JP2003261600A - INTERFERON-gamma AND METHOD FOR PURIFYING THE SAME - Google Patents

INTERFERON-gamma AND METHOD FOR PURIFYING THE SAME

Info

Publication number
JP2003261600A
JP2003261600A JP2002060096A JP2002060096A JP2003261600A JP 2003261600 A JP2003261600 A JP 2003261600A JP 2002060096 A JP2002060096 A JP 2002060096A JP 2002060096 A JP2002060096 A JP 2002060096A JP 2003261600 A JP2003261600 A JP 2003261600A
Authority
JP
Japan
Prior art keywords
leu
ser
interferon
ile
lys
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002060096A
Other languages
Japanese (ja)
Inventor
Hiroshi Matsuno
宏 松野
Tsukasa Ito
宰 伊藤
Masanari Yamada
勝成 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2002060096A priority Critical patent/JP2003261600A/en
Publication of JP2003261600A publication Critical patent/JP2003261600A/en
Pending legal-status Critical Current

Links

Landscapes

  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for purifying interferon-γ, by which in a desalting process for desalting a purified highly pure salt-containing interferon-γ to give a medicine, the production of an interferon-γ oxide during waiting for a quality test can be inhibited to give the highly pure medicine. <P>SOLUTION: This method for purifying the interferon-γ is characterized by using a solvent containing at least one selected from citric acid, glycine and boric acid in the desalting process or in a final purification process, after a solution containing the interferon-γ and its oxide is fractionated and purified with a salt-containing buffer solution. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、インターフェロン
−γを、塩を含む緩衝液で分画精製し、塩を除き医薬品
の安定性を高めるため医薬品組成物の一部からなる成分
に置き換える脱塩工程において、インターフェロン−γ
の酸化物の生成抑制を可能にし、医薬品原料を純度良く
維持し、次工程へ供することが可能な効率生産すること
を目的とするインターフェロン−γの精製方法に関す
る。
TECHNICAL FIELD The present invention relates to a desalting method in which interferon-γ is fractionated and purified with a buffer containing a salt and is replaced with a component which constitutes a part of a pharmaceutical composition in order to remove the salt and enhance the stability of the pharmaceutical. In the process, interferon-γ
The invention relates to a method for purifying interferon-γ, which is capable of suppressing the production of the oxide, maintaining the purity of a pharmaceutical raw material in good condition, and efficiently producing the raw material for the next step.

【0002】[0002]

【従来の技術】インターフェロン−γの製造方法には多
くの技術が報告されているが、ヒトインターフェロン−
γの精製(特開昭60-64999号公報)や、近年、遺伝子組
換えしたカイコ核多角体病ウイルスを用いたイヌインタ
ーフェロン−γの安定化方法(特開平11-246597号公
報)、あるいはイヌインターフェロン−γの製造方法
(特開平2001-192343号公報、特開平2001-192396号公
報)等が開示されている。
BACKGROUND ART Many techniques have been reported for producing interferon-γ, but human interferon-γ has been reported.
Purification of γ (JP-A-60-64999), a method for stabilizing canine interferon-γ using a genetically modified silkworm nuclear polyhedrosis virus (JP-A-11-246597), or dog A method for producing interferon-γ (JP 2001-192343 A, JP 2001-192396 A) and the like are disclosed.

【0003】また、インターフェロンは、酸化物の生成
も確認されており、インターフェロン−α2b製剤から、
111番目のアミノ酸残基のメチオニンがメチオニンスル
ホキサイドに酸化された酸化物が分離され、この酸化物
の生物活性は、インターフェロン−α2bとほぼ同等であ
ることが報告されている(Gitlin G, Tsarbopoulos,A,P
atel ST, Sydor W, Pramanik BN, Jacobs, Westreich
L, Mittelman S, Bausch JN., Isolation and characte
rization of a monomethioninesulfoxide variant of i
nterferon alpha-2b. Pharm. Res., 13(5). 762-769(19
96))。また、組換え型ヒトインターフェロン−γと組
換え型tissue-type plasminogen activatorは、tert-ブ
チルヒドロペルオキシドで酸化することでメチオニンス
ルホキサイド体が得られ、この酸化物では活性低下が認
められていない(Keck RG., Theuse of t-butyl hydrop
eroxide as a probe for methionine oxidation in pro
teins. Anal. Biochem., 236(1),56-62(1996))。一
方、granulocyto colony-stimulating factorでは、メ
チオニン残基のスルホキサイドへの酸化によって生物活
性が失われることが報告されている(Lu H. S., Fausse
t P. R., Narhi L. O., Horan T., Shinagawa K., Shim
amoto G., and Boone T. C., Chemical modification a
nd site-directed mutagenesis of methionine residue
s in recombinant human granulocyto colony-stimulat
ing factor : effect on stability andbiological act
ivity, Arch. Biochem. Biophys.,362(2).1-11(199
9))。
In addition, it has been confirmed that interferon also produces an oxide, and the interferon-α2b preparation shows that
An oxide in which methionine at the 111th amino acid residue was oxidized to methionine sulfoxide was isolated, and the biological activity of this oxide was reported to be almost equivalent to that of interferon-α2b (Gitlin G, Tsarbopoulos. , A, P
atel ST, Sydor W, Pramanik BN, Jacobs, Westreich
L, Mittelman S, Bausch JN., Isolation and characte
rization of a monomethioninesulfoxide variant of i
nterferon alpha-2b. Pharm. Res., 13 (5). 762-769 (19
96)). In addition, recombinant human interferon-γ and recombinant tissue-type plasminogen activator were oxidized with tert-butyl hydroperoxide to give methionine sulfoxide, and no decrease in activity was observed with this oxide. (Keck RG., Theuse of t-butyl hydrop
eroxide as a probe for methionine oxidation in pro
teins. Anal. Biochem., 236 (1), 56-62 (1996)). On the other hand, in granulocyto colony-stimulating factor, it has been reported that biological activity is lost by oxidation of methionine residue to sulfoxide (Lu HS, Fausse
t PR, Narhi LO, Horan T., Shinagawa K., Shim
amoto G., and Boone TC, Chemical modification a
nd site-directed mutagenesis of methionine residue
s in recombinant human granulocyto colony-stimulat
ing factor: effect on stability andbiological act
ivity, Arch. Biochem. Biophys., 362 (2) .1-11 (199
9)).

【0004】このタンパク質のメチオニン残基がスルホ
キサイドに変質した酸化物は、カラムクロマトグラフィ
ーによる精製において分離が非常に困難であり、また、
仮に精製工程で純度の高いインターフェロン−γを生産
することが可能になっても(特開2001-192396号公
報)、塩を含むことによる不安定性を回避するため、ゲ
ルろ過カラムクロマトグラフィーや透析による脱塩工程
を必要とする。この脱塩工程に用いられる溶媒は、医薬
品組成物として含まれていても問題ないような単数、ま
たは複数の組成物であることが求められ、なおかつ医薬
品原料として品質試験等の保存期間中に酸化物等が生成
させ難いような成分で調製された溶媒であることが望ま
れる。
The oxide in which the methionine residue of this protein is changed to sulfoxide is very difficult to separate in purification by column chromatography, and
Even if it is possible to produce high-purity interferon-γ in the purification step (JP 2001-192396 A), gel filtration column chromatography or dialysis is used to avoid instability due to the inclusion of salts. It requires a desalting step. The solvent used in this desalting step is required to be a single or plural composition that does not pose any problem even if it is contained as a pharmaceutical composition, and is oxidized as a pharmaceutical raw material during the storage period such as a quality test. It is desired that the solvent is prepared with a component that does not easily generate a substance or the like.

【0005】[0005]

【発明が解決しようとする課題】インターフェロン−γ
医薬製剤のメチオニン残基の酸化は、その活性保持に影
響を与える場合があること、また、純度保持の面から、
医薬品原料にするインターフェロン−γの脱塩工程およ
び、その後の保存期間中に、メチオニン残基のスルホキ
サイドへの酸化抑制は、高純度タンパク質医薬品を製造
する上で重要な課題である。
Interferon-γ
Oxidation of a methionine residue in a pharmaceutical preparation may affect its activity retention, and in terms of purity retention,
Inhibiting the oxidation of methionine residues to sulfoxide during the desalting step of interferon-γ used as a drug raw material and the subsequent storage period is an important issue in producing a high-purity protein drug.

【0006】[0006]

【課題を解決するための手段】本発明者は、こうした状
況に鑑み、鋭意工夫を重ねた結果、インターフェロン−
γを高純度に精製分画された塩を含む画分について、医
薬品原料として医薬品組成物を構成する一部となっても
問題の生じない単数、または複数の組成物であり、なお
かつ、医薬品原料として品質試験等の保存期間中に酸化
物が生成しない成分に置き換えることにより、メチオニ
ン残基のスルホキサイドへの酸化を抑制し、かつ、高純
度なインターフェロン−γを得ることを見出し本発明を
完成するに至った。
Means for Solving the Problems In view of such a situation, the present inventor has made diligent efforts, and as a result, interferon-
Regarding a fraction containing a salt obtained by purifying γ with high purity, it is a single or multiple composition that does not cause a problem even if it constitutes a part of a pharmaceutical composition as a pharmaceutical raw material. As a result, by substituting a component that does not form an oxide during the storage period such as a quality test, for suppressing the oxidation of methionine residue to sulfoxide, and obtaining high-purity interferon-γ, the present invention is completed. Came to.

【0007】すなわち本発明は、以下の通りの構成を有
するものである。つまり、「インターフェロン−γおよ
びその酸化物を含む液を、緩衝液で分画精製する際の脱
塩工程乃至は最終精製工程において、クエン酸、グリシ
ンおよびホウ酸から選ばれる少なくとも1種を含有する
溶媒を用いることを特徴とするインターフェロン−γの
精製方法。」である。
That is, the present invention has the following configuration. That is, "at least one selected from citric acid, glycine and boric acid is contained in the desalting step or the final purification step when fractionating and purifying a solution containing interferon-γ and its oxide. A method for purifying interferon-γ, which comprises using a solvent. "

【0008】又は、「クエン酸、グリシンおよびホウ酸
から選ばれる少なくとも1種を含有し、かつ、pHが7
を越える溶液に混合されていることを特徴とするインタ
ーフェロン−γ。」である。
Alternatively, "containing at least one selected from citric acid, glycine and boric acid, and having a pH of 7
Interferon-γ, characterized in that it is mixed in a solution of more than 1%. It is.

【0009】[0009]

【発明の実施の形態】以下、本発明に関し詳細に説明す
る。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below.

【0010】本発明のインターフェロン−γとしては特
に限定はされないが、例えば、ヒトインターフェロン−
γ、イヌインターフェロン−γなどのインターフェロン
−γ類などが挙げられる。インターフェロン−γは、抗
ウイルス作用を示すところのタンパク質を主成分とする
生理活性物質であり、IFNと略記され、以下、本発明
の説明においてもこの略記を適宜用いる。なお、以下の
説明では専ら、イヌインターフェロン−γ(イヌIFN
−γ)を例に挙げて詳述して行くが、なんらこれに限定
されるものではない。
The interferon-γ of the present invention is not particularly limited. For example, human interferon-γ
γ, interferon-γs such as dog interferon-γ, and the like. Interferon-γ is a physiologically active substance whose main component is a protein that exhibits an antiviral action, and is abbreviated as IFN. In the following description of the present invention, this abbreviation is appropriately used. In the following description, dog interferon-γ (canine IFN
-Γ) will be described in detail by way of example, but the invention is not limited thereto.

【0011】イヌIFN−γは配列番号1に示されてい
るDNAによってコードされるポリペプチドであるが、
その他にイヌIFN−γの活性を有するものであれば良
く、糖鎖、アミノ酸配列などの構造に限定されない。つ
まり、そのアミノ酸配列の一部が置換されたもの、ま
た、その一部が欠如したもの、あるいは、いくつかのア
ミノ酸残基が付加されたものでも、イヌ由来細胞、例え
ば、イヌMDCK細胞(ATCC CCL−34)に対
して、抗ウイルス活性を誘導するようなIFN−γの本
来の生理活性を有するポリペプチドであれば本発明に含
まれる。具体的には、例えば、配列番号2に示す成熟タ
ンパク質部分のような糖鎖結合部位を欠如させたイヌI
FN−γを挙げることができる。また、配列番号3から
10に示す成熟タンパク質部分のようなC末端が欠如し
たイヌIFN−γを挙げることができる。
Canine IFN-γ is a polypeptide encoded by the DNA shown in SEQ ID NO: 1,
Other than that, it is only required to have canine IFN-γ activity and is not limited to the structure such as sugar chain and amino acid sequence. In other words, a dog-derived cell, for example, a dog MDCK cell (ATCC) (ATCC) having a part of its amino acid sequence replaced, a part thereof lacking, or a part having some amino acid residues added The present invention includes any polypeptide having IFN-γ intrinsic physiological activity that induces antiviral activity against CCL-34). Specifically, for example, dog I lacking a sugar chain binding site such as the mature protein portion shown in SEQ ID NO: 2
FN-γ can be mentioned. Further, canine IFN-γ lacking the C-terminal such as the mature protein portions shown in SEQ ID NOS: 3 to 10 can be mentioned.

【0012】IFN−γは、たとえば遺伝子組換えバキ
ュロウイルスを用いて製造することができる。遺伝子組
換えバキュロウイルスのうち、例えばカイコ核多角体病
ウイルスを好適に利用することができる。
IFN-γ can be produced, for example, by using a recombinant baculovirus. Among the genetically modified baculoviruses, for example, silkworm nuclear polyhedrosis virus can be preferably used.

【0013】つまり、イヌIFN−γの生産は、前記の
組換え体ウイルスを含む培養液をカイコに注射して、人
工飼料を与えて飼育することにより達成できる。
[0013] That is, the production of canine IFN-γ can be achieved by injecting a culture solution containing the above recombinant virus into silkworms and feeding them with an artificial feed.

【0014】飼育後、体液を採取しその上澄みからイヌ
IFN−γを回収する。イヌIFN−γの回収は、例え
ば、塩化ベンザルコニウムや、金属キレート剤を含む緩
衝液でカイコ体液を抽出することができる。組換え体ウ
イルスは、抽出用緩衝液に含まれる塩化ベンザルコニウ
ムにより不活化することができる。金属キレート剤にエ
チレンジアミン四酢酸(EDTA)等が使用することが
でき、特定イヌIFN−γが優先的に得られることが知
られている(特開2001-192396号公報)。
After breeding, body fluid is collected and canine IFN-γ is recovered from the supernatant. For the recovery of dog IFN-γ, for example, the silkworm body fluid can be extracted with a buffer solution containing benzalkonium chloride or a metal chelating agent. The recombinant virus can be inactivated by benzalkonium chloride contained in the extraction buffer. It is known that ethylenediaminetetraacetic acid (EDTA) or the like can be used as the metal chelating agent, and specific dog IFN-γ can be preferentially obtained (JP 2001-192396 A).

【0015】このようにして得られる特定イヌIFN−
γを含む粗原液を、限外ろ過とカラムクロマトグラフィ
ーの組合せによる精製を行うことができる。この精製
は、機能の異なるクロマトグラフィー担体を用いること
によって順次純度の高いイヌIFN−γを得ることがで
きる。
Specific dog IFN-obtained in this way
The crude stock solution containing γ can be purified by a combination of ultrafiltration and column chromatography. In this purification, canine IFN-γ having a high purity can be sequentially obtained by using chromatography carriers having different functions.

【0016】例えば、配列番号6記載のイヌIFN−γ
等は、粗原液を銅キレート担体等を充填したカラムクロ
マトグラフィーで精製することができる。続いて、強陰
イオン交換担体であるQセファロース担体等を充填した
カラムクロマトグラフィー精製でメジャーピーク(配列
番号6等)純度87%まで高めることができる。この二
段階のカラムクロマトグラフィー精製で得られる画分の
マイナーピークが例えば配列番号24記載の、イヌIF
N−γの酸化物である。
For example, canine IFN-γ shown in SEQ ID NO: 6
Etc., the crude stock solution can be purified by column chromatography packed with a copper chelate carrier or the like. Subsequently, the purity of the major peak (SEQ ID NO: 6 etc.) can be increased to 87% by column chromatography purification in which a strong anion exchange carrier such as Q sepharose carrier is filled. The minor peak of the fraction obtained by this two-step column chromatography purification is, for example, the dog IF described in SEQ ID NO: 24.
It is an oxide of N-γ.

