JP2003261590A - New dendrimer and method for synthesizing cluster derivative from the same - Google Patents

New dendrimer and method for synthesizing cluster derivative from the same

Info

Publication number
JP2003261590A
JP2003261590A JP2002062940A JP2002062940A JP2003261590A JP 2003261590 A JP2003261590 A JP 2003261590A JP 2002062940 A JP2002062940 A JP 2002062940A JP 2002062940 A JP2002062940 A JP 2002062940A JP 2003261590 A JP2003261590 A JP 2003261590A
Authority
JP
Japan
Prior art keywords
dendrimer
resin
mmol
reaction
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002062940A
Other languages
Japanese (ja)
Inventor
Takashi Takahashi
孝志 高橋
Toru Amaya
徹 雨夜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rikogaku Shinkokai
Original Assignee
Rikogaku Shinkokai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rikogaku Shinkokai filed Critical Rikogaku Shinkokai
Priority to JP2002062940A priority Critical patent/JP2003261590A/en
Publication of JP2003261590A publication Critical patent/JP2003261590A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a means for producing a cluster derivative library useful for searching new medicines in simple operations. <P>SOLUTION: A dendrimer whose end on the core side is fixed to a solid carrier and into whose end on the outer surface side a substance to evaluate a binding property or a reacting property with other substances is introduced, wherein bonds capable of being broken under a specific condition are incorporated between branched sites in the dendrimer and/or between branched sites and the solid phase carrier, and a method for synthesizing the cluster derivative from the dendrimer. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、新規なデンドリマ
ー及びそのデンドリマーを利用したクラスター誘導体の
合成法に関する。本発明のデンドリマーを利用すること
により、2量体、4量体、8量体といった一連のクラス
ター誘導体を容易に合成できるようになる。
TECHNICAL FIELD The present invention relates to a novel dendrimer and a method for synthesizing a cluster derivative using the dendrimer. By utilizing the dendrimer of the present invention, it becomes possible to easily synthesize a series of cluster derivatives such as dimers, tetramers and octamers.

【0002】[0002]

【従来の技術】1)背景 糖質は、細胞表面の特異な認識過程や、時には細胞内で
特別な働きを司る「生命の標識分子」として利用されて
いる。例えば、ある種のウィルス(インフルエンザウィ
ルスなど)、毒素および細菌などが持つタンパク質は特
定の糖質と相互作用することが知られている。このよう
な多くの生体分子と相互作用する糖質が模索されるな
か、糖質-タンパク質間の相互作用に関わる新しい概念
が生まれた。糖質の「クラスター効果」である。これ
は、糖質とタンパク質が多価で相互作用すると、それら
が1:1で起こるときの相互作用の足し合わせよりもは
るかに結合が強くなるというものである。つまり、複数
の糖質と複数の結合ポケット(タンパク質側)が同時に
相互作用すれば予想した以上に結合が強くなることをあ
らわしている。
BACKGROUND OF THE INVENTION 1) Background Carbohydrates are used as "marker molecules for life" that have a specific recognition process on the cell surface and sometimes have a special function in the cell. For example, proteins possessed by certain viruses (such as influenza virus), toxins and bacteria are known to interact with specific sugars. As saccharides that interact with many biomolecules have been sought, new concepts related to carbohydrate-protein interactions have emerged. This is the "cluster effect" of carbohydrates. This is because polyvalent interactions between carbohydrates and proteins result in much stronger binding than the sum of the interactions when they occur 1: 1. In other words, it shows that the binding becomes stronger than expected if multiple carbohydrates and multiple binding pockets (protein side) interact at the same time.

【0003】糖質のクラスター効果を機能と構造の両方
から多面的に評価するためには構造の明らかな多価糖鎖
分子(糖鎖クラスター)を用いることが非常に有用であ
ると考えられる。近年、構造の明らかな糖鎖クラスター
を用いた研究が大きな成果をあげている((a) Hansen,
H. C.; Haataja, S.; Finne, J.; Magnusson, G. J.Am.
Chem. Soc. 1997, 119, 6974-6979. (b) Dimick, S.
M.; Powell, S. C.;McMahon, S. A.; Mootoo, D. N.; N
aismith, J. H.; Toone,, E. J. J. Am. Chem. Soc. 19
99, 121, 10286-10296. (c) Kiessling, L. L.; Gestw
icki, J. E.;Strong, L. E. Curr. Opim. Chem. Biol.
2000, 4, 696-703. (d) Fulton, D.A.; Stoddart, J.
F. Org. Lett. 2000, 2, 1113-1116. (e) Calvo-Flore
s, F. G.; Isac-Garcia, J.; Hernandez-Mateo, F.; Pe
rez-Balderas, F.; Calvo-Asin, J. A.; Sanchez-Vaque
ro, E.; Santoyo-Gonzalez, F. Org. Lett. 2000, 2,24
99-2502. (f) Hanessian, S.; Huynh, H. K.; Reddy,
G. V.; Duthaler, R.O.; Katopodis, A.; Streiff, M.
B.; Kinsy, W, Oehrlein, R. Tetrahedron,2001, 57, 3
281-3290. (g) Patel, A.; Lindhorst, T. K. J. Org.
Chem. 2001, 66, 2674-2680. (h) Liu, Bingcan, Ro
y, R. J. Chem. Soc., Perkin Trans.1 2001, 773-779.
(i) Dominique, R.; Roy, R. Tetrahedron Lett. 200
2, 43, 395-398.)。Y. C. Leeらは化学合成によって得
られた低分子糖鎖リガンドを用いて哺乳動物の肝レクチ
ンとの相互作用について検討し、糖鎖リガンドが1本
鎖、2本鎖、3本鎖と増えるにつれて高い親和性が見ら
れるようになり、その値はほぼ1:1000:1000
00倍にもなることを報告している(Lee, Y. C.; Lee,
R. T. Acc. Chem. Res. 1995, 28, 321-327)。また、
R. Royらは一定量の糖質がクラスターを作ると認識され
やすいが、それ以上になるとむしろ立体障害などにより
認識されにくくなるという負(negative)のクラスター
効果の存在も明らかにした(Zanini, D.; Roy, R. J. A
m. Chem. Soc. 1997, 119, 2088-2095.)。このような
研究を行うに当たって糖鎖リガンドの価数および空間配
置の多様な糖鎖クラスター誘導体を化学的に合成する必
要がある。
It is considered that it is very useful to use a polyvalent sugar chain molecule (sugar chain cluster) having a clear structure in order to multidimensionally evaluate the cluster effect of sugar from both the function and the structure. In recent years, researches using sugar chain clusters with clear structures have made great results ((a) Hansen,
HC; Haataja, S .; Finne, J .; Magnusson, GJAm.
Chem. Soc. 1997, 119, 6974-6979. (B) Dimick, S.
M .; Powell, SC; McMahon, SA; Mootoo, DN; N
aismith, JH; Toone ,, EJJ Am. Chem. Soc. 19
99, 121, 10286-10296. (C) Kiessling, LL; Gestw
icki, JE; Strong, LE Curr. Opim. Chem. Biol.
2000, 4, 696-703. (D) Fulton, DA; Stoddart, J.
F. Org. Lett. 2000, 2, 1113-1116. (E) Calvo-Flore
s, FG; Isac-Garcia, J .; Hernandez-Mateo, F .; Pe
rez-Balderas, F .; Calvo-Asin, JA; Sanchez-Vaque
ro, E .; Santoyo-Gonzalez, F. Org. Lett. 2000, 2,24
99-2502. (F) Hanessian, S .; Huynh, HK; Reddy,
GV; Duthaler, RO; Katopodis, A .; Streiff, M.
B .; Kinsy, W, Oehrlein, R. Tetrahedron, 2001, 57, 3
281-3290. (G) Patel, A .; Lindhorst, TKJ Org.
Chem. 2001, 66, 2674-2680. (H) Liu, Bingcan, Ro
y, RJ Chem. Soc., Perkin Trans.1 2001, 773-779.
(i) Dominique, R .; Roy, R. Tetrahedron Lett. 200
2, 43, 395-398.). YC Lee et al. Investigated the interaction with mammalian liver lectins using low molecular weight sugar chain ligands obtained by chemical synthesis, and the higher the sugar chain ligands were single-chain, double-chain, and triple-chain, the higher Affinity became visible, and the value was almost 1: 1000: 1000
It is reported that it will be 00 times (Lee, YC; Lee,
RT Acc. Chem. Res. 1995, 28, 321-327). Also,
R. Roy et al. Also revealed the existence of a negative cluster effect, in which a certain amount of carbohydrates are easily recognized when forming clusters, but above that amount, it becomes more difficult to be recognized due to steric hindrance (Zanini, D .; Roy, RJ A
m. Chem. Soc. 1997, 119, 2088-2095.). In conducting such studies, it is necessary to chemically synthesize sugar chain cluster derivatives with various valences and spatial arrangements of sugar chain ligands.

【0004】2)デンドリマー デンドリマーはギリシャ語の樹木(=デンドロン)を語
源としており、規則正しく枝分かれした樹木状高分子化
合物の総称である。デンドリマーの特徴は、A)通常の
高分子化合物の合成法(重合)と異なり、基本的には一
段階ずつ世代を増やしていく有機合成反応の繰り返しで
合成し、各段階で精製を行うので、デンドリマーは原理
的に分子量の分布をもたない。分子量は各ビルディング
ブロックの分子量と世代(鎖状高分子では重合度に相
当)で一義的に定まる。B)また、分子中央部(コア)
から外表面に向かって規則正しく枝分かれをしているの
で、外表面近傍で密度が高い。C)さらに、様々な官能
基をコア、ビルディングブロック、外表面に位置特異的
に導入できるという特徴をもつ。
2) Dendrimer Dendrimer is derived from the Greek word tree (= dendron) and is a general term for regularly branched tree-like polymer compounds. The characteristic of dendrimers is that, unlike A) the usual synthetic method (polymerization) of polymer compounds, basically, they are synthesized by repeating the organic synthesis reaction in which the number of generations is increased step by step, and purification is performed at each step. Dendrimers do not have a molecular weight distribution in principle. The molecular weight is uniquely determined by the molecular weight of each building block and the generation (corresponding to the degree of polymerization in chain polymers). B) Also, the central part (core) of the molecule
Since it regularly branches from the outer surface to the outer surface, the density is high near the outer surface. C) Further, it is characterized in that various functional groups can be site-specifically introduced into the core, building blocks and outer surface.

【0005】3)糖鎖デンドリマー このデンドリマーの外表面に糖鎖を導入したものを糖鎖
デンドリマー(ここでは必ずしも高分子化合物に限ら
ず、コアに対し樹系図状に枝分かれしている構造の末端
に糖鎖の導入されたものをさす。)という。先に述べた
デンドリマーの性質を持つ糖鎖デンドリマーを合成する
ことで、背景で述べた糖鎖リガンドの価数および空間配
置の多様な糖鎖クラスター誘導体を化学的に合成すると
いう要求を満たすことができる。
3) Sugar chain dendrimer A sugar chain dendrimer is obtained by introducing a sugar chain into the outer surface of the dendrimer (not necessarily a high molecular compound here, but at the end of a structure branched in a tree diagram with respect to the core). It refers to a sugar chain introduced). By synthesizing sugar chain dendrimers having the properties of dendrimers described above, it is possible to satisfy the requirement described above for chemically synthesizing sugar chain cluster derivatives with various valences and spatial arrangements of sugar chain ligands. it can.

【0006】このように、糖鎖デンドリマーを合成する
ことは糖鎖クラスターの機能や効果を研究するにあたり
非常に重要であることが示されたので、次に従来の糖鎖
デンドリマーの合成について述べたいと思う。
Thus, it was shown that the synthesis of sugar chain dendrimers is very important for studying the functions and effects of sugar chain clusters. Next, we would like to describe the conventional synthesis of sugar chain dendrimers. I think.

【0007】4)従来の糖鎖デンドリマーの合成方法 まず、糖鎖デンドリマーの合成を述べる前にデンドリマ
ーの合成法について簡単に概観する。デンドリマーを合
成する際には、ビルディングブロックとして、以下に示
すような少なくとも3つ又の構造をもつユニットの末端
に反応点Aを2つ、Bを1つ持つことが必須である。
4) Conventional Synthetic Method of Sugar Chain Dendrimer First, a brief overview of the synthetic method of the dendrimer will be given before describing the synthesis of the sugar chain dendrimer. When synthesizing a dendrimer, it is essential to have two reaction points A and one B at the end of a unit having at least three or more structures as shown below as a building block.

【0008】[0008]

【化1】 [Chemical 1]

【0009】デンドリマーの合成法は大きくコンバージ
ェント法(Hawker, C. J.; Frechet, J. M. J. Am. Che
m. Soc. 1990, 112, 7638.)とダイバージェント法(To
malia, D. A.; Berry, V.; Hall, M.; Hestrand, D. Ma
cromolecules 1987, 20, 1164.)の2つに分類できる。
特徴を簡潔に述べると前者はデンドリマーのコアから外
側へ(Aの方向へ)骨格が構築されていくのに対し、後
者はデンドリマーの外側から中心へ(Bの方向へ)向か
って骨格が構築されていくという特徴がある(図1)。
The dendrimer synthesis method is largely a convergent method (Hawker, CJ; Frechet, JMJ Am. Che.
m. Soc. 1990, 112, 7638.) and the divergent method (To
malia, DA; Berry, V .; Hall, M .; Hestrand, D. Ma
cromolecules 1987, 20, 1164.).
Briefly, the former builds the skeleton from the core of the dendrimer to the outside (direction A), while the latter builds the skeleton from the outside to the center of the dendrimer (direction B). It has the characteristic of going forward (Fig. 1).

【0010】糖鎖デンドリマーの合成も基本的にこの2
つの手法に分類できる。その多くの例は、はじめにデン
ドリマーを合成し、最後に糖鎖を導入するという手法を
とっている((a) Turnbull, W. B.; Pease, A. R.; Sto
ddart, J. F. Chembiochem 2000, 70-74. (b) Sadalap
ure, K.; Lindhorst, T. K. Angew. Chem. Int. Ed.200
0, 39, 2010-2013.)。以下に、代表的な合成例を示
す。コンバージェント法を用いた合成例としてT. K. Li
ndhorstらの報告(Lindhorst, T. K.; Kieburg,C. Ange
w. Chem. Int. Ed. Engl. 1996, 35, 1953-1956.)があ
る。彼らは末端にアミノ基を有するデンドリマー(ポリ
アミドアミン)について第1世代と第2世代の合成を行
い、グリコシルイソチオシアネートを用いて糖鎖の導入
を行い、最後に糖鎖の保護基を脱保護し合成している。
ダイバージェント法を用いた方法としてはR. Royらの報
告がある(Roy, R.; Baek, M-G.; Rittenhouse-Olson,
K.J. Am. Chem. Soc. 2001, 123, 1809-1816.)。彼ら
は、糖鎖の導入されたビルディングブロックを用いて第
1世代、第2世代の合成を行っている。彼らの手法はビ
ルディングブロックに予め無保護の糖鎖が導入されてい
るので世代を伸長するごとに望む化合物が得られるた
め、非常に効率的であるといえる。また、G. J. Boons
らもダイバージェント法による合成を報告している(Mc
Watt, M.; Boons, G-J. Eur. J. Org. Chem. 2001, 253
5-2545.)。その際、枝の長さの異なる3種のビルディ
ングブロックを用い世代の伸長を行うことでデンドリマ
ー骨格の誘導化を行った。この手法で第3世代までのデ
ンドリマーを合成した。様々なデンドリマー骨格のうち
第3世代の6種類にのみチオエーテル化を行い糖鎖の導
入を行っている。
The synthesis of sugar chain dendrimers is basically the same as this
It can be classified into two methods. In many cases, dendrimers are first synthesized and then sugar chains are introduced ((a) Turnbull, WB; Pease, AR; Sto).
ddart, JF Chembiochem 2000, 70-74. (b) Sadalap
ure, K .; Lindhorst, TK Angew. Chem. Int. Ed. 200
0, 39, 2010-2013.). Below, a typical synthesis example is shown. TK Li as an example of synthesis using the convergent method
Report by ndhorst et al. (Lindhorst, TK; Kieburg, C. Ange
w. Chem. Int. Ed. Engl. 1996, 35, 1953-1956.). They carried out first-generation and second-generation synthesis of dendrimers (polyamidoamine) having an amino group at the terminal, introduced sugar chains using glycosyl isothiocyanate, and finally deprotected the sugar chain protecting groups. I am synthesizing.
A method using the divergent method has been reported by R. Roy et al. (Roy, R .; Baek, MG .; Rittenhouse-Olson,
KJ Am. Chem. Soc. 2001, 123, 1809-1816.). They are performing first-generation and second-generation synthesis using sugar chain-introduced building blocks. It can be said that their method is very efficient because an unprotected sugar chain is introduced into the building block in advance, and the desired compound is obtained each time the generation is extended. Also, GJ Boons
Have also reported synthesis by the divergent method (Mc
Watt, M .; Boons, GJ. Eur. J. Org. Chem. 2001, 253
5-2545.). At that time, derivation of the dendrimer skeleton was performed by extending the generation using three types of building blocks having different branch lengths. Dendrimers up to the third generation were synthesized by this method. Only 6 kinds of 3rd generation of various dendrimer skeletons are thioetherified to introduce sugar chains.

【0011】5)従来の合成における問題点 糖鎖デンドリマーの従来の合成法を述べてきた。ここで
はその問題点を明らかにする。まず、糖鎖デンドリマー
を合成するための潜在的な問題点として物性的な問題が
ある。糖鎖デンドリマーは複数の糖鎖リガンドを有して
おり、非常に高極性で通常の有機合成に用いられるよう
な有機溶媒には一切溶けない。そのため、構造の同定や
精製などが容易ではない。さらにデンドリマーは高次の
世代になるにしたがって分子量は飛躍的に大きくなり、
その扱いが難しくなってくる。これを踏まえた上で先に
述べた従来法について考察する。コンバージェント法と
ダイバージェント法に分類して3例紹介した。いずれの
場合にしても先にデンドリマー骨格を合成してから糖鎖
を導入する場合、デンドリマーの数だけ糖鎖の導入反応
を行わなければならず効率的ではない。また、ダイバー
ジェント法におけるR. Royらの方法では、予め糖鎖の導
入されたビルディングブロックを用いているため効率的
であるといえる。しかしながら、この場合、世代が大き
くなるにつれてその反応性が低下してくる懸念がある。
糖鎖デンドリマーの誘導体合成という点においてG. T.
Boonsらの研究はビルディングブロックを複数用意して
おき、その組み合わせによって誘導体を合成しており、
非常に効率的であるといえる。しかしながら、やはり、
ここでも多数の化合物の取り扱いが問題となってくる。
実際、彼らは6種の糖鎖デンドリマーしか合成していな
い。多数の誘導体を合成した例は、私の知る限り報告例
はほとんどなく、多くとも高々10個程度である。先に
述べてきた手法にのっとって合成を行えば理論的には何
種類でも合成することは可能であるはずである。
5) Problems in conventional synthesis The conventional synthesis method of sugar chain dendrimers has been described. The problem is clarified here. First, there is a physical problem as a potential problem for synthesizing a sugar chain dendrimer. The sugar chain dendrimer has a plurality of sugar chain ligands, is extremely polar, and is insoluble in any organic solvent used in ordinary organic synthesis. Therefore, structure identification and purification are not easy. Furthermore, the molecular weight of dendrimers increases dramatically in the higher generations,
The handling becomes difficult. Based on this, the conventional method described above will be considered. Three cases were introduced, classified into the convergent method and the divergent method. In any case, when the dendrimer skeleton is first synthesized and then the sugar chain is introduced, the introduction reaction of the sugar chain must be performed for the number of dendrimers, which is not efficient. Further, the method of R. Roy et al. In the divergent method can be said to be efficient because it uses a building block in which a sugar chain has been introduced in advance. However, in this case, there is a concern that the reactivity may decrease as the generation increases.
GT in terms of derivative synthesis of sugar chain dendrimers
In the research of Boons et al., A plurality of building blocks were prepared, and derivatives were synthesized by combining them.
It can be said to be very efficient. However, again,
Here too, the handling of many compounds becomes a problem.
In fact, they synthesize only 6 types of sugar chain dendrimers. As far as I know, there are almost no examples of synthesizing a large number of derivatives, and the number is at most about 10. In theory, it should be possible to synthesize any number of types by synthesizing according to the method described above.

