを熱交換して
前記第3室内の低温度水素吸蔵合金に水素を吸蔵させる
第1水素駆動と、前記第2室内の中温度水素吸蔵合金と
水素吸蔵用熱媒体とを熱交換して前記第2室内の中温度
水素吸蔵合金に水素を吸蔵させるとともに、前記第3室
内の低温度水素吸蔵合金と低温加熱用熱媒体とを熱交換
して前記第3室内の低温度水素吸蔵合金の吸蔵する水素
を放出させる第2水素駆動と、前記第1室内の高温度水
素吸蔵合金と水素吸蔵用熱媒体とを熱交換して前記第1
室内の高温度水素吸蔵合金に水素を吸蔵させるととも
に、前記第2室内の中温度水素吸蔵合金と低温加熱用熱
媒体とを熱交換して前記第2室内の中温度水素吸蔵合金
の吸蔵する水素を放出させる第3水素駆動とを繰り返し
行い、前記第1水素駆動時において得られる水素吸蔵用
熱媒体の熱、前記第2水素駆動時において得られる水素
吸蔵用熱媒体の熱、および前記第3水素駆動時において
得られる水素吸蔵用熱媒体の熱のそれぞれの熱で出湯を
行うものであって、前記第1水素駆動時に用いられる高
温加熱用熱媒体は、燃料の燃焼を行う燃焼装置の発生す
る燃焼熱によって加熱されるように設けられるととも
に、前記第2、第3水素駆動時に用いられる低温加熱用
熱媒体は、前記燃焼装置の発生した燃焼熱のうち、高温
加熱用熱媒体を加熱した後の排熱を利用して加熱される
ように設けられることを特徴としている。
(Means for Claim 2) A water heater using a hydrogen storage alloy is a high temperature hydrogen storage alloy among high temperature, medium temperature and low temperature hydrogen storage alloys having different hydrogen equilibrium temperatures at the same equilibrium hydrogen pressure. A first chamber for enclosing, a second chamber for enclosing an intermediate temperature hydrogen storage alloy, and a third chamber for enclosing a low temperature hydrogen storage alloy are provided, and the high temperature hydrogen storage alloy and the heat medium for high temperature heating in the first chamber are provided. While exchanging heat to release hydrogen stored in the high temperature hydrogen storage alloy in the first chamber, heat exchange between the low temperature hydrogen storage alloy in the third chamber and the heat medium for hydrogen storage is performed in the third chamber. The first hydrogen drive for storing hydrogen in the low temperature hydrogen storage alloy and the medium temperature hydrogen storage alloy for the second chamber and the heat medium for hydrogen storage heat exchange to heat the medium temperature hydrogen storage alloy for the second chamber. Of the low temperature hydrogen in the third chamber. Second hydrogen drive for exchanging heat between the alloy and the heat medium for low temperature heating to release hydrogen stored in the low temperature hydrogen storage alloy in the third chamber, and high temperature hydrogen storage alloy and hydrogen storage in the first chamber By exchanging heat with a heat medium, the first
The hydrogen stored in the high temperature hydrogen storage alloy in the room is exchanged with the medium temperature hydrogen storage alloy in the second chamber and the heat medium for low temperature heating, and the hydrogen stored in the medium temperature hydrogen storage alloy in the second chamber is stored. The third hydrogen drive for releasing hydrogen is repeatedly performed, and the heat of the hydrogen storage heat medium obtained during the first hydrogen drive, the heat of the hydrogen storage heat medium obtained during the second hydrogen drive, and the third Hot water is discharged by each heat of the hydrogen storage heat medium obtained during hydrogen driving, and the high temperature heating heat medium used during the first hydrogen driving is generated by a combustion device that burns fuel. The heat medium for low-temperature heating, which is provided so as to be heated by the heat of combustion that is used for driving the second and third hydrogen, heats the heat medium for high-temperature heating of the combustion heat generated by the combustion device. It is characterized in that it is provided so as to be heated by utilizing the waste heat after.

【0014】(請求項3の手段)請求項1または請求項
2に記載の水素吸蔵合金を利用した給湯器は、出湯され
る湯を、前記燃焼装置の発生した燃焼熱を利用して加熱
する追加熱ユニットを備えることを特徴としている。
(Means for Claim 3) In a water heater using the hydrogen storage alloy according to claim 1 or 2, the hot water discharged is heated by utilizing the combustion heat generated by the combustion device. It is characterized by having an additional heat unit.

【0015】(請求項4の手段)請求項3に記載の水素
吸蔵合金を利用した給湯器において、前記追加熱ユニッ
トは、前記燃焼装置の発生する燃焼熱によって加熱され
た高温加熱用熱媒体と、出湯される湯とを熱交換する液
−液熱交換器を備えることを特徴としている。
(Means of claim 4) In the water heater using the hydrogen storage alloy according to claim 3, the additional heat unit is a heat medium for high temperature heating which is heated by the combustion heat generated by the combustion device. A liquid-liquid heat exchanger for exchanging heat with the hot water discharged is provided.

【0016】(請求項5の手段)請求項3に記載の水素
吸蔵合金を利用した給湯器において、前記追加熱ユニッ
トは、前記燃焼装置における燃焼ダクト内に配置され
て、燃焼熱と、出湯される湯とを熱交換する気−液熱交
換器を備えることを特徴としている。
(Means of claim 5) In the water heater using the hydrogen storage alloy according to claim 3, the additional heat unit is arranged in a combustion duct of the combustion device to generate combustion heat and discharge hot water. It is characterized by including a gas-liquid heat exchanger for exchanging heat with hot water.

【0017】[0017]

【発明の作用および効果】(請求項1の作用および効
果)請求項1の手段を採用する水素吸蔵合金を利用した
給湯器は、水素吸蔵合金を利用した1段サイクル(第
1、第2水素駆動において、第2水素駆動で冷熱出力を
取り出すサイクル)であり、第1水素駆動→第2水素駆
動を繰り返し行う。この1段サイクルでは、冷熱出力は
1サイクル中(第1、第2水素駆動の2段中)において
第2水素駆動の1段のみで得られるのに対し、温熱出力
は1サイクル中(2段中)において第1、第2水素駆動
の2段で得られるため、冷熱出力よりも、温熱出力の方
が高いCOPが期待できる。つまり、冷熱出力の理想の
COPを1.0とすると、温熱出力(以下、出湯出力)
の理想のCOPが2.0となり、省エネ性に優れる。
(Operation and effect of the invention) (Operation and effect of claim 1) The water heater using the hydrogen storage alloy adopting the means of claim 1 is a one-stage cycle (first and second hydrogen) using the hydrogen storage alloy. In driving, a cycle for extracting cold heat output by the second hydrogen drive), and the first hydrogen drive → second hydrogen drive is repeatedly performed. In this one-stage cycle, the cold heat output is obtained by only one stage of the second hydrogen drive in one cycle (in the two stages of the first and second hydrogen drives), whereas the heat output is obtained in one cycle (two stages of the hydrogen drive). In the middle), COP having a higher thermal output than a cold output can be expected because it can be obtained by two stages of the first and second hydrogen drives. In other words, if the ideal COP of the cold heat output is 1.0, the warm heat output (hereinafter, hot water output)
Has an ideal COP of 2.0 and is excellent in energy saving.

【0018】また、請求項1の手段を採用する水素吸蔵
合金を利用した給湯器は、高温加熱用熱媒体を加熱する
ために用いられる燃焼装置を利用して、低温加熱用熱媒
体を加熱するように設けられている。このため、第2水
素駆動時に第2室内の低温度水素吸蔵合金を加熱する低
温加熱用熱媒体の温度が上昇し、第2室内の低温度水素
吸蔵合金の吸蔵する水素の放出速度を速めることがで
き、出湯出力の実用的なCOPをさらに高めることがで
きる。この時、低温加熱用熱媒体を加熱する熱は、高温
加熱用熱媒体を加熱した後の排熱を利用するため、高温
加熱用熱媒体の温度低下や、燃焼装置の能力上昇を招か
ない。つまり、高温加熱用熱媒体の温度や、燃焼装置の
能力に関係なく出湯出力のCOPを高めることができ
る。
The water heater using the hydrogen storage alloy adopting the means of claim 1 heats the heat medium for low temperature heating by using the combustion device used for heating the heat medium for high temperature heating. Is provided. Therefore, the temperature of the low-temperature heating heat medium for heating the low-temperature hydrogen storage alloy in the second chamber rises during the second hydrogen drive, and the release rate of hydrogen stored in the low-temperature hydrogen storage alloy in the second chamber is increased. Therefore, the practical COP of the hot water output can be further increased. At this time, the heat for heating the low-temperature heating heat medium uses the exhaust heat after heating the high-temperature heating heat medium, so that the temperature of the high-temperature heating heat medium is not lowered and the capability of the combustion device is not increased. That is, the COP of the hot water output can be increased regardless of the temperature of the heating medium for high temperature heating and the capacity of the combustion device.