【0017】IFN−γの酸化物は、IFN−γのポリ
ペプチド鎖のメチオニン残基がメチオニンスルホキサイ
ドに酸化された酸化物であり、例えば、配列番号2から
10のいずれか記載のアミノ酸配列において、N末端か
ら3番目のメチオニンがメチオニンスルホキサイドに酸
化されている構造を有するものである。この酸化物も活
性を有することが知られている(特開2001-192396号公
報)。しかしながら、両者とも医薬品原料とする場合、
それぞれ単独に精製分離し、各成分ごとに毒性試験、薬
効試験等詳細な解析を行うことが必要であり、また製剤
化の際、それぞれの成分を常に一定量に管理することが
必要となる。したがって、IFN−γを遺伝子組換え医
薬品とする場合、単独の成分を高純度で得ることが経済
的で効率的である。そこで、イヌIFN−γの酸化物を
不純物としてさらに除去し、医薬品原料としての品質試
験期間中において不純物が増加しないような工夫が求め
られる。イヌIFN−γの精製における脱塩工程後また
は最終精製工程後のイヌIFN−γとその酸化物の合計
に対する前記酸化物の重量割合は好ましくは10重量%
以下(より好ましくは7重量%以下、更に好ましくは5
重量%以下)である。
The IFN-γ oxide is an oxide in which the methionine residue of the polypeptide chain of IFN-γ is oxidized to methionine sulfoxide. For example, the amino acid sequence of any one of SEQ ID NOS: 2 to 10 In the above, it has a structure in which the third methionine from the N-terminal is oxidized to methionine sulfoxide. It is known that this oxide also has activity (Japanese Patent Laid-Open No. 2001-192396). However, when both are used as pharmaceutical ingredients,
It is necessary to individually purify and separate each component, and perform detailed analysis such as toxicity test and drug efficacy test for each component, and it is necessary to control each component at a constant amount during formulation. Therefore, when IFN-γ is used as a gene recombinant drug, it is economical and efficient to obtain a single component with high purity. Therefore, it is necessary to further remove the oxide of dog IFN-γ as an impurity so that the impurity does not increase during the quality test period as a raw material for pharmaceuticals. The weight ratio of the above-mentioned oxide to the total amount of dog IFN-γ and its oxides after the desalting step or the final purification step in the purification of dog IFN-γ is preferably 10% by weight.
Or less (more preferably 7% by weight or less, further preferably 5% by weight)
% Or less).

【0018】まず、不純物を減らす方法としてアフィニ
ティー担体であるブルーセファロースクロマトグラフィ
ー等による分画精製が必要である(特開2001-192396号
公報)。前記操作は、本発明における、塩を含む緩衝液
で分離精製する方法の好適な例であり、この操作では好
ましくは0.1〜0.5M(より好ましくは0.15〜
0.3M)のNaCl等の塩を含む好ましくは5〜10
0mM(より好ましくは10〜50mM)のリン酸等の
緩衝液(好ましくはpH6〜8)で段階的にNaCl等
の濃度を高めることにより、イヌIFN−γとその酸化
物の混合物として溶出し画分を得る。このブルーセファ
ロース等での精製においてもイヌIFN−γの酸化物を
効率良く分離することは困難で、イヌIFN−γ純度9
0%以上の画分収率は約60%、純度95%以上では得
られる画分収率は半減し30%である。この画分に含ま
れる不純物はイヌIFN−γ酸化物(配列番号24)で
ある。また、分画操作を更に細分化して溶出液の採取を
行い、目標とする医薬品の純度に適合する画分を得るこ
とができる。
First, as a method for reducing impurities, it is necessary to carry out fractional purification by blue sepharose chromatography or the like, which is an affinity carrier (Japanese Patent Laid-Open No. 2001-192396). The above operation is a preferred example of the method of separating and purifying with a buffer solution containing a salt in the present invention, and in this operation, preferably 0.1 to 0.5 M (more preferably 0.15 to 5 M).
0.3M), including salts such as NaCl, preferably 5-10
By elution as a mixture of dog IFN-γ and its oxide, the concentration of NaCl and the like was increased stepwise with a buffer solution (preferably pH 6 to 8) such as 0 mM (more preferably 10 to 50 mM) phosphate. Get minutes Even in the purification with blue sepharose or the like, it is difficult to efficiently separate the oxide of dog IFN-γ, and the purity of dog IFN-γ 9
The fraction yield of 0% or more is about 60%, and the fraction yield obtained at a purity of 95% or more is 30%, which is half. The impurity contained in this fraction is canine IFN-γ oxide (SEQ ID NO: 24). Further, the fractionation operation can be further subdivided to collect the eluate to obtain a fraction suitable for the target purity of the drug.

【0019】しかしながら、この溶出画分は0.15M
〜0.3MのNaCl等を含み、このままの成分を医薬
品原料として用いると、医薬品として保存期間中に抗ウ
イルス活性の品質低下が認められ、それを防ぐためには
NaCl等を除去することが必要がある。NaCl等の
除去方法としては、ゲルろ過担体によるカラムクロマト
グラフィーによる脱塩操作、透析による脱塩方法が挙げ
られるが、ヒトIFN、ネコIFNの製造方法で知られ
るカラムクロマトグラフィーによる脱塩操作を用いるこ
とが好ましい。
However, this elution fraction was 0.15M.
~ 0.3M NaCl, etc., and when using the ingredients as they are as a raw material for medicines, deterioration of antiviral activity is observed during the storage period as a medicine, and in order to prevent it, it is necessary to remove NaCl, etc. is there. Examples of the method for removing NaCl and the like include a desalting operation by column chromatography using a gel filtration carrier and a desalting method by dialysis. The desalting operation by column chromatography known in the production method of human IFN and cat IFN is used. It is preferable.

【0020】本発明においては、前記の通りの限外ろ
過、カラムクロマトグラフィーなどによる分画精製工程
のうち、少なくとも脱塩工程乃至は最終精製工程のいず
れかにおいて、クエン酸、グリシンおよびホウ酸から選
ばれる少なくとも1種を含有する溶媒を用いるものであ
る。脱塩工程とは精製されたIFN−γから食塩NaC
lを除去(好ましくは30mM以下、より好ましくは1
0mM以下)し、医薬品原料を構成する成分等の単数ま
たは複数に置き換える工程であり、最終精製工程とは、
必ずしも必要な工程ではないが、精製されたIFN−γ
を医薬製品を製造するための医薬原料や、医薬試験に供
するための試験溶液体等に調製する事を目的として、緩
衝剤の交換等を行う為のカラムクロマトグラフィーやゲ
ル濾過の工程を指し、通常、前記脱塩工程よりも後に行
われるものである。
In the present invention, among the fractional purification steps such as ultrafiltration and column chromatography as described above, at least one of the desalting step and the final purification step is carried out from citric acid, glycine and boric acid. A solvent containing at least one selected is used. Desalting step is from purified IFN-γ to salt NaC
1 (preferably 30 mM or less, more preferably 1
0 mM or less), and substituting a single component or a plurality of components constituting the pharmaceutical raw material, and the final purification step is
Purified IFN-γ, although not a necessary step
For the purpose of preparing a medicinal raw material for producing a medicinal product or a test solution body for use in a medicinal test, it refers to a step of column chromatography or gel filtration for exchanging buffers, Usually, it is performed after the desalting step.

【0021】なお、本発明において、クエン酸、グリシ
ン、又は、ホウ酸は、塩を形成している方が緩衝作用が
発現されるので好ましく、又、クエン酸とホウ酸は多価
の酸であり、任意の価数で塩を形成しても良い。前記ク
エン酸とカウンターイオンとの規定度の比(酸の規定
度:カウンターイオンの規定度)は、好ましくは1.0
3:1〜1:1.03(理想的には1:1)である。何
故ならば、前記下限値を下回るとpH7未満となり好ま
しくなく、一方、前記上限値を上回るとpH10を超え
塩基性となり好ましくないからである。又、ホウ酸とし
ては、四ホウ酸(H247)であることが好ましく、
四ホウ酸とカウンターイオンとの規定度の比(酸の規定
度:カウンターイオンの規定度)は、好ましくは1.
8:1〜1:1.1(理想的には1:1)であるが、そ
の他、オルトホウ酸(H3BO3)やメタホウ酸(HBO
2)であっても良い。前記塩としては、金属塩、好まし
くはアルカリ金属塩、より好ましくはナトリウムやカリ
ウム等との塩である。何故ならば、生体内イオンとして
多く含まれる物質だからである。勿論、前記金属種は単
数であっても良いし、複数混合されたものであっても良
い。又、クエン酸、グリシン、又はホウ酸(あるいはそ
れらの金属塩)は単独で用いても良いし複数を混合して
用いても良い。
In the present invention, citric acid, glycine, or boric acid is preferable in the form of a salt because a buffering action is exhibited, and citric acid and boric acid are polyvalent acids. Therefore, a salt may be formed with any valence. The normality ratio of citric acid to counterions (acid normality: counterion normality) is preferably 1.0.
It is 3: 1 to 1: 1.03 (ideally 1: 1). This is because if it is less than the lower limit, the pH is less than 7, which is not preferable, and if it exceeds the upper limit, the pH is more than 10 and it is basic, which is not preferable. Further, the boric acid is preferably tetraboric acid (H 2 B 4 O 7 ),
The ratio of the normalities of tetraboric acid and the counter ion (acid normality: counter ion normality) is preferably 1.
8: 1 to 1: 1.1 (ideally 1: 1), but in addition, orthoboric acid (H 3 BO 3 ) and metaboric acid (HBO)
2 ) may be. The salt is a metal salt, preferably an alkali metal salt, and more preferably a salt with sodium or potassium. This is because it is a substance that is contained as a large amount of ions in the living body. Of course, the metal species may be a single species or a mixture of a plurality of species. Moreover, citric acid, glycine, or boric acid (or their metal salts) may be used alone or in combination of two or more.

【0022】本発明において、クエン酸、グリシンおよ
びホウ酸から選ばれる少なくとも1種を含有する溶媒を
構成する溶媒成分としては、前記酸類が水溶性でIFN
−γの変質等に与える影響が少ないので、水が好ましい
ものであるが、10重量%以内でポリエチレングリコー
ルをはじめとするポリオール類や、ポリオキシエチレン
硬化ヒマシ油のような界面活性剤や、ソルビトールのよ
うな糖類等が含有されていても良い。又、カラムクロマ
トグラフィー等で溶媒をアプライするのに際して、成分
乃至は濃度などの異なる異種の溶媒を段階的乃至は連続
的に切り替えても良い。クエン酸、グリシン又はホウ酸
以外の酸からなる緩衝剤を併用しても良いし、その場合
は、クエン酸、グリシン又はホウ酸と混合しても良い
し、アプライする溶媒の切替の際に一時的にクエン酸、
グリシン又はホウ酸を含有していない溶媒を用いても良
い。少なくともIFN−γが溶出される際には、その溶
媒中にクエン酸、グリシン又はホウ酸が含有されている
ように調整されればよい。溶媒中にクエン酸、グリシン
およびホウ酸から選ばれる少なくとも1種を含有するこ
とによりイヌIFN−γの酸化物生成が抑制されるの
で、イヌIFN−γ精製処理中や精製処理により最終的
にえられる溶液状態のイヌIFN−γにおいて、前記酸
が含まれていることが肝要である。
In the present invention, as the solvent component constituting the solvent containing at least one selected from citric acid, glycine and boric acid, the above acids are water-soluble and IFN is used.
Water is preferable because it has little influence on the deterioration of γ and the like, but within 10% by weight, polyols such as polyethylene glycol, surfactants such as polyoxyethylene hydrogenated castor oil, and sorbitol. Such saccharides and the like may be contained. Further, when applying a solvent by column chromatography or the like, different solvents having different components or concentrations may be switched stepwise or continuously. A buffer consisting of an acid other than citric acid, glycine or boric acid may be used in combination, in which case it may be mixed with citric acid, glycine or boric acid, or temporarily when switching the solvent to be applied. Citric acid,
You may use the solvent which does not contain glycine or boric acid. At least when IFN-γ is eluted, it may be adjusted so that the solvent contains citric acid, glycine or boric acid. By containing at least one selected from citric acid, glycine and boric acid in the solvent, the production of oxides of canine IFN-γ is suppressed. It is essential that the acid is contained in the solution-type dog IFN-γ.

【0023】クエン酸、グリシンおよびホウ酸から選ば
れる少なくとも1種を含有する溶媒において、前記酸の
濃度(複数種混合の場合はその合計)は好ましくは5〜
150mM(最終の医薬品形態とその組成等を考慮し
て、より好ましくは10〜50mM、更に好ましくは1
5〜30mM)である。前記下限値を下回っても、前記
上限値を上回ってもイヌIFN−γのタンパク質構造の
変質による抗ウイルス活性低下が考えられ好ましくない
からである。
In the solvent containing at least one selected from citric acid, glycine and boric acid, the concentration of the acid (in the case of mixing plural kinds, the total thereof) is preferably 5 to 5.
150 mM (considering the final drug form and its composition, etc., more preferably 10 to 50 mM, still more preferably 1
5 to 30 mM). This is because if the lower limit value is exceeded or if the upper limit value is exceeded, antiviral activity may be reduced due to alteration of the protein structure of canine IFN-γ, which is not preferable.

【0024】なお、前記溶媒のpHは好ましくは5〜1
1(より好ましくは6〜10、更に好ましくは7〜9)
である。前記下限値を下回るとイヌIFN−γの抗ウイ
ルス活性低下と酸化物増加が著しく好ましくなく、一方
前記上限値を上回るとイヌIFN−γのタンパク質構造
の変質による抗ウイルス活性低下が考えられ好ましくな
いからである。
The pH of the solvent is preferably 5 to 1
1 (more preferably 6 to 10, still more preferably 7 to 9)
Is. Below the lower limit, the decrease in canine IFN-γ antiviral activity and increase in oxide are remarkably unfavorable. On the other hand, above the upper limit, unfavorable decrease in antiviral activity due to alteration of the protein structure of canine IFN-γ is not preferable. Because.

【0025】又、精製工程においては、何れも温度条件
は好ましくは-1〜35℃(より好ましくは0〜35
℃、更に好ましくは2〜5℃)である。前記下限値を下
回ると水溶媒系においては、凍結によるタンパク質構造
変質の危険性があり抗ウイルス活性低下の可能性があり
好ましくなく、一方前記上限値を上回ると酸化反応を促
進することが考えられ好ましくないからである。
In the refining step, temperature conditions are preferably -1 to 35 ° C. (more preferably 0 to 35 ° C.).
C., more preferably 2-5.degree. C.). Below the lower limit, in a water-solvent system, there is a risk of protein structural alteration due to freezing and there is a possibility that antiviral activity may be reduced, which is not preferable, while above the upper limit, it is considered to promote the oxidation reaction. This is because it is not preferable.

【0026】前記の通りの精製方法により、得られるイ
ヌIFN−γは、クエン酸、グリシンおよびホウ酸から
選ばれる少なくとも1種を含有し、かつ、pHが7を越
える溶液に混合されていることが好ましい。前記酸は好
ましくは5〜150mM(より好ましくは10〜50m
M、更に好ましくは15〜30mM)であり、pHはよ
り好ましくは6〜10(更に好ましくは7〜9)であ
る。これによりタンパク質構造が安定で抗ウイルス活性
が維持でき、酸化物生成を抑制することが出来るからで
ある。なお、実際の製剤として用いるに際しては、例え
ば、凍結乾燥製剤の場合凍結乾燥工程での抗ウイルス活
性維持等を目的にpHは好ましくは5〜8に調製される
ものである。
The dog IFN-γ obtained by the purification method as described above contains at least one selected from citric acid, glycine and boric acid, and is mixed with a solution having a pH of more than 7. Is preferred. The acid is preferably 5 to 150 mM (more preferably 10 to 50 m).
M, more preferably 15 to 30 mM), and the pH is more preferably 6 to 10 (more preferably 7 to 9). This is because the protein structure is stable, antiviral activity can be maintained, and oxide formation can be suppressed. When used as an actual preparation, for example, in the case of a freeze-dried preparation, the pH is preferably adjusted to 5 to 8 for the purpose of maintaining antiviral activity in the freeze-drying process.