【0012】以上、従来の合成について問題点を以下に
簡潔にまとめる。 A)高極性な物性を有する化合物を効率的に取り扱うの
が困難。 B)合成手法は全て液相合成であり、多数の誘導体を扱
うには不向きな戦略。
The problems with the conventional synthesis are briefly summarized below. A) It is difficult to handle compounds having highly polar physical properties efficiently. B) The synthetic method is all liquid phase synthesis, which is an unsuitable strategy for handling a large number of derivatives.

【0013】なお、第1世代のみの固相合成(すなわち
糖鎖クラスターの固相合成)は本発明者の知る限り2例
報告がある((a) Page, D.; Zanini, D.; Roy, R. Bioo
rg.Med. Chem. 1996, 1949-1961. (b) Wittmann, V.;
Seeberger, S. Angew. Chem. Int. Ed. 2000, 39, 4348
-4352.)。ただし、第1世代のみなので、糖鎖デンドリ
マーとではないと判断した。
As far as the inventor knows, there have been two reports on the first-generation solid-phase synthesis (that is, solid-phase synthesis of sugar chain clusters) ((a) Page, D .; Zanini, D .; Roy). , R. Bioo
rg.Med. Chem. 1996, 1949-1961. (b) Wittmann, V .;
Seeberger, S. Angew. Chem. Int. Ed. 2000, 39, 4348
-4352.). However, since it was only the first generation, it was judged that it was not a sugar chain dendrimer.

【0014】[0014]

【発明が解決しようとする課題】前項で従来の合成手法
の問題点を明らかにした。この問題点を解決するために
は新たな合成戦略の開発の必要性がある。そこで、本発
明は、「高極性な糖鎖クラスターの取り扱いの簡便
化」、「多数の誘導体を効率的に合成するための新手法
の開発」を目的とする。
[Problems to be Solved by the Invention] The problems of the conventional synthesis method were clarified in the previous section. To solve this problem, it is necessary to develop a new synthetic strategy. Therefore, the present invention aims at "simplification of handling of highly polar sugar chain clusters" and "development of a new method for efficiently synthesizing a large number of derivatives".

【0015】[0015]

【課題を解決するための手段】本発明者らは、上記課題
を解決するため鋭意検討を重ねた結果、後で切断可能な
結合を予め内部に組み込んだ糖鎖デンドリマーを固相担
体に固定して合成し、各結合ごとに独立に切り出しを行
うことにより、高極性な糖鎖クラスター誘導体の取り扱
いが簡便になるとともに、多数の誘導体を効率的に合成
できることを見出した。また、このような合成手法は、
糖鎖クラスターのみならず、他のクラスター誘導体にも
適用できるものである。
Means for Solving the Problems As a result of intensive studies to solve the above problems, the present inventors have fixed a sugar chain dendrimer having a cleavable bond previously incorporated thereinto on a solid phase carrier. It was found that the highly polar sugar chain cluster derivative can be easily handled and a large number of derivatives can be efficiently synthesized by synthesizing the same with each other and cutting out each bond independently. In addition, such a synthesis method
Not only the sugar chain cluster but also other cluster derivatives can be applied.

【0016】本発明は、以上の知見に基づき完成された
ものである。
The present invention has been completed based on the above findings.

【0017】即ち、本発明は、コア側の末端が固相担体
に固定されており、外表面側の末端に他の物質との結合
性又は反応性を評価しようとする物質が導入されている
デンドリマーであって、デンドリマー内の分枝部位と分
枝部位の間及び/又は分枝部位と固相担体との間に特定
条件下で切断され得る結合が組み込まれているデンドリ
マーである。
That is, in the present invention, the end on the core side is fixed to the solid-phase carrier, and the end on the outer surface side is introduced with a substance whose binding property or reactivity with another substance is to be evaluated. A dendrimer, wherein the dendrimer incorporates a bond that can be cleaved under specific conditions between branching sites within the dendrimer and / or between the branching sites and the solid support.

【0018】また、本発明は、上記のデンドリマーを、
内部に組み込まれている結合が切断される条件に置き、
その後、遊離してくるクラスター誘導体を回収すること
を特徴とするクラスター誘導体の合成法である。
The present invention also provides the above dendrimer,
Place it under the condition that the bond incorporated inside is cut,
Thereafter, the released cluster derivative is recovered, which is a method for synthesizing a cluster derivative.

【0019】[0019]

【発明の実施の形態】以下、本発明を詳細に説明する。BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below.

【0020】本発明のデンドリマーは、コア側の末端が
固相担体に固定されており、外表面側の末端に他の物質
との結合性又は反応性を評価しようとする物質(以下、
「結合性等評価物質」という)が導入されているデンド
リマーであって、デンドリマー内の分枝部位と分枝部位
の間及び/又は分枝部位と固相担体との間に特定条件下
で切断され得る結合が組み込まれているデンドリマーで
ある。
In the dendrimer of the present invention, the end on the core side is fixed to a solid phase carrier, and the end on the outer surface side is a substance whose binding property or reactivity with another substance (hereinafter,
A "density-assessing substance") has been introduced, and the dendrimer is cleaved between branching sites in the dendrimer and / or between the branching site and the solid phase carrier under specific conditions. A dendrimer that incorporates a bond that can be.

【0021】固相担体としては、表1に示す固相担体
(特定条件下で切断される結合を持たない固相担体)や
表2に示す固相担体(特定条件下で切断される結合を持
つ固相担体)を例示できるが、これらに限定されるわけ
ではない。
As the solid phase carrier, the solid phase carrier shown in Table 1 (solid phase carrier having no bond cleaved under specific conditions) and the solid phase carrier shown in Table 2 (bonds cleaved under specific conditions are Examples of the solid phase carrier having the present invention include, but are not limited to.

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【表2】 [Table 2]

【0024】固相担体へのデンドリマーの固定は直接行
ってもよく、適当なスペーサーを介して行ってもよい。
スペーサーとしては、アミノ酸、ヒドロキシ酸、ヒドロ
キシアミン、エンインなど表3に示される官能基のうち
少なくとも2つを有する化合物を使用することができ
る。固相担体とスペーサー又はデンドリマーのビルディ
ングブロックとは、各物質の官能基に応じて結合させ
る。例えば、固相担体、スペーサー、デンドリマーが表
3に示すグループに属するものであれば、表4に示す組
み合わせで結合させることができる。
Immobilization of the dendrimer on the solid support may be carried out directly or via a suitable spacer.
As the spacer, a compound having at least two of the functional groups shown in Table 3 such as amino acid, hydroxy acid, hydroxy amine, and enyne can be used. The solid phase carrier and the spacer or the building block of the dendrimer are bound depending on the functional group of each substance. For example, if the solid phase carrier, the spacer and the dendrimer belong to the groups shown in Table 3, they can be bound in the combinations shown in Table 4.

【0025】[0025]

【表3】 [Table 3]

【0026】[0026]

【表4】 [Table 4]

【0027】結合性等評価物質は、主として生体物質や
その誘導体であるが、これら以外の物質であってもよ
い。生体物質としては、タンパク質、ペプチド、核酸、
脂肪酸、脂質、ポリケチド、マクロライド、ポリエーテ
ル、テルペノイド、アルカロイドなどを例示できるが、
これらに限定されるわけではない。生体物質以外の物質
としては、金属錯体を例示できる。結合性等評価物質の
導入はデンドリマーへ直接行ってもよく、適当なスペー
サーを介して行ってもよい。スペーサーとしては、アミ
ノ酸、ヒドロキシ酸、ヒドロキシアミン、エンインなど
表3に示される官能基のうち少なくとも2つを有する化
合物を使用することができる。結合性等評価物質とスペ
ーサー又はビルディングブロックは、上記と同様、表4
の組み合わせに従って結合させることができる。
The substance for evaluating the binding property is mainly a biological substance or a derivative thereof, but may be a substance other than these. Biological substances include proteins, peptides, nucleic acids,
Examples include fatty acids, lipids, polyketides, macrolides, polyethers, terpenoids, alkaloids,
It is not limited to these. Examples of substances other than biological substances include metal complexes. The substance for evaluating the binding property or the like may be introduced into the dendrimer directly or via an appropriate spacer. As the spacer, a compound having at least two of the functional groups shown in Table 3 such as amino acid, hydroxy acid, hydroxy amine, and enyne can be used. Similar to the above, the substance to be evaluated for binding property and the spacer or building block are shown in Table 4.
Can be combined according to the combination of.

【0028】デンドリマーの構造上、一つのデンドリマ
ーには複数の結合性等評価物質を導入することになる
が、導入する結合性等評価物質は通常同種の物質であ
る。但し、異種の物質を導入することを排除するわけで
はない。
Due to the structure of the dendrimer, a plurality of substances for evaluating the binding property or the like are introduced into one dendrimer, and the substances for evaluating the binding property or the like to be introduced are usually the same kind of substance. However, the introduction of different substances is not excluded.

【0029】分枝部位と分枝部位の間とは、図2におけ
る分枝1と分枝2の間、分枝2と分枝3の間の部分をい
い、分枝部位と固相担体との間とは、図2における固相
担体と分枝1の間の部分をいう。このような部分は、本
発明のデンドリマー内に複数存在するが、それらすべて
に特定条件下で切断され得る結合が組み込まれていても
よいし、その一部にのみ組み込まれていてもよい。
The term “between branching portions” means the portions between branching 1 and branching 2, and branching 2 and branching 3 in FIG. The space between means the part between the solid phase carrier and the branch 1 in FIG. A plurality of such moieties are present in the dendrimer of the present invention, and all of them may have a bond which can be cleaved under a specific condition incorporated therein, or only a part thereof.

【0030】特定条件下で切断され得る結合としては、
酸、塩基、又は光照射によって切断され得る結合を例示
できる。より具体的には、以下のような構造の結合を挙
げることができる。なお、これらの結合はあくまでも例
示であり、他の結合の使用を排除するものではない。
The bond which can be cleaved under specific conditions includes
Examples thereof include acids, bases, and bonds that can be cleaved by irradiation with light. More specifically, the bonds having the following structures can be mentioned. Note that these combinations are merely examples, and the use of other combinations is not excluded.

【0031】[0031]

【表5】 [Table 5]

【0032】本発明のデンドリマーは、クラスター誘導
体の合成に利用することができる。即ち、本発明のデン
ドリマーを、内部に組み込まれている結合が切断される
条件に置き、その後、遊離してくるクラスター誘導体を
回収することにより、クラスター誘導体を合成できる。
The dendrimer of the present invention can be used for the synthesis of cluster derivatives. That is, a cluster derivative can be synthesized by placing the dendrimer of the present invention under conditions in which the bond incorporated therein is broken, and then recovering the liberated cluster derivative.

【0033】ここでクラスター誘導体とは、本発明のデ
ンドリマーから切り出される物質であって、少なくとも
一つの分枝構造を持ち、また、少なくとも一つの結合性
等評価物質が導入されている物質をいう。
The term "cluster derivative" as used herein refers to a substance that is cleaved from the dendrimer of the present invention, has at least one branched structure, and has at least one substance for evaluating the binding property or the like introduced therein.

【0034】図2は、本発明のデンドリマーの一例とそ
れから切り出されるクラスター誘導体を示している。
FIG. 2 shows an example of the dendrimer of the present invention and a cluster derivative cut out therefrom.

【0035】図中のデンドリマーは、3つの分枝部位を
持ち、分枝部位1と固相担体との間に結合Aが、分枝部
位1と分枝部位2との間に結合Bが、分子部位2と分子
部位3との間に結合Cが組み込まれている。このデンド
リマーを結合Aのみが切断される条件に置くと8量体の
クラスター誘導体が切り出されてくる。また、結合Bの
みが切断される条件に置くと4量体のクラスター誘導体
が切り出され、結合Cのみが切断される条件に置くと2
量体のクラスター誘導体が切り出されてくる。従来の方
法では、これら一連のクラスター誘導体は個々に合成し
なければならないが、本発明のデンドリマーを利用すれ
ば、これら一連のクラスター誘導体を簡単な操作で合成
することができる。
The dendrimer in the figure has three branching sites, the bond A between the branching site 1 and the solid phase carrier, and the bond B between the branching site 1 and the branching site 2, The bond C is incorporated between the molecular site 2 and the molecular site 3. When this dendrimer is placed under the condition that only the bond A is cleaved, an octamer cluster derivative is cleaved out. Further, when placed under the condition that only the bond B is cleaved, the tetramer cluster derivative is cut out, and when placed under the condition that only the bond C is cleaved, 2
The cluster derivative of the monomer is cut out. In the conventional method, these series of cluster derivatives must be individually synthesized, but by using the dendrimer of the present invention, these series of cluster derivatives can be synthesized by a simple operation.

【0036】上述した2量体、4量体、8量体といった
一連のクラスター誘導体のセット(以下、これを「クラ
スター誘導体ライブラリー」をいう)は、例えば、以下
のような用途に利用することができる。
The above-mentioned set of a series of cluster derivatives such as dimers, tetramers and octamers (hereinafter referred to as "cluster derivative library") should be used for the following purposes, for example. You can

【0037】(1)生体物質と微弱な結合力しか持たな
い物質の探索 生体物質と結合する物質は医薬に利用できる可能性があ
り、特に、結合力の弱い物質は、結合力の強い物質(不
可逆的に結合してしまう物質)よりもその可能性は高
い。しかし、一般的なスクリーニング方法では結合力の
弱い物質の検出は難しい。
(1) Search for a substance that has only a weak binding force to a biological substance A substance that binds to a biological substance may be used as a drug. Particularly, a substance having a weak binding force has a strong binding force ( It is more likely than a substance that binds irreversibly). However, it is difficult to detect a substance having a weak binding force by a general screening method.

【0038】クラスター誘導体ライブラリーでは、結合
に関与する生体物質が複数存在するため、クラスター効
果により分子間の結合力が増強され、結合力の弱い物質
であっても見逃すことなく、検出できる。
[0038] In the cluster derivative library, since a plurality of biological substances involved in binding exist, the binding effect between molecules is enhanced by the cluster effect, and even a substance having a weak binding force can be detected without overlooking.

【0039】(2)結合力を高める最適な分子数の特定 ある物質と生体物質等との結合力は、クラスター効果に
より、結合する生体物質等の数が増えることにより飛躍
的に増大する。しかし、一定の分子数を超えると立体障
害などにより逆に結合力が低下する場合もある。つま
り、生体物質等の結合には、結合力が最大になる最適な
分子数が存在する。この最適な分子数を特定するのに、
クラスター誘導体ライブラリーは有効である。
(2) Optimum number of molecules for enhancing binding force The binding force between a substance and a biological substance having a certain number of molecules is dramatically increased due to an increase in the number of biological substances to be bound due to the cluster effect. However, when the number of molecules exceeds a certain number, the binding force may be decreased due to steric hindrance. In other words, there is an optimum number of molecules for the binding of biological substances etc. that maximizes the binding force. To identify this optimal number of molecules,
Cluster derivative libraries are effective.

【0040】[0040]

【実施例】〔実施例〕 (1)酸、塩基条件下オルソゴナルな切り出しによる糖
鎖クラスターライブラリー構築の戦略 研究の最初の段階として、酸、塩基条件下オルソゴナル
な切り出しによる糖鎖クラスターライブラリー構築を計
画した。はじめに、分岐毎にオルソゴナルな切り出し部
位を有するリンカー部位の合成を行うこととした。酸性
で切り出しを行える部位としてプロパルギルエーテルを
採用した。これは、通常では酸、塩基性条件下安定であ
るが、ジコバルトオクタカルボニル錯体で処理すると速
やかにアセチレンーコバルト錯体を作る。この錯体は酸
性条件下不安定であり、アルコールを遊離する。深瀬ら
はこの反応を実際に固相担体からの切り出しに応用して
いる。塩基性で切り出しを行うための部位としてはエス
テルを採用した。これはアルカリ加水分解によって容易
に切り出しが可能であると考えたからである。次にポイ
ントとなってくるのは分岐構造をいかにして合成するか
である。2つの分岐点をグリセロールおよびエピクロロ
ヒドリンに対するアセチリドアニオンによるアルキル化
反応を2回繰り返すことによって構築することを計画し
た。特に、エピクロロヒドリンに対して切り出し部位で
あるプロパルギルエーテルをわずか3段階で導入できる
この手法は新規であり、このようなデンドリマー合成に
必須な分岐点を合成するための有用な手法になりうるも
のと考えられる。
EXAMPLES [Examples] (1) As a first step in the strategy study of constructing a sugar chain cluster library by orthogonal excision under acid and base conditions, construct a sugar chain cluster library by orthogonal excision under acid and base conditions Planned. First, it was decided to synthesize a linker site having an orthogonal excision site for each branch. Propargyl ether was adopted as the site that can be cut out under acidic conditions. It is normally stable under acid and basic conditions, but when treated with a dicobalt octacarbonyl complex, it rapidly forms an acetylene-cobalt complex. This complex is unstable under acidic conditions and liberates alcohol. Fukase et al. Have actually applied this reaction to excision from a solid-phase carrier. Ester was used as the site for the basic excision. This is because it was thought that cutting out could be easily performed by alkali hydrolysis. The next point is how to synthesize a branched structure. It was planned to build two branch points by repeating the alkylation reaction with acetylide anion on glycerol and epichlorohydrin twice. In particular, this method, in which propargyl ether, which is a cleavage site for epichlorohydrin, can be introduced in only three steps is novel, and it can be a useful method for synthesizing branch points essential for such dendrimer synthesis. It is considered to be a thing.

【0041】[0041]

【化2】 [Chemical 2]

【0042】(2)酸、塩基切り出し部位を有するリン
カー部位の合成戦略 合成戦略は、固相に担持するための、カルボキシル基を
有するテザーとして、こはく酸を最終段階で導入、前駆
体はテトラFmoc体となる。この化合物はアジド基の還元
後Fmoc基を導入することで導ける。このテトラアジド体
はジブロマイドとジアジドアルコールとのエーテル
化によって合成できる。ジブロマイドは前述したとおり
エピクロロヒドリンから、ジアジドアルコールはグリセ
ロールから容易に誘導できる。
(2) Synthetic Strategy of Linker Site Having Acid and Base Cleavage Site The synthetic strategy is to introduce succinic acid at the final stage as a tether having a carboxyl group for supporting on a solid phase, and the precursor is tetra-Fmoc. Become a body. This compound can be derived by introducing Fmoc group after reduction of azido group. This tetraazide compound can be synthesized by etherification of dibromide 3 and diazide alcohol 4 . As mentioned above, dibromide can be easily derived from epichlorohydrin, and diazide alcohol can be easily derived from glycerol.