【0019】このように、水素吸蔵合金を利用したヒー
トポンプを用い、且つ上述の2つの作用で出湯出力のC
OPを上昇させることにより、燃料の燃焼を利用して出
湯を行う給湯器において、実用のCOP1.0以上を得
ることが可能になる。
As described above, the heat pump utilizing the hydrogen storage alloy is used, and C of the hot water output is obtained by the above two functions.
By raising OP, it becomes possible to obtain a practical COP of 1.0 or more in a water heater that uses hot water to burn hot water.

【0020】(請求項2の作用および効果)請求項2の
手段を採用する水素吸蔵合金を利用した給湯器は、水素
吸蔵合金を利用した2段サイクル(第1、第2、第3水
素駆動において、第2、第3水素駆動で冷熱出力を取り
出すサイクル)であり、第1水素駆動→第2水素駆動→
第3水素駆動を繰り返し行う。この2段サイクルでは、
冷熱出力は1サイクル中(第1、第2、第3水素駆動の
3段中)において第2、第3水素駆動の2段で得られる
のに対し、温熱出力は1サイクル中(3段中)において
第1、第2、第3水素駆動の3段で得られるため、冷熱
出力よりも、温熱出力の方が高いCOPが期待できる。
つまり、冷熱出力の理想のCOPを2.0とすると、温
熱出力(以下、出湯出力)の理想のCOPが3.0とな
り、省エネ性に優れる。
(Operation and effect of claim 2) A water heater using a hydrogen storage alloy adopting the means of claim 2 is a two-stage cycle (first, second, third hydrogen drive) using a hydrogen storage alloy. In the second) and the third hydrogen drive to take out the cold heat output), the first hydrogen drive → the second hydrogen drive →
The third hydrogen drive is repeated. In this two-step cycle,
Cold output is obtained in 2 stages of 2nd and 3rd hydrogen drive during 1 cycle (in 3 stages of 1st, 2nd and 3rd hydrogen drive), while thermal output is obtained in 1 cycle (3 stages of 3 stage). In ()), COP having a higher thermal output than a cold output can be expected because it can be obtained in three stages of the first, second and third hydrogen drives.
That is, if the ideal COP of the cold heat output is 2.0, the ideal COP of the hot heat output (hereinafter, hot water output) is 3.0, which is excellent in energy saving.

【0021】また、請求項2の手段を採用する水素吸蔵
合金を利用した給湯器は、高温加熱用熱媒体を加熱する
ために用いられる燃焼装置を利用して、低温加熱用熱媒
体を加熱するように設けられている。このため、第2水
素駆動時に第3室内の低温度水素吸蔵合金を加熱する低
温加熱用熱媒体、および第3水素駆動時に第2室内の中
温度水素吸蔵合金を加熱する低温加熱用熱媒体の温度が
上昇する。これによって、第2水素駆動時に第3室内の
低温度水素吸蔵合金の吸蔵する水素の放出速度を速める
ことができるとともに、第3水素駆動時に第2室内の中
温度水素吸蔵合金の吸蔵する水素の放出速度を速めるこ
とができ、出湯出力の実用的なCOPをさらに高めるこ
とができる。この時、低温加熱用熱媒体を加熱する熱
は、高温加熱用熱媒体を加熱した後の排熱を利用するた
め、高温加熱用熱媒体の温度低下や、燃焼装置の能力上
昇を招かない。つまり、高温加熱用熱媒体の温度や、燃
焼装置の能力に関係なく出湯出力のCOPを高めること
ができる。
The water heater using the hydrogen storage alloy adopting the means of claim 2 heats the heat medium for low temperature heating by using the combustion device used for heating the heat medium for high temperature heating. Is provided. Therefore, a low temperature heating heat medium that heats the low temperature hydrogen storage alloy in the third chamber when driving the second hydrogen and a low temperature heating heat medium that heats the medium temperature hydrogen storage alloy in the second chamber when driving the third hydrogen are used. The temperature rises. This makes it possible to increase the release rate of hydrogen stored in the low temperature hydrogen storage alloy in the third chamber during the second hydrogen drive, and to increase the hydrogen stored in the medium temperature hydrogen storage alloy in the second chamber during the third hydrogen drive. The discharge rate can be increased, and the practical COP of the hot water output can be further increased. At this time, the heat for heating the low-temperature heating heat medium uses the exhaust heat after heating the high-temperature heating heat medium, so that the temperature of the high-temperature heating heat medium is not lowered and the capability of the combustion device is not increased. That is, the COP of the hot water output can be increased regardless of the temperature of the heating medium for high temperature heating and the capacity of the combustion device.

【0022】このように、水素吸蔵合金を利用したヒー
トポンプを用い、且つ上述の2つの作用で出湯出力のC
OPを上昇させることにより、燃料の燃焼を利用して出
湯を行う給湯器において、実用的なCOP1.0以上を
得ることが可能になる。
As described above, the heat pump utilizing the hydrogen storage alloy is used, and C of the hot water output is obtained by the above-mentioned two actions.
By increasing OP, it becomes possible to obtain a practical COP of 1.0 or more in a water heater that uses fuel combustion to discharge hot water.

【0023】(請求項3の作用および効果)請求項3の
手段を採用する水素吸蔵合金を利用した給湯器は、出湯
される湯を燃焼装置の発生した燃焼熱を利用して加熱す
る追加熱ユニットを備えるため、水素吸蔵合金を利用し
た給湯器から出湯される湯の温度を上昇させることがで
きる。
(Operation and effect of claim 3) The water heater using the hydrogen storage alloy adopting the means of claim 3 is an additional heat for heating the hot water discharged by using the combustion heat generated by the combustion device. Since the unit is provided, the temperature of the hot water discharged from the water heater using the hydrogen storage alloy can be increased.

【0024】(請求項4の作用および効果)請求項4の
手段を採用する水素吸蔵合金を利用した給湯器は、追加
熱ユニットとして、燃焼装置の発生する燃焼熱によって
加熱された高温加熱用熱媒体と、出湯される湯とを熱交
換する液−液熱交換器を用いることで、出湯される湯の
温度を上昇させることが実現できる。
(Operation and effect of claim 4) The water heater using the hydrogen storage alloy adopting the means of claim 4 is, as an additional heat unit, a high temperature heating heat heated by the combustion heat generated by the combustion device. By using a liquid-liquid heat exchanger that exchanges heat between the medium and the hot water discharged, it is possible to raise the temperature of the hot water discharged.

【0025】(請求項5の作用および効果)請求項5の
手段を採用する水素吸蔵合金を利用した給湯器は、追加
熱ユニットとして、燃焼装置における燃焼ダクト内に配
置されて、燃焼熱と、出湯される湯とを熱交換する気−
液熱交換器を用いることで、出湯される湯の温度を上昇
させることが実現できる。
(Operation and effect of claim 5) The water heater using the hydrogen storage alloy adopting the means of claim 5 is disposed as an additional heat unit in the combustion duct of the combustion device to generate heat of combustion. Willingness to exchange heat with the hot water
By using the liquid heat exchanger, it is possible to raise the temperature of the hot water discharged.