【0027】IFNを医薬品にする場合、IFNの活性
を有するタンパク質に加えて任意に他の成分を添加する
こともできる。医薬品に添加される成分は、医薬品が投
与される方式に依存して決定される。注射薬として使用
される場合は、一般的な手法として品質が安定して長期
保存可能な凍結乾燥製剤とすることが知られており、イ
ヌIFN−γの場合においても凍結乾燥製剤とすること
で長期間安定させることができる。凍結乾燥製剤製造方
法は、脱塩した溶液中のイヌIFN−γ濃度に応じて添
加成分で調製し、所定濃度にして一定量をバイアル瓶に
分注した後凍結乾燥して製剤にすることができる。した
がって、脱塩工程以後は品質が安定していること、さら
に脱塩溶媒が医薬品組成物の一部であることが求めら
れ、医薬品原料として品質試験の期間、および濃度調製
した後から凍結乾燥までの期間安定化させることが最重
要課題である。品質試験の期間は、たとえばイヌIFN
−γを含む粗原料中に含まれる物質の否定試験であり、
たとえば、昆虫タンパク、塩化ベンザルコニウム、エン
ドトキシン等の不純物否定試験、また、イヌIFN−γ
純度試験、タンパク質濃度試験等多くの試験項目に加え
て、動物または昆虫細胞を用い結果を得るまでに1〜2
週間を要する坑ウイルス活性試験等が挙げられる。
When IFN is used as a medicine, in addition to the protein having IFN activity, other components can be optionally added. The ingredients added to the drug are determined depending on the mode of administration of the drug. When used as an injectable drug, it is generally known that a freeze-dried preparation with stable quality and long-term storage is available. Even in the case of dog IFN-γ, a freeze-dried preparation can be used. It can be stabilized for a long time. The freeze-dried preparation can be prepared by adding ingredients according to the concentration of canine IFN-γ in the desalted solution, adjusting a predetermined concentration to a vial, and freeze-drying the preparation. it can. Therefore, it is required that the quality is stable after the desalting step and that the desalting solvent is a part of the pharmaceutical composition. Stabilization during the period is the most important issue. The quality test period is, for example, dog IFN.
-A negative test for substances contained in raw materials containing γ,
For example, tests for the absence of impurities such as insect proteins, benzalkonium chloride, endotoxin, and dog IFN-γ.
In addition to many test items such as purity test, protein concentration test, etc.
Examples include anti-virus activity tests that require weeks.

【0028】本発明は、脱塩工程の後の品質試験期間
中、イヌIFN−γの酸化物生成を抑制し医薬品原料と
して高純度のイヌIFN−γ製剤を得るために、脱塩工
程で使用する溶媒種とその条件を鋭意検討し、イヌIF
N−γ純度が低下することなく凍結乾燥工程へ供するこ
とが可能になった。
The present invention is used in the desalting step in order to obtain a high-purity canine IFN-γ preparation as a drug raw material during the quality test period after the desalting step in order to suppress the production of canine IFN-γ oxide. The solvent IF species to be used and its conditions were studied carefully, and dog IF
It became possible to use for the freeze-drying step without decreasing the N-γ purity.

【0029】以下、実施例を挙げて本発明をさらに具体
的に説明するが、本発明の範囲がこれに限定されるもの
ではない。
Hereinafter, the present invention will be described in more detail with reference to examples, but the scope of the present invention is not limited thereto.

【0030】[0030]

【実施例】比較例1 (酢酸ナトリウム緩衝液による脱塩液の待機中の酸化物
生成(pH5.5)) (1)イヌcDNAの調製 イヌ末梢血よりリンパ球を分離し、フィトヘムアグルチ
ニン(PHA)を50μg/mlの終濃度で48時間刺
激した。刺激後、分離装置ISOGEN(ニッポンジ−
ン社)を用いて総RNAを調製した。得られたRNAを
1mM EDTAを含む10mM トリス塩酸緩衝液
(pH7.5)(以下TEと略する。)に溶解し、70
℃で5分間処理した後、前記溶解液に、1M LiCl
を含む10mM TEを同量加えた。0.5MLiCl
を含むTEで平衡化したオリゴdTセルロ−スカラムに
RNA溶液をアプライし、同緩衝液にて洗浄した。さら
に0.3M LiClを含むTEにて洗浄後、0.01
%の界面活性剤SDSを含む2mM EDTA(pH
7.0)で吸着したポリ(A)RNAを溶出した。こう
して得られたポリ(A)RNAを用いて一本鎖cDNA
を合成した。すなわち、滅菌した0.5mlのミクロ遠
心チュ−ブに5μgのポリ(A)RNAと0.5μgの
オリゴdTプライマ−(12−18mer)を入れ、ジ
エチルピロカルボネ−ト処理滅菌水を加えて12μlに
し、70℃で10分間インキュベ−トしたのち氷中に1
分間つけた。これに200mMトリス塩酸(pH8.
4),500mM KCl溶液を2μl,25mM M
gCl2 を2μl,10mM dNTP(dATP(デ
オキシアデノシン三リン酸)、dTTP(デオキシチミ
ジン三リン酸)、dGTP(デオキシグアノシン三リン
酸)、dCTP(デオキシシチジン三リン酸))を1μ
lおよび0.1M DTTを2μlそれぞれ加え、42
℃で5分間インキュベ−トしたのち、200ユニットの
GibcoBRL社製SuperScript II
RTを1μl加え、42℃でさらに50分間インキュベ
−トしてcDNA合成反応を行った。さらに70℃で1
5分間インキュベ−トして反応を停止し、氷上に5分間
置いた。この反応液に1μlのE.coli RNas
eH(2units/ml)を加え、37℃で20分間
インキュベ−トした。
[Examples] Comparative Example 1 (Oxide production in a desalted solution with sodium acetate buffer while waiting (pH 5.5)) (1) Preparation of dog cDNA Lymphocytes were isolated from dog peripheral blood and phytohemagglutinin was isolated. (PHA) was stimulated for 48 hours at a final concentration of 50 μg / ml. After stimulation, the separation device ISOGEN (Nipponji-
RNA) was used to prepare total RNA. The obtained RNA was dissolved in 10 mM Tris-HCl buffer (pH 7.5) containing 1 mM EDTA (hereinafter abbreviated as TE), and 70
After treatment at 5 ° C for 5 minutes, 1M LiCl was added to the solution.
The same amount of 10 mM TE containing was added. 0.5M LiCl
The RNA solution was applied to an oligo dT cellulose column equilibrated with TE containing and washed with the same buffer. After washing with TE containing 0.3 M LiCl, 0.01
% EDTA with 2% SDS (pH)
The poly (A) RNA adsorbed at 7.0) was eluted. Single-stranded cDNA is obtained using the poly (A) RNA thus obtained.
Was synthesized. That is, 5 μg of poly (A) RNA and 0.5 μg of oligo dT primer (12-18 mer) were put in a sterilized 0.5 ml microcentrifuge tube, and diethylpyrocarbonate-treated sterile water was added. Make 12 μl, incubate at 70 ° C. for 10 minutes, and then incubate on ice.
I put it on for a minute. 200 mM Tris-HCl (pH 8.
4), 2 μl of 500 mM KCl solution, 25 mM M
2 μl of gCl 2 and 1 μm of 10 mM dNTP (dATP (deoxyadenosine triphosphate), dTTP (deoxythymidine triphosphate), dGTP (deoxyguanosine triphosphate), dCTP (deoxycytidine triphosphate))
1 and 0.1 M DTT, 2 μl each,
After incubating at ℃ for 5 minutes, 200 units of Superscript II manufactured by GibcoBRL.
1 μl of RT was added and incubated at 42 ° C. for 50 minutes to carry out a cDNA synthesis reaction. 1 at 70 ℃
The reaction was stopped by incubating for 5 minutes and placed on ice for 5 minutes. 1 μl of E. coli RNas
eH (2 units / ml) was added, and the mixture was incubated at 37 ° C for 20 minutes.

【0031】(2)イヌIFN−γの活性を有するタン
パク質をコードする遺伝子の調製 イヌIFN−γの塩基配列をもとに、 5´GCAGATCTATGAATTATACAAGC
TATATCTTAGCT3´(配列番号:11) と 5´GCGAATTCTTATTTCGATGCTCT
GCGGCCTCGAAA3´(配列番号:12) の2種類のプライマ−を合成した。前項で得られたcD
NAを0.5mlのミクロ遠心チュ−ブに2μlづつ取
り、各プライマ−を20pmolとして、さらに,20
mMトリス塩酸緩衝液(pH8.0)、1.5mM M
gCl2 、25mM KCl,100μg/ml ゼ
ラチン、50μM各塩基種のdNTP、4単位 ExT
aqDNAポリメラ−ゼ(宝酒造株式会社製)となるよ
うに各試薬を加え、全量100μlとした。DNAの変
性条件を94℃,1分、プライマ−のアニ−リング条件
を55℃、2分、プライマ−の伸長条件を72℃、3分
の各条件でPerkin−Elmer Cetus社の
DNAサ−マルサイクラ−を用い、30サイクル反応さ
せた。これを1%アガロ−スゲルにて電気泳動し、51
7bpのDNA断片(配列番号:13)を調製した。こ
のDNA断片をInvitrogen社のT−Vect
orに連結した。これを用いて大腸菌を形質転換し、得
られた形質転換体よりプラスミドDNAを調製した。次
に蛍光DNAシーケンサー(パーキンエルマー社製DN
Aシーケンサー373S)を用い、その添付プロトコー
ルに従って、パーキンエルマー社のダイターミネーター
サイクルシーケンシングキットを用いて、得られたDN
A断片がイヌIFN−γをコードするDNAの塩基配列
であることを確認した。
(2) Preparation of Gene Encoding Protein Having Canine IFN-γ Activity Based on the nucleotide sequence of canine IFN-γ, 5'GCAGATCTATGAATTATACAAGGC
TATATCTTAGCT3 '(SEQ ID NO: 11) and 5'GCGAATTCTTTATTTCGATGCTCT
Two types of primers of GCGGCCCTCGAAA3 '(SEQ ID NO: 12) were synthesized. CD obtained in the previous section
2 μl of NA was placed in a 0.5 ml microcentrifuge tube and each primer was adjusted to 20 pmol.
mM Tris-HCl buffer (pH 8.0), 1.5 mM M
gCl 2 , 25 mM KCl, 100 μg / ml gelatin, 50 μM dNTP of each base species, 4 units ExT
Reagents were added so that aqDNA polymerase (manufactured by Takara Shuzo Co., Ltd.) was added to make 100 μl in total. DNA denaturing conditions are 94 ° C. for 1 minute, primer annealing conditions are 55 ° C. for 2 minutes, primer extension conditions are 72 ° C. for 3 minutes, and Perkin-Elmer Cetus DNA thermal cycler is used. The reaction was performed for 30 cycles using-. This was electrophoresed on a 1% agarose gel,
A 7 bp DNA fragment (SEQ ID NO: 13) was prepared. This DNA fragment was used as a T-Vect from Invitrogen.
connected to or. Escherichia coli was transformed with this, and plasmid DNA was prepared from the resulting transformant. Next, a fluorescent DNA sequencer (Perkin Elmer DN
A sequencer 373S) and a DN obtained using the Perkin Elmer Dye Terminator Cycle Sequencing Kit according to the attached protocol.
It was confirmed that the A fragment was the nucleotide sequence of DNA encoding canine IFN-γ.

【0032】(3)カイコ発現用プラスミドの作製 次にこのDNA断片を鋳型として6種類のプライマー
(配列番号:14〜19)を組み合わせて上記と同様の
条件でPCRを行い、3種類のPCR増幅断片(配列番
号:20〜22)を得た。これらを常法に従い回収し、
配列番号:20に示す断片を制限酵素BamHIおよび
EcoRV で、配列番号:21に示す断片を制限酵素
HincIIおよびSnabI で、配列番号:23に
示す断片を制限酵素EcoRVおよびEcoRIで、そ
れぞれ切断後、制限酵素処理した配列番号:20に示す
断片と制限酵素処理した配列番号:22に示す断片を混
和してpUC19のEcoRI、BamHI部位へ常法
に従い挿入し、組換えベクターを得た。さらにこのベク
ターを制限酵素EcoR Vで切断後、配列番号:21
に示す断片を常法に従い挿入し組換えベクターを得、挿
入されたDNAの塩基配列(配列番号:23)を上記と
同様にして確認した。その後、制限酵素BamHIおよ
びEcoRI で挿入されたDNAを回収し、これを制
限酵素BglIIおよびEcoRIで切断したpBM0
30に挿入して、カイコ発現用組換えベクターpBMγ
S2(-)を作製した。
(3) Preparation of Bombyx mori Expression Plasmid Next, using this DNA fragment as a template and combining 6 kinds of primers (SEQ ID NOs: 14 to 19), PCR was carried out under the same conditions as above, and 3 kinds of PCR amplification were carried out. Fragments (SEQ ID NOs: 20-22) were obtained. These are collected according to the usual method,
The fragment shown in SEQ ID NO: 20 is digested with restriction enzymes BamHI and EcoRV, the fragment shown in SEQ ID NO: 21 is digested with restriction enzymes HincII and SnabI, and the fragment shown in SEQ ID NO: 23 is digested with restriction enzymes EcoRV and EcoRI. The enzyme-treated fragment shown in SEQ ID NO: 20 and the restriction enzyme-treated fragment shown in SEQ ID NO: 22 were mixed and inserted into the EcoRI and BamHI sites of pUC19 by a conventional method to obtain a recombinant vector. Further, this vector was cleaved with the restriction enzyme EcoR V to give
The fragment shown in (1) was inserted by a conventional method to obtain a recombinant vector, and the nucleotide sequence of the inserted DNA (SEQ ID NO: 23) was confirmed in the same manner as above. Thereafter, the DNA inserted with the restriction enzymes BamHI and EcoRI was recovered and pBM0 digested with the restriction enzymes BglII and EcoRI was recovered.
30 into the recombinant vector pBMγ for silkworm expression
S2 (-) was produced.

【0033】(4)イヌIFN−γをコードするDNA
で組換えられた組換えカイコ核多角体病ウイルスの作製 以下の方法で組換えウイルスを作製した。すなわち、5
0mM HEPESバッファー(pH7.1)、0.2
8M NaCl、0.7mM Na2HPO4、0.7mM
NaH2PO4からなる2.5mlの溶液に、2.5ml
のDNA混合液(0.25M CaCl2、カイコ核多角
体病ウイルスBmNPV T3株のDNA10μg、組
換え体プラスミドpBMγのDNA65μgを含む)を
滴下し、生じた懸濁液0.5mlを5mlの10%牛胎
児血清(FBS)を添加したTC−10培地中、25c
2のフラスコで平面培養した約3×105個のカイコの
BM−N細胞の培養基に加え、カイコ細胞にDNAを導
入した。20時間後、新鮮な培地と交換し、さらに7日
間培養後、培養液を回収した。その培養液を遠心して清
澄化した上清を希釈して平面に培養したBM−N細胞の
培養基に添加して8日間培養後、顕微鏡観察によりウイ
ルス感染が見られ、かつ多角体が形成していない培養基
を選択した(限界希釈法)。
(4) DNA encoding canine IFN-γ
Preparation of Recombinant Silkworm Nuclear Polyhedrosis Virus Recombined in 1. A recombinant virus was prepared by the following method. That is, 5
0 mM HEPES buffer (pH 7.1), 0.2
8M NaCl, 0.7 mM Na 2 HPO 4 , 0.7 mM
2.5 ml of a 2.5 ml solution consisting of NaH 2 PO 4
DNA mixture (containing 0.25 M CaCl 2 , 10 μg of BmNPV T 3 strain of silkworm nuclear polyhedrosis virus BmNPV T 3 and 65 μg of DNA of recombinant plasmid pBMγ) was added dropwise, and 0.5 ml of the resulting suspension was added to 5 ml of 10 ml. 25c in TC-10 medium supplemented with 15% fetal bovine serum (FBS)
DNA was introduced into the silkworm cells in addition to the culture medium of about 3 × 10 5 silkworm BM-N cells which had been subjected to flat culture in a flask of m 2 . After 20 hours, the medium was replaced with a fresh medium, and after further culturing for 7 days, the culture solution was collected. The culture broth was centrifuged and the clarified supernatant was diluted and added to the culture medium of BM-N cells cultivated on a flat surface, and after culturing for 8 days, virus infection was observed by microscopic observation and polyhedra were formed. No culture medium was selected (limit dilution method).