【0043】[0043]

【化3】 [Chemical 3]

【0044】(3)リンカー部位の合成 ジブロマイドの合成について述べる。プロパルギルア
ルコールのTHP基による保護体をノルマルブチルリ
チウムで処理することにより発生したリチウムアセチリ
ドに対して3フッ化ホウ素エーテル錯体を加えることで
アセチレンーボラン錯体を系中で発生させ、エピクロロ
ヒドリンに対するエポキシ開環反応を行った。生じたク
ロロヒドリンを炭酸カリウムで処理し、エポキシドを2
段階収率49%で得た。得られたエポキシドに対して先
程と同様にアセチレンユニットのエポキシ開環反応を
行い、アルコールを得た(66%)。続いてTHP基
を除去した後に四臭化炭素およびトリフェニルホスフィ
ン条件下、プロパルギルアルコールのみを選択的にジブ
ロマイド化した(2段階収率80%)。残された2級水
酸基をTHP基により保護しジブロマイドを定量的に
得た。
(3) Synthesis of linker site The synthesis of dibromide 3 will be described. An acetylene-borane complex is generated in the system by adding a boron trifluoride ether complex to lithium acetylide generated by treating the protector 5 with a THP group of propargyl alcohol with normal butyl lithium, and epichlorohydrin is generated. To the epoxy ring-opening reaction. The resulting chlorohydrin was treated with potassium carbonate to remove the epoxide
Obtained with a step yield of 49%. The obtained epoxide was subjected to the epoxy ring-opening reaction of the acetylene unit 5 in the same manner as above to obtain alcohol 6 (66%). Subsequently, after removing the THP group, only propargyl alcohol was selectively dibrominated under carbon tetrabromide and triphenylphosphine conditions (2-step yield 80%). The remaining secondary hydroxyl group was protected with a THP group to quantitatively obtain dibromide 3 .

【0045】[0045]

【化4】 [Chemical 4]

【0046】ジアジドアルコールの合成について述べ
る。グリセロールを出発原料とし1級水酸基のみを選択
的にピバロイル基で保護した後に2級水酸基をTHP基
で保護、続いてアルカリ加水分解によってピバロイル基
を除去しジオールを3段階収率79%で得た。続いて
水酸基をメシル化後、アジド化、THP基を除去し3段
階収率81%でジアジドアルコールを得た。
The synthesis of diazide alcohol 4 will be described. Using glycerol as a starting material, only the primary hydroxyl group was selectively protected with the pivaloyl group, then the secondary hydroxyl group was protected with the THP group, and then the pivaloyl group was removed by alkaline hydrolysis to obtain diol 7 with a 3-step yield of 79%. It was Subsequently, the hydroxyl group was mesylated, the azide group was removed, and the THP group was removed to obtain diazide alcohol 4 in a three-step yield of 81%.

【0047】[0047]

【化5】 [Chemical 5]

【0048】ジブロマイドとジアジドアルコール
用意できたので、エーテル化によるカップリング反応を
検討した。種々条件を検討したところ塩基として水素化
ナトリウムを溶媒にDMF、THFを用いたときはいず
れの場合も基質のジブロマイド体が分解して複雑な混
合物を与えた。また、酸化銀(I)を用いて試みた際も
同様に基質のジブロマイド体の分解が起こり複雑な混
合物を与えた。ところが、塩基として水酸化ナトリウム
を用い水溶媒下、少量のTHF溶媒と相関移動触媒とし
てテトラノルマルブチルアンモニウムハイドロゲンサル
フェートを用いて反応を行ったところエーテル化は速や
かに進行した。続いて、THP基を除去し2段階収率8
7%で望むテトラアジド体を得た。しかしながら、こ
のテトラアジド体は不安定であり冷凍庫に保存してお
いても日に日に分解し新たな化合物を与えた。この化合
物を単離し分析したところ、アジド基とアセチレン部位
が分子内で3+2環化付加反応することによって生じた
と考えられるトリアゾール体であることがわかった。
Since dibromide 3 and diazide alcohol 4 were prepared, the coupling reaction by etherification was examined. When various conditions were examined, when sodium hydride was used as a solvent and DMF or THF was used as a base, the dibromide body 3 of the substrate was decomposed to give a complicated mixture in each case. Also, when attempted using silver (I) oxide, decomposition of the substrate dibromide body 3 similarly occurred, giving a complex mixture. However, when the reaction was carried out using sodium hydroxide as a base in a water solvent and a small amount of a THF solvent and tetranormal butylammonium hydrogen sulfate as a phase transfer catalyst, etherification proceeded rapidly. Subsequently, the THP group was removed and the two-step yield was 8
The desired tetraazide 8 was obtained at 7%. However, this tetraazide compound 8 was unstable and decomposed day by day to give a new compound even when stored in a freezer. When this compound was isolated and analyzed, it was found to be the triazole derivative 9 which is considered to be produced by the 3 + 2 cycloaddition reaction of the azido group and the acetylene site in the molecule.

【0049】[0049]

【化6】 [Chemical 6]

【0050】そこで、このテトラアジド体は合成後す
ぐにアジド基を還元し、生じたアミノ基をFmoc基により
保護しテトラFmoc体10に変換した(2段階収率70
%)。続いて、固相に担持するための足がかりおよび固
相からの距離を保つためのスペーサーとするために、無
水こはく酸でアルコール10を処理しこはく酸エステル
化を行った。生じたカルボン酸をN−ヒドロキシスクシ
ンイミドと縮合し活性化エステルとした(2段階収率7
1%)。このようにして固相担持するためのリンカー部
位の用意を行った。
[0050] Therefore, the Tetoraajido body 8 by reducing the synthesized immediately after azido group, resulting amino group was converted to the tetra-Fmoc body 10 is protected by a Fmoc group (2 step yield 70
%). Subsequently, alcohol 10 was treated with succinic anhydride to form a succinic acid ester, which was used as a foothold for loading on the solid phase and a spacer for keeping a distance from the solid phase. The resulting carboxylic acid was condensed with N-hydroxysuccinimide to give an activated ester (2-step yield 7
1%). In this way, the linker site for solid phase loading was prepared.

【0051】[0051]

【化7】 [Chemical 7]

【0052】(4)固相担体からのオルソゴナルな切り
出しによる糖鎖クラスターのライブラリー化 固相に担持するためのリンカー部位の合成ができたので
いよいよ固相に担持して糖鎖クラスターを合成していく
ことになる。はじめに、固相合成を行うに当り研究の流
れとポイントをまとめたいと思う。
(4) Making a library of sugar chain clusters by orthogonally cutting out from the solid phase carrier Since the linker site for supporting on the solid phase could be synthesized, it was finally supported on the solid phase to synthesize the sugar chain clusters. I will go. First, I would like to summarize the flow and points of research in conducting solid-phase synthesis.

【0053】1.固相への担持 ・固相担体はどのようなものを用いるべきか。 ・担持量について。固相の反応点に対してどの程度担持
すべきか。 2.オルソゴナルな切り出しについての検討 ・切り出しの際に他の切り出し部位を損なうことがない
か。 3.固相上でのチオエーテル化による糖鎖の導入 ・元々反応性の低い固相上でデンドリマーの合成を行う
にあたり、立体障害によるさらなる反応性の低下が懸念
される。 4.糖鎖クラスターのライブラリー化 ・汎用性は示されるのか。
1. What kind of support should be used for the solid phase / solid phase carrier?・ About the amount to be carried. How much should be loaded on the reaction points of the solid phase? 2. Examination of orthogonal cutting ・ Does it damage other cutting parts during cutting? 3. Introduction of sugar chains by thioetherification on solid phase-Determination of further reactivity due to steric hindrance is a concern when synthesizing dendrimers on solid phase which originally has low reactivity. 4. Is the creation of a library of sugar chain clusters and versatility shown?

【0054】(4−1)固相への担持 現在、固相担体はポリスチレンベースのものから特定の
溶媒には可溶なポリエチレングリコールベースなどがあ
り、これらに様々な官能基を有するもの、さらに固相担
体から切り出すことができるリンカー部位を有するもの
まで多種多様である。これらは基本的には試薬会社等か
ら容易に購入できる。今回は、Argopore TM-NH2-LL樹脂
およびSynphaseTM Crownsを選択した。いずれもアミノ
メチル基を有する。前者は、ポリスチレンの架橋度が高
く膨潤度が溶媒によって比較的変化が小さい。それによ
り膨潤度の小さい溶媒でも反応性が保たれるという特徴
を持っている。また、アミノメチル基のグラムあたりの
割合の低い樹脂を選択した。これはデンドリマーを固相
上で合成するにあたり化合物どうしの立体的な障害をで
きる限り小さくすることを考慮したためである。後者
は、固相担体そのものにステムと呼ばれる標識をつける
ことによってそれぞれを識別することができるという特
徴をもっている。これは、パラレル合成を行う際に非常
に有効である。それぞれ、固相担持について反応温度を
45度に設定し、基質の濃度、反応時間の検討を行っ
た。樹脂においては基質濃度を0.17M、反応時間を
12時間として固相担持を行った際に58%の担持率で
反応した(表6)。この値は低いように思われるが先に
も述べたように、今後固相上で反応を行っていく際の立
体障害を考慮すれば満足できる値である。クラウンでは
基質濃度0.13M、48時間反応を行った際に23%
の担持率で反応した(表6)。この結果についても樹脂
に比べ低い値のように思われるが元々の固相担体自身の
担持能力が高いことを考慮すると同じ理由で満足でき
る。また、これらの値はFmoc試験によって求められた。
(4-1) Support on solid phase Currently, solid phase carriers are specific to those based on polystyrene.
Solvents include soluble polyethylene glycol base, etc.
Those with various functional groups, and solid phase support
Having a linker site that can be excised from the body
There is a wide variety. Are these basically reagent companies?
Can be purchased easily. This time, Argopore TM-NH2-LL resin
And SynphaseTM I chose Crowns. Both are amino
It has a methyl group. The former has a high degree of crosslinking of polystyrene.
The degree of swelling changes little depending on the solvent. By that
Characteristic that reactivity is maintained even in a solvent with a low degree of swelling
have. Also, per gram of aminomethyl group
A resin with a low proportion was selected. This is a solid phase dendrimer
The steric hindrance between the compounds in the synthesis above
This is because it is considered to be as small as possible. the latter
Attaches a label called stem to the solid phase carrier itself
It is possible to identify each by
I have a sign. This is very important when performing parallel synthesis.
Is effective for. The reaction temperature for solid phase loading
The substrate concentration and reaction time were set at 45 degrees.
It was For resin, the substrate concentration is 0.17M and the reaction time is
When solid phase loading was carried out for 12 hours, the loading rate was 58%.
Reacted (Table 6). This value seems low, but first
As mentioned in the section above, it will be useful when conducting reactions on the solid phase in the future.
This is a satisfactory value when considering physical disabilities. In the crown
Substrate concentration 0.13M, 23% when reacted for 48 hours
The reaction was carried out at a loading rate of (Table 6). This result also shows the resin
It seems that the value is lower than that of the original solid phase carrier itself.
Considering the high carrying capacity, we could be satisfied for the same reason.
It Moreover, these values were calculated | required by the Fmoc test.

【0055】[0055]

【化8】 [Chemical 8]

【0056】[0056]

【表6】 [Table 6]

【0057】(4−2)固相担体からのオルソゴナルな
切り出し 固相上に基質が準備できたので次にオルソゴナルな切り
出しを検討する。反応の分析をHPLC-MSにより行うこと
を計画した。HPLCによって分離されたそれぞれのピーク
をMSにより分析し分子量を決定するというものである。
そのため、切り出し後に化合物がHPLCで検知されるため
にはUV吸収をもつ必要がある。そこでFmoc基を脱保護
後、安息香酸と縮合した。先にも述べたように、切り出
しの際に他の切り出し部位を損なうことがないかに注目
して行った。はじめにアルカリ加水分解による切り出し
を検討した。樹脂13およびクラウン14をジオキサン
/メタノール/4N水酸化ナトリウム水溶液=30/9/1に調
整された溶液で処理し6時間反応を行ったところ、いず
れの場合も良好な純度で望むベンズアミド4量体17
得た(表7)。この際、2量体は副生していなかった。
つづいて、プロパルギルエーテル部位における切り出し
を検討した。樹脂およびクラウンをジコバルトオクタカ
ルボニル錯体で処理し固相上でジコバルトヘキサカルボ
ニルーアセチレン錯体15を合成した。これは、IR測定
によりこの錯体に特徴的な2092、2056、201
8cm-1に吸収が見られたことから定性的に判断した。続
いて種々の酸条件で切り出しを検討したところ塩化メチ
レン/トリフロオロ酢酸/水=36/4/1で行った時にい
ずれの固相からも良好な純度で望むベンズアミド2量体
18が得られた(表7)。この際、4量体は副生してい
なかった。
(4-2) Orthogonal Cleavage from Solid Phase Carrier Since the substrate was prepared on the solid phase, orthogonal cleaving will be examined next. It was planned to analyze the reaction by HPLC-MS. Each peak separated by HPLC is analyzed by MS to determine the molecular weight.
Therefore, the compound must have UV absorption for detection by HPLC after cleavage. Therefore, the Fmoc group was deprotected and then condensed with benzoic acid. As described above, attention was paid to whether or not other cut-out portions were damaged during cutting. First, the cutting out by alkaline hydrolysis was examined. Resin 13 and crown 14 are dioxane
/ Methanol / 4N sodium hydroxide aqueous solution = treated with a solution adjusted to 30/9/1 and reacted for 6 hours. In each case, the desired benzamide tetramer 17 was obtained with good purity (Table 7 ). At this time, the dimer was not produced as a by-product.
Subsequently, the excision at the propargyl ether site was examined. The resin and crown were treated with a dicobalt octacarbonyl complex to synthesize dicobalt hexacarbonyl-acetylene complex 15 on the solid phase. This is due to the IR measurements of the characteristic 2092, 2056, 201 of this complex.
Since absorption was observed at 8 cm -1 , it was judged qualitatively. Subsequently, the cleavage was examined under various acid conditions. When methylene chloride / trifluoroacetic acid / water = 36/4/1, the desired benzamide dimer with good purity was obtained from any solid phase.
18 were obtained (Table 7). At this time, the tetramer was not produced as a by-product.

【0058】[0058]

【化9】 [Chemical 9]

【0059】[0059]

【表7】 [Table 7]

【0060】(4−3)固相上でのチオエーテル化によ
る糖鎖の導入 固相上からのオルソゴナルな切り出しにより選択的に
2、4量体を得る条件を確立したので、続いて固相上で
のチオエーテル化による糖鎖の導入を検討した。樹脂
およびクラウン12のFmoc基を脱保護しα−ブロモ酢
酸と縮合した。続いて全ての水酸基が遊離の2−メルカ
プトエチルガラクトシド20のチオエーテル化を検討し
た。種々条件を検討したところ樹脂においては溶媒とし
てジメチルスルホキシドを用い、チオール20の濃度を
2Mと高濃度にし24時間反応を行うことで、アルカリ
加水分解後に切り出し、簡易的な逆相カラムでろ過し、
望むガラクトシド4量体21を得ることができた。しか
しながら、副生成物としてガラクトシド3量体もMS分
析によって確認されたので、この反応を合計2回繰り返
したところ望む4量体21のみを固相担持量に基づき4
段階収率72%で得ることに成功した(表8)。構造決
定はMS分析と1H-NMRによって行った。1H-NMRではH-H
COSY実験を行い全てのプロトンのケミカルシフトを帰属
した後に、プロトンの積分比を比較した。プロパルギル
位cのプロトンの積分を4とした際にガラクトシドのア
ノマーi1のプロトンの積分比は4.2であった。このこ
とからも望む4量体が得られていることが裏づけられた
(図3)。
(4-3) Introduction of sugar chain by thioetherification on solid phase Since the conditions for selectively obtaining a dimer or tetramer by orthogonal cleavage from the solid phase were established, the solid phase was subsequently examined. The introduction of sugar chains by thioetherification was investigated. Resin 1
The Fmoc groups of 1 and crown 12 were deprotected and condensed with α-bromoacetic acid. Subsequently, thioetherification of 2-mercaptoethylgalactoside 20 in which all hydroxyl groups were free was examined. When various conditions were examined, dimethylsulfoxide was used as a solvent in the resin, and the reaction was carried out for 24 hours by increasing the concentration of thiol 20 to a high concentration of 2M, cutting out after alkaline hydrolysis, and filtering by a simple reverse phase column,
The desired galactoside tetramer 21 could be obtained. However, since a galactoside trimer was also confirmed by MS analysis as a by-product, this reaction was repeated a total of two times, so that only the desired tetramer 21 was converted into 4 by the solid support amount.
It was successfully obtained with a step yield of 72% (Table 8). The structure was determined by MS analysis and 1 H-NMR. HH in 1 H-NMR
After performing a COSY experiment and assigning the chemical shifts of all protons, the integral ratios of protons were compared. When the integral of protons at the propargyl position c was 4, the integral ratio of protons of the galactoside anomer i1 was 4.2. This also confirmed that the desired tetramer was obtained (Fig. 3).

【0061】一方、クラウンにおいてチオエーテル化を
検討したところ樹脂と同一条件において望む4量体21
は一切得られなかった(表8)。そこで、チオエーテル
化の際の溶媒をDMF、メタノール、テトラヒドロフラン/
メタノール=5/1の3条件を試みたものの結果は同様で
あった(表8)。当研究室の松田らはクラウン上でのチ
オエーテル化について溶媒の選択が重要であり、テトラ
ヒドロフランが最適であることを報告している。しかし
ながら、今回の系では固相上のα−ブロモアセトアミド
に対するチオールの反応であり、無保護の糖を用いてい
るため非常に高極性のチオールがテトラヒドロフランに
不溶であるために、適した溶媒で行うことができなかっ
たことがこの結果の一つの原因であろう。
On the other hand, when the thioetherification was examined in the crown, the desired tetramer 21 was obtained under the same conditions as the resin.
Was not obtained at all (Table 8). Therefore, the solvent for thioetherification is DMF, methanol, tetrahydrofuran /
The results were the same when three conditions of methanol = 5/1 were tried (Table 8). Matsuda et al. In our laboratory reported that the choice of solvent was important for thioetherification on crown, and tetrahydrofuran was the most suitable. However, in this system, it is a reaction of thiol with α-bromoacetamide on the solid phase. Since an unprotected sugar is used, a very highly polar thiol is insoluble in tetrahydrofuran. Failure to do so may be one cause of this result.

【0062】[0062]

【化10】 [Chemical 10]

【0063】[0063]

【表8】 [Table 8]

【0064】続いて2量体を得るために前項で確立した
条件で樹脂22からの切り出しを行ったところ望むガラ
クトシド2量体23はトレース程度確認できるのみであ
った(表9)。これは、固相表面が糖鎖で覆われたため
親水性になったことと、立体的な障害が大きくなったこ
とに起因すると考えられる(図4)。そこでジコバルト
ヘキサカルボニルーアセチレン錯体を合成する際の反応
時間を長くし、酸処理の際には水の割合を増やした。切
り出し後、簡易的な逆相カラムでろ過し、望むガラクト
シド2量体23を固相担持量に基づき5段階収率40%
で得ることに成功した(表9)。構造決定はガラクトシ
ド4量体21の時と同様にMS分析と1H-NMRによって行
い構造と純度を保証した。
Subsequently, when the resin 22 was cut out under the conditions established in the preceding paragraph in order to obtain a dimer, the desired galactoside dimer 23 could only be confirmed in a trace level (Table 9). It is considered that this is because the solid phase surface was covered with sugar chains and thus became hydrophilic and the steric hindrance was increased (FIG. 4). Therefore, the reaction time when synthesizing the dicobalt hexacarbonyl-acetylene complex was lengthened, and the proportion of water was increased during the acid treatment. After cutting out, the mixture is filtered through a simple reverse phase column to give the desired galactoside dimer 23 in a 5-step yield of 40% based on the amount of the solid phase supported.
Was successfully obtained (Table 9). The structure was determined by MS analysis and 1 H-NMR as in the case of the galactoside tetramer 21 to ensure the structure and purity.