【0026】[0026]

【発明の実施の形態】本発明の実施の形態を、2つの実
施例および変形例に基づき説明する。 〔第1実施例の構成〕この第1実施例は、サイクル内を
流れる熱媒体(高温加熱用熱媒体、低温加熱用熱媒体、
水素吸蔵用熱媒体)として、水に混入する沸点上昇剤と
してブライン(LLC)を用いた給湯器(水素吸蔵合金
を利用した給湯器)を示すものであり、第1実施例にお
ける水素吸蔵合金を利用した給湯器(以下、給湯器)を
図1〜図4を参照して説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described based on two examples and modifications. [Structure of First Embodiment] In the first embodiment, a heat medium flowing in a cycle (heat medium for high temperature heating, heat medium for low temperature heating,
As a heat medium for hydrogen storage, a water heater using brine (LLC) as a boiling point raising agent mixed in water (a water heater using a hydrogen storage alloy) is shown. The water heater used (hereinafter referred to as a water heater) will be described with reference to FIGS. 1 to 4.

【0027】(給湯器1の概略説明)本実施例の給湯器
1の概略構成を、図1を用いて説明する。給湯器1は、
水素吸蔵合金を用いた造湯ユニット2と、高温加熱用熱
媒体、低温加熱用熱媒体、水素吸蔵用熱媒体を切り替え
て造湯ユニット2へ供給する熱媒分配器3と、燃料(例
えば、ガス)の燃焼を行う燃焼装置4と、高温加熱用熱
媒体を所定の温度(例えば128℃)に加熱するための
高温加熱ユニット5と、低温加熱用熱媒体を所定の温度
(例えば20℃)に加熱するための低温加熱ユニット6
と、造湯ユニット2内で吸熱した水素吸蔵用熱媒体(例
えば42℃)によって出湯される水(湯)を加熱するた
めの出湯ユニット7と、この出湯ユニット7で加熱され
た湯をさらに加熱するための追加熱ユニット8とを備え
る。
(Schematic Description of Water Heater 1) The schematic configuration of the water heater 1 of this embodiment will be described with reference to FIG. The water heater 1
A hot water producing unit 2 using a hydrogen storage alloy, a heat medium for high temperature heating, a heat medium for low temperature heating, a heat medium distributor 3 for switching the heat medium for hydrogen storage to supply the hot water producing unit 2, and a fuel (for example, Gas), a combustion device 4, a high temperature heating unit 5 for heating the high temperature heating heat medium to a predetermined temperature (eg, 128 ° C.), and a low temperature heating heat medium to a predetermined temperature (eg, 20 ° C.) Low temperature heating unit 6 for heating
And a tapping unit 7 for heating water (hot water) tapped by a heat medium for hydrogen storage (for example, 42 ° C.) that has absorbed heat in the tapping unit 2, and the hot water heated by the tapping unit 7 is further heated. And an additional heating unit 8 for

【0028】(造湯ユニット2の説明)造湯ユニット2
は、冷熱出力であれば1サイクルで2度の出力が得られ
る水素吸蔵合金を利用した冷凍2段式サイクルで作動す
るものであり、図2に示すように、上段熱交換モジュー
ルN1 、中段熱交換モジュールN2 、下段熱交換モジュ
ールN3 からなり、図1では便宜上、3段のうちの1つ
のモジュールを示す。
(Description of Hot Water Making Unit 2) Hot Water Making Unit 2
Is a refrigeration two-stage cycle that uses a hydrogen storage alloy that can output two times in one cycle if it is a cold heat output, and as shown in FIG. 2, the upper heat exchange module N1 and the middle heat It consists of an exchange module N2 and a lower heat exchange module N3, and in FIG. 1, for convenience, one of the three stages is shown.

【0029】1つのモジュールは、複数のセルSとハウ
ジング9で構成される。セルSは、図3に示すように、
水素吸蔵合金が封入された第1室S1 、この第1室S1
内に水素通路S4 を介して連通し、水素吸蔵合金が封入
された第2室S2 、この第2室S2 内に水素通路S4 を
介して連通し、水素吸蔵合金が封入された第3室S3 を
備える。ハウジング9は、第1、第2、第3室S1 、S
2 、S3 のそれぞれに対して独立して熱媒体を流すため
の通路を形成する。
One module is composed of a plurality of cells S and a housing 9. The cell S is, as shown in FIG.
A first chamber S1 in which a hydrogen storage alloy is enclosed, this first chamber S1
A second chamber S2 in which the hydrogen storage alloy is sealed, and a second chamber S2 in which the hydrogen storage alloy is sealed, and a second chamber S3 in which the hydrogen storage alloy is sealed and which communicates in the second chamber S2 through the hydrogen passage S4. Equipped with. The housing 9 includes first, second and third chambers S1 and S.
2, Independently for each of S3 and S3, a passage for flowing a heat medium is formed.

【0030】水素吸蔵合金は、水素平衡圧力が異なる3
種を用いたものであり、第1室S1内には同一平衡水素
圧で水素平衡温度が最も高い高温度水素吸蔵合金(以
下、高温合金HM)の粉末を封入し、第2室S2 内には
中温度水素吸蔵合金(以下、中温合金MM)の粉末を封
入し、第3室S3 内には同一平衡水素圧で水素平衡温度
が最も低い低温度水素吸蔵合金(以下、低温合金LM)
の粉末を封入したものである。このことを図4のPT冷
凍サイクル線図を用いて説明すると、水素吸蔵合金の特
性が、相対的に高温側(図示左側)にあるのが高温合金
HM、低温側(図示右側)にあるのが低温合金LM、両
者の中間にあるのが中温合金MMである。
Hydrogen storage alloys have different hydrogen equilibrium pressures.
The seed is used, and a powder of a high temperature hydrogen storage alloy (hereinafter, high temperature alloy HM) having the highest hydrogen equilibrium temperature at the same equilibrium hydrogen pressure is enclosed in the first chamber S1, and the second chamber S2 is filled with the powder. Is a medium temperature hydrogen storage alloy (hereinafter referred to as medium temperature alloy MM) powder, and a low temperature hydrogen storage alloy (hereinafter referred to as low temperature alloy LM) having the lowest hydrogen equilibrium temperature at the same equilibrium hydrogen pressure in the third chamber S3.
The powder is encapsulated. This will be described with reference to the PT refrigeration cycle diagram of FIG. 4. The characteristics of the hydrogen storage alloy are relatively high temperature side (the left side in the drawing) and high temperature alloy HM and low temperature side (the right side in the drawing). Is the low temperature alloy LM, and the medium temperature alloy MM is between them.

【0031】(熱媒分配器3の説明)熱媒分配器3は、
熱媒分配器3による熱媒体の切替供給によって、図2に
示すように、造湯ユニット2の各モジュールを、第1室
S1 内の水素を強制的に第3室S3 内に移動させる第1
水素駆動αと、第3室S3 内に移動した水素を第2室S
2 に移動させる第2水素駆動βと、第2室S2 内に移動
した水素を第1室S1に移動させる第3水素駆動γとに
順次切り替えるものである。
(Description of Heat Medium Distributor 3) The heat medium distributor 3 is
As shown in FIG. 2, the heat medium switching supply of the heat medium distributor 3 causes each module of the hot water making unit 2 to forcibly move the hydrogen in the first chamber S1 into the third chamber S3.
The hydrogen drive α and the hydrogen that has moved into the third chamber S3 are transferred to the second chamber S3.
The second hydrogen drive β for moving to 2 and the third hydrogen drive γ for moving the hydrogen moved into the second chamber S2 to the first chamber S1 are sequentially switched.

【0032】第1水素駆動αでは、第1室S1 に高温加
熱用熱媒体が供給され、第2室S2に昇圧用熱媒体(熱
媒分配器3内において高温加熱用熱媒体から作った熱媒
体)が供給され、第3室S3 に水素吸蔵用熱媒体が供給
される。第2水素駆動βでは、第1室S1 に昇圧用熱媒
体が供給され、第2室S2 に水素吸蔵用熱媒体が供給さ
れ、第3室S3 に低温加熱用熱媒体が供給される。第3
水素駆動γでは、第1室S1 に水素吸蔵用熱媒体が供給
され、第2室S2に低温加熱用熱媒体が供給される。な
お、第3室S3 への熱媒体の温度は不問であり、例えば
第3室S3 に何も供給しないように設けても良い。
In the first hydrogen drive α, the heat medium for high temperature heating is supplied to the first chamber S1 and the heat medium for boosting pressure (heat generated from the heat medium for high temperature heating in the heat medium distributor 3) is supplied to the second chamber S2. Medium), and the hydrogen storage heat medium is supplied to the third chamber S3. In the second hydrogen drive β, the pressurizing heat medium is supplied to the first chamber S1, the hydrogen storage heat medium is supplied to the second chamber S2, and the low temperature heating heat medium is supplied to the third chamber S3. Third
In the hydrogen-driven γ, the hydrogen storage heat medium is supplied to the first chamber S1, and the low temperature heating heat medium is supplied to the second chamber S2. The temperature of the heat medium to the third chamber S3 does not matter, and it may be provided so that nothing is supplied to the third chamber S3.