【0034】限界希釈法を7回繰り返し、組換え体ウイ
ルスをクローニングした。ここで作製したイヌIFN−
γをコードするDNAを含む組換えウイルスをrBNV
γとした。
The limiting dilution method was repeated 7 times to clone the recombinant virus. Dog IFN- prepared here
Recombinant virus containing DNA encoding γ was designated as rBNV
It was set to γ.

【0035】(5)rBNVγウイルス液の調製 75cm2のフラスコ底面で、15mlの10%FBS
を含むTC−10培地中で平面培養した約3×106
のBM−N細胞に、前記(4)でクローニングした組換
え体ウイルスを含むBM−N細胞の培養液50μlをB
M−N細胞に添加して、27℃で5日間培養後、培養液
を3,000rpmで5分間遠心分離して、遠心上清を
組換え体ウイルス液として得た。ウイルス液を10〜7
倍希釈し、その1mlをBM−N細胞の培養基に添加し
て27℃で7日間培養を続けると、顕微鏡観察によって
培養基のBM−N細胞にウイルス感染が認められた。
(5) Preparation of rBNVγ virus solution At the bottom of a 75 cm 2 flask, 15 ml of 10% FBS was added.
Approximately 3 × 10 6 BM-N cells cultured in a plane in TC-10 medium containing the above were added with 50 μl of a culture solution of the BM-N cells containing the recombinant virus cloned in (4) above.
After adding to MN cells and culturing at 27 ° C for 5 days, the culture solution was centrifuged at 3,000 rpm for 5 minutes to obtain a centrifugation supernatant as a recombinant virus solution. 10 to 7 virus solution
After doubling the dilution and adding 1 ml to the culture medium of BM-N cells and continuing the culture at 27 ° C. for 7 days, virus infection was observed in the BM-N cells of the culture medium by microscopic observation.

【0036】(6)生合成および精製 rBNVγウイルス液をカイコ100頭に接種し、カイ
コを飼育した後、カイコ体液を0.01%塩化ベンザルコニ
ウム、2.5mM EDTAを含む20mMリン酸ナトリウム緩衝
液1L(pH5.5)に抽出し、固形分を濾別して抽出
溶液のpH6に調整した。
(6) Biosynthesis and Purification After inoculating 100 silkworms with the rBNVγ virus solution and raising the silkworms, the silkworm body fluid was diluted with 1 L of a 20 mM sodium phosphate buffer containing 0.01% benzalkonium chloride and 2.5 mM EDTA. The pH of the extraction solution was adjusted to 6 by filtering off the solid content by filtration.

【0037】3〜5℃の冷蔵庫内で時14間待機し組換
えウイルスを不活化させた後、遠心分離して遠心上澄液
と沈降物に分離した。上澄液を無菌濾過しクロマト精製
原液とした。
After standing for 14 hours in a refrigerator at 3 to 5 ° C. to inactivate the recombinant virus, it was centrifuged to separate into a centrifugal supernatant and a precipitate. The supernatant was subjected to aseptic filtration to obtain a stock solution for chromatographic purification.

【0038】このクロマト精製原液は、限外濾過でpH
5.5の20mM酢酸ナトリウム緩衝液に交換し、銅キ
レートアフィニティー担体330mlに通液し、さらに
20mM酢酸ナトリウム緩衝液を通液して通過液を回収
した(一段目画分)。通液速度330ml/hr、カラ
ム温度5℃で操作した。ここで精製された一段目画分1
LのHPLC純度は30%であった。
This chromatographically purified stock solution was subjected to ultrafiltration to obtain a pH value.
The solution was exchanged with 5.5 mM of 20 mM sodium acetate buffer, passed through 330 ml of the copper chelate affinity carrier, and further passed through 20 mM sodium acetate buffer to collect the passing liquid (first stage fraction). The operation was performed at a liquid passing rate of 330 ml / hr and a column temperature of 5 ° C. First-stage fraction 1 purified here
The HPLC purity of L was 30%.

【0039】一段目画分を、限外ろ過により20mMグ
リシン・水酸化ナトリウム緩衝液(pH9)に交換し、
強陰イオン交換担体であるQセファロース(ファルマシ
ア社)40mlによるカラムクロマトグラフィー(通液
速度40ml/hr、カラム温度5℃)精製を行った。
このカラムクロマトグラフィーでは、目的物が担体に吸
着し20mM 〜50mMまでNaCl/20mMグリ
シン・水酸化ナトリウム緩衝液(pH9)のNaCl濃
度を段階的に高めることで、目的物とその酸化物が溶出
した。ここで得られた画分(二段目画分)は30mMの
NaClを含み225mlを回収した。HPLC純度
は、メジャーピーク(配列番号6)89%で回収率が5
0%であった。またマイナーピークは配列番号24だけ
であった。
The first-stage fraction was exchanged with 20 mM glycine / sodium hydroxide buffer (pH 9) by ultrafiltration,
Purification was performed by column chromatography (40 ml / hr of liquid flow rate, column temperature 5 ° C.) with 40 ml of Q Sepharose (Pharmacia), which is a strong anion exchange carrier.
In this column chromatography, the target substance was adsorbed on the carrier and the target substance and its oxide were eluted by increasing the NaCl concentration of NaCl / 20 mM glycine / sodium hydroxide buffer (pH 9) stepwise to 20 mM to 50 mM. . The fraction (second-stage fraction) obtained here contained 30 mM NaCl and 225 ml was collected. The HPLC purity was 89% at the major peak (SEQ ID NO: 6) and the recovery rate was 5
It was 0%. The minor peak was SEQ ID NO: 24 only.

【0040】二段目画分を、限外ろ過により20mM酢
酸ナトリウム緩衝液(pH5.5)に交換し、アフィニ
ティー担体であるブルーセファロース(ファルマシア
社)10mlによるカラムクロマトグラフィー(通液速
度50ml/hr、カラム温度5℃)精製を行った。溶
出は0.15〜0.5MまでNaClと20mMリン酸
ナトリウム緩衝液のNaCl濃度を段階的に高めること
で、目的物とその酸化物が溶出した(三段目画分)。こ
のブルーセファロースクロマトグラフィーでは、純度9
5%以上の画分は、0.2M NaCl濃度の三段目画
分4と5(同一塩濃度で溶出時間で細分化)で合わせて
100ml、イヌIFN−γ収率が30%であった。ま
た、純度90%以上の画分として0.15M NaCl
濃度の三段目画分3(25ml、なお、この前の三段目
画分1,2は不純物が多かったので、除外した)、0.
25M NaCl濃度の三段目画分6(50ml)であ
り、画分3と6を合わせて純度93%を得た(75m
l)、この画分3+6を回収すると(画分3+4+5+
6)総収率は65%に達した。
The second-stage fraction was exchanged with a 20 mM sodium acetate buffer (pH 5.5) by ultrafiltration, and column chromatography was performed with 10 ml of an affinity carrier, Blue Sepharose (Pharmacia) (liquid flow rate: 50 ml / hr). , Column temperature 5 ° C.) purification was performed. For elution, the target substance and its oxide were eluted by stepwise increasing the NaCl concentrations of NaCl and 20 mM sodium phosphate buffer to 0.15-0.5 M (third-stage fraction). This blue sepharose chromatography has a purity of 9
The fractions of 5% or more were 100 ml in total in the third-stage fractions 4 and 5 having 0.2M NaCl concentration (subdivided by elution time at the same salt concentration), and the dog IFN-γ yield was 30%. . In addition, as a fraction with a purity of 90% or more, 0.15M NaCl
Concentration third-stage fraction 3 (25 ml; the third-stage fractions 1 and 2 before this were excluded because they had many impurities), 0.
It was a third-stage fraction 6 (50 ml) with a concentration of 25 M NaCl, and fractions 3 and 6 were combined to give a purity of 93% (75 m
l), collecting this fraction 3 + 6 (fraction 3 + 4 + 5 +
6) The total yield reached 65%.

【0041】(7)脱塩および製剤化 カラムクロマトグラフィー精製が終了した高純度精製液
(三段目画分4+5)は、ゲルろ過担体であるセファデ
ックスG-25(ファルマシア社)を充填したカラムクロマ
トグラフィー(充填容積100ml)で行った。
(7) Desalting and formulation column High-purity purified liquid (third-stage fraction 4 + 5), which has been purified by chromatography, is a column packed with Sephadex G-25 (Pharmacia), which is a gel filtration carrier. Chromatography (packing volume 100 ml).

【0042】精製液、および平衡化溶媒、イヌIFN−
γの溶出に使用する溶媒は5℃に冷却した。また、ゲル
ろ過担体についても5℃に冷却した。担体およびカラム
の滅菌は0.1N−NaOHを浸漬することで行い、滅
菌水洗浄後、20mM酢酸ナトリウム緩衝液を通液速度
100ml/hr(SV=1)で担体充填容積の3倍容
(BV=3)の300ml通液した。その後、20mM
酢酸ナトリウム緩衝液(pH5.5)で0.5%ブタ加水
分解ゼラチン溶液を調製し、0.22μm無菌フィルターで
無菌ろ過した後、BV=0.3(30ml)通液し担体
をコートし、20mM酢酸ナトリウム緩衝液(pH5.
5)BV=3で平衡化した。平衡化の確認は流出液のp
Hを計測した。その後、三段目画分4+5(ブルーセフ
ァロースクロマトグラフィー精製液0.2M NaCl
/20mMリン酸緩衝液HPLC純度97.4%、酸化
物2.6%の画分)25mlを、通液速度(SV=0.
5)50ml/hrで通液した。続けて、通液速度50
ml/hrで20mM酢酸ナトリウム緩衝液(pH5.
5)を通液し、カラム溶出液を280nm吸光度をモニ
ターしながら280nmに吸収をもつ溶出液(四段目画
分)37mlを回収した。カラム温度5℃で操作した。
回収した脱塩液のpHは5.5で、イヌIFN−γの収
率87%であった。
Purified solution, equilibration solvent, canine IFN-
The solvent used for elution of γ was cooled to 5 ° C. The gel filtration carrier was also cooled to 5 ° C. Sterilization of the carrier and the column is performed by immersing 0.1N-NaOH, and after washing with sterilized water, a 20 mM sodium acetate buffer solution is passed through at a flow rate of 100 ml / hr (SV = 1), and the volume is 3 times the volume of the carrier (BV). = 3) was passed through 300 ml. Then 20 mM
Prepare 0.5% porcine hydrolyzed gelatin solution with sodium acetate buffer (pH 5.5), aseptically filter with 0.22 μm sterile filter, then pass BV = 0.3 (30 ml) and coat the carrier with 20 mM. Sodium acetate buffer (pH 5.
5) Equilibrated with BV = 3. Confirm the equilibration by p of the effluent
H was measured. Then, the third-stage fraction 4 + 5 (Blue Sepharose chromatography purified solution 0.2M NaCl
/ 20 mM phosphate buffer HPLC purity 97.4%, oxide 2.6% fraction) (25 ml) was passed through (SV = 0.
5) The solution was passed at 50 ml / hr. Continuously, the liquid passing speed is 50
20 mM sodium acetate buffer (pH 5.
5) The solution was passed through the column, and 37 ml of the eluate (fourth-stage fraction) having absorption at 280 nm was collected while monitoring the absorbance of the column eluate at 280 nm. It was operated at a column temperature of 5 ° C.
The pH of the recovered desalted solution was 5.5, and the yield of canine IFN-γ was 87%.

【0043】この脱塩液を市販の0.22μm無菌フィ
ルターでろ過し、医薬品原料としての品質試験に費やす
保存期間中の経時変化をHPLC分析で追跡調査した。
試料は、コーニング遠沈管に入れ5℃と15℃で保存し
た。HPLC分析は、以下の(8)項に示した方法で行
った。注入試料は、100μlとし2回分析した。結果
を表1に示すように、保存温度5℃でイヌIFN−γ酸
化物が7日で4.4%、14日で6.0%に増加し、イ
ヌIFN−γの純度が低下した。また、温度15℃では
イヌIFN−γ酸化物の増加が顕著で7日で6.4%、
14日で9.5%に増加した。
This desalted solution was filtered through a commercially available 0.22 μm sterilizing filter, and the change with time during the storage period spent for the quality test as a pharmaceutical raw material was followed up by HPLC analysis.
Samples were placed in Corning centrifuge tubes and stored at 5 ° C and 15 ° C. The HPLC analysis was performed by the method described in the item (8) below. The injection sample was 100 μl and was analyzed twice. As shown in Table 1, the canine IFN-γ oxide increased to 4.4% in 7 days and 6.0% in 14 days at the storage temperature of 5 ° C., and the purity of canine IFN-γ decreased. Also, at a temperature of 15 ° C, the increase in canine IFN-γ oxide was remarkable, and 6.4% in 7 days,
It increased to 9.5% in 14 days.

【0044】(8)HPLCによる純度分析 HPLC装置システムはLC−10ADシリーズ(島津
製作所製)を用い、カラムはコスモシール5C18−A
R−300(ナカライテスイク社製)を用いた。また、
溶離液はA液として0.1%トリフルオロ酢酸水溶液、
B液として0.1%トリフルオロ酢酸を含むアセトニト
リルを用いた。流速は1ml/minとし、ピーク検出
波長は210nmで行った。溶出はリニアグラジェント
(B液濃度0分:40%、30分:46%)により分析
を行った。陰イオン交換担体による画分は100μlを
分析した。また、ブルーセファロース担体による精製画
分、および脱塩液は50μlを分析した。この時検出さ
れた2本のピークは、25.5分と27.2分に検出さ
れた。このピークをそれぞれ分取して構造解析を行っ
た。分子量はTOF−MASによって測定し、C末端ア
ミノ酸配列は臭化シアン分解後、ペプチドマッピングを
行い、得られたC末端ペプチドをエドマン分解法によっ
て決定した。その結果、25.5分に検出されたマイナ
ーピークは配列番号6のN末端側から3番目のメチオニ
ンがメチオニンスルホキサイドに酸化(配列番号24)
されたものであった。
(8) Purity analysis by HPLC The LC-10AD series (manufactured by Shimadzu Corporation) is used as the HPLC system, and the column is Cosmo Seal 5C18-A.
R-300 (manufactured by Nacalai Teesque) was used. Also,
The eluent is 0.1% trifluoroacetic acid aqueous solution as solution A,
As solution B, acetonitrile containing 0.1% trifluoroacetic acid was used. The flow rate was 1 ml / min, and the peak detection wavelength was 210 nm. The elution was analyzed by a linear gradient (solution B concentration 0 minutes: 40%, 30 minutes: 46%). 100 μl of the anion exchange carrier fraction was analyzed. In addition, 50 μl of the purified fraction with the Blue Sepharose carrier and the desalted solution were analyzed. Two peaks detected at this time were detected at 25.5 minutes and 27.2 minutes. Each of these peaks was collected and subjected to structural analysis. The molecular weight was measured by TOF-MAS, the C-terminal amino acid sequence was decomposed with cyanogen bromide and then subjected to peptide mapping, and the obtained C-terminal peptide was determined by the Edman decomposition method. As a result, the minor peak detected at 25.5 minutes was that the third methionine from the N-terminal side of SEQ ID NO: 6 was oxidized to methionine sulfoxide (SEQ ID NO: 24).
It was done.