【0065】[0065]

【化11】 [Chemical 11]

【0066】[0066]

【表9】 [Table 9]

【0067】(4−4)糖鎖クラスターのライブラリー
化 このように、固相上での糖鎖クラスター合成を示すこと
ができたので続いてその汎用性を調べるために小さなラ
イブラリーの構築を計画した。ライブラリー構築の流れ
は、以下のとおりである。1)アミド化によるスペーサ
ーの導入。2)α−ブロモ酢酸との縮合。3)チオエー
テル化による糖の導入。4)オルソゴナルな切り出し。
スペーサーとしては、最も短いスペーサー無し、グリシ
ン、長鎖脂肪酸であるラウリル酸の3種類を、糖鎖リガ
ンドとしてはガラクトシド、マンノシドの2種類を用意
した。それに加えてオルソゴナルな切り出しにより2、
4量体を作り分けることで合計3x2x2=12種類の
ライブラリーを構築することができる。実際、この流れ
に沿って実験を行ったところ、いずれのスペーサーにお
いても、またいずれの糖鎖リガンドにおいても望む生成
物を与え、その汎用性を示すことができた(表10)。
この際、全ての化合物はMS分析と1H-NMRを行い構造と
純度を保証した。
(4-4) Making a library of sugar chain clusters In this way, since it was possible to show the synthesis of sugar chain clusters on a solid phase, a small library was constructed to investigate its versatility. Planned The flow of library construction is as follows. 1) Introduction of spacer by amidation. 2) Condensation with α-bromoacetic acid. 3) Introduction of sugar by thioetherification. 4) Orthogonal cutting.
Three types of spacers were prepared, the shortest without spacers, glycine, and long-chain fatty acid lauric acid, and two types of sugar chain ligands, galactoside and mannoside. In addition to that, it has an orthographical cutout 2.
By making tetramers separately, a total of 3 × 2 × 2 = 12 kinds of libraries can be constructed. In fact, when an experiment was conducted along this flow, it was possible to give the desired product with any spacer and with any sugar chain ligand, and to show its versatility (Table 10).
At this time, all the compounds were subjected to MS analysis and 1 H-NMR to ensure the structure and purity.

【0068】[0068]

【化12】 [Chemical 12]

【0069】[0069]

【表10】 [Table 10]

【0070】以上の実施例に詳しく示したとおり、固相
上で様々なスペーサーを有する糖鎖4量体を合成しオル
ソゴナルな切り出しを行うことで、2量体、4量体を一
挙に合成し12種類の糖鎖クラスターライブラリーの構
築に成功した。これは固相から切り出す段階まで高極性
化合物を扱う必要が無く、さらに切り出された化合物は
目的化合物そのものであるため糖鎖クラスター合成にお
ける化合物の取り扱いの格段の向上を示している。ま
た、固相合成は液相合成に比べ誘導化することが容易で
あり、さらに固相上の1つのデンドリマーから、切り出
しの際にクラスターの価数を調整できるためデンドリマ
ー合成に要する段階数を削減することができた。すなわ
ち、この手法を用いることで従来まで問題となっていた
「高極性な糖鎖クラスターの取り扱いの簡便化」、「多
数の誘導体を効率的に合成するための新手法の開発」の
2つの課題を解決できたものと考えられる。
As described in detail in the above examples, oligosaccharide tetramers having various spacers were synthesized on a solid phase and orthogonally cut out to synthesize dimers and tetramers all at once. We succeeded in constructing 12 kinds of sugar chain cluster libraries. This shows that there is no need to handle highly polar compounds until the step of cleaving from the solid phase, and since the cleaved compound is the target compound itself, the handling of the compound in sugar chain cluster synthesis is markedly improved. In addition, solid-phase synthesis is easier to derivatize than liquid-phase synthesis, and the number of steps required for dendrimer synthesis can be reduced because the valence of the cluster can be adjusted from one dendrimer on the solid phase during excision. We were able to. In other words, using this method, there are two problems that have been problematic up to now: "Simplification of handling of highly polar sugar chain clusters" and "Development of new method for efficient synthesis of many derivatives". It is thought that this has been solved.

【0071】〔製造例〕以下、実施例で使用した化合物
の製造方法について詳細に説明する。
[Production Example] The production method of the compound used in the examples will be described in detail below.

【0072】<化合物>プロパルギルエーテル (15
g, 107 mmol)のテトラヒドロフラン (200mL)溶液に、
ノルマルブチルリチウムの1.59 Mヘキサン溶液(67.3 m
L, 107 mmol)をアルゴン雰囲気下、-78度にて15分かけ
て滴下した。10分攪拌後、反応系中に3フッ化ホウ素・
エーテル錯体(13.6 mL, 107 mmol)を同一温度にて15分
かけて滴下した。さらに10分攪拌後、反応系中にエピク
ロロヒドリン(20 mL, 256 mmol)のテトラヒドロフラン
(100 mL)溶液を同一温度で20分かけて滴下した。さら
に、同一温度で1時間攪拌後、反応溶液を飽和重曹水と
エーテルの混合溶液に0度にて注いだ。水層をエーテル
で3回抽出した後、有機層を飽和重曹水で2回洗浄後、飽
和食塩水で洗浄、硫酸マグネシウムで乾燥し、減圧下、
濃縮した。得られた粗生成物は精製を行わずに、次の反
応に用いた。
<Compound 6 > Propargyl ether 5 (15
g, 107 mmol) in tetrahydrofuran (200 mL) solution,
1.59 M hexane solution of normal butyl lithium (67.3 m
L, 107 mmol) was added dropwise under an argon atmosphere at -78 ° C over 15 minutes. After stirring for 10 minutes, boron trifluoride in the reaction system
The ether complex (13.6 mL, 107 mmol) was added dropwise at the same temperature over 15 minutes. After stirring for another 10 minutes, epichlorohydrin (20 mL, 256 mmol) in tetrahydrofuran was added to the reaction system.
(100 mL) solution was added dropwise at the same temperature over 20 minutes. Further, after stirring at the same temperature for 1 hour, the reaction solution was poured into a mixed solution of saturated aqueous sodium hydrogen carbonate and ether at 0 ° C. The aqueous layer was extracted three times with ether, the organic layer was washed twice with saturated aqueous sodium hydrogen carbonate, washed with saturated brine, dried over magnesium sulfate, and concentrated under reduced pressure.
Concentrated. The obtained crude product was used for the next reaction without purification.

【0073】粗生成物のメタノール(300 mL)と2-プロパ
ノール(50 mL)の溶液に0度にて、炭酸カリウム(50 g)を
加えた。同一温度で10時間攪拌後、室温まで昇温した。
2時間後、反応系中にエーテル (100 mL)を加え、濾過し
た。濾過物を減圧下濃縮した。残留物をエーテルで薄め
た後に、0度にて1規定塩酸水溶液に注いだ。水層をエ
ーテルで2回抽出した後、有機層を飽和重曹水、飽和食
塩水で洗浄後、硫酸マグネシウムで乾燥し、減圧下、濃
縮した。得られた粗生成物をシリカゲルカラムクロマト
グラフィー(25% 酢酸エチル/ヘキサン混合溶液)によっ
て精製しエポキシ体(10.3 g, 52.6 mmol)を2段階収率4
9%で得た。1 H-NMR (270 MHz, CDCl3)δ 1.48-1.91 (m, 6H, f, g,
h), 2.51 (m, 1H, c), 2.61-2.73 (m, 2H, c', a), 2.7
9 (dd, 1H, J = 4.6, 4.0 Hz, a'), 3.11 (m, 1H, b),
3.54 (m, 1H, i), 3.84 (ddd, 1H, J = 3.3, 8.6, 11.5
Hz, i'), 4.20 (ddd, 1H, J = 2.0, 2.3, 15.5 Hz,
d), 4.31 (ddd, 1H, J = 2.0, 2.3, 15.5 Hz, d'), 4.8
0 (t, 1H, J = 3.0 Hz, e); 13C-NMR (67.8 MHz, CDC
l3)δ 19.2, 22.7, 25.4, 30.3, 46.5, 49.9, 54.5, 6
2.1, 78.4, 80.6, 96.9.
To a solution of the crude product in methanol (300 mL) and 2-propanol (50 mL) was added potassium carbonate (50 g) at 0 ° C. After stirring at the same temperature for 10 hours, the temperature was raised to room temperature.
After 2 hours, ether (100 mL) was added to the reaction system, and the mixture was filtered. The filtrate was concentrated under reduced pressure. The residue was diluted with ether and then poured into a 1N aqueous hydrochloric acid solution at 0 ° C. The aqueous layer was extracted twice with ether, and the organic layer was washed with saturated aqueous sodium hydrogen carbonate and saturated brine, dried over magnesium sulfate, and concentrated under reduced pressure. The obtained crude product was purified by silica gel column chromatography (25% ethyl acetate / hexane mixed solution) to give an epoxy compound (10.3 g, 52.6 mmol) in two steps.
Got at 9%. 1 H-NMR (270 MHz, CDCl 3 ) δ 1.48-1.91 (m, 6H, f, g,
h), 2.51 (m, 1H, c), 2.61-2.73 (m, 2H, c ', a), 2.7
9 (dd, 1H, J = 4.6, 4.0 Hz, a '), 3.11 (m, 1H, b),
3.54 (m, 1H, i), 3.84 (ddd, 1H, J = 3.3, 8.6, 11.5
Hz, i '), 4.20 (ddd, 1H, J = 2.0, 2.3, 15.5 Hz,
d), 4.31 (ddd, 1H, J = 2.0, 2.3, 15.5 Hz, d '), 4.8
0 (t, 1H, J = 3.0 Hz, e); 13 C-NMR (67.8 MHz, CDC
l 3 ) δ 19.2, 22.7, 25.4, 30.3, 46.5, 49.9, 54.5, 6
2.1, 78.4, 80.6, 96.9.

【0074】[0074]

【化13】 [Chemical 13]

【0075】プロパルギルエーテル (14.8 g, 105.3
mmol)のテトラヒドロフラン (100mL)溶液に、ノルマル
ブチルリチウムの1.59 Mヘキサン溶液(62.9mL, 99.9 mm
ol)をアルゴン雰囲気下、-78度にて15分かけて滴下し
た。10分攪拌後、反応系中に3フッ化ホウ素・エーテル
錯体(13.3 mL, 105.3 mmol)を同一温度にて15分かけて
滴下した。さらに10分攪拌後、反応系中に先に得たエポ
キシ体(10.3 g, 52.6 mmol)のテトラヒドロフラン(50 m
L)溶液を同一温度で20分かけて滴下した。さらに、同一
温度で1時間攪拌後、反応溶液を飽和重曹水とエーテル
の混合溶液に0度にて注いだ。水層をエーテルで3回抽出
した後、有機層を飽和重曹水で2回洗浄後、飽和食塩水
で洗浄、硫酸マグネシウムで乾燥し、減圧下、濃縮し
た。得られた粗生成物をシリカゲルカラムクロマトグラ
フィー(30-50% 酢酸エチル/ヘキサン混合溶液)によって
精製し化合物 (11.8g, 34.9 mmol)を収率66%で得
た。1 H-NMR (270 MHz, CDCl3)δ 1.45-1.91 (m, 12H, e, f,
g), 2.44-2.63 (m, 4H, b), 2.75 (d, 1H, J = 5.3 H
z, i), 3.53 (m, 1H, h), 3.78-3.98 (m, 2H, a,h'),
4.21 (brtd, 1H, J = 15.5 Hz, c), 4.30 (dt, 1H, J =
2.0, 15.5 Hz, c'), 4.80 (t, 1H, J =3.3 Hz, d); 13
C-NMR (67.8 MHz, CDCl3)δ 19.1, 25.3,26.6, 30.3, 5
4.6, 62.0, 68.5, 78.8, 82.1, 96.9.
Propargyl ether 5 (14.8 g, 105.3
mmol) in tetrahydrofuran (100 mL), normal butyllithium 1.59 M hexane solution (62.9 mL, 99.9 mm
ol) was added dropwise under an argon atmosphere at -78 ° C over 15 minutes. After stirring for 10 minutes, boron trifluoride / ether complex (13.3 mL, 105.3 mmol) was added dropwise to the reaction system at the same temperature over 15 minutes. After stirring for another 10 minutes, the previously obtained epoxy compound (10.3 g, 52.6 mmol) in tetrahydrofuran (50 m
L) The solution was added dropwise at the same temperature over 20 minutes. Further, after stirring at the same temperature for 1 hour, the reaction solution was poured into a mixed solution of saturated aqueous sodium hydrogen carbonate and ether at 0 ° C. The aqueous layer was extracted with ether three times, and the organic layer was washed twice with saturated aqueous sodium hydrogen carbonate, washed with saturated brine, dried over magnesium sulfate, and concentrated under reduced pressure. The obtained crude product was purified by silica gel column chromatography (30-50% ethyl acetate / hexane mixed solution) to obtain Compound 6 (11.8 g, 34.9 mmol) in a yield of 66%. 1 H-NMR (270 MHz, CDCl 3 ) δ 1.45-1.91 (m, 12H, e, f,
g), 2.44-2.63 (m, 4H, b), 2.75 (d, 1H, J = 5.3 H
z, i), 3.53 (m, 1H, h), 3.78-3.98 (m, 2H, a, h '),
4.21 (brtd, 1H, J = 15.5 Hz, c), 4.30 (dt, 1H, J =
2.0, 15.5 Hz, c '), 4.80 (t, 1H, J = 3.3 Hz, d); 13
C-NMR (67.8 MHz, CDCl 3 ) δ 19.1, 25.3, 26.6, 30.3, 5
4.6, 62.0, 68.5, 78.8, 82.1, 96.9.

【0076】[0076]

【化14】 [Chemical 14]

【0077】<化合物>化合物 (6.07 g, 18.4 mmo
l)のメタノール(50 mL)溶液に触媒量の10-カンファース
ルホン酸を室温にて加えた。12時間攪拌後、反応溶液を
トリエチルアミン(1.5 mL)によって中和し、減圧下濃縮
した。その後。残留物をトルエンで3回共沸した。得ら
れた粗生成物は精製を行わずに、次の反応に用いた。
<Compound 3 > Compound 6 (6.07 g, 18.4 mmo
A catalytic amount of 10-camphorsulfonic acid was added to a solution of l) in methanol (50 mL) at room temperature. After stirring for 12 hours, the reaction solution was neutralized with triethylamine (1.5 mL), and concentrated under reduced pressure. afterwards. The residue was azeotroped with toluene three times. The obtained crude product was used for the next reaction without purification.

【0078】得られた粗生成物の塩化メチレン(100 m
L)溶液にトリフェニルホスフィン(13.5 g, 51.6 mmol)
と四臭化炭素(18.3g, 55.2 mmol)を0度にて加えた。1
時間攪拌後、反応溶液を飽和重曹水に注いだ。水層をエ
ーテルで3回抽出した後、有機層を飽和重曹水、飽和食
塩水で洗浄後、硫酸マグネシウムで乾燥し、減圧下、濃
縮した。得られた粗生成物をシリカゲルカラムクロマト
グラフィー(30% 酢酸エチル/ヘキサン混合溶液)によっ
て精製しジブロモ体(4.26 g, 14.5 mmol)を2段階収率8
0%で得た。1 H-NMR (270 MHz, CDCl3)δ 2.24 (d, 1H, J = 5.3 Hz,
a), 2.47-2.66 (m, 4H,c), 3.93 (t, 4H, J = 2.64 H
z, d), 3.88-4.01 (m, 1H, b); 13C-NMR (67.8 MHz, CD
Cl3)δ 14.9, 26.8, 68.4, 78.3, 83.2.
The crude product obtained, methylene chloride (100 m
L) solution with triphenylphosphine (13.5 g, 51.6 mmol)
And carbon tetrabromide (18.3 g, 55.2 mmol) were added at 0 ° C. 1
After stirring for an hour, the reaction solution was poured into saturated aqueous sodium hydrogen carbonate. The aqueous layer was extracted 3 times with ether, and the organic layer was washed with saturated aqueous sodium hydrogen carbonate and saturated brine, dried over magnesium sulfate, and concentrated under reduced pressure. The obtained crude product was purified by silica gel column chromatography (30% ethyl acetate / hexane mixed solution) to give dibromo compound (4.26 g, 14.5 mmol) in two steps.
Obtained at 0%. 1 H-NMR (270 MHz, CDCl 3 ) δ 2.24 (d, 1H, J = 5.3 Hz,
a), 2.47-2.66 (m, 4H, c), 3.93 (t, 4H, J = 2.64 H
z, d), 3.88-4.01 (m, 1H, b); 13 C-NMR (67.8 MHz, CD
Cl 3 ) δ 14.9, 26.8, 68.4, 78.3, 83.2.

【0079】[0079]

【化15】 [Chemical 15]

【0080】得られたジブロモ体 (4.26 g, 14.5 mmol)
の塩化メチレン(50 mL)溶液に触媒量の10-カンファー
スルホン酸と3,4ジヒドロ2Hピラン(1.98 mL, 21.8
mmol)を0度にて加えた。20分間攪拌後、反応溶液を飽和
重曹水と酢酸エチルの混合溶液に注いだ。水層を酢酸エ
チルで3回抽出した後、有機層を飽和重曹水、飽和食塩
水で洗浄後、硫酸マグネシウムで乾燥し、減圧下、濃縮
した。得られた粗生成物をシリカゲルカラムクロマトグ
ラフィー(10-15% 酢酸エチル/ヘキサン混合溶液)によっ
て精製しジブロモ体化合物(5.41 g, 14.3 mmol)を収
率99%で得た。1 H-NMR (270 MHz, CDCl3)δ 1.45-1.94 (m, 12H, b, c,
d), 2.44-2.71 (m, 8H,g), 3.51 (m, 2H, e), 3.83-4.
00 (m, 12H, e', h, f), 4.81 (t, 1H, J = 3.0Hz, a),
4.95 (t, 1H, J = 3.0 Hz, a'); 13C-NMR (67.8 MHz,
CDCl3)δ 15.3x2, 19.4, 19.8, 24.0, 25.4, 25.6, 30.
7, 30.8, 62.5, 63.0, 73.1, 77.2, 77.3, 84.1, 84.2,
94.7, 98.1; IR (neat) 2943, 2243, 1428, 1344, 121
0, 1120,981, 610 (cm-1).
Obtained dibromo compound (4.26 g, 14.5 mmol)
In methylene chloride (50 mL) solution of 10-camphorsulfonic acid and 3,4-dihydro-2H-pyran (1.98 mL, 21.8 mL).
mmol) was added at 0 degrees. After stirring for 20 minutes, the reaction solution was poured into a mixed solution of saturated aqueous sodium hydrogen carbonate and ethyl acetate. The aqueous layer was extracted 3 times with ethyl acetate, and the organic layer was washed with saturated aqueous sodium hydrogen carbonate and saturated brine, dried over magnesium sulfate, and concentrated under reduced pressure. The obtained crude product was purified by silica gel column chromatography (10-15% ethyl acetate / hexane mixed solution) to give dibromo compound 3 (5.41 g, 14.3 mmol) in a yield of 99%. 1 H-NMR (270 MHz, CDCl 3 ) δ 1.45-1.94 (m, 12H, b, c,
d), 2.44-2.71 (m, 8H, g), 3.51 (m, 2H, e), 3.83-4.
00 (m, 12H, e ', h, f), 4.81 (t, 1H, J = 3.0Hz, a),
4.95 (t, 1H, J = 3.0 Hz, a '); 13 C-NMR (67.8 MHz,
CDCl 3 ) δ 15.3x2, 19.4, 19.8, 24.0, 25.4, 25.6, 30.
7, 30.8, 62.5, 63.0, 73.1, 77.2, 77.3, 84.1, 84.2,
94.7, 98.1; IR (neat) 2943, 2243, 1428, 1344, 121
0, 1120,981, 610 (cm -1 ).