【0033】つまり、熱媒分配器3により、第1室S1
には高温加熱用熱媒体→昇圧用熱媒体→水素吸蔵用熱媒
体が順次切替供給されるものであり、第2室S2 には昇
圧用熱媒体→水素吸蔵用熱媒体→低温加熱用熱媒体が順
次切替供給されるものであり、第3室S3 には水素吸蔵
用熱媒体→低温加熱用熱媒体→熱媒体不問が順次切替供
給されるものである。
That is, by the heat medium distributor 3, the first chamber S1
Is a heating medium for high temperature heating → a heating medium for boosting → a heating medium for hydrogen storage that is sequentially switched and supplied, and a heating medium for boosting → a hydrogen storage heat medium → a heating medium for low temperature heating is supplied to the second chamber S2. Are sequentially switched and supplied, and the hydrogen storage heat medium → low temperature heating heat medium → heat medium no matter is sequentially switched and supplied to the third chamber S3.

【0034】(給湯器1を構成する他のユニットの説
明)燃焼装置4は、燃料であるガスを燃焼して熱を発生
させ、発生した熱によって高温加熱用熱媒体を加熱し、
高温加熱用熱媒体を加熱した後の排熱で低温加熱用熱媒
体を加熱するものであり、ガスの燃焼を行うガスバーナ
11、このガスバーナ11へガスの供給を行うガス供給
手段12、ガスバーナ11へ燃焼用の空気を供給する燃
焼ファン13、ガスの燃焼で得られた燃焼熱を排気ガス
とともに排気口へ導く燃焼ダクト14等から構成され
る。そして、燃焼ダクト14の上流側(図1下側)には
燃焼熱によって高温加熱用熱媒体を加熱する高温加熱ユ
ニット5(気−液熱交換器)が配置され、その下流側
(図1上側)には高温加熱用熱媒体を加熱した後の排熱
を利用して低温加熱用熱媒体を加熱する低温加熱ユニッ
ト6(気−液熱交換器)が配置されている。
(Description of Other Units Constituting Hot Water Heater 1) The combustion device 4 burns gas as fuel to generate heat, and heats the heat medium for high temperature heating by the generated heat,
The heat medium for low temperature heating is heated by the exhaust heat after heating the heat medium for high temperature heating. The gas burner 11 burns gas, the gas supply means 12 for supplying gas to the gas burner 11, and the gas burner 11. It is composed of a combustion fan 13 that supplies combustion air, a combustion duct 14 that guides the combustion heat obtained by the combustion of gas to the exhaust port together with the exhaust gas, and the like. A high temperature heating unit 5 (gas-liquid heat exchanger) for heating the heat medium for high temperature heating by combustion heat is arranged on the upstream side (lower side in FIG. 1) of the combustion duct 14, and the downstream side (upper side in FIG. 1) thereof. ), A low-temperature heating unit 6 (gas-liquid heat exchanger) that heats the low-temperature heating heat medium by utilizing the exhaust heat after heating the high-temperature heating heat medium is arranged.

【0035】なお、高温加熱ユニット5と熱媒分配器3
とを接続する熱媒体回路21には、熱媒分配器3から高
温加熱ユニット5へ高温加熱用熱媒体を導き、高温加熱
ユニット5で加熱された高温加熱用熱媒体を再び熱媒分
配器3へ導く高温加熱用熱媒体ポンプP1 が配置されて
いる。また、低温加熱ユニット6と熱媒分配器3とを接
続する熱媒体回路22には、熱媒分配器3から低温加熱
ユニット6へ低温加熱用熱媒体を導き、低温加熱ユニッ
ト6で加熱された低温加熱用熱媒体を再び熱媒分配器3
へ導く低温加熱用熱媒体ポンプP2 が配置されている。
The high temperature heating unit 5 and the heat medium distributor 3
In the heat medium circuit 21 that connects with the heat medium distributor 3, the heat medium for high temperature heating is guided from the heat medium distributor 3 to the high temperature heating unit 5, and the heat medium for high temperature heating heated by the high temperature heating unit 5 is again supplied to the heat medium distributor 3 A heat medium pump P1 for heating at high temperature is arranged. Further, in the heat medium circuit 22 that connects the low temperature heating unit 6 and the heat medium distributor 3, the heat medium for low temperature heating is introduced from the heat medium distributor 3 to the low temperature heating unit 6 and heated by the low temperature heating unit 6. The heat medium for low temperature heating is again divided into the heat medium distributor 3
A heat medium pump P2 for low temperature heating that leads to

【0036】一方、出湯ユニット7は、水素吸蔵時に吸
熱して温度上昇した水素吸蔵用熱媒体によって、給水口
24から供給された水を加熱する液−液熱交換器であ
り、出湯ユニット7と熱媒分配器3とを接続する熱媒体
回路23には、熱媒分配器3から出湯ユニット7へ水素
吸蔵用熱媒体を導き、出湯ユニット7で水と熱交換され
て冷却された水素吸蔵用熱媒体を再び熱媒分配器3へ導
く水素吸蔵用熱媒体ポンプP3 が配置されている。
On the other hand, the hot water unit 7 is a liquid-liquid heat exchanger that heats the water supplied from the water supply port 24 by the heat medium for hydrogen occlusion which absorbs heat during hydrogen occlusion and rises in temperature. In the heat medium circuit 23 connecting to the heat medium distributor 3, a heat medium for hydrogen storage is introduced from the heat medium distributor 3 to the hot water unit 7, and is cooled by being heat-exchanged with water in the hot water unit 7. A hydrogen storage heat medium pump P3 for guiding the heat medium to the heat medium distributor 3 again is arranged.

【0037】追加熱ユニット8は、高温加熱ユニット5
に導かれる高温加熱用熱媒体によって、出湯ユニット7
を通過した湯を追加加熱する液−液熱交換器であり、追
加熱ユニット8を通過した湯は、出湯口25へ導かれ
る。
The additional heating unit 8 is the high temperature heating unit 5
By the heat medium for high temperature heating introduced to the
Is a liquid-liquid heat exchanger that additionally heats the hot water that has passed through, and the hot water that has passed through the additional heat unit 8 is guided to the hot water outlet 25.

【0038】(造湯ユニット2の作動説明)上記の給湯
器1における造湯ユニット2の作動を、図4のPT冷凍
サイクル線図を参照して説明する。なお、図4中の実線
で示すものが給湯器1において採用される冷凍サイクル
線図であり、図中破線で示すものは冷熱出力を得る場合
の冷凍サイクル線図(参考に示す線図)である。給湯器
1に運転開始指示が与えられると、図示しない制御装置
によって、熱媒分配器3、燃焼装置4、各熱媒体ポンプ
P1 、P2 、P3 が作動する。
(Description of Operation of Hot Water Making Unit 2) The operation of the hot water making unit 2 in the water heater 1 will be described with reference to the PT refrigeration cycle diagram of FIG. The solid line in FIG. 4 is the refrigeration cycle diagram used in the water heater 1, and the broken line in the figure is the refrigeration cycle diagram for obtaining the cold heat output (the diagram shown for reference). is there. When an operation start instruction is given to the water heater 1, the heat medium distributor 3, the combustion device 4, and the heat medium pumps P1, P2, P3 are operated by a control device (not shown).