【0045】比較例2 (酢酸ナトリウム緩衝液による脱塩液の待機中の酸化物
生成(pH5.5))比較例1記載の精製で得られた三
段目画分3+6(0.15M、0.25MNaClを含
むHPLC純度(イヌIFN−γ)93%、イヌIFN
−γ酸化物6.3%のブルーアフィニティクロマトグラ
フィー画分)の一部25mlを使用した以外、比較例1
記載と同様の操作方法で脱塩した。280nmに吸収を
もつ溶出液38mlを回収した。カラム温度5℃で操作
した。回収した脱塩液のpHは5.5で、イヌIFN−
γの収率89%であった。この脱塩液を比較例1記載と
同様の方法で無菌ろ過し、コーニング遠沈管に入れ15
℃で保存した。15℃における経時変化をHPLC分析
調査した。HPLC分析は、比較例1に示した同様の方
法で行った。注入試料は、100μlとし2回分析し
た。結果を表1に示すように、イヌIFN−γ酸化物が
7日で9.5%、14日で13.5%に増加し、それに
合わせてイヌIFN−γの純度が低下した。
Comparative Example 2 (Oxidation of desalted solution with sodium acetate buffer during standby (pH 5.5)) Third stage fraction 3 + 6 (0.15M, 0) obtained by the purification described in Comparative Example 1 HPLC purity (dog IFN-γ) 93% containing .25M NaCl, dog IFN
-Comparative Example 1 except that a portion of 25 ml of the blue affinity chromatography fraction of -γ oxide 6.3%) was used.
Desalting was performed by the same operation method as described. 38 ml of the eluate having an absorption at 280 nm was collected. It was operated at a column temperature of 5 ° C. The pH of the recovered desalted solution was 5.5, and dog IFN-
The yield of γ was 89%. This desalted solution was aseptically filtered in the same manner as described in Comparative Example 1 and placed in a Corning centrifuge tube.
Stored at ° C. HPLC analysis was conducted to examine the change with time at 15 ° C. The HPLC analysis was performed by the same method as shown in Comparative Example 1. The injection sample was 100 μl and was analyzed twice. As shown in Table 1, the canine IFN-γ oxide increased to 9.5% in 7 days and 13.5% in 14 days, and the purity of canine IFN-γ decreased accordingly.

【0046】実施例1 (クエン酸ナトリウム緩衝液による脱塩液の待機中の酸
化物抑制(pH7.6))比較例1記載の精製で得られ
た三段目画分4+5(0.2M NaClと20mMリ
ン酸緩衝液HPLC純度97.4%、酸化物2.6%の
画分)の一部25mlを使用した。ゲルろ過担体の平衡
化と、脱塩用溶出溶媒に20mMクエン酸ナトリウム緩
衝液(pH8)を使用した以外比較例1記載と同様の操
作方法で脱塩した。吸光度280nmに吸収をもつ溶出
液38mlを回収した。カラム温度5℃で操作した。回
収した脱塩液のpHは7.6で、イヌIFN−γの収率
93%であった。この脱塩液を比較例1記載と同様の方
法で無菌ろ過し、コーニング遠沈管に入れ5℃と15℃
における経時変化をHPLC分析調査した。HPLC分
析は、比較例1に示した同様の方法で行った。注入試料
は、100μlとし2回分析した。結果を表1に示すよ
うに、保存温度5℃でイヌIFN−γ酸化物生成が殆ど
なく、また、温度15℃、14日でもイヌIFN−γ酸
化物生成は殆どなく純度低下が起こらなかった。
Example 1 (Oxidation inhibition of desalted solution by sodium citrate buffer during standby (pH 7.6)) Third-stage fraction 4 + 5 (0.2 M NaCl obtained by the purification described in Comparative Example 1) And a fraction of 20 mM phosphate buffer HPLC purity 97.4%, oxide 2.6% fraction) was used 25 ml. Desalting was carried out in the same manner as in Comparative Example 1 except that the gel filtration carrier was equilibrated and 20 mM sodium citrate buffer (pH 8) was used as an elution solvent for desalting. 38 ml of the eluate having an absorbance of 280 nm was collected. It was operated at a column temperature of 5 ° C. The pH of the recovered desalted solution was 7.6, and the yield of canine IFN-γ was 93%. The desalted solution was subjected to aseptic filtration in the same manner as described in Comparative Example 1 and placed in a Corning centrifuge tube at 5 ° C and 15 ° C.
The change with time was investigated by HPLC analysis. The HPLC analysis was performed by the same method as shown in Comparative Example 1. The injection sample was 100 μl and was analyzed twice. As shown in Table 1, the dog IFN-γ oxide was hardly produced at the storage temperature of 5 ° C., and the dog IFN-γ oxide was hardly produced even at the temperature of 15 ° C. for 14 days, and the purity was not lowered. .

【0047】実施例2 (グリシン・水酸化ナトリウム緩衝液による脱塩液の待
機中の酸化物抑制(PH8.8))比較例1記載の精製
で得られた三段目画分4+5(0.2M NaClと2
0mMリン酸緩衝液HPLC純度97.4%、酸化物
2.6%の画分)の一部25mlを使用した。ゲルろ過
担体の平衡化と、脱塩用溶出溶媒にグリシン・水酸化ナ
トリウム緩衝液(pH9.8)を使用した以外比較例1
記載と同様の操作方法で脱塩した。吸光度280nmに
吸収をもつ溶出液37mlを回収した。カラム温度5℃
で操作した。回収した脱塩液のpHは8.8で、イヌI
FN−γの収率85%であった。この脱塩液を比較例1
記載と同様の方法で無菌ろ過し、コーニング遠沈管に入
れ5℃と15℃における経時変化をHPLC分析調査し
た。HPLC分析は、比較例1に示した同様の方法で行
った。注入試料は、100μlとし2回分析した。結果
を表1に示すように、保存温度5℃でイヌIFN−γ酸
化物生成が殆どなく、また、温度15℃、14日では酸
化物が3.0%と微増した。
Example 2 (Inhibition of oxide by waiting for desalting solution by glycine / sodium hydroxide buffer (PH 8.8)) Third-stage fraction 4 + 5 (0. 2M NaCl and 2
A 25 ml portion of 0 mM phosphate buffer HPLC purity 97.4%, oxide 2.6% fraction) was used. Comparative Example 1 except that the gel filtration carrier was equilibrated and glycine / sodium hydroxide buffer (pH 9.8) was used as an elution solvent for desalting
Desalting was performed by the same operation method as described. 37 ml of the eluate having an absorbance at 280 nm was collected. Column temperature 5 ℃
I operated it with. The pH of the recovered desalted solution was 8.8,
The yield of FN-γ was 85%. This desalted solution was used in Comparative Example 1
Aseptic filtration was performed by the same method as described, and the mixture was placed in a Corning centrifuge tube and subjected to HPLC analysis for changes with time at 5 ° C and 15 ° C. The HPLC analysis was performed by the same method as shown in Comparative Example 1. The injection sample was 100 μl and was analyzed twice. As shown in the results in Table 1, the dog IFN-γ oxide was hardly formed at the storage temperature of 5 ° C, and the oxide was slightly increased to 3.0% at the temperature of 15 ° C for 14 days.

【0048】実施例3 (四ホウ酸二カリウム溶液による脱塩液の待機中の酸化
物抑制(pH9.3))比較例1記載の精製で得られた
三段目画分3+6(0.15M、0.25MNaClを
含むHPLC純度(イヌIFN−γ)93%、イヌIF
N−γ酸化物7%のブルーアフィニティクロマトグラフ
ィー画分)の一部4mlを使用し、ゲルろ過担体を15
mlとし、担体の平衡化と、脱塩用溶出溶媒に四ホウ酸
二カリウム(pH9.4)を使用した以外比較例1記載
と同様の操作方法で脱塩した。吸光度280nmに吸収
をもつ溶出液7.4mlを回収した。カラム温度5℃で
操作した。回収した脱塩液のpHは9.3で、イヌIF
N−γの収率90%であった。この脱塩液を比較例1記
載と同様の方法で無菌ろ過し、コーニング遠沈管に入れ
15℃における経時変化をHPLC分析調査した。HP
LC分析は、比較例1に示した同様の方法で行った。注
入試料は、100μlとし2回分析した。結果を表1に
示すように、保存温度15℃でイヌIFN−γ酸化物が
6.7%に微増した。
Example 3 (Inhibition of oxide by waiting for desalting solution with dipotassium tetraborate solution (pH 9.3)) Third stage fraction 3 + 6 (0.15M) obtained by the purification described in Comparative Example 1 , HPLC purity containing 0.25 M NaCl (dog IFN-γ) 93%, dog IF
A portion of 4 ml of a blue affinity chromatography fraction (7% N-γ oxide) was used and the gel filtration carrier was
It was desalted in the same manner as in Comparative Example 1, except that the carrier was equilibrated and dipotassium tetraborate (pH 9.4) was used as an elution solvent for desalting. The eluate (7.4 ml) having an absorbance of 280 nm was collected. It was operated at a column temperature of 5 ° C. The pH of the recovered desalted solution was 9.3, and the dog IF
The yield of N-γ was 90%. The desalted solution was subjected to aseptic filtration by the same method as described in Comparative Example 1, put in a Corning centrifuge tube, and subjected to HPLC analysis for change with time at 15 ° C. HP
LC analysis was performed by the same method as shown in Comparative Example 1. The injection sample was 100 μl and was analyzed twice. As shown in Table 1, the canine IFN-γ oxide slightly increased to 6.7% at the storage temperature of 15 ° C.

【0049】実施例4 (酢酸ナトリウム緩衝液に四ホウ酸二ナトリウムを添加
した溶液による脱塩液の待機中の酸化物抑制(pH7.
5))20mM酢酸ナトリウム緩衝液(pH5.5)9
3mlに、20mM四ホウ酸二ナトリウム溶液(pH
9.3)7mlを添加して脱塩用緩衝液を調製した。こ
のときpH8.3であった。
Example 4 (Inhibition of oxides during stand-by of desalted solution by a solution of disodium tetraborate added to sodium acetate buffer (pH 7.
5)) 20 mM sodium acetate buffer (pH 5.5) 9
To 3 ml, 20 mM disodium tetraborate solution (pH
9.3) 7 ml was added to prepare a desalting buffer solution. At this time, the pH was 8.3.

【0050】比較例1記載の精製で得られた三段目画分
3+6(0.15M、0.25MNaClを含むHPL
C純度(イヌIFN−γ)93%、イヌIFN−γ酸化
物7%のブルーアフィニティクロマトグラフィー画分)
の一部4mlを使用し、ゲルろ過担体を15mlとし、
担体の平衡化と、脱塩用溶出溶媒に上記記載の調製緩衝
液(pH8.3)を使用した以外比較例1記載と同様の
操作方法で脱塩した。吸光度280nmに吸収をもつ溶
出液7.5mlを回収した。カラム温度5℃で操作し
た。回収した脱塩液のpHは7.5で、イヌIFN−γ
の収率87%であった。この脱塩液を比較例1記載と同
様の方法で無菌ろ過し、コーニング遠沈管に入れ15℃
における経時変化をHPLC分析調査した。HPLC分
析は、比較例1に示した同様の方法で行った。注入試料
は、100μlとし2回分析した。結果を表1に示すよ
うに、保存温度15℃でイヌIFN−γ酸化物生成が殆
どなく純度低下も殆どなかった。
Third-stage fraction 3 + 6 (HPL containing 0.15M, 0.25M NaCl) obtained by the purification described in Comparative Example 1
Blue affinity chromatography fraction of C purity (dog IFN-γ) 93%, dog IFN-γ oxide 7%)
Using a part of 4ml, the gel filtration carrier is 15ml,
Desalting was performed in the same manner as in Comparative Example 1 except that the carrier was equilibrated and the preparation buffer (pH 8.3) described above was used as the elution solvent for desalting. 7.5 ml of the eluate having an absorbance of 280 nm was collected. It was operated at a column temperature of 5 ° C. The pH of the recovered desalted solution was 7.5, and dog IFN-γ
The yield was 87%. The desalted solution was subjected to aseptic filtration in the same manner as described in Comparative Example 1 and placed in a Corning centrifuge tube at 15 ° C.
The change with time was investigated by HPLC analysis. The HPLC analysis was performed by the same method as shown in Comparative Example 1. The injection sample was 100 μl and was analyzed twice. As shown in Table 1, at a storage temperature of 15 ° C., there was almost no production of canine IFN-γ oxide and almost no decrease in purity.

【0051】実施例5 (脱塩液にグリシン・水酸化ナトリウム緩衝液添加によ
る待機中の酸化物抑制(pH7.8))比較例1で得ら
れた四段目画分(20mM酢酸ナトリウム脱塩液(pH
5.5)純度96.8%)、5mlに、30mMグリシ
ン・水酸化ナトリウム緩衝液(pH9)5mlを添加し
て調製した(pH7.8)。この調製液を比較例1記載
と同様の方法で無菌ろ過し、コーニング遠沈管に入れ5
℃における経時変化をHPLC分析調査した。HPLC
分析は、比較例1に示した同様の方法で行った。注入試
料は、100μlとし2回分析した。結果を表1に示す
ように、保存温度5℃でイヌIFN−γ酸化物生成が殆
どなく純度低下が起こらなかった。
Example 5 (Inhibition of oxides in standby by adding glycine / sodium hydroxide buffer to desalting solution (pH 7.8)) The fourth-stage fraction (20 mM sodium acetate desalting) obtained in Comparative Example 1 Liquid (pH
5.5) Purity 96.8%) 5 ml of 30 mM glycine / sodium hydroxide buffer (pH 9) was added to 5 ml to prepare (pH 7.8). The prepared solution was aseptically filtered in the same manner as in Comparative Example 1 and placed in a Corning centrifuge tube.
The change over time in ° C was investigated by HPLC analysis. HPLC
The analysis was performed by the same method as shown in Comparative Example 1. The injection sample was 100 μl and was analyzed twice. As shown in the results in Table 1, at a storage temperature of 5 ° C, dog IFN-γ oxide was scarcely produced and the purity did not decrease.

【0052】[0052]

【表1】 [Table 1]

【0053】[0053]

【発明の効果】本発明によれば、IFN−γを含む医薬
品製造の精製工程において、塩を含む緩衝液で分画精製
した画分を、医薬品の安定性を高めるため塩を除き医薬
品組成物の一部からなる溶媒に置き換える脱塩工程にお
いて、IFN−γの酸化物の生成抑制を可能にし、医薬
品原料を純度良く維持し、製剤化工程へ供することが可
能になり、高純度医薬品の製造が安定して可能になっ
た。
INDUSTRIAL APPLICABILITY According to the present invention, in the purification step for producing a drug containing IFN-γ, the fraction purified by fractionation with a buffer containing a salt is removed to remove the salt in order to enhance the stability of the drug. In the desalting process of substituting with a solvent consisting of a part of the above, it becomes possible to suppress the production of IFN-γ oxide, maintain the drug raw material in high purity, and use it in the formulation process. Became stable and possible.