【0081】[0081]

【化16】 [Chemical 16]

【0082】<化合物>グリセロール(30 g, 326 mm
ol)の塩化メチレン(200 mL)とピリジン(110.6 mL,
1.37 mmol)の混合溶液にピバロイルクロリド(84.3 mL,
684 mmol)と触媒量の4-ジメチルアミノピリジンを0
度にて加えた。その後、反応溶液をリフラックスさせ、
5時間攪拌後、反応溶液を0度にて3規定塩酸水溶液と酢
酸エチルの混合溶液に注いだ。水層を酢酸エチルで3回
抽出した後、有機層を飽和重曹水、飽和食塩水で洗浄
後、硫酸マグネシウムで乾燥し、減圧下、濃縮した。得
られた粗生成物は精製を行わずに、次の反応に用いた。
<Compound 7 > Glycerol (30 g, 326 mm
ol) methylene chloride (200 mL) and pyridine (110.6 mL,
1.37 mmol) in a mixed solution of pivaloyl chloride (84.3 mL,
684 mmol) and a catalytic amount of 4-dimethylaminopyridine
Added in degrees. Then, the reaction solution is refluxed,
After stirring for 5 hours, the reaction solution was poured into a mixed solution of 3N hydrochloric acid aqueous solution and ethyl acetate at 0 degree. The aqueous layer was extracted 3 times with ethyl acetate, and the organic layer was washed with saturated aqueous sodium hydrogen carbonate and saturated brine, dried over magnesium sulfate, and concentrated under reduced pressure. The obtained crude product was used for the next reaction without purification.

【0083】得られた粗生成物の塩化メチレン(200 m
L)溶液に触媒量の10-カンファースルホン酸と3,4ジ
ヒドロ2Hピラン(35.7 mL, 391 mmol)を0度にて加え
た。2時間攪拌後、反応溶液を飽和重曹水と酢酸エチル
の混合溶液に注いだ。水層を酢酸エチルで3回抽出した
後、有機層を飽和重曹水、飽和食塩水で洗浄後、硫酸マ
グネシウムで乾燥し、減圧下、濃縮した。得られた粗生
成物は精製を行わずに、次の反応に用いた。
The crude product obtained was methylene chloride (200 m
L) solution was added with catalytic amount of 10-camphorsulfonic acid and 3,4 dihydro 2H pyran (35.7 mL, 391 mmol) at 0 degree. After stirring for 2 hours, the reaction solution was poured into a mixed solution of saturated aqueous sodium hydrogen carbonate and ethyl acetate. The aqueous layer was extracted 3 times with ethyl acetate, and the organic layer was washed with saturated aqueous sodium hydrogen carbonate and saturated brine, dried over magnesium sulfate, and concentrated under reduced pressure. The obtained crude product was used for the next reaction without purification.

【0084】得られた粗生成物のメタノール(250 mL)溶
液に触媒量のナトリウム(0.78 g)を室温にて加えた。12
時間攪拌後、反応溶液を塩化アセチルによって中和し、
減圧下濃縮した。得られた粗生成物をシリカゲルカラム
クロマトグラフィー(10% メタノール/クロロホルム混合
溶液)によって精製し化合物(45.5 g, 0.258 mol)を3
段階収率79%で得た。1 H-NMR (270 MHz, CDCl3)δ 1.47-1.95 (m, 6H, b, c,
d), 3.49-3.82 (m, 6H,e, f, g), 4.02 (m, 1H, e'),
4.62 (m, 1H, a); 13C-NMR (67.8 MHz, CDCl3)δ20.9,
25.1, 31.4, 62.6, 63.4, 64.9, 82.7, 101.2; IR (nea
t) 3401, 2944,1137, 988 (cm-1).
A catalytic amount of sodium (0.78 g) was added to a solution of the obtained crude product in methanol (250 mL) at room temperature. 12
After stirring for an hour, the reaction solution was neutralized with acetyl chloride,
It was concentrated under reduced pressure. The obtained crude product was purified by silica gel column chromatography (10% methanol / chloroform mixed solution) to give compound 7 (45.5 g, 0.258 mol) in 3 parts.
Obtained with a step yield of 79%. 1 H-NMR (270 MHz, CDCl 3 ) δ 1.47-1.95 (m, 6H, b, c,
d), 3.49-3.82 (m, 6H, e, f, g), 4.02 (m, 1H, e '),
4.62 (m, 1H, a); 13 C-NMR (67.8 MHz, CDCl 3 ) δ 20.9,
25.1, 31.4, 62.6, 63.4, 64.9, 82.7, 101.2; IR (nea
t) 3401, 2944, 1137, 988 (cm -1 ).

【0085】[0085]

【化17】 [Chemical 17]

【0086】<化合物>化合物(20 g, 0.114 mo
l)の塩化メチレン(200 mL)とトリエチルアミン(119
mL, 855 mmol)の混合溶液にメタンスルホニルクロリ
ド(30.2 mL, 284 mmol)を-78度にて加えた。1時間攪拌
後、反応溶液を0度にて2規定塩酸水溶液に注いだ。水層
を酢酸エチルで3回抽出した後、有機層を飽和重曹水、
飽和食塩水で洗浄後、硫酸マグネシウムで乾燥し、減圧
下、濃縮した。得られた粗生成物は精製を行わずに、次
の反応に用いた。
<Compound 4 > Compound 7 (20 g, 0.114 mo
l) methylene chloride (200 mL) and triethylamine (119
Methanesulfonyl chloride (30.2 mL, 284 mmol) was added to the mixed solution of (mL, 855 mmol) at -78 degrees. After stirring for 1 hour, the reaction solution was poured into a 2N aqueous hydrochloric acid solution at 0 ° C. The aqueous layer was extracted 3 times with ethyl acetate, then the organic layer was saturated aqueous sodium hydrogen carbonate,
The extract was washed with saturated brine, dried over magnesium sulfate, and concentrated under reduced pressure. The obtained crude product was used for the next reaction without purification.

【0087】得られた粗生成物のDMF(200 mL)溶液に
アジ化ナトリウム(20.8 g, 320 mmol)を室温にて加え
た。40度で24時間攪拌後、反応溶液を水とエーテルの混
合溶液に注いだ。水層をエーテルで2回抽出した後、有
機層を水、飽和食塩水で洗浄後、硫酸マグネシウムで乾
燥し、減圧下、濃縮した。得られた粗生成物は精製を行
わずに、次の反応に用いた。
Sodium azide (20.8 g, 320 mmol) was added to a solution of the obtained crude product in DMF (200 mL) at room temperature. After stirring at 40 ° C for 24 hours, the reaction solution was poured into a mixed solution of water and ether. The aqueous layer was extracted twice with ether, the organic layer was washed with water and saturated brine, dried over magnesium sulfate, and concentrated under reduced pressure. The obtained crude product was used for the next reaction without purification.

【0088】得られた粗生成物のメタノール(100 mL)溶
液に触媒量の10-カンファースルホン酸を室温にて加え
た。2日間攪拌後、反応溶液をトリエチルアミン(1 mL)
によって中和し、減圧下濃縮した。得られた粗生成物を
シリカゲルカラムクロマトグラフィー(10% エーテル/ペ
ンタン混合溶液)によって精製し化合物(13.1 g, 92.2
mmol)を3段階収率81%で得た。1 H-NMR (270 MHz, CDCl3)δ 3.28-3.42 (m, 4H, b), 3.
86 (qu, 1H, J = 4.9 Hz, a); 13C-NMR (67.8 MHz, CDC
l3)δ 54.0, 69.7; IR (neat) 3418, 2933, 2103, 144
4, 1287, 1103 (cm-1).
A catalytic amount of 10-camphorsulfonic acid was added to a solution of the obtained crude product in methanol (100 mL) at room temperature. After stirring for 2 days, the reaction solution was triethylamine (1 mL).
It was neutralized with and concentrated under reduced pressure. The obtained crude product was purified by silica gel column chromatography (10% ether / pentane mixed solution) to give compound 4 (13.1 g, 92.2
(mmol) in 3 steps with a yield of 81%. 1 H-NMR (270 MHz, CDCl 3 ) δ 3.28-3.42 (m, 4H, b), 3.
86 (qu, 1H, J = 4.9 Hz, a); 13 C-NMR (67.8 MHz, CDC
l 3 ) δ 54.0, 69.7; IR (neat) 3418, 2933, 2103, 144
4, 1287, 1103 (cm -1 ).

【0089】[0089]

【化18】 [Chemical 18]

【0090】<化合物>化合物(5.95 g, 41.9 mmo
l, 2.9当量)の50%水酸化ナトリウム水溶液(70mL)中
にテトラブチルアンモニウムハイドロゲンサルフェート
(1.48 g, 4.35 mmol)と化合物(5.41 g, 14.3 mmol,
1当量)のテトラヒドロフラン溶液を0度にて加えた。室
温で2時間攪拌後、反応溶液をエーテルにて薄めた。反
応溶液を飽和重曹水に注いだ。水層をエーテルで3回抽
出した後、有機層を水、飽和食塩水で洗浄後、硫酸マグ
ネシウムで乾燥し、減圧下、濃縮した。得られた粗生成
物は精製を行わずに、次の反応に用いた。
<Compound 8 > Compound 4 (5.95 g, 41.9 mmo
l, 2.9 eq) in 50% aqueous sodium hydroxide solution (70 mL) tetrabutylammonium hydrogen sulfate
(1.48 g, 4.35 mmol) and compound 3 (5.41 g, 14.3 mmol,
A tetrahydrofuran solution (1 equivalent) was added at 0 degree. After stirring at room temperature for 2 hours, the reaction solution was diluted with ether. The reaction solution was poured into saturated aqueous sodium hydrogen carbonate. The aqueous layer was extracted 3 times with ether, the organic layer was washed with water and saturated brine, dried over magnesium sulfate, and concentrated under reduced pressure. The obtained crude product was used for the next reaction without purification.

【0091】得られた粗生成物のメタノール(70 mL)溶
液に触媒量の10-カンファースルホン酸を室温にて加え
た。4時間攪拌後、反応溶液をトリエチルアミン(1.5 m
L)によって中和し、減圧下濃縮した。得られた粗生成物
をエーテルにて薄めた。反応溶液を飽和重曹水に注い
だ。水層をエーテルで2回抽出した後、有機層を水、飽
和食塩水で洗浄後、硫酸マグネシウムで乾燥し、減圧
下、濃縮した。シリカゲルカラムクロマトグラフィー(2
5-45% 酢酸エチル/ヘキサン混合溶液)によって精製し化
合物(5.18 g, 12.4 mmol)を2段階収率87%で得た。1 H-NMR (270 MHz, CDCl3)δ 2.47-2.66 (m, 4H, b), 3.
40 (d, 8H, J = 5.0 Hz,e), 3.83 (qu, 2H, J = 5.3 H
z, d), 3.95 (m, 1H, a), 4.32 (t, 4H, J = 2.3Hz,
c); 13C-NMR (67.8 MHz, CDCl3)δ 26.5, 51.7, 58.0,
68.4, 76.3, 78.1,83.3; IR (neat) 3445, 2925, 2098,
1442, 1263, 1087, 1027 (cm-1); MS(ESI-TOF) 434 [M
+NH4]+.
A catalytic amount of 10-camphorsulfonic acid was added to a solution of the obtained crude product in methanol (70 mL) at room temperature. After stirring for 4 hours, the reaction solution was mixed with triethylamine (1.5 m
It was neutralized with L) and concentrated under reduced pressure. The crude product obtained was diluted with ether. The reaction solution was poured into saturated aqueous sodium hydrogen carbonate. The aqueous layer was extracted twice with ether, the organic layer was washed with water and saturated brine, dried over magnesium sulfate, and concentrated under reduced pressure. Silica gel column chromatography (2
It was purified by 5-45% ethyl acetate / hexane mixed solution) to obtain Compound 8 (5.18 g, 12.4 mmol) in a two-step yield of 87%. 1 H-NMR (270 MHz, CDCl 3 ) δ 2.47-2.66 (m, 4H, b), 3.
40 (d, 8H, J = 5.0 Hz, e), 3.83 (qu, 2H, J = 5.3 H
z, d), 3.95 (m, 1H, a), 4.32 (t, 4H, J = 2.3Hz,
c); 13 C-NMR (67.8 MHz, CDCl3) δ 26.5, 51.7, 58.0,
68.4, 76.3, 78.1, 83.3; IR (neat) 3445, 2925, 2098,
1442, 1263, 1087, 1027 (cm -1 ); MS (ESI-TOF) 434 [M
+ NH 4 ] + .

【0092】[0092]

【化19】 [Chemical 19]

【0093】<化合物10>化合物(1.66 g, 3.35 m
mol)のトルエン(25 mL)と水(5 mL)の混合溶液にト
リフェニルホスフィン(8.8 g, 33.5 mmol)を室温にて加
えた。80度にて5時間攪拌後、反応溶液をエーテルにて
薄めた。水層をエーテル、酢酸エチルで2回洗浄後、減
圧下、濃縮した。得られた粗生成物は精製を行わずに、
次の反応に用いた。
<Compound 10 > Compound 8 (1.66 g, 3.35 m
Triphenylphosphine (8.8 g, 33.5 mmol) was added to a mixed solution of toluene (25 mL) and water (5 mL) at room temperature. After stirring at 80 ° C for 5 hours, the reaction solution was diluted with ether. The aqueous layer was washed twice with ether and ethyl acetate and then concentrated under reduced pressure. The obtained crude product was not purified,
Used for the next reaction.

【0094】得られた粗生成物のメタノール(3 mL)と
水(3 mL)とテトラヒドロフラン(6 mL)の混合溶液に
N-(9-フルオレニルメトキシカルボニルオキシ)スクシン
イミド(10.7 g, 31.8 mmol)を室温にて加えた。室温で4
時間攪拌後、反応溶液を水と酢酸エチルの混合溶液に注
いだ。水層を酢酸エチルで3回抽出した後、有機層を
水、飽和食塩水で洗浄後、硫酸マグネシウムで乾燥し、
減圧下、濃縮した。シリカゲルカラムクロマトグラフィ
ー(50-100% 酢酸エチル/ヘキサン混合溶液)によって精
製し化合物10(3.35 g, 2.79 mmol)を2段階収率70%で
得た。1 H-NMR (400 MHz, CDCl3)δ 2.46 (m, 4H, b), 3.12
(m, 4H, e), 3.41 (m, 4H, e'), 3.64 (m, 2H, d), 3.8
7 (qu, 1H, J = 5.8 Hz, a), 4.10-4.15 (m, 4H,c), 4.
21 (t, 4H, J = 6.8 Hz, h), 4.42 (d, 8H, J = 6.8 H
z, g), 5.38 (m, 4H, f), 7.30 (t, 8H, J = 7.2 Hz,
i), 7.39 (t, 8H, J = 7.2 Hz, i'), 7.60 (d, 8H, J =
7.2 Hz, i''), 7.75 (d, 8H, J = 7.7 Hz, i'''); 13C
-NMR (67.8 MHz, CDCl3)δ 26.7, 40.7, 47.3, 57.5, 6
6.8, 68.3, 75.8, 78.4, 83.5, 120.0, 125.1, 127.1,
127.8, 141.3, 143.9, 157.0; IR (neat) 3445, 2925,
2098,1442, 1263, 1087, 1027 (cm-1); MS(ESI-TOF) 12
42 [M+K]+.
The crude product obtained was added to a mixed solution of methanol (3 mL), water (3 mL) and tetrahydrofuran (6 mL).
N- (9-Fluorenylmethoxycarbonyloxy) succinimide (10.7 g, 31.8 mmol) was added at room temperature. 4 at room temperature
After stirring for an hour, the reaction solution was poured into a mixed solution of water and ethyl acetate. The aqueous layer was extracted 3 times with ethyl acetate, the organic layer was washed with water and saturated brine, and dried over magnesium sulfate,
It was concentrated under reduced pressure. It was purified by silica gel column chromatography (50-100% ethyl acetate / hexane mixed solution) to obtain Compound 10 (3.35 g, 2.79 mmol) in a two-step yield of 70%. 1 H-NMR (400 MHz, CDCl 3 ) δ 2.46 (m, 4H, b), 3.12
(m, 4H, e), 3.41 (m, 4H, e '), 3.64 (m, 2H, d), 3.8
7 (qu, 1H, J = 5.8 Hz, a), 4.10-4.15 (m, 4H, c), 4.
21 (t, 4H, J = 6.8 Hz, h), 4.42 (d, 8H, J = 6.8 H
z, g), 5.38 (m, 4H, f), 7.30 (t, 8H, J = 7.2 Hz,
i), 7.39 (t, 8H, J = 7.2 Hz, i '), 7.60 (d, 8H, J =
7.2 Hz, i ''), 7.75 (d, 8H, J = 7.7 Hz, i '''); 13 C
-NMR (67.8 MHz, CDCl 3 ) δ 26.7, 40.7, 47.3, 57.5, 6
6.8, 68.3, 75.8, 78.4, 83.5, 120.0, 125.1, 127.1,
127.8, 141.3, 143.9, 157.0; IR (neat) 3445, 2925,
2098,1442, 1263, 1087, 1027 (cm -1 ); MS (ESI-TOF) 12
42 [M + K] + .

【0095】[0095]

【化20】 [Chemical 20]

【0096】<化合物>化合物10(1.34 g, 1.12 m
mol)のピリジン(3 mL)溶液にこはく酸無水物(2 g, 2
0 mmol)を室温にて加えた。35度にて、7時間攪拌後、反
応溶液を0度にて3規定塩酸水溶液と酢酸エチルの混合溶
液に注いだ。水層を酢酸エチルで3回抽出した後、有機
層を飽和食塩水で3回洗浄後、硫酸マグネシウムで乾燥
し、減圧下、濃縮した。得られた粗生成物を塩化メチレ
ンで薄めた。析出した過剰のこはく酸無水物を取り除く
ためにろ過した。減圧下、濃縮した。精製を行わずに、
次の反応に用いた。
<Compound 2 > Compound 10 (1.34 g, 1.12 m
mol) in pyridine (3 mL) solution of succinic anhydride (2 g, 2
0 mmol) was added at room temperature. After stirring at 35 ° C for 7 hours, the reaction solution was poured at 0 ° C into a mixed solution of 3N hydrochloric acid aqueous solution and ethyl acetate. The aqueous layer was extracted 3 times with ethyl acetate, then the organic layer was washed 3 times with saturated brine, dried over magnesium sulfate, and concentrated under reduced pressure. The crude product obtained was diluted with methylene chloride. It filtered in order to remove the excess succinic anhydride which precipitated. It was concentrated under reduced pressure. Without purification
Used for the next reaction.