【0039】すると、熱媒分配器3の作動により、第1
室S1 には高温加熱用熱媒体→昇圧用熱媒体→水素吸蔵
用熱媒体が順次切替供給され、第2室S2 には昇圧用熱
媒体→水素吸蔵用熱媒体→低温加熱用熱媒体が順次切替
供給され、第3室S3 には水素吸蔵用熱媒体→低温加熱
用熱媒体→熱媒体不問が順次切替供給される。この結
果、上段熱交換モジュールN1 が第1水素駆動α→第2
水素駆動β→第3水素駆動γを繰り返し、中段熱交換モ
ジュールN2 が第2水素駆動β→第3水素駆動γ→第1
水素駆動αを繰り返し、下段熱交換モジュールN3 が第
3水素駆動γ→第1水素駆動α→第2水素駆動βを繰り
返す。
Then, the operation of the heat medium distributor 3 causes the first
High-temperature heating heat medium → pressurizing heat medium → hydrogen storage heat medium is sequentially switched and supplied to the chamber S1, and boosting heat medium → hydrogen storage heat medium → low temperature heating heat medium is sequentially supplied to the second chamber S2. Switching supply is performed, and the hydrogen storage heat medium → low temperature heating heat medium → heat medium no matter is sequentially switched and supplied to the third chamber S3. As a result, the upper heat exchange module N1 is
Hydrogen driving β → third hydrogen driving γ is repeated, and the middle heat exchange module N2 is driven by the second hydrogen driving β → third hydrogen driving γ → first.
The hydrogen driving α is repeated, and the lower heat exchange module N3 repeats the third hydrogen driving γ → the first hydrogen driving α → the second hydrogen driving β.

【0040】第1水素駆動αでは、第1室S1 が高温加
熱用熱媒体(図4の)に触れ、第3室S3 が水素吸蔵
用熱媒体(図4の)に触れ、第2室S2 が昇圧用熱媒
体に触れる。第1室S1 が高温加熱用熱媒体(図4の
)に触れることにより、第1室S1の内圧が上昇し、
高温合金HMが水素を放出する。第3室S3 が水素吸蔵
用熱媒体(図4の)に触れることにより、第3室S3
の内圧が下がり、低温合金LMが水素を吸蔵する。この
時、低温合金LMが水素を吸蔵する際に発生する熱を水
素吸蔵用熱媒体が吸熱し、水素吸蔵用熱媒体の温度が上
昇する。なお、第2室S2 が昇圧用熱媒体に触れること
により、第2室S2 の内圧が中温合金MMが水素を吸蔵
しない圧力まで上昇する。
In the first hydrogen drive α, the first chamber S1 is in contact with the heat medium for high temperature heating (in FIG. 4), the third chamber S3 is in contact with the heat medium for hydrogen storage (in FIG. 4), and the second chamber S2 is in contact. Touches the heat medium for boosting. When the first chamber S1 touches the heat medium for high temperature heating (shown in FIG. 4), the internal pressure of the first chamber S1 rises,
The high temperature alloy HM releases hydrogen. When the third chamber S3 touches the hydrogen storage heat medium (in FIG. 4), the third chamber S3
The internal pressure of the alloy decreases, and the low temperature alloy LM absorbs hydrogen. At this time, the hydrogen storage heat medium absorbs heat generated when the low temperature alloy LM stores hydrogen, and the temperature of the hydrogen storage heat medium rises. When the second chamber S2 comes into contact with the pressurizing heat medium, the internal pressure of the second chamber S2 rises to a pressure at which the intermediate temperature alloy MM does not store hydrogen.

【0041】第2水素駆動βでは、第3室S3 が低温加
熱用熱媒体(図4の)に触れる。第2室S2 が水素吸
蔵用熱媒体(図4の)に触れ、第1室S1 が昇圧用熱
媒体に触れる。第3室S3 が低温加熱用熱媒体(図4の
)に触れることにより、第3室S3の内圧が上昇し、
低温合金LMが水素を放出する。第2室S2 が水素吸蔵
用熱媒体(図4の)に触れることにより、第2室S2
の内圧が下がり、中温合金MMが水素を吸蔵する。この
時、中温合金MMが水素を吸蔵する際に発生する熱を水
素吸蔵用熱媒体が吸熱し、水素吸蔵用熱媒体の温度が上
昇する。なお、第1室S1 が昇圧用熱媒体に触れること
により、第1室S1 の内圧が高温合金HMが水素を吸蔵
しない圧力まで上昇する。
In the second hydrogen drive β, the third chamber S3 comes into contact with the heat medium for low temperature heating (in FIG. 4). The second chamber S2 contacts the hydrogen storage heat medium (in FIG. 4), and the first chamber S1 contacts the boosting heat medium. When the third chamber S3 touches the heat medium for low temperature heating (shown in FIG. 4), the internal pressure of the third chamber S3 rises,
The low temperature alloy LM releases hydrogen. When the second chamber S2 comes into contact with the heat medium for hydrogen storage (see FIG. 4), the second chamber S2
The internal pressure of is decreased, and the medium temperature alloy MM absorbs hydrogen. At this time, the hydrogen storage heat medium absorbs heat generated when the medium temperature alloy MM stores hydrogen, and the temperature of the hydrogen storage heat medium rises. When the first chamber S1 comes into contact with the heating medium for pressurization, the internal pressure of the first chamber S1 rises to a pressure at which the high temperature alloy HM does not store hydrogen.

【0042】第3水素駆動γでは、第2室S2 が低温加
熱用熱媒体(図4の)に触れ、第1室S1 が水素吸蔵
用熱媒体(図4の)に触れ、第3室S3 が不問水に触
れる。第2室S2 が低温加熱用熱媒体(図4の)に触
れることにより、第2室S2の内圧が上昇し、中温合金
MMが水素を放出する。第1室S1 が水素吸蔵用熱媒体
(図4の)に触れることにより、第1室S1の内圧が
下がり、高温合金HMが水素を吸蔵する。この時、高温
合金HMが水素を吸蔵する際に発生する熱を水素吸蔵用
熱媒体が吸熱し、水素吸蔵用熱媒体の温度が上昇する。
In the third hydrogen drive γ, the second chamber S2 touches the low temperature heating heat medium (in FIG. 4), the first chamber S1 touches the hydrogen storage heat medium (in FIG. 4) and the third chamber S3. Touches the water. When the second chamber S2 comes into contact with the heating medium for low temperature heating (shown in FIG. 4), the internal pressure of the second chamber S2 rises and the medium temperature alloy MM releases hydrogen. When the first chamber S1 comes into contact with the hydrogen storage heat medium (shown in FIG. 4), the internal pressure of the first chamber S1 drops, and the high temperature alloy HM stores hydrogen. At this time, the hydrogen storage heat medium absorbs heat generated when the high temperature alloy HM stores hydrogen, and the temperature of the hydrogen storage heat medium rises.

【0043】(給湯器1の作動説明)上述したように、
第1、第2、第3水素駆動α、β、γの各行程毎におい
て、水素吸蔵用熱媒体が吸熱し、水素吸蔵用熱媒体の温
度が上昇する。このように温度上昇した水素吸蔵用熱媒
体は、出湯ユニット7において水と熱交換され、出湯さ
れる水を例えば42℃ほどに加熱する。出湯ユニット7
で加熱された湯は、追加熱ユニット8において、高温加
熱ユニット5へ導かれる高温加熱用熱媒体と熱交換さ
れ、出湯される湯を、例えば造湯ユニット2の能力を上
回る温度以上(例えば42℃以上)に上昇させることが
できる。
(Explanation of Operation of Water Heater 1) As described above,
The heat medium for hydrogen storage absorbs heat and the temperature of the heat medium for hydrogen storage rises in each step of the first, second, and third hydrogen driving α, β, γ. The hydrogen storage heat medium whose temperature has risen in this manner is heat-exchanged with water in the hot water unit 7 to heat the hot water to be heated to, for example, about 42 ° C. Hot water unit 7
In the additional heating unit 8, the hot water heated in (1) is heat-exchanged with the heat medium for high-temperature heating introduced to the high-temperature heating unit 5, and the hot water discharged is, for example, higher than the temperature of the hot-melting unit 2 (for example, 42 or higher). ℃ or more).