【0054】[0054]

【配列表】 SEQUENCE LISTING <110> 東レ株式会社 <120> インターフェロン−γの精製方法 <130> 51E16350 <160> 22 <210> 1 <211> 501 <212> DNA PRT <213> dog <220> <221> CDS <222> (1)...(498) <220> <221> mat#peptide <222> (73)...(498) <400> 1 atg aat tat aca agc tat atc tta gct ttt cag ctt tgc gtg att ttg 48 Met Asn Tyr Thr Ser Tyr Ile Leu Ala Phe Gln Leu Cys Val Ile Leu tgt tct tct ggc tgt aac tgt cag gcc atg ttt ttt aaa gaa ata gaa 96 Cys Ser Ser Gly Cys Asn Cys Gln Ala Met Phe Phe Lys Glu Ile Glu aac cta aag gaa tat ttt cag gca agt aat cca gat gta tcg gac ggt 144 Asn Leu Lys Glu Tyr Phe Gln Ala Ser Asn Pro Asp Val Ser Asp Gly ggg tct ctt ttc gta gat att ttg aag aaa tgg aga gag gag agt gac 192 Gly Ser Leu Phe Val Asp Ile Leu Lys Lys trp Arg Glu Glu Ser Asp aaa aca atc att cag agc caa att gtc tct ttc tac ttg aaa ctg ttt 240 Lys Thr Ile Ile Gln Ser Gln Ile Val Ser Phe Tyr Leu Lys Leu Phe gac aac ttt aaa gat aac cag atc att caa agg agc atg gat acc atc 288 Asp Asn Phe Lys Asp Asn Gln Ile Ile Gln Arg Ser Met Asp Thr Ile aag gaa gac atg ctt ggc aag ttc tta cag tca tcc acc agt aag agg 336 Lys Glu Asp Met Leu Gly Lys Phe Leu Gln Ser Ser Thr Ser Lys Arg gag gac ttc ctt aag ctg att caa att cct gtg aac gat ctg cag gtc 384 Glu Asp Phe Leu Lys Leu Ile Gln Ile Pro Val Asn Asp Leu Gln Val cag cgc aag gcg ata aat gaa ctc atc aaa gtg atg aat gat ctc tca 432 Gln Arg Lys Ala Ile Asn Glu Leu Ile Lys Val Met Asn Asp Leu Ser cca aga tcc aac cta agg aag cgg aaa agg agt cag aat ctg ttt cga 480 Pro Arg Ser Asn Leu Arg Lys Arg Lys Arg Ser Gln Asn Leu Phe Arg ggc cgc aga gca tcg aaa taa 501 Gly Arg Arg Ala Ser Lys *** <210> 2 <211> 143 <212> PRT <213> dog <220> <221> mat#peptide <222> (1)...(143) <400> 2 Met Asn Tyr Thr Ser Tyr Ile Leu Ala Phe Gln Leu Cys Val Ile Leu -20 -15 -10 Cys Ser Ser Gly Cys Asn Cys Gln Ala Met Phe Phe Lys Glu Ile Glu -5 -1 1 5 Asn Leu Lys Glu Tyr Phe Gln Ala Ser Asn Pro Asp Val Ser Asp Gly 10 15 20 25 Gly Ser Leu Phe Val Asp Ile Leu Lys Lys trp Arg Glu Glu Ser Asp 30 35 40 Lys Thr Ile Ile Gln Ser Gln Ile Val Ser Phe Tyr Leu Lys Leu Phe 45 50 55 Asp Asn Phe Lys Asp Asn Gln Ile Ile Gln Arg Ser Met Asp Thr Ile 60 65 70 Lys Glu Asp Met Leu Gly Lys Phe Leu Gln Ser Ser Thr Ser Lys Arg 75 80 85 Glu Asp Phe Leu Lys Leu Ile Gln Ile Pro Val Asn Asp Leu Gln Val 90 95 100 105 Gln Arg Lys Ala Ile Asn Glu Leu Ile Lys Val Met Asn Asp Leu Ser 110 115 120 Pro Arg Ser Asn Leu Arg Lys Arg Lys Arg Ser Gln Asn Leu Phe Arg 125 130 135 Gly Arg Arg Ala Ser Lys *** 140 <210> 3 <211> 130 <212> PRT <213> dog <220> <221> mat#peptide <222> (1)...(130) <400> 3 Met Asn Tyr Thr Ser Tyr Ile Leu Ala Phe Gln Leu Cys Val Ile Leu -20 -15 -10 Cys Ser Ser Gly Cys Asn Cys Gln Ala Met Phe Phe Lys Glu Ile Glu -5 -1 1 5 Asn Leu Lys Glu Tyr Phe Gln Ala Ser Asn Pro Asp Val Ser Asp Gly 10 15 20 25 Gly Ser Leu Phe Val Asp Ile Leu Lys Lys Trp Arg Glu Glu Ser Asp 30 35 40 Lys Thr Ile Ile Gln Ser Gln Ile Val Ser Phe Tyr Leu Lys Leu Phe 45 50 55 Asp Asn Phe Lys Asp Asn Gln Ile Ile Gln Arg Ser Met Asp Thr Ile 60 65 70 Lys Glu Asp Met Leu Gly Lys Phe Leu Gln Ser Ser Thr Ser Lys Arg 75 80 85 Glu Asp Phe Leu Lys Leu Ile Gln Ile Pro Val Asn Asp Leu Gln Val 90 95 100 105 Gln Arg Lys Ala Ile Asn Glu Leu Ile Lys Val Met Asn Asp Leu Ser 110 115 120 Pro Arg Ser Asn Leu Arg Lys Arg Lys *** 125 130 <210> 4 <211> 129 <212> PRT <213> dog <220> <221> mat#peptide <222> (1)...(129) <400> 4 Met Asn Tyr Thr Ser Tyr Ile Leu Ala Phe Gln Leu Cys Val Ile Leu -20 -15 -10 Cys Ser Ser Gly Cys Asn Cys Gln Ala Met Phe Phe Lys Glu Ile Glu -5 -1 1 5 Asn Leu Lys Glu Tyr Phe Gln Ala Ser Asn Pro Asp Val Ser Asp Gly 10 15 20 25 Gly Ser Leu Phe Val Asp Ile Leu Lys Lys Trp Arg Glu Glu Ser Asp 30 35 40 Lys Thr Ile Ile Gln Ser Gln Ile Val Ser Phe Tyr Leu Lys Leu Phe 45 50 55 Asp Asn Phe Lys Asp Asn Gln Ile Ile Gln Arg Ser Met Asp Thr Ile 60 65 70 Lys Glu Asp Met Leu Gly Lys Phe Leu Gln Ser Ser Thr Ser Lys Arg 75 80 85 Glu Asp Phe Leu Lys Leu Ile Gln Ile Pro Val Asn Asp Leu Gln Val 90 95 100 105 Gln Arg Lys Ala Ile Asn Glu Leu Ile Lys Val Met Asn Asp Leu Ser 110 115 120 Pro Arg Ser Asn Leu Arg Lys Arg *** 125 <210> 5 <211> 128 <212> PRT <213> dog <220> <221> mat#peptide <222> (1)...(128) <400> 5 Met Asn Tyr Thr Ser Tyr Ile Leu Ala Phe Gln Leu Cys Val Ile Leu -20 -15 -10 Cys Ser Ser Gly Cys Asn Cys Gln Ala Met Phe Phe Lys Glu Ile Glu -5 -1 1 5 Asn Leu Lys Glu Tyr Phe Gln Ala Ser Asn Pro Asp Val Ser Asp Gly 10 15 20 25 Gly Ser Leu Phe Val Asp Ile Leu Lys Lys Trp Arg Glu Glu Ser Asp 30 35 40 Lys Thr Ile Ile Gln Ser Gln Ile Val Ser Phe Tyr Leu Lys Leu Phe 45 50 55 Asp Asn Phe Lys Asp Asn Gln Ile Ile Gln Arg Ser Met Asp Thr Ile 60 65 70 Lys Glu Asp Met Leu Gly Lys Phe Leu Gln Ser Ser Thr Ser Lys Arg 75 80 85 Glu Asp Phe Leu Lys Leu Ile Gln Ile Pro Val Asn Asp Leu Gln Val 90 95 100 105 Gln Arg Lys Ala Ile Asn Glu Leu Ile Lys Val Met Asn Asp Leu Ser 110 115 120 Pro Arg Ser Asn Leu Arg Lys *** 125 <210> 6 <211> 127 <212> PRT <213> dog <220> <221> mat#peptide <222> (1)...(127) <400> 6 Met Asn Tyr Thr Ser Tyr Ile Leu Ala Phe Gln Leu Cys Val Ile Leu -20 -15 -10 Cys Ser Ser Gly Cys Asn Cys Gln Ala Met Phe Phe Lys Glu Ile Glu -5 -1 1 5 Asn Leu Lys Glu Tyr Phe Gln Ala Ser Asn Pro Asp Val Ser Asp Gly 10 15 20 25 Gly Ser Leu Phe Val Asp Ile Leu Lys Lys Trp Arg Glu Glu Ser Asp 30 35 40 Lys Thr Ile Ile Gln Ser Gln Ile Val Ser Phe Tyr Leu Lys Leu Phe 45 50 55 Asp Asn Phe Lys Asp Asn Gln Ile Ile Gln Arg Ser Met Asp Thr Ile 60 65 70 Lys Glu Asp Met Leu Gly Lys Phe Leu Gln Ser Ser Thr Ser Lys Arg 75 80 85 Glu Asp Phe Leu Lys Leu Ile Gln Ile Pro Val Asn Asp Leu Gln Val 90 95 100 105 Gln Arg Lys Ala Ile Asn Glu Leu Ile Lys Val Met Asn Asp Leu Ser 110 115 120 Pro Arg Ser Asn Leu Arg *** 125 <210> 7 <211> 126 <212> PRT <213> dog <220> <221> mat#peptide <222> (1)...(126) <400> 7 Met Asn Tyr Thr Ser Tyr Ile Leu Ala Phe Gln Leu Cys Val Ile Leu -20 -15 -10 Cys Ser Ser Gly Cys Asn Cys Gln Ala Met Phe Phe Lys Glu Ile Glu -5 -1 1 5 Asn Leu Lys Glu Tyr Phe Gln Ala Ser Asn Pro Asp Val Ser Asp Gly 10 15 20 25 Gly Ser Leu Phe Val Asp Ile Leu Lys Lys Trp Arg Glu Glu Ser Asp 30 35 40 Lys Thr Ile Ile Gln Ser Gln Ile Val Ser Phe Tyr Leu Lys Leu Phe 45 50 55 Asp Asn Phe Lys Asp Asn Gln Ile Ile Gln Arg Ser Met Asp Thr Ile 60 65 70 Lys Glu Asp Met Leu Gly Lys Phe Leu Gln Ser Ser Thr Ser Lys Arg 75 80 85 Glu Asp Phe Leu Lys Leu Ile Gln Ile Pro Val Asn Asp Leu Gln Val 90 95 100 105 Gln Arg Lys Ala Ile Asn Glu Leu Ile Lys Val Met Asn Asp Leu Ser 110 115 120 Pro Arg Ser Asn Leu *** 125 <210> 8 <211> 125 <212> DNA PRT <213> dog <220> <221> mat#peptide <222> (1)...(125) <400> 8 Met Asn Tyr Thr Ser Tyr Ile Leu Ala Phe Gln Leu Cys Val Ile Leu -20 -15 -10 Cys Ser Ser Gly Cys Asn Cys Gln Ala Met Phe Phe Lys Glu Ile Glu -5 -1 1 5 Asn Leu Lys Glu Tyr Phe Gln Ala Ser Asn Pro Asp Val Ser Asp Gly 10 15 20 25 Gly Ser Leu Phe Val Asp Ile Leu Lys Lys Trp Arg Glu Glu Ser Asp 30 35 40 Lys Thr Ile Ile Gln Ser Gln Ile Val Ser Phe Tyr Leu Lys Leu Phe 45 50 55 Asp Asn Phe Lys Asp Asn Gln Ile Ile Gln Arg Ser Met Asp Thr Ile 60 65 70 Lys Glu Asp Met Leu Gly Lys Phe Leu Gln Ser Ser Thr Ser Lys Arg 75 80 85 Glu Asp Phe Leu Lys Leu Ile Gln Ile Pro Val Asn Asp Leu Gln Val 90 95 100 105 Gln Arg Lys Ala Ile Asn Glu Leu Ile Lys Val Met Asn Asp Leu Ser 110 115 120 Pro Arg Ser Asn *** 125 <210> 9 <211> 124 <212> PRT <213> dog <220> <221> mat#peptide <222> (1)...(124) <400> 9 Met Asn Tyr Thr Ser Tyr Ile Leu Ala Phe Gln Leu Cys Val Ile Leu -20 -15 -10 Cys Ser Ser Gly Cys Asn Cys Gln Ala Met Phe Phe Lys Glu Ile Glu -5 -1 1 5 Asn Leu Lys Glu Tyr Phe Gln Ala Ser Asn Pro Asp Val Ser Asp Gly 10 15 20 25 Gly Ser Leu Phe Val Asp Ile Leu Lys Lys Trp Arg Glu Glu Ser Asp 30 35 40 Lys Thr Ile Ile Gln Ser Gln Ile Val Ser Phe Tyr Leu Lys Leu Phe 45 50 55 Asp Asn Phe Lys Asp Asn Gln Ile Ile Gln Arg Ser Met Asp Thr Ile 60 65 70 Lys Glu Asp Met Leu Gly Lys Phe Leu Gln Ser Ser Thr Ser Lys Arg 75 80 85 Glu Asp Phe Leu Lys Leu Ile Gln Ile Pro Val Asn Asp Leu Gln Val 90 95 100 105 Gln Arg Lys Ala Ile Asn Glu Leu Ile Lys Val Met Asn Asp Leu Ser 110 115 120 Pro Arg Ser *** <210> 10 <211> 123 <212> DNA PRT <213> dog <220> <221> mat#peptide <222> (1)...(123) <400> 10 Met Asn Tyr Thr Ser Tyr Ile Leu Ala Phe Gln Leu Cys Val Ile Leu -20 -15 -10 Cys Ser Ser Gly Cys Asn Cys Gln Ala Met Phe Phe Lys Glu Ile Glu -5 -1 1 5 Asn Leu Lys Glu Tyr Phe Gln Ala Ser Asn Pro Asp Val Ser Asp Gly 10 15 20 25 Gly Ser Leu Phe Val Asp Ile Leu Lys Lys Trp Arg Glu Glu Ser Asp 30 35 40 Lys Thr Ile Ile Gln Ser Gln Ile Val Ser Phe Tyr Leu Lys Leu Phe 45 50 55 Asp Asn Phe Lys Asp Asn Gln Ile Ile Gln Arg Ser Met Asp Thr Ile 60 65 70 Lys Glu Asp Met Leu Gly Lys Phe Leu Gln Ser Ser Thr Ser Lys Arg 75 80 85 Glu Asp Phe Leu Lys Leu Ile Gln Ile Pro Val Asn Asp Leu Gln Val 90 95 100 105 Gln Arg Lys Ala Ile Asn Glu Leu Ile Lys Val Met Asn Asp Leu Ser 110 115 120 Pro Arg *** <210> 11 <211> 35 <212> DNA <213> Artificial Sequence <400> 11 gcagatctat gaattataca agctatatct tagct 35 <210> 12 <211> 35 <212> DNA <213> Artificial Sequence <400> 12 gcgaattctt atttcgatgc tctgcggcct cgaaa 35 <210> 13 <211> 517 <212> DNA <213> dog <400> 13 gcagatctat gaattataca agctatatct tagcttttca gctttgcgtg attttgtgtt 60 cttctggctg taactgtcag gccatgtttt ttaaagaaat agaaaaccta aaggaatatt 120 ttcaggcaag taatccagat gtatcggacg gtgggtctct tttcgtagat attttgaaga 180 aatggagaga ggagagtgac aaaacaatca ttcagagcca aattgtctct ttctacttga 240 aactgtttga caactttaaa gataaccaga tcattcaaag gagcatggat accatcaagg 300 aagacatgct tggcaagttc ttacagtcat ccaccagtaa gagggaggac ttccttaagc 360 tgattcaaat tcctgtgaac gatctgcagg tccagcgcaa ggcgataaat gaactcatca 420 aagtgatgaa tgatctctca ccaagatcca acctaaggaa gcggaaaagg agtcagaatc 480 tgtttcgagg ccgcagagca tcgaaataag aattcgc 517 <210> 14 <211> 30 <212> DNA <213> Artificial Sequence <400> 14 ataggatcca tgaattatac aagctatatc 30 <210> 15 <211> 33 <212> DNA <213> Artificial Sequence <400> 15 ctggatatct ggattacttg cctgaaaata ttc 33 <210> 16 <211> 27 <212> DNA <213> Artificial Sequence <400> 16 ccatacgtat cggacggtgg gtctctt 27 <210> 17 <211> 36 <212> DNA <213> Artificial Sequence <400> 17 ggtggtcgac tgtaagaact tgccaagcat gtcttc 36 <210> 18 <211> 36 <212> DNA <213> Artificial Sequence <400> 18 ccgatatcca ccagtaagag ggaggacttc cttaag 36 <210> 19 <211> 33 <212> DNA <213> Artificial Sequence <400> 19 ctcgaattct tatttcgatg ctctgcggcc tcg 33 <210> 20 <211> 147 <212> DNA <213> dog <400> 20 ataggatcca tgaattatac aagctatatc ttagcttttc agctttgcgt gattttgtgt 60 tcttctggct gtaactgtca ggccatgttt tttaaagaaa tagaaaacct aaaggaatat 120 tttcaggcaa gtaatccaga tatccag 147 <210> 21 <211> 201 <212> DNA <213> dog <400> 21 ccatacgtat cggacggtgg gtctcttttc gtagatattt tgaagaaatg gagagaggag 60 agtgacaaaa caatcattca gagccaaatt gtctctttct acttgaaact gtttgacaac 120 tttaaagata accagatcat tcaaaggagc atggatacca tcaaggaaga catgcttggc 180 aagttcttac agtcgaccac c 201 <210> 22 <211> 195 <212> DNA <213> dog <400> 22 ccgatatcca ccagtaagag ggaggacttc cttaagctga ttcaaattcc tgtgaacgat 60 ctgcaggtcc agcgcaaggc gataaatgaa ctcatcaaag tgatgaatga tctctcacca 120 agatccaacc taaggaagcg gaaaaggagt cagaatctgt ttcgaggccg cagagcatcg 180 aaataagaat tcgag 195 <210> 23 <211> 517 <212> DNA <213> dog <400> 23 gcagatctat gaattataca agctatatct tagcttttca gctttgcgtg attttgtgtt 60 cttctggctg taactgtcag gccatgtttt ttaaagaaat agaaaaccta aaggaatatt 120 ttaatgcaag taatccagat gtatcggacg gtgggtctct tttcgtagat attttgaaga 180 aatggagaga ggagagtgac aaaacaatca ttcagagcca aattgtctct ttctacttga 240 aactgtttga caactttaaa gataaccaga tcattcaaag gagcatggat accatcaagg 300 aagacatgct tggcaagttc ttaaatagca gcaccagtaa gagggaggac ttccttaagc 360 tgattcaaat tcctgtgaac gatctgcagg tccagcgcaa ggcgataaat gaactcatca 420 aagtgatgaa tgatctctca ccaagatcca acctaaggaa gcggaaaagg agtcagaatc 480 tgtttcgagg ccgcagagca tcgaaataag aattcgc 517 <210> 24 <211> 127 <212> PRT <213> dog <220> <221> mat#peptide <222> (1)...(127) <220> Xaa <221> Xaa is a oxidized form of methionine <222> (3) <400> 24 Met Asn Tyr Thr Ser Tyr Ile Leu Ala Phe Gln Leu Cys Val Ile Leu -20 -15 -10 Cys Ser Ser Gly Cys Asn Cys Gln Ala Xaa Phe Phe Lys Glu Ile Glu -5 -1 1 5 Asn Leu Lys Glu Tyr Phe Gln Ala Ser Asn Pro Asp Val Ser Asp Gly 10 15 20 25 Gly Ser Leu Phe Val Asp Ile Leu Lys Lys Trp Arg Glu Glu Ser Asp 30 35 40 Lys Thr Ile Ile Gln Ser Gln Ile Val Ser Phe Tyr Leu Lys Leu Phe 45 50 55 Asp Asn Phe Lys Asp Asn Gln Ile Ile Gln Arg Ser Met Asp Thr Ile 60 65 70 Lys Glu Asp Met Leu Gly Lys Phe Leu Gln Ser Ser Thr Ser Lys Arg 75 80 85 Glu Asp Phe Leu Lys Leu Ile Gln Ile Pro Val Asn Asp Leu Gln Val 90 95 100 105 Gln Arg Lys Ala Ile Asn Glu Leu Ile Lys Val Met Asn Asp Leu Ser 110 115 120 Pro Arg Ser Asn Leu Arg *** 125 [Sequence list]         SEQUENCE LISTING <110> Toray Industries, Inc. <120> Method for purifying interferon-γ <130> 51E16350 <160> 22 <210> 1 <211> 501 <212> DNA PRT <213> dog <220>  <221> CDS  <222> (1) ... (498) <220>  <221> mat # peptide  <222> (73) ... (498) <400> 1 atg aat tat aca agc tat atc tta gct ttt cag ctt tgc gtg att ttg 48 Met Asn Tyr Thr Ser Tyr Ile Leu Ala Phe Gln Leu Cys Val Ile Leu tgt tct tct ggc tgt aac tgt cag gcc atg ttt ttt aaa gaa ata gaa 96 Cys Ser Ser Gly Cys Asn Cys Gln Ala Met Phe Phe Lys Glu Ile Glu aac cta aag gaa tat ttt cag gca agt aat cca gat gta tcg gac ggt 144 Asn Leu Lys Glu Tyr Phe Gln Ala Ser Asn Pro Asp Val Ser Asp Gly ggg tct ctt ttc gta gat att ttg aag aaa tgg aga gag gag agt gac 192 Gly Ser Leu Phe Val Asp Ile Leu Lys Lys trp Arg Glu Glu Ser Asp aaa aca atc att cag agc caa att gtc tct ttc tac ttg aaa ctg ttt 240 Lys Thr Ile Ile Gln Ser Gln Ile Val Ser Phe Tyr Leu Lys Leu Phe gac aac ttt aaa gat aac cag atc att caa agg agc atg gat acc atc 288 Asp Asn Phe Lys Asp Asn Gln Ile Ile Gle Arg Ser Met Asp Thr Ile aag gaa gac atg ctt ggc aag ttc tta cag tca tcc acc agt aag agg 336 Lys Glu Asp Met Leu Gly Lys Phe Leu Gln Ser Ser Thr Ser Lys Arg gag gac ttc ctt aag ctg att caa att cct gtg aac gat ctg cag gtc 384 Glu Asp Phe Leu Lys Leu Ile Gln Ile Pro Val Asn Asp Leu Gln Val cag cgc aag gcg ata aat gaa ctc atc aaa gtg atg aat gat ctc tca 432 Gln Arg Lys Ala Ile Asn Glu Leu Ile Lys Val Met Asn Asp Leu Ser cca aga tcc aac cta agg aag cgg aaa agg agt cag aat ctg ttt cga 480 Pro Arg Ser Asn Leu Arg Lys Arg Lys Arg Ser Gln Asn Leu Phe Arg ggc cgc aga gca tcg aaa taa 501 Gly Arg Arg Ala Ser Lys *** <210> 2 <211> 143 <212> PRT <213> dog <220>  <221> mat # peptide  <222> (1) ... (143) <400> 2 Met Asn Tyr Thr Ser Tyr Ile Leu Ala Phe Gln Leu Cys Val Ile Leu             -20 -15 -10 Cys Ser Ser Gly Cys Asn Cys Gln Ala Met Phe Phe Lys Glu Ile Glu         -5 -1 1 5 Asn Leu Lys Glu Tyr Phe Gln Ala Ser Asn Pro Asp Val Ser Asp Gly  10 15 20 25 Gly Ser Leu Phe Val Asp Ile Leu Lys Lys trp Arg Glu Glu Ser Asp                  30 35 40 Lys Thr Ile Ile Gln Ser Gln Ile Val Ser Phe Tyr Leu Lys Leu Phe              45 50 55 Asp Asn Phe Lys Asp Asn Gln Ile Ile Gle Arg Ser Met Asp Thr Ile          60 65 70 Lys Glu Asp Met Leu Gly Lys Phe Leu Gln Ser Ser Thr Ser Lys Arg      75 80 85 Glu Asp Phe Leu Lys Leu Ile Gln Ile Pro Val Asn Asp Leu Gln Val  90 95 100 105 Gln Arg Lys Ala Ile Asn Glu Leu Ile Lys Val Met Asn Asp Leu Ser                 110 115 120 Pro Arg Ser Asn Leu Arg Lys Arg Lys Arg Ser Gln Asn Leu Phe Arg             125 130 135 Gly Arg Arg Ala Ser Lys ***         140 <210> 3 <211> 130 <212> PRT <213> dog <220>  <221> mat # peptide  <222> (1) ... (130) <400> 3 Met Asn Tyr Thr Ser Tyr Ile Leu Ala Phe Gln Leu Cys Val Ile Leu             -20 -15 -10 Cys Ser Ser Gly Cys Asn Cys Gln Ala Met Phe Phe Lys Glu Ile Glu         -5 -1 1 5 Asn Leu Lys Glu Tyr Phe Gln Ala Ser Asn Pro Asp Val Ser Asp Gly 10 15 20 25 Gly Ser Leu Phe Val Asp Ile Leu Lys Lys Trp Arg Glu Glu Ser Asp                  30 35 40 Lys Thr Ile Ile Gln Ser Gln Ile Val Ser Phe Tyr Leu Lys Leu Phe              45 50 55 Asp Asn Phe Lys Asp Asn Gln Ile Ile Gle Arg Ser Met Asp Thr Ile          60 65 70 Lys Glu Asp Met Leu Gly Lys Phe Leu Gln Ser Ser Thr Ser Lys Arg      75 80 85 Glu Asp Phe Leu Lys Leu Ile Gln Ile Pro Val Asn Asp Leu Gln Val  90 95 100 105 Gln Arg Lys Ala Ile Asn Glu Leu Ile Lys Val Met Asn Asp Leu Ser                 110 115 120 Pro Arg Ser Asn Leu Arg Lys Arg Lys *** 125 130 <210> 4 <211> 129 <212> PRT <213> dog <220>  <221> mat # peptide  <222> (1) ... (129) <400> 4 Met Asn Tyr Thr Ser Tyr Ile Leu Ala Phe Gln Leu Cys Val Ile Leu             -20 -15 -10 Cys Ser Ser Gly Cys Asn Cys Gln Ala Met Phe Phe Lys Glu Ile Glu         -5 -1 1 5 Asn Leu Lys Glu Tyr Phe Gln Ala Ser Asn Pro Asp Val Ser Asp Gly 10 15 20 25 Gly Ser Leu Phe Val Asp Ile Leu Lys Lys Trp Arg Glu Glu Ser Asp                  30 35 40 Lys Thr Ile Ile Gln Ser Gln Ile Val Ser Phe Tyr Leu Lys Leu Phe              45 50 55 Asp Asn Phe Lys Asp Asn Gln Ile Ile Gle Arg Ser Met Asp Thr Ile          60 65 70 Lys Glu Asp Met Leu Gly Lys Phe Leu Gln Ser Ser Thr Ser Lys Arg      75 80 85 Glu Asp Phe Leu Lys Leu Ile Gln Ile Pro Val Asn Asp Leu Gln Val  90 95 100 105 Gln Arg Lys Ala Ile Asn Glu Leu Ile Lys Val Met Asn Asp Leu Ser                 110 115 120 Pro Arg Ser Asn Leu Arg Lys Arg ***             125 <210> 5 <211> 128 <212> PRT <213> dog <220>  <221> mat # peptide  <222> (1) ... (128) <400> 5 Met Asn Tyr Thr Ser Tyr Ile Leu Ala Phe Gln Leu Cys Val Ile Leu             -20 -15 -10 Cys Ser Ser Gly Cys Asn Cys Gln Ala Met Phe Phe Lys Glu Ile Glu         -5 -1 1 5 Asn Leu Lys Glu Tyr Phe Gln Ala Ser Asn Pro Asp Val Ser Asp Gly 10 15 20 25 Gly Ser Leu Phe Val Asp Ile Leu Lys Lys Trp Arg Glu Glu Ser Asp                  30 35 40 Lys Thr Ile Ile Gln Ser Gln Ile Val Ser Phe Tyr Leu Lys Leu Phe              45 50 55 Asp Asn Phe Lys Asp Asn Gln Ile Ile Gle Arg Ser Met Asp Thr Ile          60 65 70 Lys Glu Asp Met Leu Gly Lys Phe Leu Gln Ser Ser Thr Ser Lys Arg      75 80 85 Glu Asp Phe Leu Lys Leu Ile Gln Ile Pro Val Asn Asp Leu Gln Val  90 95 100 105 Gln Arg Lys Ala Ile Asn Glu Leu Ile Lys Val Met Asn Asp Leu Ser                 110 115 120 Pro Arg Ser Asn Leu Arg Lys ***             125 <210> 6 <211> 127 <212> PRT <213> dog <220>  <221> mat # peptide  <222> (1) ... (127) <400> 6 Met Asn Tyr Thr Ser Tyr Ile Leu Ala Phe Gln Leu Cys Val Ile Leu             -20 -15 -10 Cys Ser Ser Gly Cys Asn Cys Gln Ala Met Phe Phe Lys Glu Ile Glu         -5 -1 1 5 Asn Leu Lys Glu Tyr Phe Gln Ala Ser Asn Pro Asp Val Ser Asp Gly 10 15 20 25 Gly Ser Leu Phe Val Asp Ile Leu Lys Lys Trp Arg Glu Glu Ser Asp                  30 35 40 Lys Thr Ile Ile Gln Ser Gln Ile Val Ser Phe Tyr Leu Lys Leu Phe              45 50 55 Asp Asn Phe Lys Asp Asn Gln Ile Ile Gle Arg Ser Met Asp Thr Ile          60 65 70 Lys Glu Asp Met Leu Gly Lys Phe Leu Gln Ser Ser Thr Ser Lys Arg      75 80 85 Glu Asp Phe Leu Lys Leu Ile Gln Ile Pro Val Asn Asp Leu Gln Val  90 95 100 105 Gln Arg Lys Ala Ile Asn Glu Leu Ile Lys Val Met Asn Asp Leu Ser                 110 115 120 Pro Arg Ser Asn Leu Arg ***             125 <210> 7 <211> 126 <212> PRT <213> dog <220>  <221> mat # peptide  <222> (1) ... (126) <400> 7 Met Asn Tyr Thr Ser Tyr Ile Leu Ala Phe Gln Leu Cys Val Ile Leu             -20 -15 -10 Cys Ser Ser Gly Cys Asn Cys Gln Ala Met Phe Phe Lys Glu Ile Glu         -5 -1 1 5 Asn Leu Lys Glu Tyr Phe Gln Ala Ser Asn Pro Asp Val Ser Asp Gly 10 15 20 25 Gly Ser Leu Phe Val Asp Ile Leu Lys Lys Trp Arg Glu Glu Ser Asp                  30 35 40 Lys Thr Ile Ile Gln Ser Gln Ile Val Ser Phe Tyr Leu Lys Leu Phe              45 50 55 Asp Asn Phe Lys Asp Asn Gln Ile Ile Gle Arg Ser Met Asp Thr Ile          60 65 70 Lys Glu Asp Met Leu Gly Lys Phe Leu Gln Ser Ser Thr Ser Lys Arg      75 80 85 Glu Asp Phe Leu Lys Leu Ile Gln Ile Pro Val Asn Asp Leu Gln Val  90 95 100 105 Gln Arg Lys Ala Ile Asn Glu Leu Ile Lys Val Met Asn Asp Leu Ser                 110 115 120 Pro Arg Ser Asn Leu ***             125 <210> 8 <211> 125 <212> DNA PRT <213> dog <220>  <221> mat # peptide  <222> (1) ... (125) <400> 8 Met Asn Tyr Thr Ser Tyr Ile Leu Ala Phe Gln Leu Cys Val Ile Leu             -20 -15 -10 Cys Ser Ser Gly Cys Asn Cys Gln Ala Met Phe Phe Lys Glu Ile Glu         -5 -1 1 5 Asn Leu Lys Glu Tyr Phe Gln Ala Ser Asn Pro Asp Val Ser Asp Gly 10 15 20 25 Gly Ser Leu Phe Val Asp Ile Leu Lys Lys Trp Arg Glu Glu Ser Asp                  30 35 40 Lys Thr Ile Ile Gln Ser Gln Ile Val Ser Phe Tyr Leu Lys Leu Phe              45 50 55 Asp Asn Phe Lys Asp Asn Gln Ile Ile Gle Arg Ser Met Asp Thr Ile          60 65 70 Lys Glu Asp Met Leu Gly Lys Phe Leu Gln Ser Ser Thr Ser Lys Arg      75 80 85 Glu Asp Phe Leu Lys Leu Ile Gln Ile Pro Val Asn Asp Leu Gln Val  90 95 100 105 Gln Arg Lys Ala Ile Asn Glu Leu Ile Lys Val Met Asn Asp Leu Ser                 110 115 120 Pro Arg Ser Asn ***             125 <210> 9 <211> 124 <212> PRT <213> dog <220>  <221> mat # peptide  <222> (1) ... (124) <400> 9 Met Asn Tyr Thr Ser Tyr Ile Leu Ala Phe Gln Leu Cys Val Ile Leu             -20 -15 -10 Cys Ser Ser Gly Cys Asn Cys Gln Ala Met Phe Phe Lys Glu Ile Glu         -5 -1 1 5 Asn Leu Lys Glu Tyr Phe Gln Ala Ser Asn Pro Asp Val Ser Asp Gly 10 15 20 25 Gly Ser Leu Phe Val Asp Ile Leu Lys Lys Trp Arg Glu Glu Ser Asp                  30 35 40 Lys Thr Ile Ile Gln Ser Gln Ile Val Ser Phe Tyr Leu Lys Leu Phe              45 50 55 Asp Asn Phe Lys Asp Asn Gln Ile Ile Gle Arg Ser Met Asp Thr Ile          60 65 70 Lys Glu Asp Met Leu Gly Lys Phe Leu Gln Ser Ser Thr Ser Lys Arg      75 80 85 Glu Asp Phe Leu Lys Leu Ile Gln Ile Pro Val Asn Asp Leu Gln Val  90 95 100 105 Gln Arg Lys Ala Ile Asn Glu Leu Ile Lys Val Met Asn Asp Leu Ser                 110 115 120 Pro Arg Ser *** <210> 10 <211> 123 <212> DNA PRT <213> dog <220>  <221> mat # peptide  <222> (1) ... (123) <400> 10 Met Asn Tyr Thr Ser Tyr Ile Leu Ala Phe Gln Leu Cys Val Ile Leu             -20 -15 -10 Cys Ser Ser Gly Cys Asn Cys Gln Ala Met Phe Phe Lys Glu Ile Glu         -5 -1 1 5 Asn Leu Lys Glu Tyr Phe Gln Ala Ser Asn Pro Asp Val Ser Asp Gly 10 15 20 25 Gly Ser Leu Phe Val Asp Ile Leu Lys Lys Trp Arg Glu Glu Ser Asp                  30 35 40 Lys Thr Ile Ile Gln Ser Gln Ile Val Ser Phe Tyr Leu Lys Leu Phe              45 50 55 Asp Asn Phe Lys Asp Asn Gln Ile Ile Gle Arg Ser Met Asp Thr Ile          60 65 70 Lys Glu Asp Met Leu Gly Lys Phe Leu Gln Ser Ser Thr Ser Lys Arg      75 80 85 Glu Asp Phe Leu Lys Leu Ile Gln Ile Pro Val Asn Asp Leu Gln Val  90 95 100 105 Gln Arg Lys Ala Ile Asn Glu Leu Ile Lys Val Met Asn Asp Leu Ser                 110 115 120 Pro Arg *** <210> 11 <211> 35 <212> DNA <213> Artificial Sequence <400> 11 gcagatctat gaattataca agctatatct tagct 35 <210> 12 <211> 35 <212> DNA <213> Artificial Sequence <400> 12 gcgaattctt atttcgatgc tctgcggcct cgaaa 35 <210> 13 <211> 517 <212> DNA <213> dog <400> 13 gcagatctat gaattataca agctatatct tagcttttca gctttgcgtg attttgtgtt 60 cttctggctg taactgtcag gccatgtttt ttaaagaaat agaaaaccta aaggaatatt 120 ttcaggcaag taatccagat gtatcggacg gtgggtctct tttcgtagat attttgaaga 180 aatggagaga ggagagtgac aaaacaatca ttcagagcca aattgtctct ttctacttga 240 aactgtttga caactttaaa gataaccaga tcattcaaag gagcatggat accatcaagg 300 aagacatgct tggcaagttc ttacagtcat ccaccagtaa gagggaggac ttccttaagc 360 tgattcaaat tcctgtgaac gatctgcagg tccagcgcaa ggcgataaat gaactcatca 420 aagtgatgaa tgatctctca ccaagatcca acctaaggaa gcggaaaagg agtcagaatc 480 tgtttcgagg ccgcagagca tcgaaataag aattcgc 517 <210> 14 <211> 30 <212> DNA <213> Artificial Sequence <400> 14 ataggatcca tgaattatac aagctatatc 30 <210> 15 <211> 33 <212> DNA <213> Artificial Sequence <400> 15 ctggatatct ggattacttg cctgaaaata ttc 33 <210> 16 <211> 27 <212> DNA <213> Artificial Sequence <400> 16 ccatacgtat cggacggtgg gtctctt 27 <210> 17 <211> 36 <212> DNA <213> Artificial Sequence <400> 17 ggtggtcgac tgtaagaact tgccaagcat gtcttc 36 <210> 18 <211> 36 <212> DNA <213> Artificial Sequence <400> 18 ccgatatcca ccagtaagag ggaggacttc cttaag 36 <210> 19 <211> 33 <212> DNA <213> Artificial Sequence <400> 19 ctcgaattct tatttcgatg ctctgcggcc tcg 33 <210> 20 <211> 147 <212> DNA <213> dog <400> 20 ataggatcca tgaattatac aagctatatc ttagcttttc agctttgcgt gattttgtgt 60 tcttctggct gtaactgtca ggccatgttt tttaaagaaa tagaaaacct aaaggaatat 120 tttcaggcaa gtaatccaga tatccag 147 <210> 21 <211> 201 <212> DNA <213> dog <400> 21 ccatacgtat cggacggtgg gtctcttttc gtagatattt tgaagaaatg gagagaggag 60 agtgacaaaa caatcattca gagccaaatt gtctctttct acttgaaact gtttgacaac 120 tttaaagata accagatcat tcaaaggagc atggatacca tcaaggaaga catgcttggc 180 aagttcttac agtcgaccac c 201 <210> 22 <211> 195 <212> DNA <213> dog <400> 22 ccgatatcca ccagtaagag ggaggacttc cttaagctga ttcaaattcc tgtgaacgat 60 ctgcaggtcc agcgcaaggc gataaatgaa ctcatcaaag tgatgaatga tctctcacca 120 agatccaacc taaggaagcg gaaaaggagt cagaatctgt ttcgaggccg cagagcatcg 180 aaataagaat tcgag 195 <210> 23 <211> 517 <212> DNA <213> dog <400> 23 gcagatctat gaattataca agctatatct tagcttttca gctttgcgtg attttgtgtt 60 cttctggctg taactgtcag gccatgtttt ttaaagaaat agaaaaccta aaggaatatt 120 ttaatgcaag taatccagat gtatcggacg gtgggtctct tttcgtagat attttgaaga 180 aatggagaga ggagagtgac aaaacaatca ttcagagcca aattgtctct ttctacttga 240 aactgtttga caactttaaa gataaccaga tcattcaaag gagcatggat accatcaagg 300 aagacatgct tggcaagttc ttaaatagca gcaccagtaa gagggaggac ttccttaagc 360 tgattcaaat tcctgtgaac gatctgcagg tccagcgcaa ggcgataaat gaactcatca 420 aagtgatgaa tgatctctca ccaagatcca acctaaggaa gcggaaaagg agtcagaatc 480 tgtttcgagg ccgcagagca tcgaaataag aattcgc 517 <210> 24 <211> 127 <212> PRT <213> dog <220>  <221> mat # peptide  <222> (1) ... (127) <220> Xaa  <221> Xaa is a oxidized form of methionine  <222> (3) <400> 24 Met Asn Tyr Thr Ser Tyr Ile Leu Ala Phe Gln Leu Cys Val Ile Leu             -20 -15 -10 Cys Ser Ser Gly Cys Asn Cys Gln Ala Xaa Phe Phe Lys Glu Ile Glu         -5 -1 1 5 Asn Leu Lys Glu Tyr Phe Gln Ala Ser Asn Pro Asp Val Ser Asp Gly 10 15 20 25 Gly Ser Leu Phe Val Asp Ile Leu Lys Lys Trp Arg Glu Glu Ser Asp                  30 35 40 Lys Thr Ile Ile Gln Ser Gln Ile Val Ser Phe Tyr Leu Lys Leu Phe              45 50 55 Asp Asn Phe Lys Asp Asn Gln Ile Ile Gle Arg Ser Met Asp Thr Ile          60 65 70 Lys Glu Asp Met Leu Gly Lys Phe Leu Gln Ser Ser Thr Ser Lys Arg      75 80 85 Glu Asp Phe Leu Lys Leu Ile Gln Ile Pro Val Asn Asp Leu Gln Val  90 95 100 105 Gln Arg Lys Ala Ile Asn Glu Leu Ile Lys Val Met Asn Asp Leu Ser                 110 115 120 Pro Arg Ser Asn Leu Arg ***             125