【0097】得られた粗生成物のトルエン(3 mL)溶液
にN-ヒドロキシこはく酸イミド(257.8 mg, 2.24 mmol)
と1,3-ジシクロヘキシルカルボジイミド(462.2 mg, 2.2
4 mmol)を室温にて加えた。30度で12時間攪拌後、反応
溶液を減圧下、濃縮した。得られた残留物をシリカゲル
カラムクロマトグラフィー(50-100% 酢酸エチル/ヘキサ
ン混合溶液)によって精製した後、GPCによってさらに精
製し化合物(1.11 g, 0.792 mmol)を2段階収率71%で
薄黄色のアモルファス状結晶として得た。1 H-NMR (400 MHz, CDCl3)δ 2.57 (m, 4H, e), 2.65
(s, 4H, a), 2.69 (t, 2H,J = 6.8 Hz, b or c), 2.87
(t, 2H, J = 6.8 Hz, b or c), 3.19 (m, 4H, h),3.32
(m, 4H, h'), 3.57 (m, 2H, g), 4.11 (brs, 4H, f),
4.18 (t, 4H, J =6.8 Hz, k), 4.39 (d, 8H, J = 6.8 H
z, j), 5.03 (qu, 1H, J = 5.8 Hz, d), 5.49 (m, 4H,
i), 7.27 (t, 8H, J = 7.7 Hz, l), 7.35 (t, 8H, J =
7.2 Hz, l'), 7.58 (d, 8H, J = 7.2 Hz, l''), 7.72
(d, 8H, J = 7.2 Hz, l'''); 13C-NMR (99.6 MHz, CDCl
3)δ 23.3, 25.4, 26.2, 28.7, 40.7, 47.2, 57.3, 66.
7, 70.3, 76.0, 78.7, 81.6, 119.9, 125.0, 127.0, 12
7.7, 141.2, 143.8, 156.9, 167.6, 169.0, 170.1.
To a solution of the obtained crude product in toluene (3 mL) was added N-hydroxysuccinimide (257.8 mg, 2.24 mmol).
And 1,3-dicyclohexylcarbodiimide (462.2 mg, 2.2
4 mmol) was added at room temperature. After stirring for 12 hours at 30 ° C., the reaction solution was concentrated under reduced pressure. The obtained residue was purified by silica gel column chromatography (50-100% ethyl acetate / hexane mixed solution) and further purified by GPC to give compound 2 (1.11 g, 0.792 mmol) in a two-step yield of 71%. Obtained as yellow amorphous crystals. 1 H-NMR (400 MHz, CDCl 3 ) δ 2.57 (m, 4H, e), 2.65
(s, 4H, a), 2.69 (t, 2H, J = 6.8 Hz, b or c), 2.87
(t, 2H, J = 6.8 Hz, b or c), 3.19 (m, 4H, h), 3.32
(m, 4H, h '), 3.57 (m, 2H, g), 4.11 (brs, 4H, f),
4.18 (t, 4H, J = 6.8 Hz, k), 4.39 (d, 8H, J = 6.8 H
z, j), 5.03 (qu, 1H, J = 5.8 Hz, d), 5.49 (m, 4H,
i), 7.27 (t, 8H, J = 7.7 Hz, l), 7.35 (t, 8H, J =
7.2 Hz, l '), 7.58 (d, 8H, J = 7.2 Hz, l''), 7.72
(d, 8H, J = 7.2 Hz, l '''); 13 C-NMR (99.6 MHz, CDCl
3 ) δ 23.3, 25.4, 26.2, 28.7, 40.7, 47.2, 57.3, 66.
7, 70.3, 76.0, 78.7, 81.6, 119.9, 125.0, 127.0, 12
7.7, 141.2, 143.8, 156.9, 167.6, 169.0, 170.1.

【0098】[0098]

【化21】 [Chemical 21]

【0099】<樹脂担持テトラFmocリンカー11>この
縮合反応はマニュアル合成装置(Argonaut technologies
Quest 210)上で行われた。ArgoporeTM-NH2-LL resin
(500 mg, 0.14 mmol)を10mL用テフロン(登録商標)チ
ューブ内に入れ、この反応容器に化合物(587.4 mg,
0.42 mmol, 3当量)のDMF(1.5 mL)溶液を室温で加えた。
40度で8時間振とう後、樹脂をDMF(5 mL)で3回、塩化メ
チレン(5 mL)で3回洗浄した。得られた樹脂を減圧下乾
燥し、樹脂担持テトラFmocリンカー11(573.6 mg, 58
%担持、担持量はFmoc定量によって求められた。)を得
た。 IR (solid) 3341, 3026, 2924, 1724, 1511, 1449, 125
2, 1154, 1097, 699 (cm -1)
<Resin-supported tetra Fmoc linker11> This
A manual synthesizer (Argonaut technologies
 Quest 210). ArgoporeTM-NH2-LL resin
(500 mg, 0.14 mmol) for 10 mL of Teflon®
Put the compound in the reaction vessel in the tube.Two(587.4 mg,
A solution of 0.42 mmol, 3 eq) in DMF (1.5 mL) was added at room temperature.
After shaking at 40 ° C for 8 hours, the resin was washed with DMF (5 mL) three times and chlorinated.
It was washed with thylene (5 mL) three times. Dry the obtained resin under reduced pressure.
Dry, resin-loaded tetra Fmoc linker11(573.6 mg, 58
% Loading and loading amount were determined by Fmoc quantification. )
It was IR (solid) 3341, 3026, 2924, 1724, 1511, 1449, 125
2, 1154, 1097, 699 (cm -1)

【0100】<クラウン担持テトラFmocリンカー12
Synphase crowns (50 crowns, O series, Loading : 7.
1 μmol)を丸底フラスコに入れ、この反応容器に化合物
(879.2 mg, 0.63 mmol, 3当量)のDMF(6.3 mL)溶液を
室温で加えた。45度で48時間ゆっくりと攪拌後、クラウ
ンをDMFで4回、塩化メチレンで4回洗浄した。得られた
クラウンを減圧下乾燥し、クラウン担持テトラFmocリン
カー12(23%担持、担持量はFmoc定量によって求めら
れた。)を得た。
<Crown-supporting tetra-Fmoc linker 12 >
Synphase crowns (50 crowns, O series, Loading: 7
(1 μmol) in a round bottom flask and place the compound in the reaction vessel.
A solution of 2 (879.2 mg, 0.63 mmol, 3 eq) in DMF (6.3 mL) was added at room temperature. After slowly stirring at 45 degrees for 48 hours, the crown was washed 4 times with DMF and 4 times with methylene chloride. The obtained crown was dried under reduced pressure to obtain crown-supporting tetra-Fmoc linker 12 (23% supported, the supported amount was determined by Fmoc quantification).

【0101】<樹脂担持テトラベンズアミド13>樹脂
担持テトラFmocリンカー11(80 mg, 0.0116 mmol)を固
相合成用反応ベッセルに入れ、この反応容器に20%ピペ
リジン/DMF溶液(1 mL)を室温で加えた。30分間振とう
後、樹脂をDMF(3 mL)で4回、塩化メチレン(3 mL)で4回
洗浄した。得られた樹脂を減圧下乾燥し、樹脂担持テト
ラアミンを得た。そして、次の反応に用いた。
<Resin-supported tetrabenzamide 13 > Resin-supported tetra-Fmoc linker 11 (80 mg, 0.0116 mmol) was placed in a reaction vessel for solid-phase synthesis, and 20% piperidine / DMF solution (1 mL) was added to this reaction vessel at room temperature. added. After shaking for 30 minutes, the resin was washed 4 times with DMF (3 mL) and 4 times with methylene chloride (3 mL). The obtained resin was dried under reduced pressure to obtain a resin-supported tetraamine. Then, it was used for the next reaction.

【0102】DMF(2 mL)中の得られた樹脂担持テトラア
ミン縣濁液に安息香酸(122.1 mg, 1mmol)、1- ヒドロキ
シベンゾトリアゾール(148.6 mg, 1.1 mmol)、1,3-ジイ
ソプロピルカルボジイミド(0.155 mL, 1 mmol)を室温で
加えた。6時間振とう後、反応混合物をろ過した。樹脂
をDMF(3 mL)で4回、塩化メチレン(3 mL)で4回洗浄し
た。得られた樹脂を減圧下乾燥し、樹脂担持テトラベン
ズアミド13(60 mg)を得た。 IR (solid) 3323, 3026, 2925, 1740, 1649, 1534, 149
1, 1452, 1292, 1158, 1089, 699 (cm-1)
Benzoic acid (122.1 mg, 1 mmol), 1-hydroxybenzotriazole (148.6 mg, 1.1 mmol), 1,3-diisopropylcarbodiimide (0.155) was added to the obtained resin-supported tetraamine suspension in DMF (2 mL). (mL, 1 mmol) was added at room temperature. After shaking for 6 hours, the reaction mixture was filtered. The resin was washed 4 times with DMF (3 mL) and 4 times with methylene chloride (3 mL). The obtained resin was dried under reduced pressure to obtain resin-supported tetrabenzamide 13 (60 mg). IR (solid) 3323, 3026, 2925, 1740, 1649, 1534, 149
1, 1452, 1292, 1158, 1089, 699 (cm -1 ).

【0103】<樹脂由来の化合物17>樹脂担持テトラ
ベンズアミド13(30 mg, 0.0058 mol)を0.1N水酸化ナ
トリウム水溶液(水/メタノール/ジオキサン:1/ 9/ 30)
(1 mL) で処理し、21時間振とうした。この混合溶液に
一さじのDowexを室温にて加え中和した。5分間振とう
後、ろ過した。残った樹脂をメタノールで洗浄し、その
縣濁液をろ過した。ろ過物を濃縮し切り出された化合物
17を得た。そして、これをHPLC-MSにて分析した(4.5
mg, 純度: 87%)。1 H-NMR (400 MHz, CDCl3)δ 2.54 (m, 4H, b), 3.23 (d
dd, 4H, J = 5.5, 5.8,14.0 Hz, e), 3.92 (m, 2H, d),
3.99-4.09 (m, 5H, a, e'), 4.31 (brs, 4H, c), 7.35
(m, 4H, f), 7.45 (dd, 1H, J = 7.2, 7.2 Hz, g), 7.
51 (t, 2H, J =7.2 Hz, g), 7.88 (d, 2H, J = 7.2 Hz,
g); 13C-NMR (99.6 MHz, CDCl3)δ 27.0, 39.6, 57.6,
67.2, 75.3, 78.3, 84.1, 127.2, 128.7, 131.8, 133.
9, 168.4; MS(ESI-TOF) 730 [M+H]+.
<Compound 17 derived from resin> Resin-supported tetrabenzamide 13 (30 mg, 0.0058 mol) was added to 0.1N aqueous sodium hydroxide solution (water / methanol / dioxane: 1/9/30).
(1 mL), and shaken for 21 hours. A scoop of Dowex was added to this mixed solution at room temperature to neutralize it. After shaking for 5 minutes, it was filtered. The residual resin was washed with methanol and the suspension was filtered. Compound cut out by concentrating the filtrate
I got 17 . Then, this was analyzed by HPLC-MS (4.5
mg, purity: 87%). 1 H-NMR (400 MHz, CDCl 3 ) δ 2.54 (m, 4H, b), 3.23 (d
dd, 4H, J = 5.5, 5.8, 14.0 Hz, e), 3.92 (m, 2H, d),
3.99-4.09 (m, 5H, a, e '), 4.31 (brs, 4H, c), 7.35
(m, 4H, f), 7.45 (dd, 1H, J = 7.2, 7.2 Hz, g), 7.
51 (t, 2H, J = 7.2 Hz, g), 7.88 (d, 2H, J = 7.2 Hz,
g); 13 C-NMR (99.6 MHz, CDCl3) δ 27.0, 39.6, 57.6,
67.2, 75.3, 78.3, 84.1, 127.2, 128.7, 131.8, 133.
9, 168.4; MS (ESI-TOF) 730 [M + H] + .

【0104】[0104]

【化22】 [Chemical formula 22]

【0105】<クラウン担持テトラベンズアミド14
クラウン担持テトラFmocリンカー12(9 crowns, 1.63
μmol x 9)を固相合成用10mL反応ベッセルに入れ、この
反応容器に20%ピペリジン/DMF溶液(6.4 mL)を室温で加
えた。1時間30分間ゆっくりと振とう後、樹脂をDMF(3 m
L)で4回、塩化メチレン(3 mL)で4回洗浄した。得られた
クラウンを減圧下乾燥し、クラウン担持テトラアミンを
得た。そして、次の反応に用いた。
<Crown-supporting tetrabenzamide 14 >
Tetra Fmoc Linker 12 (9 crowns, 1.63)
μmol x 9) was placed in a 10 mL reaction vessel for solid phase synthesis, and a 20% piperidine / DMF solution (6.4 mL) was added to this reaction vessel at room temperature. After gently shaking for 1 hour and 30 minutes, the resin was washed with DMF (3 m
It was washed 4 times with L) and 4 times with methylene chloride (3 mL). The obtained crown was dried under reduced pressure to obtain a crown-supporting tetraamine. Then, it was used for the next reaction.

【0106】DMF(2 mL)中の得られたクラウン担持テト
ラアミン(3 crowns)に安息香酸(122.1 mg, 1 mmol)、1-
ヒドロキシベンゾトリアゾール(148.6 mg, 1.1 mmo
l)、1,3-ジイソプロピルカルボジイミド(0.155 mL, 1 m
mol)を室温で加えた。6時間振とう後、反応混合物をろ
過した。クラウンをDMF(3 mL)で4回、塩化メチレン(3 m
L)で4回洗浄した。得られた樹脂を減圧下乾燥し、クラ
ウン担持テトラテトラベンズアミド14を得た。そし
て、次の反応に用いた。
Benzoic acid (122.1 mg, 1 mmol), 1- was added to the obtained crown-supported tetraamine (3 crowns) in DMF (2 mL).
Hydroxybenzotriazole (148.6 mg, 1.1 mmo
l), 1,3-diisopropylcarbodiimide (0.155 mL, 1 m
mol) was added at room temperature. After shaking for 6 hours, the reaction mixture was filtered. Crown with DMF (3 mL) four times, methylene chloride (3 m
Washed 4 times with L). The obtained resin was dried under reduced pressure to obtain crown-supporting tetratetrabenzamide 14 . Then, it was used for the next reaction.

【0107】<クラウン由来の化合物17>クラウン担
持テトラベンズアミド14(1 crowns)を0.1N水酸化ナト
リウム水溶液(水/メタノール/ジオキサン:1/ 9/ 30)
(0.6 mL) で処理し、6時間振とうした。この混合溶液に
一さじのDowexを室温にて加え中和した。10分間振とう
後、ろ過した。残ったクラウンをメタノールで洗浄し、
その縣濁液をろ過した。ろ過物を濃縮し切り出された化
合物17を得た。そして、これをHPLC-MSにて分析した
(0.9-1.0 mg, 純度: 85%)。
<Compound 17 derived from crown> Tetrabenzamide 14 (1 crowns) supported on crown was added to 0.1N sodium hydroxide aqueous solution (water / methanol / dioxane: 1/9/30).
(0.6 mL), and shaken for 6 hours. A scoop of Dowex was added to this mixed solution at room temperature to neutralize it. After shaking for 10 minutes, it was filtered. Wash the remaining crown with methanol,
The suspension was filtered. The filtered product was concentrated to obtain Compound 17 which was cut out. And this was analyzed by HPLC-MS
(0.9-1.0 mg, Purity: 85%).

【0108】<樹脂担持ジコバルトヘキサコバルトーア
セチレン錯体15>塩化メチレン(1 mL)中の樹脂担持テ
トラベンズアミド13(30 mg, 0.0058 mmol)の縣濁液に
ジコバルトオクタカルボニル錯体(341.95 mg, 1 mmol)
を室温で加えた。2時間振とう後、反応混合物をろ過し
た。樹脂を塩化メチレン(3 mL)で6回洗浄した。得られ
た樹脂を減圧下乾燥し、樹脂担持ジコバルトヘキサコバ
ルトーアセチレン錯体15を得た。そして、次の反応に
用いた。 IR (solid) 3347, 3027, 2926, 2093, 2056, 2018, 173
8, 1650, 1489, 1452, 700 (cm-1)
<Resin-supported dicobalt hexacobalt-acetylene complex 15 > A suspension of resin-supported tetrabenzamide 13 (30 mg, 0.0058 mmol) in methylene chloride (1 mL) was suspended in dicobalt octacarbonyl complex (341.95 mg, 1 mL). mmol)
Was added at room temperature. After shaking for 2 hours, the reaction mixture was filtered. The resin was washed 6 times with methylene chloride (3 mL). The obtained resin was dried under reduced pressure to obtain a resin-supported dicobalt hexacobalt-acetylene complex 15 . Then, it was used for the next reaction. IR (solid) 3347, 3027, 2926, 2093, 2056, 2018, 173
8, 1650, 1489, 1452, 700 (cm -1 )

【0109】<樹脂由来の化合物18>得られた樹脂担
持ジコバルトヘキサコバルトーアセチレン錯体15を室
温にてトリフルオロ酢酸/塩化メチレン/水:4/ 36/ 1
(0.6 mL)の溶液 で処理し、2時間振とうした。この反応
溶液をろ過し、残った樹脂をメタノールで洗浄し、その
縣濁液をろ過した。ろ過物を濃縮し切り出された化合物
18を得た。そして、これをHPLC-MSにて分析した(純
度: 90%)。1 H-NMR (400 MHz, CDCl3)δ 3.57 (m, 4H, b), 3.95
(m, 1H, a), 7.07 (m, 2H,c), 7.39 (t, 1H, J = 7.2 H
z, d), 7.46 (dd, 2H, J = 7.2, 7.2 Hz, d), 7.78 (d,
J = 7.2 Hz, d); MS(ESI-TOF) 299 [M+H]+
<Compound 18 derived from resin> The obtained resin-supported dicobalt hexacobalt-acetylene complex 15 was trifluoroacetic acid / methylene chloride / water: 4/36/1 at room temperature.
It was treated with a solution of (0.6 mL) and shaken for 2 hours. The reaction solution was filtered, the remaining resin was washed with methanol, and the suspension was filtered. Compound cut out by concentrating the filtrate
I got 18 . Then, this was analyzed by HPLC-MS (purity: 90%). 1 H-NMR (400 MHz, CDCl 3 ) δ 3.57 (m, 4H, b), 3.95
(m, 1H, a), 7.07 (m, 2H, c), 7.39 (t, 1H, J = 7.2 H
z, d), 7.46 (dd, 2H, J = 7.2, 7.2 Hz, d), 7.78 (d,
J = 7.2 Hz, d); MS (ESI-TOF) 299 [M + H] +

【0110】[0110]

【化23】 [Chemical formula 23]

【0111】<クラウン担持ジコバルトヘキサコバルト
ーアセチレン錯体16>塩化メチレン(0.5 mL)中のクラ
ウン担持テトラベンズアミド14(1 crowns)の溶液にジ
コバルトオクタカルボニル錯体(171 mg, 0.5 mmol)を室
温で加えた。2時間振とう後、反応混合物をろ過した。
樹脂を塩化メチレン(3 mL)で6回洗浄した。得られたク
ラウンを減圧下乾燥し、クラウン担持ジコバルトヘキサ
コバルトーアセチレン錯体16を得た。そして、次の反
応に用いた。
<Crown-supported dicobalt hexacobalt-acetylene complex 16 > A solution of crown-supported tetrabenzamide 14 (1 crowns) in methylene chloride (0.5 mL) was charged with dicobaltooctacarbonyl complex (171 mg, 0.5 mmol) at room temperature. added. After shaking for 2 hours, the reaction mixture was filtered.
The resin was washed 6 times with methylene chloride (3 mL). The obtained crown was dried under reduced pressure to obtain crown-supporting dicobalt hexacobalt-acetylene complex 16 . Then, it was used for the next reaction.

【0112】<樹脂由来の化合物18>得られたクラウ
ン担持ジコバルトヘキサコバルトーアセチレン錯体16
を室温にてトリフルオロ酢酸/塩化メチレン/水:4/ 36/
1(0.6 mL)の溶液 で処理し、2時間振とうした。この反
応溶液をろ過し、残ったクラウンをメタノールで洗浄
し、その縣濁液をろ過した。ろ過物を濃縮し切り出され
た化合物18を得た。そして、これをHPLC-MSにて分析
した(純度: 87%)。
<Resin-Derived Compound 18 > Obtained Crown-Supporting Dicobalt Hexacobalt-Acetylene Complex 16
At room temperature with trifluoroacetic acid / methylene chloride / water: 4/36 /
It was treated with a solution of 1 (0.6 mL) and shaken for 2 hours. The reaction solution was filtered, the remaining crown was washed with methanol, and the suspension was filtered. The filtered product was concentrated to obtain Compound 18 which was cut out. Then, this was analyzed by HPLC-MS (purity: 87%).

【0113】<樹脂担持テトラα−ブロモアセトアミド
19>樹脂担持テトラFmocリンカー11(40.7 mg, 0.00
59 mmol)を固相合成用反応ベッセルに入れ、この反応容
器に20%ピペリジン/DMF溶液(1 mL)を室温で加えた。30
分間振とう後、樹脂をDMF(3 mL)で4回、塩化メチレン(3
mL)で4回洗浄した。得られた樹脂を減圧下乾燥し、樹
脂担持テトラアミンを得た。そして、次の反応に用い
た。
<Resin-supported tetra α-bromoacetamide
19 > Resin-supported tetra Fmoc linker 11 (40.7 mg, 0.00
59 mmol) was placed in a reaction vessel for solid phase synthesis, and a 20% piperidine / DMF solution (1 mL) was added to this reaction vessel at room temperature. 30
After shaking for 1 min, the resin was washed with DMF (3 mL) 4 times and methylene chloride (3 mL).
(mL) and washed 4 times. The obtained resin was dried under reduced pressure to obtain a resin-supported tetraamine. Then, it was used for the next reaction.

【0114】DMF(2 mL)中の得られた樹脂担持テトラア
ミン縣濁液にα−ブロモ酢酸(139.0mg, 1 mmol)、1- ヒ
ドロキシベンゾトリアゾール(148.6 mg, 1.1 mmol)、1,
3-ジイソプロピルカルボジイミド(0.155 mL, 1 mmol)を
室温で加えた。4時間振とう後、反応混合物をろ過し
た。樹脂をDMF(3 mL)で4回、塩化メチレン(3 mL)で4回
洗浄した。得られた樹脂を減圧下乾燥し、樹脂担持α−
ブロモアセトアミド(19)を得た。そして、次の反応に用
いた。 IR (solid) 3313, 3026, 2926, 1736, 1671, 1374, 115
7, 1088, 761 (cm-1)
The resulting resin-supported tetraamine suspension in DMF (2 mL) was charged with α-bromoacetic acid (139.0 mg, 1 mmol), 1-hydroxybenzotriazole (148.6 mg, 1.1 mmol), 1,
3-Diisopropylcarbodiimide (0.155 mL, 1 mmol) was added at room temperature. After shaking for 4 hours, the reaction mixture was filtered. The resin was washed 4 times with DMF (3 mL) and 4 times with methylene chloride (3 mL). The obtained resin is dried under reduced pressure to obtain a resin-supported α-
Bromoacetamide (19) was obtained. Then, it was used for the next reaction. IR (solid) 3313, 3026, 2926, 1736, 1671, 1374, 115
7, 1088, 761 (cm -1 )

【0115】<樹脂担持テトラガラクトシド22>得ら
れた樹脂担持α−ブロモアセトアミド19を固相合成用
反応ベッセルに入れ、この反応容器に2-メルカプトエチ
ルβ−D−ガラクトシド(127.5 mg, 0.53 mmol)のジメチ
ルスルホキシド(0.25 mL)溶液とジイソプロピルエチル
アミン(0.050 mL)を室温で加えた。24時間振とう後、反
応溶液をろ過した。さらに反応容器に2-メルカプトエチ
ルβ−D−ガラクトシド(127.5 mg, 0.53 mmol)のジメチ
ルスルホキシド(0.25 mL)溶液とジイソプロピルエチル
アミン(0.050 mL)を室温で加えた。24時間振とう後、反
応溶液をろ過した。樹脂をDMF(3 mL)で3回、水/メタノ
ール(3 mL)で2回、塩化メチレン(3 mL)で4回洗浄した。
得られた樹脂を減圧下乾燥し、樹脂担持テトラガラクト
シド22を得た。そして、次の反応に用いた。IR (soli
d) 3313, 3026, 2926, 1736, 1671, 1374, 1157, 1088,
761 (cm-1).
<Resin-supported tetragalactoside 22 > The obtained resin-supported α-bromoacetamide 19 was placed in a reaction vessel for solid phase synthesis, and 2-mercaptoethyl β-D-galactoside (127.5 mg, 0.53 mmol) was placed in this reaction vessel. Dimethyl sulfoxide (0.25 mL) solution and diisopropylethylamine (0.050 mL) were added at room temperature. After shaking for 24 hours, the reaction solution was filtered. Further, a solution of 2-mercaptoethyl β-D-galactoside (127.5 mg, 0.53 mmol) in dimethyl sulfoxide (0.25 mL) and diisopropylethylamine (0.050 mL) were added to the reaction vessel at room temperature. After shaking for 24 hours, the reaction solution was filtered. The resin was washed 3 times with DMF (3 mL), 2 times with water / methanol (3 mL), and 4 times with methylene chloride (3 mL).
The obtained resin was dried under reduced pressure to obtain resin-supported tetragalactoside 22 . Then, it was used for the next reaction. IR (soli
d) 3313, 3026, 2926, 1736, 1671, 1374, 1157, 1088,
761 (cm -1 ).

【0116】<化合物21>樹脂担持テトラガラクトシ
22(0.0038 mol)を0.1N水酸化ナトリウム水溶液(水/
メタノール/ジオキサン:1/ 9/ 30)(1 mL) で処理し、2
1時間振とうした。この混合溶液に一さじのDowexを室温
にて加え中和した。5分間振とう後、ろ過した。残った
樹脂をメタノールで洗浄し、その縣濁液をろ過した。ろ
過物を濃縮し切り出された残留物を逆相クロマトグラフ
ィー(オクタデシルシリカゲル-SPETube-C18、30%メタ
ノール/水)により精製し、化合物21(4.0 mg, 0.0028
mmol)を4段階収率73%(担持量を基準)で得た。1 H-NMR (400 MHz, D2O, 30 °C)δ 2.56 (brs, 4H, b),
2.85 (dd, 4H, J = 5.3, 6.3 Hz, g), 3.33 (dd, 4H,
J = 6.3, 14.0 Hz, e), 3.36 (s, 8H, f), 3.43(dd, 4
H, J = 4.4, 14.0 Hz, e'), 3.50 (dd, 4H, J = 7.7,
9.7 Hz, s2), 3.61-3.68 (m, 8H, s3, s5), 3.70-3.80
(m, 8H, s6), 3.82-3.88 (m, 6H, d, h), 3.90 (brd, 4
H, J = 2.9 Hz, s4), 3.97 (qu, 1H, J = 3.9 Hz, a),
4.07 (dt, 4H, J = 6.3, 10.6 Hz, h'), 4.31 (brs, 4
H, c), 4.40 (d, 4H, J = 7.7 Hz, s1); MS(ESI-TOF) 1
455.5 [M+Na]+
<Compound 21 > Resin-supported tetragalactoside 22 (0.0038 mol) was added to a 0.1N sodium hydroxide aqueous solution (water /
Methanol / dioxane: 1/9/30) (1 mL), 2
Shake for 1 hour. A scoop of Dowex was added to this mixed solution at room temperature to neutralize it. After shaking for 5 minutes, it was filtered. The residual resin was washed with methanol and the suspension was filtered. The filtrate was concentrated and the residue cut out was purified by reverse phase chromatography (octadecyl silica gel-SPETube-C18, 30% methanol / water) to give compound 21 (4.0 mg, 0.0028).
(mmol) was obtained in a 4-step yield of 73% (based on the carried amount). 1 H-NMR (400 MHz, D 2 O, 30 ° C) δ 2.56 (brs, 4H, b),
2.85 (dd, 4H, J = 5.3, 6.3 Hz, g), 3.33 (dd, 4H,
J = 6.3, 14.0 Hz, e), 3.36 (s, 8H, f), 3.43 (dd, 4
H, J = 4.4, 14.0 Hz, e '), 3.50 (dd, 4H, J = 7.7,
9.7 Hz, s2), 3.61-3.68 (m, 8H, s3, s5), 3.70-3.80
(m, 8H, s6), 3.82-3.88 (m, 6H, d, h), 3.90 (brd, 4
H, J = 2.9 Hz, s4), 3.97 (qu, 1H, J = 3.9 Hz, a),
4.07 (dt, 4H, J = 6.3, 10.6 Hz, h '), 4.31 (brs, 4
H, c), 4.40 (d, 4H, J = 7.7 Hz, s1); MS (ESI-TOF) 1
455.5 [M + Na] +

【0117】[0117]

【化24】 [Chemical formula 24]

【0118】<樹脂担持ジコバルトヘキサコバルトーア
セチレン錯体テトラガラクトシド>塩化メチレン(1 mL)
中の樹脂担持テトラベンズアミド22(0.0021 mmol)の
縣濁液にジコバルトオクタカルボニル錯体(341.95 mg,
1 mmol)を室温で加えた。24時間振とう後、反応混合物
をろ過した。樹脂を塩化メチレン(3 mL)で6回、DMF(3 m
L)、水/メタノール(3 mL)、塩化メチレン(3 mL)で5回洗
浄した。得られた樹脂を減圧下乾燥し、樹脂担持ジコバ
ルトヘキサコバルトーアセチレン錯体テトラガラクトシ
ドを得た。そして、次の反応に用いた。 IR (solid) 3385, 3025, 2926, 2093, 2054, 2025, 165
3, 1452, 1073, 7611740, 1649, 1534, 1491, 1452, 12
92, 1158, 1089, 699 (cm-1)
<Resin-supported dicobalt hexacobalt-acetylene complex tetragalactoside> Methylene chloride (1 mL)
A suspension of resin-supported tetrabenzamide 22 (0.0021 mmol) in a dicobalt octacarbonyl complex (341.95 mg,
1 mmol) was added at room temperature. After shaking for 24 hours, the reaction mixture was filtered. The resin was washed with methylene chloride (3 mL) 6 times, DMF (3 m
L), water / methanol (3 mL), and methylene chloride (3 mL) washed 5 times. The obtained resin was dried under reduced pressure to obtain a resin-supported dicobalt hexacobalt-acetylene complex tetragalactoside. Then, it was used for the next reaction. IR (solid) 3385, 3025, 2926, 2093, 2054, 2025, 165
3, 1452, 1073, 7611740, 1649, 1534, 1491, 1452, 12
92, 1158, 1089, 699 (cm -1 )

【0119】<化合物23>得られた樹脂担持ジコバル
トヘキサコバルトーアセチレン錯体テトラガラクトシド
を室温にてトリフルオロ酢酸/塩化メチレン/水:90/ 20
/ 3(1.4 mL)の溶液で処理し、1時間振とうした。この反
応溶液をろ過し、残った樹脂をメタノールで洗浄し、そ
の縣濁液をろ過した。ろ過物を濃縮し切り出された残留
物を逆相クロマトグラフィー(オクタデシルシリカゲル
-SPE Tube-C18、50%メタノール/水)により精製し、化
合物23(1.1 mg, 0.0017 mmol)を5段階収率40%(担持
量を基準)で得た。1 H-NMR (400 MHz, D2O, 30 °C)δ 2.78 (dd, 4H, J =
6.3, 6.3 Hz, d), 3.20(dd, 2H, J = 7.2, 14.0 Hz,
b), 3.27-3.33 (m, 2H, b'), 3.30 (s, 4H, c), 3.45
(dd, 2H, J = 7.7, 9.7 Hz, s2), 3.57 (dd, 2H, J =
3.4, 9.7 Hz, s3), 3.58-3.62 (m, 2H, s5), 3.65-3.71
(m, 4H, s6), 3.79 (dt, 2H, J = 6.3, 10.6Hz, e),
3.80 (m, 1H, a), 3.85 (brd, 2H, J = 3.4 Hz, s4),
4.01 (dt, 2H,J = 6.3, 10.6 Hz, e'), 4.34 (d, 2H, J
= 7.7 Hz, s1); MS(ESI-TOF) 651 [M+H]+.
<Compound 23 > The obtained resin-supported dicobalt hexacobalt-acetylene complex tetragalactoside was added at room temperature to trifluoroacetic acid / methylene chloride / water: 90/20.
It was treated with a solution of 3 (1.4 mL) and shaken for 1 hour. The reaction solution was filtered, the remaining resin was washed with methanol, and the suspension was filtered. The filtered material was concentrated and the residue cut out was subjected to reverse phase chromatography (octadecyl silica gel).
-SPE Tube-C18, 50% methanol / water) to obtain Compound 23 (1.1 mg, 0.0017 mmol) in a 5-step yield of 40% (based on the supported amount). 1 H-NMR (400 MHz, D 2 O, 30 ° C) δ 2.78 (dd, 4H, J =
6.3, 6.3 Hz, d), 3.20 (dd, 2H, J = 7.2, 14.0 Hz,
b), 3.27-3.33 (m, 2H, b '), 3.30 (s, 4H, c), 3.45
(dd, 2H, J = 7.7, 9.7 Hz, s2), 3.57 (dd, 2H, J =
3.4, 9.7 Hz, s3), 3.58-3.62 (m, 2H, s5), 3.65-3.71
(m, 4H, s6), 3.79 (dt, 2H, J = 6.3, 10.6Hz, e),
3.80 (m, 1H, a), 3.85 (brd, 2H, J = 3.4 Hz, s4),
4.01 (dt, 2H, J = 6.3, 10.6 Hz, e '), 4.34 (d, 2H, J
= 7.7 Hz, s1); MS (ESI-TOF) 651 [M + H] + .

【0120】[0120]

【化25】 [Chemical 25]

【0121】<ライブラリー構築>全てのFmoc基の脱保
護のスキームは上記の手順にしたがって行われた。全て
の縮合のスキームは樹脂13用の手順にしたがって行わ
れた。全てのチオエーテル化のスキームは樹脂22用の
手順にしたがって行われた。全てのアルカリ加水分解に
よる切り出しのスキームは化合物21用の手順にしたが
って行われた。全てのジコバルトヘキサカルボニル錯体
化とその酸処理による切り出しのスキームは化合物23
用の手順にしたがって行われた。 Dimer 24 (2.2 mg, 3.4 μmol, 5 steps 43% based o
n loading); 1H-NMR (400 MHz, D2O, 30 °C)δ 2.84
(dd, 4H, J = 4.8, 5.8 Hz, d), 3.25 (dd, 2H, J= 6.
8, 14.0 Hz, b), 3.32-3.38 (m, 2H, b'), 3.34 (s, 4
H, c), 3.62 (dd, 2H, J = 8.7, 9.7 Hz, s4), 3.64-3.
77 (m, 8H, s5, s6, e), 3.77 (dd, 2H, J =3.4, 9.2 H
z, s3), 3.84-3.90 (m, 3H, a, e'), 3.92 (dd, 2H, J
= 1.9, 3.4Hz, s2), 4.89 (d, 2H, J = 1.9 Hz, s1); M
S(ESI-TOF) 651 [M+H]+.
<Library Construction> The deprotection scheme for all Fmoc groups was performed according to the above procedure. All condensation schemes were performed according to the procedure for Resin 13 . All thioetherification schemes were performed according to the procedure for Resin 22 . All alkaline hydrolysis cleavage schemes were performed according to the procedure for Compound 21 . All dicobalt hexacarbonyl complexation and its cleavage by acid treatment are described in compound 23.
Followed the procedure for. Dimer 24 (2.2 mg, 3.4 μmol, 5 steps 43% based o
n loading); 1 H-NMR (400 MHz, D 2 O, 30 ° C) δ 2.84
(dd, 4H, J = 4.8, 5.8 Hz, d), 3.25 (dd, 2H, J = 6.
8, 14.0 Hz, b), 3.32-3.38 (m, 2H, b '), 3.34 (s, 4
H, c), 3.62 (dd, 2H, J = 8.7, 9.7 Hz, s4), 3.64-3.
77 (m, 8H, s5, s6, e), 3.77 (dd, 2H, J = 3.4, 9.2 H
z, s3), 3.84-3.90 (m, 3H, a, e '), 3.92 (dd, 2H, J
= 1.9, 3.4Hz, s2), 4.89 (d, 2H, J = 1.9 Hz, s1); M
S (ESI-TOF) 651 [M + H] + .

【0122】[0122]

【化26】 Tetramer 25 (4.0 mg, 2.8 μmol, 6 steps 70% base
d on loading); 1H-NMR(400 MHz, D2O, 30 °C)δ 2.56
(brs, 4H, b), 2.85 (dd, 4H, J = 5.8, 6.3 Hz, g),
3.32 (dd, 4H, J = 5.8, 14.0 Hz, e), 3.35 (s, 8H,
f), 3.43 (dd, 4H, J = 3.9, 14.0 Hz, e'), 3.63 (m,
4H, s4), 3.65-3.79 (m, 16H, h', s3, s5, s6), 3.85-
3.91 (m, 10H, d, h, s6'), 3.92 (brs, 4H, s2), 3.97
(qu, 1H,J = 5.8 Hz, a), 4.31 (brs, 4H, c), 4.86
(brs, 4H, s1); MS(ESI-TOF) 1433.6 [M+H]+.
[Chemical formula 26] Tetramer 25 (4.0 mg, 2.8 μmol, 6 steps 70% base
d on loading); 1 H-NMR (400 MHz, D 2 O, 30 ° C) δ 2.56
(brs, 4H, b), 2.85 (dd, 4H, J = 5.8, 6.3 Hz, g),
3.32 (dd, 4H, J = 5.8, 14.0 Hz, e), 3.35 (s, 8H,
f), 3.43 (dd, 4H, J = 3.9, 14.0 Hz, e '), 3.63 (m,
4H, s4), 3.65-3.79 (m, 16H, h ', s3, s5, s6), 3.85-
3.91 (m, 10H, d, h, s6 '), 3.92 (brs, 4H, s2), 3.97
(qu, 1H, J = 5.8 Hz, a), 4.31 (brs, 4H, c), 4.86
(brs, 4H, s1); MS (ESI-TOF) 1433.6 [M + H] + .

【0123】[0123]

【化27】 Dimer 26 (1.6 mg, 2.1 μmol, 7 steps 36% based o
n loading); 1H-NMR (400 MHz, D2O, 30 °C)δ 2.86
(dd, 4H, J = 6.3, 5.8 Hz, e), 3.24 (dd, 2H, J= 6.
3, 14.0 Hz, b), 3.31 (dd, 2H, J = 5.8, 14.0 Hz,
b'), 3.41 (s, 4H, d), 3.50 (dd, 2H, J = 8.2, 9.7 H
z, s2), 3.62 (dd, 2H, J = 3.4, 9.7 Hz, s3), 3.62-
3.79 (m, 6H, s5, s6), 3.83-3.89 (m, 3H, a, f), 3.9
0 (brd, 2H, J= 3.4 Hz, s4), 3.94 (s, 4H, c), 4.06
(dt, 2H, J = 6.3, 10.6 Hz, f'), 4.40 (d, 2H, J =
8.2 Hz, s1); MS(ESI-TOF) 765 [M+H]+.
[Chemical 27] Dimer 26 (1.6 mg, 2.1 μmol, 7 steps 36% based o
n loading); 1 H-NMR (400 MHz, D 2 O, 30 ° C) δ 2.86
(dd, 4H, J = 6.3, 5.8 Hz, e), 3.24 (dd, 2H, J = 6.
3, 14.0 Hz, b), 3.31 (dd, 2H, J = 5.8, 14.0 Hz,
b '), 3.41 (s, 4H, d), 3.50 (dd, 2H, J = 8.2, 9.7 H
z, s2), 3.62 (dd, 2H, J = 3.4, 9.7 Hz, s3), 3.62-
3.79 (m, 6H, s5, s6), 3.83-3.89 (m, 3H, a, f), 3.9
0 (brd, 2H, J = 3.4 Hz, s4), 3.94 (s, 4H, c), 4.06
(dt, 2H, J = 6.3, 10.6 Hz, f '), 4.40 (d, 2H, J =
8.2 Hz, s1); MS (ESI-TOF) 765 [M + H] + .

【0124】[0124]

【化28】 Tetramer 27 (2.6 mg, 1.6 μmol, 6 steps 54% base
d on loading); 1H-NMR(400 MHz, D2O, 30 °C)δ 2.56
(brs, 4H, b), 2.86 (dd, 8H, J = 6.3, 6.3 Hz, h),
3.31 (dd, 4H, J = 5.8, 14.0 Hz, e), 3.39 (dd, 4H,
J = 4.8, 14.0 Hz, e'), 3.41 (s, 8H, g), 3.50 (dd,
4H, J = 7.7, 10.1 Hz, s2), 3.62 (dd,4H, J = 3.4, 1
0.1 Hz, s3), 3.65-3.85 (m, 14H, d, s5, s6), 3.85
(dt, 4H,J = 6.3, 10.6 Hz, i), 3.90 (brd, 4H, J =
3.4 Hz, s4), 3.94 (s, 8H, f), 3.97 (dt, 4H, J = 6.
3, 10.6 Hz, i'), 4.28 (brs, 4H, c), 4.40 (d, 4H, J
=7.7 Hz, s1); MS(ESI-TOF) 853.3 [M+2Na]2+.
[Chemical 28] Tetramer 27 (2.6 mg, 1.6 μmol, 6 steps 54% base
d on loading); 1 H-NMR (400 MHz, D 2 O, 30 ° C) δ 2.56
(brs, 4H, b), 2.86 (dd, 8H, J = 6.3, 6.3 Hz, h),
3.31 (dd, 4H, J = 5.8, 14.0 Hz, e), 3.39 (dd, 4H,
J = 4.8, 14.0 Hz, e '), 3.41 (s, 8H, g), 3.50 (dd,
4H, J = 7.7, 10.1 Hz, s2), 3.62 (dd, 4H, J = 3.4, 1
0.1 Hz, s3), 3.65-3.85 (m, 14H, d, s5, s6), 3.85
(dt, 4H, J = 6.3, 10.6 Hz, i), 3.90 (brd, 4H, J =
3.4 Hz, s4), 3.94 (s, 8H, f), 3.97 (dt, 4H, J = 6.
3, 10.6 Hz, i '), 4.28 (brs, 4H, c), 4.40 (d, 4H, J
= 7.7 Hz, s1); MS (ESI-TOF) 853.3 [M + 2Na] 2+ .

【0125】[0125]

【化29】 Dimer 28 (2.7 mg, 3.3 μmol, 7 steps 61% based o
n loading); 1H-NMR (400 MHz, D2O, 30 °C)δ 2.85
(dd, 4H, J = 5.3, 5.8 Hz, e), 3.24 (dd, 2H, J= 6.
8, 14.0 Hz, b), 3.31 (dd, 2H, J = 3.9, 14.0 Hz,
b'), 3.40 (s, 4H, d), 3.64 (dd, 2H, J = 6.8, 9.2 H
z, s4), 3.66-3.75 (m, 12H, f, s5, s6), 3.78 (dd, 2
H, J = 3.9, 9.2 Hz, s3), 3.82-3.94 (m, 13H, a, f',
s2, s6'), 3.94 (s, 4H, c), 4.86 (brs, 2H, s1); MS
(ESI-TOF) 765 [M+H]+.
[Chemical 29] Dimer 28 (2.7 mg, 3.3 μmol, 7 steps 61% based o
n loading); 1 H-NMR (400 MHz, D 2 O, 30 ° C) δ 2.85
(dd, 4H, J = 5.3, 5.8 Hz, e), 3.24 (dd, 2H, J = 6.
8, 14.0 Hz, b), 3.31 (dd, 2H, J = 3.9, 14.0 Hz,
b '), 3.40 (s, 4H, d), 3.64 (dd, 2H, J = 6.8, 9.2 H
z, s4), 3.66-3.75 (m, 12H, f, s5, s6), 3.78 (dd, 2
H, J = 3.9, 9.2 Hz, s3), 3.82-3.94 (m, 13H, a, f ',
s2, s6 '), 3.94 (s, 4H, c), 4.86 (brs, 2H, s1); MS
(ESI-TOF) 765 [M + H] + .

【0126】[0126]

【化30】 Tetramer 29 (3.5 mg, 2.1 μmol, 6 steps 72% base
d on loading); 1H-NMR(400 MHz, D2O, 30 °C)δ 2.56
(brs, 4H, b), 2.86 (dd, 8H, J = 5.3, 6.3 Hz, h),
3.31 (dd, 4H, J = 5.8, 14.0 Hz, e), 3.38 (dd, 4H,
J = 4.8, 14.0 Hz, e'), 3.40 (s, 8H, g), 3.62 (dd,
4H, J = 9.2, 9.7 Hz, s4), 3.66-3.81 (m, 18H, d, i,
s3, s5, s6), 3.85-3.90 (m, 8H, i', s6'), 3.92 (d
d, 4H, J =1.4, 3.4 Hz, s2), 3.94 (s, 8H, f), 3.97
(m, 1H, a), 4.62 (brs, 4H, c),4.86 (d, 4H, J = 1.4
Hz, s1); MS(ESI-TOF) 853.3 [M+2Na]2+.
[Chemical 30] Tetramer 29 (3.5 mg, 2.1 μmol, 6 steps 72% base
d on loading); 1 H-NMR (400 MHz, D 2 O, 30 ° C) δ 2.56
(brs, 4H, b), 2.86 (dd, 8H, J = 5.3, 6.3 Hz, h),
3.31 (dd, 4H, J = 5.8, 14.0 Hz, e), 3.38 (dd, 4H,
J = 4.8, 14.0 Hz, e '), 3.40 (s, 8H, g), 3.62 (dd,
4H, J = 9.2, 9.7 Hz, s4), 3.66-3.81 (m, 18H, d, i,
s3, s5, s6), 3.85-3.90 (m, 8H, i ', s6'), 3.92 (d
d, 4H, J = 1.4, 3.4 Hz, s2), 3.94 (s, 8H, f), 3.97
(m, 1H, a), 4.62 (brs, 4H, c), 4.86 (d, 4H, J = 1.4
Hz, s1); MS (ESI-TOF) 853.3 [M + 2Na] 2+ .

【0127】[0127]

【化31】 Dimer 30 (2.7 mg, 2.6 μmol, 7 steps 44% based o
n loading); 1H-NMR (400 MHz, CD3OD, 30 °C)δ 1.13
-1.32 (m, 28H, e, f, g, h, i, j, k), 1.40 (m, 4H,
l), 1.51, (m, 4H, d), 2.11, (t, 4H, J = 7.3 Hz,
c), 2.71 (dd, 4H,J = 6.3, 6.8 Hz, o), 3.07-3.24
(m, 8H, b, m), 3.15 (s, 4H, n), 3.36 (dd,2H, J =
2.9, 9.7 Hz, s3), 3.39-3.43 (m, 6H, s2, s6), 3.53-
3.69 (m, 9H,a, p, s5, s6'), 3.72 (d, 2H, J = 2.9 H
z, s4), 3.96 (dt, 2H, J = 6.3, 10.6 Hz, p'), 4.15
(d, 2H, J = 7.3 Hz, s1); MS(ESI-TOF) 1045.6 [M+
H]+.
[Chemical 31] Dimer 30 (2.7 mg, 2.6 μmol, 7 steps 44% based o
n loading); 1 H-NMR (400 MHz, CD 3 OD, 30 ° C) δ 1.13
-1.32 (m, 28H, e, f, g, h, i, j, k), 1.40 (m, 4H,
l), 1.51, (m, 4H, d), 2.11, (t, 4H, J = 7.3 Hz,
c), 2.71 (dd, 4H, J = 6.3, 6.8 Hz, o), 3.07-3.24
(m, 8H, b, m), 3.15 (s, 4H, n), 3.36 (dd, 2H, J =
2.9, 9.7 Hz, s3), 3.39-3.43 (m, 6H, s2, s6), 3.53-
3.69 (m, 9H, a, p, s5, s6 '), 3.72 (d, 2H, J = 2.9 H
z, s4), 3.96 (dt, 2H, J = 6.3, 10.6 Hz, p '), 4.15
(d, 2H, J = 7.3 Hz, s1); MS (ESI-TOF) 1045.6 [M +
H] + .

【0128】[0128]

【化32】 Tetramer 31 (3.6 mg, 1.6 μmol, 6 steps 56% base
d on loading); 1H-NMR(400 MHz, D2O, 30 °C)δ 1.15
-1.30 (m, 56H, h, i, j, k, l, m, n), 1.42 (m, 8H,
o), 1.51, (m, 8H, g), 2.11, (t, 8H, J = 7.2 Hz,
f), 2.40 (m, 4H,b), 2.71 (dd, 8H, J = 6.3, 6.7 Hz,
r), 3.10 (t, 8H, J = 7.6 Hz, p), 3.16(s, 8H, q),
3.19-3.24 (m, 8H, e), 3.36 (dd, 4H, J = 2.9, 9.7 H
z, s3), 3.39-3.44 (m, 8H, s2, s5), 3.57-3.71 (m, 1
9H, a, d, t, s6, s6'), 3.73 (brd, 1H, J = 2.4 Hz,
s4), 3.96 (dt, 4H, J = 6.3, 6.8 Hz, t'), 4.15 (d,
4H,J = 7.2 Hz, s1), 4.16 (brs, 4H, c); MS(ESI-TOF)
1111.7 [M+2H]2+.
[Chemical 32] Tetramer 31 (3.6 mg, 1.6 μmol, 6 steps 56% base
d on loading); 1 H-NMR (400 MHz, D 2 O, 30 ° C) δ 1.15
-1.30 (m, 56H, h, i, j, k, l, m, n), 1.42 (m, 8H,
o), 1.51, (m, 8H, g), 2.11, (t, 8H, J = 7.2 Hz,
f), 2.40 (m, 4H, b), 2.71 (dd, 8H, J = 6.3, 6.7 Hz,
r), 3.10 (t, 8H, J = 7.6 Hz, p), 3.16 (s, 8H, q),
3.19-3.24 (m, 8H, e), 3.36 (dd, 4H, J = 2.9, 9.7 H
z, s3), 3.39-3.44 (m, 8H, s2, s5), 3.57-3.71 (m, 1
9H, a, d, t, s6, s6 '), 3.73 (brd, 1H, J = 2.4 Hz,
s4), 3.96 (dt, 4H, J = 6.3, 6.8 Hz, t '), 4.15 (d,
4H, J = 7.2 Hz, s1), 4.16 (brs, 4H, c); MS (ESI-TOF)
1111.7 [M + 2H] 2+ .

【0129】[0129]

【化33】 Dimer 32 (2.9 mg, 2.8 μmol, 7 steps 44% based o
n loading); 1H-NMR (400 MHz, CD3OD, 30 °C)δ 1.15
-1.35 (m, 28H, e, f, g, h, i, j, k), 1.41 (m, 4H,
l), 1.50, (m, 4H, d), 2.11, (t, 4H, J = 7.2 Hz,
c), 2.71 (dd, 4H,J = 6.3, 6.3 Hz, o), 3.02-3.62
(m, 9H, a, b, m), 3.69-3.85 (m, 8H, p, s2, s6), 4.
67 (m, 2H, s1); MS(ESI-TOF) 1045.6 [M+H]+.
[Chemical 33] Dimer 32 (2.9 mg, 2.8 μmol, 7 steps 44% based o
n loading); 1 H-NMR (400 MHz, CD 3 OD, 30 ° C) δ 1.15
-1.35 (m, 28H, e, f, g, h, i, j, k), 1.41 (m, 4H,
l), 1.50, (m, 4H, d), 2.11, (t, 4H, J = 7.2 Hz,
c), 2.71 (dd, 4H, J = 6.3, 6.3 Hz, o), 3.02-3.62
(m, 9H, a, b, m), 3.69-3.85 (m, 8H, p, s2, s6), 4.
67 (m, 2H, s1); MS (ESI-TOF) 1045.6 [M + H] + .

【0130】[0130]

【化34】 Tetramer 33 (4.1 mg, 1.8 μmol, 6 steps 60% base
d on loading); 1H-NMR(400 MHz, CD3OD, 30 °C)δ 1.
15-1.33 (m, 56H, h, i, j, k, l, m, n), 1.41(m, 8H,
o), 1.51, (m, 8H, g), 2.11, (t, 8H, J = 7.3 Hz,
f), 2.39 (m, 4H, b), 2.71 (dd, 8H, J = 6.3, 6.3 H
z, r), 3.09 (t, 8H, J = 7.3 Hz, p), 3.11 (s, 8H,
q), 3.17-3.30 (m, 8H, e), 3.49-3.61 (m, 18H, d, t,
s3, s4, s5), 3.70-3.82 (m, 17H, a, t,' s2, s6),
4.16 (brs, 4H, c), 4.68 (m, 4H, s1); MS(ESI-TOF) 1
111.7 [M+2H]2+
[Chemical 34] Tetramer 33 (4.1 mg, 1.8 μmol, 6 steps 60% base
d on loading); 1 H-NMR (400 MHz, CD 3 OD, 30 ° C) δ 1.
15-1.33 (m, 56H, h, i, j, k, l, m, n), 1.41 (m, 8H,
o), 1.51, (m, 8H, g), 2.11, (t, 8H, J = 7.3 Hz,
f), 2.39 (m, 4H, b), 2.71 (dd, 8H, J = 6.3, 6.3 H
z, r), 3.09 (t, 8H, J = 7.3 Hz, p), 3.11 (s, 8H,
q), 3.17-3.30 (m, 8H, e), 3.49-3.61 (m, 18H, d, t,
s3, s4, s5), 3.70-3.82 (m, 17H, a, t, 's2, s6),
4.16 (brs, 4H, c), 4.68 (m, 4H, s1); MS (ESI-TOF) 1
111.7 [M + 2H] 2+

【0131】[0131]

【化35】 [Chemical 35]

【0132】[0132]

【発明の効果】本発明により、新薬の探索等に有用なク
ラスター誘導体ライブラリーを簡易な操作で作ることが
できるようになる。
INDUSTRIAL APPLICABILITY According to the present invention, a cluster derivative library useful for searching for new drugs can be prepared by a simple operation.

【図面の簡単な説明】[Brief description of drawings]

【図1】コンバージェント法とダイバージェント法の概
要を示す図。
FIG. 1 is a diagram showing an outline of a convergent method and a divergent method.

【図2】本発明のデンドリマーの一例とそれから切り出
されるクラスター誘導体を示す図。
FIG. 2 is a view showing an example of the dendrimer of the present invention and a cluster derivative cut out from the dendrimer.

【図3】化合物21のH-H cosyスペクトルを示す図。FIG. 3 shows an HH cozy spectrum of Compound 21 .

【図4】樹脂22の表面状態を示す概念図。FIG. 4 is a conceptual diagram showing a surface state of a resin 22 .

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 コア側の末端が固相担体に固定されてお
り、外表面側の末端に他の物質との結合性又は反応性を
評価しようとする物質が導入されているデンドリマーで
あって、デンドリマー内の分枝部位と分枝部位の間及び
/又は分枝部位と固相担体との間に特定条件下で切断さ
れ得る結合が組み込まれているデンドリマー。
1. A dendrimer having a core-side end fixed to a solid-phase carrier and having a substance to be evaluated for binding or reactivity with other substances introduced into the outer-surface-side end. , A dendrimer incorporating a bond that can be cleaved under specific conditions between branching sites within a dendrimer and / or between a branching site and a solid support.
【請求項2】 特定条件下で切断され得る結合が、酸、
塩基、又は光照射によって切断され得る結合である請求
項1記載のデンドリマー。
2. The bond capable of being cleaved under specific conditions is an acid,
The dendrimer according to claim 1, which is a base or a bond which can be cleaved by irradiation with light.
【請求項3】 他の物質との結合性又は反応性を評価し
ようとする物質が、生体物質である請求項1又は2記載
のデンドリマー。
3. The dendrimer according to claim 1, wherein the substance whose binding property or reactivity with another substance is to be evaluated is a biological substance.
【請求項4】 請求項1乃至3のいずれか一項に記載の
デンドリマーを、内部に組み込まれている結合が切断さ
れる条件に置き、その後、遊離してくるクラスター誘導
体を回収することを特徴とするクラスター誘導体の合成
法。
4. The dendrimer according to any one of claims 1 to 3 is placed under conditions in which the bond incorporated therein is cleaved, and then the liberated cluster derivative is recovered. And a method for synthesizing a cluster derivative.
JP2002062940A 2002-03-08 2002-03-08 New dendrimer and method for synthesizing cluster derivative from the same Pending JP2003261590A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002062940A JP2003261590A (en) 2002-03-08 2002-03-08 New dendrimer and method for synthesizing cluster derivative from the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002062940A JP2003261590A (en) 2002-03-08 2002-03-08 New dendrimer and method for synthesizing cluster derivative from the same

Publications (1)

Publication Number Publication Date
JP2003261590A true JP2003261590A (en) 2003-09-19

Family

ID=29196459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002062940A Pending JP2003261590A (en) 2002-03-08 2002-03-08 New dendrimer and method for synthesizing cluster derivative from the same

Country Status (1)

Country Link
JP (1) JP2003261590A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007238860A (en) * 2006-03-10 2007-09-20 Osaka Gas Co Ltd New dendrimer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007238860A (en) * 2006-03-10 2007-09-20 Osaka Gas Co Ltd New dendrimer

Similar Documents

Publication Publication Date Title
Kim et al. Applications of dendrimers in bio-organic chemistry
Maier et al. Synthesis of antisense oligonucleotides conjugated to a multivalent carbohydrate cluster for cellular targeting
US6455071B1 (en) Branched dendrimeric structures
JPS5927900A (en) Oligonucleotide derivative and its preparation
JP2008136483A (en) Encoded combinatorial chemical library
JP3684182B2 (en) New reagents for labeling nucleic acids
JP2002511840A (en) Liquid phase synthesis of oligonucleotides and peptides
JPH09501830A (en) Tag reagents and assays
CN104066451A (en) Novel crosslinking reagents, macromolecules, therapeutic conjugates, and synthetic methods thereof
US20170202971A1 (en) Oxazoline Polymer Compositions and Use Thereof
JPH10506379A (en) Soluble combinatorial library
JP2010261051A (en) Method for making multivalent array and combinatorial library of the multivalent array, and reagent therefor
US6271315B1 (en) Methods for making multivalent arrays
EP1257695B1 (en) Biomolecules having multiple attachment moieties for binding to a substrate surface
Huang et al. Solid-phase dendrimer synthesis: A promising approach to transform dendrimer construction
CN110511973A (en) A kind of solid phase carrier and preparation method thereof for nucleic acid fabricated in situ
de Paz et al. Exploration of the use of an acylsulfonamide safety-catch linker for the polymer-supported synthesis of hyaluronic acid oligosaccharides
Boora Polyethylene glycol: A high-efficiency liquid phase (HELP) for the large-scale synthesis of the oligonucleotides
Shi et al. Precision Sequence‐Defined Polymers: From Sequencing to Biological Functions
JP2003261590A (en) New dendrimer and method for synthesizing cluster derivative from the same
JP2002525405A (en) PEG-based macromonomers, chemically inert polymers made therefrom, and the use of these polymers in organic synthesis and enzymatic reactions
US8853132B2 (en) Directed synthesis of oligophosphoramidate stereoisomers
CA2299555A1 (en) Complex chemical compound, synthesis and various applications of said compound
Eriyagama Non-chromatographic Oligonucleotide Purification and Automated Polyethyleneglycol Synthesis
Pal Design, synthesis, and screening of a library of peptidyl bis-boroxoles as low molecular weight receptors for complex oligosaccharides in neutral water: identification of a selective receptor for the tumour marker TF-antigen

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20041203

Free format text: JAPANESE INTERMEDIATE CODE: A621

A711 Notification of change in applicant

Effective date: 20071023

Free format text: JAPANESE INTERMEDIATE CODE: A711

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20071023

A131 Notification of reasons for refusal

Effective date: 20080812

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080818

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080818

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081209