【0044】〔実施例の効果〕上記実施例で示した給湯
器1は、冷凍2段サイクルのヒートポンプを採用してい
るため、1サイクル中(第1、第2、第3水素駆動α、
β、γ)の全ての段において出湯出力を得ることができ
る。つまり、冷凍2段サイクルのヒートポンプにおいて
冷熱出力を得るのであれば、1サイクル中に2段しか出
力が得られないが、本実施例では、1サイクル中の全3
段において出湯のための出力が得られる。このため、冷
凍2段サイクルの冷熱出力の実用COPを理論COP
2.0の半分の1.0とすると、出湯出力の実用COP
が理論COP3.0の半分の1.5となり、省エネ性に
優れる。
[Effects of Embodiment] Since the water heater 1 shown in the above embodiment employs the heat pump of the two-stage refrigeration cycle, one cycle (first, second, third hydrogen drive α,
The tap water output can be obtained in all stages of β, γ). That is, if cold heat output is obtained in the heat pump of the two-stage refrigeration cycle, only two stages can be obtained in one cycle, but in the present embodiment, all three outputs in one cycle.
The output for tapping is obtained in the stage. Therefore, the practical COP of the cold heat output of the two-stage refrigeration cycle is the theoretical COP.
A value of 1.0, which is half of 2.0, is a practical COP for hot water output.
Is 1.5, which is half of the theoretical COP of 3.0, and is excellent in energy saving.

【0045】また、高温加熱用熱媒体を加熱するために
用いられる燃焼装置4を利用して、低温加熱用熱媒体を
加熱するように設けられている。このため、第2水素駆
動β時に第3室S3 内の低温合金LMを加熱する低温加
熱用熱媒体、および第3水素駆動γ時に第2室S2 内の
中温合金MMを加熱する低温加熱用熱媒体の温度が上昇
する。これによって、第2水素駆動β時に第3室S3 内
の低温合金LMの吸蔵する水素の放出速度を速めること
ができるとともに、第3水素駆動γ時に第2室S2 内の
中温合金MMの吸蔵する水素の放出速度を速めることが
でき、出湯出力のCOPをさらに高めることができる。
この時、低温加熱用熱媒体を加熱する熱は、高温加熱用
熱媒体を加熱した後の排熱を利用するため、高温加熱用
熱媒体の温度低下や、燃焼装置4の能力上昇を招かな
い。つまり、高温加熱用熱媒体の温度や、燃焼装置4の
能力に関係なく出湯出力のCOPを高めることができ
る。
Further, the combustion device 4 used for heating the heating medium for high temperature heating is used to heat the heating medium for low temperature heating. Therefore, the heat medium for low temperature heating that heats the low temperature alloy LM in the third chamber S3 during the second hydrogen drive β, and the heat medium for low temperature heating that heats the medium temperature alloy MM in the second chamber S2 during the third hydrogen drive γ. The temperature of the medium rises. This makes it possible to accelerate the release rate of hydrogen stored in the low temperature alloy LM in the third chamber S3 during the second hydrogen drive β, and to store the medium temperature alloy MM in the second chamber S2 during the third hydrogen drive γ. The release rate of hydrogen can be increased, and the COP of the hot water output can be further increased.
At this time, since the heat for heating the low-temperature heating heat medium uses the exhaust heat after heating the high-temperature heating heat medium, the temperature of the high-temperature heating heat medium is not lowered and the capacity of the combustion device 4 is not increased. . That is, the COP of the hot water output can be increased regardless of the temperature of the heating medium for high temperature heating and the capacity of the combustion device 4.

【0046】このように、水素吸蔵合金を利用したヒー
トポンプを用い、且つ上述の2つの作用で出湯出力のC
OPを上昇させることにより、燃料の燃焼を利用して出
湯を行う給湯器1において、実用COP1.0以上を得
ることが可能になる。
As described above, the heat pump utilizing the hydrogen storage alloy is used, and C of the hot water output is obtained by the above-mentioned two actions.
By raising OP, it becomes possible to obtain a practical COP of 1.0 or more in the water heater 1 that uses the combustion of fuel to discharge hot water.

【0047】上記構成の給湯器1において、出力6号
(9000kcal/h)における実用的なCOPの算
出結果を、次の表1に示す。
Table 1 below shows practical COP calculation results for the water heater 1 having the above-described structure at the output No. 6 (9000 kcal / h).

【表1】 上記の表1では、ガスの燃焼によって得られる熱効率を
80%、造湯ユニット2によるロス分を40%とし、1
サイクル中に3回(第1、第2、第3水素駆動α、β、
γの3回)の出湯出力(水素吸蔵による発熱出力)を得
るものとして計算している。なお、便宜上、出湯ユニッ
ト7および追加熱ユニット8での熱交換のロスはないも
のとして扱った。
[Table 1] In Table 1 above, the thermal efficiency obtained by the combustion of gas is 80%, and the loss due to the hot water making unit 2 is 40%.
3 times during the cycle (first, second, third hydrogen driven α, β,
Calculations are made assuming that the tapping output (exothermic output due to hydrogen storage) of γ three times) is obtained. For the sake of convenience, it was assumed that there was no loss of heat exchange in the hot water discharge unit 7 and the additional heat unit 8.

【0048】この表1に示されるように、給湯能力とし
て6号(1号は、1リットルの水を1分間に25°上昇
させる能力)を得る場合(追加熱ユニット8による追加
熱無しの場合)、入力エネルギーに対してCOP1.7
1を実現できる。
As shown in Table 1, when the No. 6 hot water supply capacity (No. 1 is the ability to raise 1 liter of water by 25 ° per minute) is obtained (when no additional heat is added by the additional heating unit 8). ), COP 1.7 for input energy
1 can be realized.

【0049】また、追加熱ユニット8を併用して多めの
湯を得る場合、あるいは高めの湯を得る場合は、追加熱
ユニット8に流れる高温加熱用熱媒体の獲得済COPが
0.8であるため、造湯ユニット2に対して追加熱ユニ
ット8の負荷が大きくなるに連れてCOPが下がる。そ
して、造湯ユニット2の給湯能力6号に対して、追加熱
ユニット8の給湯能力が約9号となり、トータル給湯能
力が約15号に達するまでは、COP1.0以上を確保
できる。
When a large amount of hot water is obtained by using the additional heating unit 8 together or a high amount of hot water is obtained, the obtained COP of the heating medium for high temperature heating flowing in the additional heating unit 8 is 0.8. Therefore, the COP decreases as the load of the additional heat unit 8 increases with respect to the hot water making unit 2. COP 1.0 or more can be secured until the hot water supply capacity of No. 6 of the hot water producing unit 2 becomes about 9, and the total hot water supply capacity of No. 15 reaches about 15.

【0050】〔第2実施例〕図5を参照して第2実施例
を説明する。なお、第1実施例と同一符号は同一機能物
を示すものである。この第2実施例は、上記第1実施例
に対して2つの変更を行ったものである。1つめの変更
点を説明する。上記の第1実施例では、熱媒体として水
の沸点を上昇させたブライン混合液を使用した例を示し
た。これに対して、この第2実施例は、熱媒体として水
を使ったものである。造湯ユニット2が2段の場合や3
段の場合でも、高温、中温、低温合金の組み合わせ、他
の条件で可能となる。このように熱媒体として水を使う
ことにより、水を直接的に水素吸蔵用熱媒体として使う
ことができるため、水素吸蔵用熱媒体として使われた水
を出湯するように設けたものである。
[Second Embodiment] A second embodiment will be described with reference to FIG. The same reference numerals as those in the first embodiment indicate the same functional objects. The second embodiment is a modification of the first embodiment described above. The first change will be described. In the above-mentioned first embodiment, the example in which the brine mixed liquid in which the boiling point of water is raised is used as the heat medium is shown. On the other hand, the second embodiment uses water as the heat medium. When the hot water making unit 2 has 2 stages or 3
Even in the case of a stage, it is possible under a combination of high temperature, medium temperature, low temperature alloy and other conditions. By using water as the heat medium in this manner, the water can be directly used as the heat medium for storing hydrogen, and thus the water used as the heat medium for storing hydrogen is provided so as to be discharged.