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4C084 AA06 BA44 DA24 ZB02 4H045 AA20 BA10 CA40 DA18 EA22 EA28 EA29 GA22    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 4C084 AA06 BA44 DA24 ZB02                 4H045 AA20 BA10 CA40 DA18 EA22                       EA28 EA29 GA22

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】インターフェロン−γおよびその酸化物を
含む液を、塩を含む緩衝液で分画精製した後、脱塩工程
乃至は最終精製工程において、クエン酸、グリシンおよ
びホウ酸から選ばれる少なくとも1種を含有する溶媒を
用いることを特徴とするインターフェロン−γの精製方
法。
1. A solution containing interferon-γ and its oxide is fractionated and purified with a buffer solution containing a salt, and then at least one selected from citric acid, glycine and boric acid in a desalting step or a final purification step. A method for purifying interferon-γ, which comprises using a solvent containing one kind.
【請求項2】インターフェロン−γがイヌインターフェ
ロン−γであることを特徴とする請求項1記載のインタ
ーフェロン−γの精製方法。
2. The method for purifying interferon-γ according to claim 1, wherein the interferon-γ is canine interferon-γ.
【請求項3】塩を含む緩衝液で分画精製する方法がブル
ーセファロース担体を用いる方法である請求項1または
2記載のインターフェロン−γの精製方法。
3. The method for purifying interferon-γ according to claim 1 or 2, wherein the method of fractionating and purifying with a buffer containing a salt is a method of using a blue sepharose carrier.
【請求項4】イヌインターフェロン−γが配列番号2〜
10のいずれかに記載のアミノ酸配列を有することを特
徴とする請求項2または3記載のインターフェロン−γ
の精製方法。
4. Canine interferon-γ is SEQ ID NO: 2
The interferon-γ according to claim 2 or 3, which has the amino acid sequence according to any one of claims 10 to 10.
Purification method.
【請求項5】クエン酸、グリシンおよびホウ酸から選ば
れる少なくとも1種を含有する溶媒のpHが7〜10で
あることを特徴とする請求項1〜4のいずれか1項記載
のインターフェロン−γの精製方法。
5. The interferon-γ according to any one of claims 1 to 4, wherein the pH of the solvent containing at least one selected from citric acid, glycine and boric acid is 7 to 10. Purification method.
【請求項6】脱塩工程後または最終精製工程後のインタ
ーフェロン−γとその酸化物の合計に対する前記酸化物
の重量割合が10重量%以下であることを特徴とする請
求項1〜5のいずれか1項記載のインターフェロン−γ
の精製方法。
6. The method according to claim 1, wherein the weight ratio of the oxide to the total of interferon-γ and its oxide after the desalting step or the final purification step is 10% by weight or less. Or the interferon-γ according to item 1.
Purification method.
【請求項7】該酸化物は、インターフェロン−γのポリ
ペプチド鎖のメチオニン残基がメチオニンスルホキサイ
ドに酸化された酸化物であることを特徴とする請求項1
〜6のいずれか1項記載のインターフェロン−γの精製
方法。
7. The oxide according to claim 1, wherein the methionine residue of the interferon-γ polypeptide chain is oxidized to methionine sulfoxide.
7. The method for purifying interferon-γ according to any one of 1 to 6.
【請求項8】該酸化物は、配列番号2から10のいずれ
か記載のアミノ酸配列において、N末端から3番目のメ
チオニンがメチオニンスルホキサイドに酸化されている
構造を有することを特徴とする請求項1〜7のいずれか
1項記載のインターフェロン−γの精製方法。
8. The oxide has a structure in which the methionine at the third position from the N-terminal in the amino acid sequence of any of SEQ ID NOs: 2 to 10 is oxidized to methionine sulfoxide. Item 8. A method for purifying interferon-γ according to any one of Items 1 to 7.
【請求項9】クエン酸、グリシンおよびホウ酸から選ば
れる少なくとも1種を含有し、かつ、pHが7を越える
溶液に混合されていることを特徴とするインターフェロ
ン−γ。
9. Interferon-γ, which is mixed with a solution containing at least one selected from citric acid, glycine and boric acid and having a pH of more than 7.
JP2002060096A 2002-03-06 2002-03-06 INTERFERON-gamma AND METHOD FOR PURIFYING THE SAME Pending JP2003261600A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002060096A JP2003261600A (en) 2002-03-06 2002-03-06 INTERFERON-gamma AND METHOD FOR PURIFYING THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002060096A JP2003261600A (en) 2002-03-06 2002-03-06 INTERFERON-gamma AND METHOD FOR PURIFYING THE SAME

Publications (1)

Publication Number Publication Date
JP2003261600A true JP2003261600A (en) 2003-09-19

Family

ID=29195562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002060096A Pending JP2003261600A (en) 2002-03-06 2002-03-06 INTERFERON-gamma AND METHOD FOR PURIFYING THE SAME

Country Status (1)

Country Link
JP (1) JP2003261600A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013002330A1 (en) * 2011-06-29 2013-01-03 協和発酵キリン株式会社 Method for purifying protein

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013002330A1 (en) * 2011-06-29 2013-01-03 協和発酵キリン株式会社 Method for purifying protein
JPWO2013002330A1 (en) * 2011-06-29 2015-02-23 協和発酵キリン株式会社 Protein purification method

Similar Documents

Publication Publication Date Title
AU650893B2 (en) O-glycosylated alpha-2 interferon
DK174044B1 (en) Polypeptide derived from human granulocyte colony stimulating factor, and method of preparation thereof, DNA encoding said polypeptide, recombinant plasmid containing said DNA, and microorganisms containing said recombinant plasmid .......
Liang et al. Studies of structure-activity relationships of human interleukin-2.
US5939529A (en) Methods and kits for stimulating production of megakaryocytes and thrombocytes
HU201775B (en) Process for purifying interferon
AU3660093A (en) Improved alpha interferon composition and method for its production from human peripheral blood leukocytes
WO1996004388A1 (en) Novel compounds
JPS61224985A (en) Oxidation resistant muton
JPS59186995A (en) Human immune interferon protein and its production
JPS5890596A (en) Dna, recombined dna, host polypeptide containing them and manufacture
JPS63169995A (en) Recovery and purification of beta-interferon
JP2005508848A (en) Application of consensus interferon as an inhibitor of hepatitis B surface antigen and e antigen
JP2005508848A6 (en) Application of consensus interferon as an inhibitor of hepatitis B surface antigen and e antigen
EP0649468A1 (en) Soluble cr1 derivatives
JP2003261600A (en) INTERFERON-gamma AND METHOD FOR PURIFYING THE SAME
WO2004019856A2 (en) Glycosylated human interferon alpha isoform
US5157004A (en) Polypeptides and production thereof
MX2012008893A (en) Method for producing interferon alpha 5.
EP0444638A2 (en) Process for the expression of human nerve growth factor in arthropoda frugiperda cells by infection with recombinant baculovirus
US6534477B2 (en) Production and use of modified cystatins
JP2548204B2 (en) New bioactive polypeptide
RU2809358C1 (en) RECOMBINANT PLASMIDS pET32a-IFG144, PROVIDING INTERFERON GAMMA SYNTHESIS, BACTERIAL STRAIN ESCHERICHIA COLI JM109/pET32a-IFG144 - INTERFERON GAMMA PROTEIN PRODUCER, METHOD OF OBTAINING INTERFERON GAMMA AND MEDICINAL PRODUCT
JP2002034590A (en) Method for producing useful protein, therapeutic agent for dog disease and method for treating dog disease
RU2294372C1 (en) METHOD FOR PREPARING RECOMBINANT INTERFERON ALPHA-2b AND INTERFERON-CONTAINING PREPARATION (VARIANTS)
WO1997023615A1 (en) Multimer forms of interleukin-16 (il-16), process for the preparation and use thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070605

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071106