【0051】2つめの変更点を説明する。上記の第1実
施例の追加熱ユニット8は、造湯ユニット2で熱交換さ
れた高温加熱用熱媒体と、出湯される湯とを熱交換する
液−液熱交換器を例に示した。これに対して、この第2
実施例の追加熱ユニット8は、燃焼装置4の燃焼ダクト
14内に配置され、燃焼ダクト14内を流れる燃焼熱に
よって、出湯される湯を加熱する気−液熱交換器を用い
たものである。この実施例の追加熱ユニット8(気−液
熱交換器)は、燃焼ダクト14内において高温加熱ユニ
ット5と低温加熱ユニット6の間に配置するように設け
られている。
The second change will be described. The additional heat unit 8 of the first embodiment described above is an example of a liquid-liquid heat exchanger that exchanges heat between the high-temperature heating heat medium that has undergone heat exchange in the hot water producing unit 2 and the hot water discharged. In contrast, this second
The additional heat unit 8 of the embodiment is arranged in the combustion duct 14 of the combustion device 4 and uses a gas-liquid heat exchanger that heats the hot water discharged by the combustion heat flowing in the combustion duct 14. . The additional heat unit 8 (gas-liquid heat exchanger) of this embodiment is provided in the combustion duct 14 so as to be arranged between the high temperature heating unit 5 and the low temperature heating unit 6.

【0052】〔変形例〕上記の実施例では、造湯ユニッ
ト2の一例として、2段式サイクルを用いた例を示した
が、1段式サイクルに用いても良いし、3段式以上のサ
イクルに用いても良い。上記の実施例では、高温加熱用
熱媒体を加熱する燃焼装置4として、ガスを燃焼する例
を示したが、石油を燃焼するなど、他の燃料の燃焼を行
う燃焼装置4を用いても良い。上記の実施例では、水素
吸蔵合金の水素の吸蔵時に生じる発熱作用を利用して出
湯を得る給湯器1のみを例に示したが、水素吸蔵合金の
水素の放出時に生じる吸熱作用を利用して冷熱を得る装
置(例えば、冷房装置)と組み合わせて実施する形態を
採用しても良い。
[Modification] In the above embodiment, an example of using a two-stage cycle as an example of the hot water making unit 2 is shown, but it may be used in a one-stage cycle, or a three-stage type or more. You may use for a cycle. In the above-described embodiment, the example in which the gas is burned is shown as the burner 4 for heating the heat medium for high temperature heating, but the burner 4 for burning other fuel such as burning petroleum may be used. . In the above embodiment, only the water heater 1 that obtains hot water by utilizing the exothermic action that occurs when hydrogen is absorbed by the hydrogen absorbing alloy has been shown as an example. It is also possible to adopt a mode in which it is implemented in combination with a device for obtaining cold heat (for example, a cooling device).

【図面の簡単な説明】[Brief description of drawings]

【図1】給湯器の概略構成図である(第1実施例)。FIG. 1 is a schematic configuration diagram of a water heater (first embodiment).

【図2】造湯ユニットおよび熱媒分配器の斜視図である
(第1実施例)。
FIG. 2 is a perspective view of a hot water making unit and a heat medium distributor (first embodiment).

【図3】セルの概略断面図である(第1実施例)。FIG. 3 is a schematic sectional view of a cell (first embodiment).

【図4】PT冷凍サイクル線図である(第1実施例)。FIG. 4 is a PT refrigeration cycle diagram (first embodiment).

【図5】給湯器の概略構成図である(第2実施例)。FIG. 5 is a schematic configuration diagram of a water heater (second embodiment).

【符号の説明】[Explanation of symbols]

1 給湯器 2 造湯ユニット 3 熱媒分配器 4 燃焼装置 5 高温加熱ユニット 6 低温加熱ユニット 7 出湯ユニット 8 追加熱ユニット 14 燃焼ダクト S1 第1室 S2 第2室 S3 第3室 HM 高温合金(高温度水素吸蔵合金) MM 中温合金(中温度水素吸蔵合金) LM 低温合金(低温度水素吸蔵合金) α 第1水素駆動 β 第2水素駆動 γ 第3水素駆動 1 water heater 2 Hot water unit 3 Heat medium distributor 4 Combustion device 5 High temperature heating unit 6 Low temperature heating unit 7 Hot water unit 8 additional heat unit 14 Combustion duct S1 Room 1 S2 second room S3 Room 3 HM high temperature alloy (high temperature hydrogen storage alloy) MM Medium Temperature Alloy (Medium Temperature Hydrogen Storage Alloy) LM low temperature alloy (low temperature hydrogen storage alloy) α 1st hydrogen drive β Second hydrogen drive γ Third hydrogen drive

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】同一平衡水素圧で水素平衡温度が高い高温
度水素吸蔵合金を封入する第1室を備えるとともに、同
一平衡水素圧で水素平衡温度が低い低温度水素吸蔵合金
を封入する第2室を備え、 前記第1室内の高温度水素吸蔵合金と高温加熱用熱媒体
とを熱交換して前記第1室内の高温度水素吸蔵合金の吸
蔵する水素を放出させるとともに、前記第2室内の低温
度水素吸蔵合金と水素吸蔵用熱媒体とを熱交換して前記
第2室内の低温度水素吸蔵合金に水素を吸蔵させる第1
水素駆動と、 前記第1室内の高温度水素吸蔵合金と水素吸蔵用熱媒体
とを熱交換して前記第1室内の高温度水素吸蔵合金に水
素を吸蔵させるとともに、前記第2室内の低温度水素吸
蔵合金と低温加熱用熱媒体とを熱交換して前記第2室内
の低温度水素吸蔵合金の吸蔵する水素を放出させる第2
水素駆動とを交互に行い、 前記第1水素駆動時において得られる水素吸蔵用熱媒体
の熱、および前記第2水素駆動時において得られる水素
吸蔵用熱媒体の熱の双方の熱で出湯を行う水素吸蔵合金
を利用した給湯器において、 前記第1水素駆動時に用いられる高温加熱用熱媒体は、
燃料の燃焼を行う燃焼装置の発生する燃焼熱によって加
熱されるように設けられるとともに、 前記第2水素駆動時に用いられる低温加熱用熱媒体は、
大気熱の他、前記燃焼装置の発生した燃焼熱のうち、高
温加熱用熱媒体を加熱した後の排熱を利用して加熱され
るように設けられることを特徴とする水素吸蔵合金を利
用した給湯器。
1. A first chamber for enclosing a high temperature hydrogen storage alloy having a high hydrogen equilibrium temperature at the same equilibrium hydrogen pressure, and a second chamber enclosing a low temperature hydrogen storage alloy having a low hydrogen equilibrium temperature at the same equilibrium hydrogen pressure. A high-temperature hydrogen storage alloy in the first chamber and a heat medium for high-temperature heating are heat-exchanged to release hydrogen stored in the high-temperature hydrogen storage alloy in the first chamber, and in the second chamber. A first low temperature hydrogen storage alloy and a heat medium for hydrogen storage heat exchange to cause hydrogen to be stored in the low temperature hydrogen storage alloy in the second chamber.
While driving the hydrogen, the high temperature hydrogen storage alloy in the first chamber and the heat medium for hydrogen storage are heat-exchanged to cause the high temperature hydrogen storage alloy in the first chamber to store hydrogen, and the low temperature in the second chamber. A second method for exchanging heat between a hydrogen storage alloy and a low temperature heating heat medium to release hydrogen stored in the low temperature hydrogen storage alloy in the second chamber.
Hydrogen driving is alternately performed, and hot water is discharged by both heat of the hydrogen storage heat medium obtained during the first hydrogen drive and heat of the hydrogen storage heat medium obtained during the second hydrogen drive. In a water heater using a hydrogen storage alloy, the high-temperature heating heat medium used when driving the first hydrogen is:
The heat medium for low-temperature heating, which is provided so as to be heated by the combustion heat generated by the combustion device that burns fuel, and is used at the time of driving the second hydrogen,
In addition to atmospheric heat, among the combustion heat generated by the combustion device, a hydrogen storage alloy is used which is provided so as to be heated by using exhaust heat after heating the heating medium for high temperature heating. Water heater.
【請求項2】同一平衡水素圧で水素平衡温度が異なる高
温度、中温度、低温度水素吸蔵合金のうちの高温度水素
吸蔵合金を封入する第1室、中温度水素吸蔵合金を封入
する第2室、低温度水素吸蔵合金を封入する第3室を備
え、 前記第1室内の高温度水素吸蔵合金と高温加熱用熱媒体
とを熱交換して前記第1室内の高温度水素吸蔵合金の吸
蔵する水素を放出させるとともに、前記第3室内の低温
度水素吸蔵合金と水素吸蔵用熱媒体とを熱交換して前記
第3室内の低温度水素吸蔵合金に水素を吸蔵させる第1
水素駆動と、 前記第2室内の中温度水素吸蔵合金と水素吸蔵用熱媒体
とを熱交換して前記第2室内の中温度水素吸蔵合金に水
素を吸蔵させるとともに、前記第3室内の低温度水素吸
蔵合金と低温加熱用熱媒体とを熱交換して前記第3室内
の低温度水素吸蔵合金の吸蔵する水素を放出させる第2
水素駆動と、 前記第1室内の高温度水素吸蔵合金と水素吸蔵用熱媒体
とを熱交換して前記第1室内の高温度水素吸蔵合金に水
素を吸蔵させるとともに、前記第2室内の中温度水素吸
蔵合金と低温加熱用熱媒体とを熱交換して前記第2室内
の中温度水素吸蔵合金の吸蔵する水素を放出させる第3
水素駆動とを繰り返し行い、 前記第1水素駆動時において得られる水素吸蔵用熱媒体
の熱、前記第2水素駆動時において得られる水素吸蔵用
熱媒体の熱、および前記第3水素駆動時において得られ
る水素吸蔵用熱媒体の熱のそれぞれの熱で出湯を行う水
素吸蔵合金を利用した給湯器において、 前記第1水素駆動時に用いられる高温加熱用熱媒体は、
燃料の燃焼を行う燃焼装置の発生する燃焼熱によって加
熱されるように設けられるとともに、 前記第2、第3水素駆動時に用いられる低温加熱用熱媒
体は、前記燃焼装置の発生した燃焼熱のうち、高温加熱
用熱媒体を加熱した後の排熱を利用して加熱されるよう
に設けられることを特徴とする水素吸蔵合金を利用した
給湯器。
2. A first chamber for enclosing a high temperature hydrogen storage alloy among high, medium and low temperature hydrogen storage alloys having the same equilibrium hydrogen pressure but different hydrogen equilibrium temperatures, and a first chamber for enclosing a medium temperature hydrogen storage alloy. Two chambers, a third chamber for enclosing a low-temperature hydrogen storage alloy, are provided, and the high-temperature hydrogen storage alloy in the first chamber and the heat medium for high temperature heating are heat-exchanged so that the high-temperature hydrogen storage alloy in the first chamber First, the hydrogen stored therein is released, and the low temperature hydrogen storage alloy in the third chamber and the heat storage medium for hydrogen storage are heat-exchanged to store hydrogen in the low temperature hydrogen storage alloy inside the third chamber.
Hydrogen driving and heat exchange between the medium temperature hydrogen storage alloy and the heat medium for hydrogen storage in the second chamber to cause hydrogen to be stored in the medium temperature hydrogen storage alloy in the second chamber, and a low temperature in the third chamber A second method for exchanging heat between a hydrogen storage alloy and a low temperature heating heat medium to release hydrogen stored in the low temperature hydrogen storage alloy in the third chamber.
While driving the hydrogen, the high temperature hydrogen storage alloy in the first chamber and the heat medium for hydrogen storage are heat-exchanged to store hydrogen in the high temperature hydrogen storage alloy in the first chamber, and the medium temperature in the second chamber. Third, heat exchange between the hydrogen storage alloy and the heat medium for low-temperature heating to release hydrogen stored in the medium temperature hydrogen storage alloy in the second chamber
The hydrogen driving is repeated to obtain the heat of the hydrogen storage heat medium obtained during the first hydrogen drive, the heat of the hydrogen storage heat medium obtained during the second hydrogen drive, and the heat during the third hydrogen drive. In a water heater using a hydrogen storage alloy that discharges hot water with each of the heat of the heat storage medium for hydrogen storage, a high-temperature heating heat medium used when driving the first hydrogen,
The heat medium for low-temperature heating, which is provided so as to be heated by the combustion heat generated by the combustion device that burns the fuel and is used when driving the second and third hydrogens, is one of the combustion heat generated by the combustion device. A water heater using a hydrogen storage alloy, which is provided so as to be heated by using exhaust heat after heating a heating medium for high temperature heating.
【請求項3】請求項1または請求項2に記載の水素吸蔵
合金を利用した給湯器は、 出湯される湯を、前記燃焼装置の発生した燃焼熱を利用
して加熱する追加熱ユニットを備えることを特徴とする
水素吸蔵合金を利用した給湯器。
3. A water heater using the hydrogen storage alloy according to claim 1 or 2, further comprising an additional heat unit for heating the hot water to be discharged by using the combustion heat generated by the combustion device. A water heater that uses a hydrogen storage alloy.
【請求項4】請求項3に記載の水素吸蔵合金を利用した
給湯器において、 前記追加熱ユニットは、前記燃焼装置の発生する燃焼熱
によって加熱された高温加熱用熱媒体と、出湯される湯
とを熱交換する液−液熱交換器を備えることを特徴とす
る水素吸蔵合金を利用した給湯器。
4. The water heater using the hydrogen storage alloy according to claim 3, wherein the additional heat unit is a high temperature heating heat medium heated by the combustion heat generated by the combustion device, and hot water discharged from the hot water. A water heater using a hydrogen storage alloy, comprising a liquid-liquid heat exchanger for exchanging heat between and.
【請求項5】請求項3に記載の水素吸蔵合金を利用した
給湯器において、 前記追加熱ユニットは、前記燃焼装置における燃焼ダク
ト内に配置されて、燃焼熱と、出湯される湯とを熱交換
する気−液熱交換器を備えることを特徴とする水素吸蔵
合金を利用した給湯器。
5. The water heater using the hydrogen storage alloy according to claim 3, wherein the additional heat unit is arranged in a combustion duct of the combustion device to generate heat of combustion and hot water to be discharged. A water heater using a hydrogen storage alloy, comprising a gas-liquid heat exchanger for exchange.
JP2002063880A 2002-03-08 2002-03-08 Water heater using hydrogen storage alloy Expired - Fee Related JP3836738B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002063880A JP3836738B2 (en) 2002-03-08 2002-03-08 Water heater using hydrogen storage alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002063880A JP3836738B2 (en) 2002-03-08 2002-03-08 Water heater using hydrogen storage alloy

Publications (2)

Publication Number Publication Date
JP2003262391A true JP2003262391A (en) 2003-09-19
JP3836738B2 JP3836738B2 (en) 2006-10-25

Family

ID=29196939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002063880A Expired - Fee Related JP3836738B2 (en) 2002-03-08 2002-03-08 Water heater using hydrogen storage alloy

Country Status (1)

Country Link
JP (1) JP3836738B2 (en)

Also Published As

Publication number Publication date
JP3836738B2 (en) 2006-10-25

Similar Documents

Publication Publication Date Title
JP6133998B2 (en) Air conditioning
JP5958819B2 (en) Heat pump system and cooling system using the same
JP2007120914A (en) Vapor generation system
CN106642802A (en) High-temperature heat pump hot water system driven by proton exchange membrane fuel cell
EP2391846A1 (en) Continuously-operated metal hydride hydrogen compressor, and method of operating the same
US6519946B2 (en) Cogeneration system using waste-heat gas generated in micro gas turbine
CN102654330A (en) Coupled evaporative condenser used for cascade heat pump hot water machine
CN201945082U (en) Integrative industrial water chiller unit
JP2008082601A (en) Heat pump hot water supply device
CN206469541U (en) One proton exchanging film fuel battery high-temperature heat supply system
JP2005308344A (en) Heat pump water heater
JP3836738B2 (en) Water heater using hydrogen storage alloy
JP4346006B2 (en) Water heater
JP3836739B2 (en) Water heater using hydrogen storage alloy
CN115435386A (en) Solar absorption type refrigerating system, control method and electronic equipment
CN102102905A (en) Heat pump water heater
JP3114154B2 (en) Cold and / or hot air generator utilizing solid-gas reaction
JP2007205618A (en) Hot water supply device
WO1980002738A1 (en) Method of and apparatus for amplifying heat
JP2005069608A (en) Hot water utilizing system
JP2011038503A (en) Co-generation system with external combustion engine
JP4660933B2 (en) Fuel cell driven heat pump device
JP2005083659A (en) Water heater
CN219656325U (en) Water heater
KR102256202B1 (en) Gas turbine power generating system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060727

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090804

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130804

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees