JP2003255061A - Electric clock - Google Patents

Electric clock

Info

Publication number
JP2003255061A
JP2003255061A JP2002056936A JP2002056936A JP2003255061A JP 2003255061 A JP2003255061 A JP 2003255061A JP 2002056936 A JP2002056936 A JP 2002056936A JP 2002056936 A JP2002056936 A JP 2002056936A JP 2003255061 A JP2003255061 A JP 2003255061A
Authority
JP
Japan
Prior art keywords
signal
detection
phase
transmission
electric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002056936A
Other languages
Japanese (ja)
Other versions
JP4215438B2 (en
Inventor
Shigeru Morokawa
滋 諸川
Masami Fukuda
福田  正己
Shinichi Komine
小峰  伸一
Yoshiki Iwakura
良樹 岩倉
Seiki Igarashi
五十嵐  清貴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Original Assignee
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP2002056936A priority Critical patent/JP4215438B2/en
Priority to US10/493,898 priority patent/US7436737B2/en
Priority to EP03743595A priority patent/EP1482282B1/en
Priority to DE60318689T priority patent/DE60318689T2/en
Priority to PCT/JP2003/002493 priority patent/WO2003074976A1/en
Publication of JP2003255061A publication Critical patent/JP2003255061A/en
Application granted granted Critical
Publication of JP4215438B2 publication Critical patent/JP4215438B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Electromechanical Clocks (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problems wherein conventional systems, such as a mechanical contact switch structure and a position detection mechanism by an optical sensor have the problems of the restriction of arrangement space, increased energy consumption, wear resistance properties, detection resolution, costs, and the like, even though an electric clock requiring the detection of the position of a clock wheel train, such as the correction of the deviation of the display clock of a precision clock such as a radio-controlled clock and an annual rate clock, and the automatic correction of the end of a month in a calender. <P>SOLUTION: A plurality of transmission lines for simultaneously transmitting a plurality of AC electric fields through a wheel train are formed inside a clock. The position information of the wheel train is extracted from a change, in the propagation characteristics of a plurality of transmission line. Then, the position of a mechanical wheel train is subjected to electrical detection control, thus performing synchronization control of a mechanical closing mechanism by a low-power electric clocking mechanism. As an actual example, a signal having different phase and frequency is outputted from transmission electrodes 41 and 42, while pinching the toothed wheel of a detection wheel 43 made of metal having a hole 45. A modulated combined signal is received by a reception electrode 44 depending on the presence or absence of the hole 45, and the position of the detection wheel 43 is detected from the information. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は時刻やカレンダ情報
を機械的に表示する水晶発振式の電気時計において、輪
列等の角度回転位置を電場検出により検出し、電子回路
で構成された電気計時機構による電気的保持時刻で制御
する構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a quartz oscillation type electric timepiece that mechanically displays time and calendar information, and detects an angular rotation position of a train wheel or the like by detecting an electric field to measure an electric time. The present invention relates to a structure that is controlled by electrical holding time by a mechanism.

【0002】[0002]

【従来の技術】従来、低電力動作の水晶時計の機構が確
立され、小容量の1次電池式時計の他、ソーラーセルと
2次電池の組合せによる光発電式水晶腕時計、あるいは
機械回転錘発電機構と2次電池による機械式発電腕時計
等、時計の周囲環境からエネルギを採取した僅かなエネ
ルギで作動する、環境発電式水晶腕時計が実用化されて
いる。1年〜3年間にわたり正確に時刻を刻む水晶腕時
計は、携帯の簡便さと安価な価格のために広く世界に普
及したが、1次電池の使い捨ては多大な資源消耗になる
という欠点があった。
2. Description of the Related Art Conventionally, a mechanism of a low-power operation quartz timepiece has been established, in addition to a small-capacity primary battery type timepiece, a photovoltaic type quartz wristwatch using a combination of a solar cell and a secondary battery, or a mechanical rotary weight power generation. Energy-generating quartz watches, which operate with a small amount of energy taken from the environment around the timepiece, have been put to practical use, such as mechanical power generation wristwatches that use a mechanism and a secondary battery. Quartz wrist watches that accurately clock the time for one to three years have been widely used in the world due to their convenience of carrying and inexpensive price, but the disadvantage of disposable primary batteries is that they consume a great deal of resources.

【0003】また、周囲環境エネルギの採取と蓄積によ
る発電式電気時計は、資源消耗を防ぐ利点があるが、採
取エネルギに余裕がなく、蓄電エネルギの欠乏は時刻保
持に対する信頼性を損なうという潜在的問題があった。
特に、指針式の腕時計においては、エネルギ消費を出来
るだけ少なくするため、最小限の駆動トルクで輪列車を
駆動している。そのため、衝撃や磁力などの外乱を受け
て変換機の駆動ミスが発生し、指針表示時刻にズレが発
生してしまう恐れがあり、また指針表示時刻のズレを防
止するため、指針の大きさに制限があるという欠点があ
った。
Further, a power generation type electric timepiece by collecting and accumulating ambient environment energy has an advantage that resource consumption is prevented, but there is no margin in collected energy, and lack of stored energy impairs reliability for time keeping. There was a problem.
Particularly, in the pointer type wristwatch, the wheel train is driven with a minimum drive torque in order to reduce energy consumption as much as possible. Therefore, there is a risk that the converter drive error may occur due to disturbance such as impact or magnetic force, and the pointer display time may shift, and to prevent the pointer display time from shifting, the size of the pointer should be adjusted. It had the drawback of being limited.

【0004】また、機械的指針で時刻を表示する水晶時
計のカレンダ表示機構においては、日付表示部の月末処
理が問題であった。ほぼ2ヶ月毎に日付を手動で修正し
て用いる事は実用的でなく、かといって日付部のみ電気
光学的表示にすると、時刻表示面のデザイン上の違和感
が生じるという欠点があった。これを複雑な機械機構で
解決する事は出来るが、組立コストが高く、また機械機
構が複雑なため、長期間安定動作における動作信頼性が
低下する。また、消費電力は増加し、環境採集エネルギ
無停止動作させる事が困難になるという欠点があった。
Further, in the calendar display mechanism of the quartz timepiece for displaying the time with the mechanical pointer, the month end processing of the date display part has been a problem. It is not practical to manually correct and use the date approximately every two months. However, if only the date part is electro-optically displayed, there is a drawback that the time display surface is uncomfortable in design. Although this can be solved by a complicated mechanical mechanism, the assembly cost is high and the mechanical mechanism is complicated, so that the operational reliability in long-term stable operation is reduced. In addition, there is a drawback that the power consumption increases and it becomes difficult to operate the environmentally harvested energy without stopping.

【0005】上記欠点を解決する為には、指針式表示時
刻やカレンダ表示の機械的基準位置を検出する機能が必
要である。従来行なわれてきた構造としては、回転輪列
の一部に機械的接触スイッチ機構をもったものや、発光
素子と受光素子を、穴を有した回転輪列を挟んで配置し
て、回転時の穴の有無を光学的センサによって検出する
手段を採用した腕時計等が実現化されている。また、指
針や輪列等と位置検出部材との間の静電容量値や磁力の
絶対量が、回転駆動によって変化する値を読み取る構成
等も、いくつか考案されている。
In order to solve the above-mentioned drawbacks, it is necessary to have a function of detecting the display time of the pointer type and the mechanical reference position of the calendar display. The conventional structure has a mechanical contact switch mechanism in a part of the rotary train wheel, or a light emitting element and a light receiving element are arranged with a rotary wheel train with holes sandwiched between them. A wristwatch or the like has been realized which employs a means for detecting the presence or absence of a hole by an optical sensor. Further, some configurations have been devised, such as a configuration for reading a value in which an electrostatic capacitance value or an absolute amount of magnetic force between a pointer, a train wheel and the like and a position detection member changes due to rotational driving.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、今まで
製品化されたり考案されたりした位置検出機構にはそれ
ぞれ多大な問題点を有していた。前記機械的接触スイッ
チを利用した位置検出機構は、輪列等の回転駆動部材に
接触して位置を検出するため、駆動エネルギに対して負
荷がかかる構造であり、モータの駆動力をぎりぎりまで
削減している電子腕時計には向かない。特にエネルギ収
支に余裕の少ない充電式時計には問題があり、位置検出
を行なうためにかえって位置ズレ発生の原因にもなりか
ねず、また、接触式のスイッチ機構は接触部材の磨耗劣
化の恐れがあり、信頼性が低いという欠点があった。
However, the position detecting mechanisms that have been commercialized or devised so far have each had a great problem. The position detection mechanism using the mechanical contact switch detects the position by contacting a rotary drive member such as a train wheel, and thus has a structure in which a load is applied to drive energy, and the drive force of the motor is reduced to the limit. It is not suitable for electronic wrist watches. In particular, there is a problem with rechargeable watches that have a small amount of energy balance, and this may cause position shifts because position detection is performed, and contact type switch mechanisms may cause wear and deterioration of contact members. However, there was a drawback that the reliability was low.

【0007】また、光学式スイッチを利用した構造にお
いては、発光素子と受光素子を回転駆動する部材の上下
面に配置する必要があるので、時計の厚みが増してしま
うという欠点があった。この為、機能時計マニア向けの
厚みのある電波修正腕時計や置き時計や掛け時計等への
適用実績があるが、通常の薄型腕時計への適用は不可能
で合った。また発光ダイオードなどの光学素子を作用さ
せる為にはかなりの消費電力が必要となり、そのため一
日に一回程度の検出頻度しか応用できない。さらに発光
の為にはある一定以上の駆動電圧が必要なため、電源電
圧の変動の大きい充電式時計には適合しづらいという欠
点があった。
Further, in the structure using the optical switch, it is necessary to dispose the light-emitting element and the light-receiving element on the upper and lower surfaces of the member, so that there is a drawback that the thickness of the timepiece increases. For this reason, it has a track record of application to radio-controlled wrist watches with a large thickness for functional clock enthusiasts, table clocks, wall clocks, etc., but it was not applicable to ordinary thin wrist watches. Further, in order to operate an optical element such as a light emitting diode, a considerable amount of power consumption is required, so that the detection frequency can be applied only once a day. Further, since a certain driving voltage or more is required for light emission, there is a drawback that it is difficult to adapt to a rechargeable timepiece having a large fluctuation in power supply voltage.

【0008】また、指針や輪列等と位置検出部材との間
の静電容量値や磁力の絶対量の変化を検出する構成につ
いては、腕時計サイズの位置検出部品から検出される容
量等の変化量は微小であり、構成部品の携帯姿勢による
位置変化や、外部環境からの影響を受けやすく、位置検
出の信頼性は極めて低いという欠点があり、現実的には
実用化されていない。
Further, regarding the structure for detecting the change in the electrostatic capacitance value or the absolute amount of the magnetic force between the pointer, the train wheel, etc. and the position detecting member, the change in the capacitance detected from the wristwatch size position detecting component is detected. The amount is very small, it is easily affected by the position change of the component due to the carrying posture and the influence of the external environment, and the reliability of the position detection is extremely low, and it has not been practically used in practice.

【0009】本発明の目的は、機械的計時機構の動作の
高信頼性化のための、薄型構造で輪列歯車あるいは指針
位置の検出を実現する無接点式の機械的位置検出機構の
実現で、接点式検出機構持つの経時変化による接点不良
問題を回避し、従来の機械式計時機構の水晶時計の限界
を越える高信頼性を確保することにある。また発光素子
と受光素子による無接点検出機構に比較して薄型の機構
とし、更にコスト的に安価にし、また検出機構の発光素
子が必要とする閾値電圧による回路構成部品に要求する
高電圧制約条件を解除して蓄電素子の電圧で直接時計シ
ステムを駆動出来るようにすることを目的とする。ま
た、機械的保持時刻と電気的保持時刻との時刻差異の検
出を確実にし、秒針制御の精密な位置検出から日板検出
の誤差を許容する検出まで多数点の位置検出を包含す
る、高信頼性の安価な位置検出機構を実現することを目
的とする。
An object of the present invention is to realize a non-contact type mechanical position detecting mechanism which realizes detection of the wheel train gear or the pointer position with a thin structure in order to improve the reliability of the operation of the mechanical timing mechanism. , The problem of contact failure due to the change with time of the contact type detection mechanism is avoided, and high reliability exceeding the limit of the quartz clock of the conventional mechanical timekeeping mechanism is secured. In addition, the mechanism is thinner than the contactless detection mechanism using the light emitting element and the light receiving element, and the cost is further reduced, and the high voltage constraint conditions required for the circuit components due to the threshold voltage required by the light emitting element of the detection mechanism. The purpose is to enable the timepiece system to be directly driven by the voltage of the storage element by releasing the above. In addition, it ensures the detection of the time difference between the mechanical holding time and the electrical holding time, and includes multiple point position detection from precise position detection with second hand control to detection that allows errors in the date dial detection. The purpose of the present invention is to realize a position detecting mechanism with low cost.

【0010】[0010]

【課題を解決するための手段】上記課題を解決するため
の本発明の要旨は、輪列等の角度回転位置の検出機構を
有する電気時計において、電場をキャリアとする複数の
送信信号を整形する送信回路機構と、該送信回路機構に
より成形された前記出力信号を出力する送信電極と、該
送信電極と非接触に近接配置され、回転または往復運動
により前記複数の送信信号に変調を与える信号変調部材
と、該信号変調部材と非接触に近接配置され、該信号変
調部材によって変調された前記複数の送信信号を受信す
る受信電極と、該受信電極に受信した受信信号を入力す
る受信回路機構と、該受信回路機構に受信した前記受信
信号の電場伝搬特性により、前記信号変調部材の機械的
位置情報を検出する検波回路機構とを備えた事を特徴と
する。
The gist of the present invention for solving the above problems is to shape a plurality of transmission signals using an electric field as a carrier in an electric timepiece having a mechanism for detecting an angular rotation position of a train wheel or the like. A transmitter circuit mechanism, a transmitter electrode that outputs the output signal formed by the transmitter circuit mechanism, and a signal modulator that is arranged in close proximity to the transmitter electrode in a non-contact manner, and that modulates the plurality of transmitter signals by rotation or reciprocating motion. A member, a receiving electrode which is disposed in close proximity to the signal modulating member in a non-contact manner, and which receives the plurality of transmission signals modulated by the signal modulating member, and a receiving circuit mechanism which inputs the receiving signal received by the receiving electrode. A detection circuit mechanism for detecting mechanical position information of the signal modulation member based on an electric field propagation characteristic of the received signal received by the reception circuit mechanism.

【0011】前記検波回路機構は位相検波回路機構であ
り、前記変調部材によって変調された受信信号の位相情
報から前記信号変調部材の機械的位置情報を検出するこ
とを特徴とする。
The detection circuit mechanism is a phase detection circuit mechanism, and detects mechanical position information of the signal modulation member from phase information of the reception signal modulated by the modulation member.

【0012】前記検波回路機構は振幅検波回路機構であ
り、前記変調部材によって変調された受信信号の相対的
強度情報から前記信号変調部材の機械的位置情報を検出
することを特徴とする。
The detection circuit mechanism is an amplitude detection circuit mechanism, and is characterized by detecting mechanical position information of the signal modulation member from relative intensity information of the received signal modulated by the modulation member.

【0013】前記検波回路機構は位相検波回路機構と振
幅検波回路機構とを共に備え、前記信号変調部材によっ
て変調された受信信号の相対強度情報から前記変調部材
の機械的位置情報の検出範囲を概略定め、前記信号変調
部材によって変調された受信信号の位相情報から前記信
号変調部材の位置情報を検出することを特徴とする。
The detection circuit mechanism includes both a phase detection circuit mechanism and an amplitude detection circuit mechanism, and outlines a detection range of mechanical position information of the modulation member from relative intensity information of a reception signal modulated by the signal modulation member. The position information of the signal modulating member is detected from the phase information of the received signal modulated by the signal modulating member.

【0014】前記複数の送信信号は、位相の異なる同一
周波数信号である事を特徴とする。
The plurality of transmission signals are the same frequency signals having different phases.

【0015】前記複数の送信信号は、周波数の異なる同
期関係にある信号である事を特徴とする。
The plurality of transmission signals are signals having different frequencies and having a synchronous relationship.

【0016】前記複数の送信信号は、正弦波または正弦
波と近似形状の波形である事を特徴とする。
It is characterized in that the plurality of transmission signals are sine waves or waveforms similar to sine waves.

【0017】前記位相検波回路機構は位相検波の基準と
なる位相基準信号に対して、前記変調部材によって変調
された受信信号の位相が進んでいるか、あるいは遅れて
いるかによって位相検波の出力の電圧を変化させる事を
特徴とする。
The phase detection circuit mechanism determines the voltage of the output of the phase detection depending on whether the phase of the reception signal modulated by the modulation member is advanced or delayed with respect to the phase reference signal which is the reference of the phase detection. Characterized by changing.

【0018】前記位相検波回路機構は、位相基準信号に
対して前記変調部材によって変調された受信信号との位
相差をパルス幅とするパルス信号を出力するパルス発生
手段と、位相基準信号に対して該受信信号の位相の遅れ
進みを検出し出力する遅れ進み検出手段と、該パルス信
号のパルス幅に比例した電荷量をコンデンサに充放電を
行う充放電手段と、該充放電は該遅れ進み出力により該
コンデンサへの充電あるいは放電を切り替える、充放電
切り替え手段と、コンデンサの端子電圧を予め設定され
た電圧で比較し出力する電圧検出手段とを有する事を特
徴とする。
The phase detection circuit mechanism outputs a pulse signal having a pulse width that is a phase difference between the phase reference signal and the received signal modulated by the modulation member, and pulse generation means for the phase reference signal. Delay / advance detection means for detecting and outputting the phase delay / advance of the received signal, charging / discharging means for charging / discharging the capacitor with a charge amount proportional to the pulse width of the pulse signal, and the charge / discharge is the delay / advance output. It is characterized by having a charge / discharge switching means for switching charging or discharging to the capacitor by means of and a voltage detecting means for comparing and outputting the terminal voltage of the capacitor with a preset voltage.

【0019】前記信号変調部材は、形状もしくは構成部
材の一部を電気伝導度あるいは誘電率が他の部分と異な
る構造とした事を特徴とする。
The signal modulating member is characterized in that the shape or a part of the constituent member has a structure different in electric conductivity or dielectric constant from other parts.

【0020】前記信号変調部材は、導電性の金属材料か
ら成り、その一部に穴または切欠または凹凸形状を有す
る構造とした事を特徴とする。
The signal modulating member is characterized by being made of a conductive metal material, and having a structure having a hole, a notch, or an uneven shape in a part thereof.

【0021】前記信号変調部材は、プラスチック等の非
導電性部材と、導電性の金属材料から成り、該金属材料
の一部に穴または切欠または凹凸形状を有する構造とし
た事を特徴とする。
The signal modulating member is characterized by being made of a non-conductive member such as plastic and a conductive metal material, and having a structure having a hole, a notch or an uneven shape in a part of the metal material.

【0022】前記信号変調部材は、プラスチック等の非
導電性部材から成り、該非導電性部材の一部に、金属メ
ッキを施した事を特徴とする。
The signal modulating member is made of a non-conductive member such as plastic, and is characterized in that a part of the non-conductive member is plated with metal.

【0023】前記信号変調部材は、電気機械変換機によ
って駆動される回転運動を指針表示まで伝達する輪列の
一部で構成され、前記信号変調部材の機械的位置情報に
よって、前記輪列の基準位置を検出する機構を有する事
を特徴とする。
The signal modulating member is composed of a part of a train wheel for transmitting a rotary motion driven by an electromechanical converter to a pointer display, and a mechanical position information of the signal modulating member serves as a reference of the train wheel. It is characterized by having a mechanism for detecting the position.

【0024】前記信号変調部材は、電気機械変換機によ
って駆動される回転運動を日付表示まで伝達する輪列の
一部または日付表示板で構成され、前記信号変調部材の
機械的位置情報によって、日表示板の基準位置を検出
し、時計回路に保持された電気的カレンダ情報によっ
て、小の月の月末非存日を自動的に排除する月末自動修
正機能を有する事を特徴とする。
The signal modulating member is composed of a part of a train wheel or a date display plate for transmitting the rotational movement driven by the electromechanical converter to the date display, and the mechanical position information of the signal modulating member indicates the date. It is characterized by having an automatic end-of-month correction function that detects the reference position of the display board and automatically eliminates the non-existing days at the end of the small month based on the electrical calendar information held in the clock circuit.

【0025】[0025]

【発明の実施の形態】まず、図1から図5によって、本
発明の基本動作について説明する。図1は本発明の信号
変調構造の概略を示す略平面図であり、図2は図1の略
断面図である。図1および図2において、送信電極1と
2は信号変調部材である回転体3を挟んで受信電極4と
対向配置しており、送信電極1、2と回転体3、及び回
転体3と受信電極4はそれぞれ非接触に近接配置されて
いる。そして送信電極1,2の送信信号は穴5を通じて
電気力線が送信電極1と2の両方から受信電極4まで届
くように構成されている。回転体3は例えば腕時計輪列
の歯車のような物であり、金属あるいはプラスチックに
金属被膜をつけた材質から成り、導電性を有する。回転
体3は、図示されていない軸またはその他の部分で電気
的接地をとっている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS First, the basic operation of the present invention will be described with reference to FIGS. 1 is a schematic plan view showing an outline of a signal modulation structure of the present invention, and FIG. 2 is a schematic sectional view of FIG. In FIGS. 1 and 2, the transmission electrodes 1 and 2 are arranged to face the reception electrode 4 with the rotating body 3 serving as a signal modulating member interposed therebetween, and the transmitting electrodes 1 and 2 and the rotating body 3 and the rotating body 3 and the receiving body 3 receive. The electrodes 4 are arranged close to each other in a non-contact manner. The transmission signals of the transmission electrodes 1 and 2 are configured such that the lines of electric force reach the reception electrode 4 from both the transmission electrodes 1 and 2 through the hole 5. The rotating body 3 is, for example, a wheel of a wristwatch wheel train, is made of metal or plastic with a metal coating, and has conductivity. The rotating body 3 is electrically grounded by a shaft or other portion (not shown).

【0026】6は電場をキャリアとする複数の送信信号
を整形する送信回路機構を示す送信回路で、該送信回路
6によって2種類の、例えば位相の異なる同一周波数の
正弦波の送信信号φA、φBを成形し、送信電極1から
は送信信号φAを、送信電極2からは送信信号φBを出
力する。前記送信信号φA、φBは、送信信号φA、φ
Bに変調を与える回転体3を介することにより受信電極
4で受信信号φCとして受信される。
Reference numeral 6 is a transmission circuit showing a transmission circuit mechanism for shaping a plurality of transmission signals having an electric field as a carrier. The transmission circuit 6 allows two kinds of transmission signals φA and φB of, for example, sinusoidal waves having the same frequency but different phases. Then, the transmission electrode 1 outputs the transmission signal φA and the transmission electrode 2 outputs the transmission signal φB. The transmission signals φA and φB are the transmission signals φA and φ.
The signal is received by the receiving electrode 4 as a received signal φC via the rotating body 3 that modulates B.

【0027】受信信号φCは、振幅において送信信号φ
A、φBより大幅に低下するものの、送信信号φAとφ
Bの合成電場から誘導される電位であるために、送信信
号φAとφBが等しい周波数ならば受信信号φCの周波
数も等しく、送信信号φAとφBの間に位相差があると
受信信号φCはその間の位相をとる。回転体3の回転移
動と共に穴5が移動し、送信電極1と送信電極2と受信
電極4の空間的な相対位置関係が変化し、受信電極4近
傍の電場の重ね合わせにより、誘起される受信電極4の
交流信号の振幅と位相が変化する。つまり回転体3の穴
5の位置が回転体5の回転角度θに応じて、送信電極1
及び2と受信電極4との空間的関係が変化する事によ
り、受信信号φCの位相及び振幅は空間位置θの関数と
して変化する。
The received signal φC is the transmitted signal φ in amplitude.
Although it is much lower than A and φB, the transmission signals φA and φ
Since the electric potential is derived from the combined electric field of B, if the transmission signals φA and φB have the same frequency, the reception signal φC has the same frequency. If there is a phase difference between the transmission signals φA and φB, the reception signal φC is Take the phase of. The holes 5 move with the rotational movement of the rotating body 3, the spatial relative positional relationship between the transmitting electrode 1, the transmitting electrode 2, and the receiving electrode 4 changes, and reception induced by superposition of electric fields near the receiving electrode 4 occurs. The amplitude and phase of the AC signal of the electrode 4 change. That is, the position of the hole 5 of the rotating body 3 is changed according to the rotation angle θ of the rotating body 5,
Due to the change in the spatial relationship between 2 and 2 and the receiving electrode 4, the phase and amplitude of the received signal φC changes as a function of the spatial position θ.

【0028】受信信号φCを受信回路機構7で増幅する
と、正弦波信号の振幅の大きな所が飽和して台形波状に
なり、さらに増幅すると矩形波状の検出信号Pcにな
る。この場合でも位相情報は保存されるので、同期検波
により位相情報を容易に抽出出来る。この手法は高音質
のFM放送の仕組みと同等である。異なる所は、放送局
が送信時に既に周波数変調あるいは位相変調と変調済で
送信するのに対し、本発明の構成は受信信号の位相変調
が、送信電極と受信電極の間の伝送路の電磁的構造であ
る回転体の機械的変化により行われる所である。時計機
構内部の雑音や回路雑音による擾乱が位相検波手段によ
り効率的に除去される所はFM放送と同様である。
When the reception circuit φC is amplified by the reception circuit mechanism 7, a portion of the sine wave signal having a large amplitude is saturated into a trapezoidal wave, and further amplification becomes a rectangular wave detection signal Pc. Even in this case, since the phase information is saved, the phase information can be easily extracted by the synchronous detection. This method is equivalent to the scheme of FM broadcasting with high sound quality. A different point is that the broadcasting station transmits the signal already frequency-modulated or phase-modulated at the time of transmission, whereas in the configuration of the present invention, the phase modulation of the reception signal is caused by the electromagnetic wave of the transmission line between the transmission electrode and the reception electrode. This is where mechanical changes in the rotating body, which is the structure, are performed. Similar to FM broadcasting, the disturbance due to the noise inside the clock mechanism and the circuit noise is effectively removed by the phase detection means.

【0029】検出信号Pcは検波回路機構8に入力し、
受信した受信信号φCの電場伝搬特性により回転体3の
機械的位置情報を得る。該検波回路機構8は、位相情報
を検波する位相検波回路機構でも良いし、振幅情報を検
波する振幅検波回路機構でも良い。また、受信信号の相
対強度情報を振幅検波回路機構によって検出して機械的
位置情報を概略定め、受信信号の位相情報を位相検波回
路機構によって検出して機械的位置情報を決定する方式
でも良い。
The detection signal Pc is input to the detection circuit mechanism 8,
The mechanical position information of the rotating body 3 is obtained from the electric field propagation characteristics of the received signal φC received. The detection circuit mechanism 8 may be a phase detection circuit mechanism that detects phase information or an amplitude detection circuit mechanism that detects amplitude information. Alternatively, the relative strength information of the received signal may be detected by the amplitude detection circuit mechanism to roughly determine the mechanical position information, and the phase information of the received signal may be detected by the phase detection circuit mechanism to determine the mechanical position information.

【0030】図3は図1および図2に示す実施の形態に
よる、受信信号φCの変調経過を示す波形図である。穴
5の位置が送信電極1および2から離れている時は、送
信電極1に印加される送信信号φAの対接地電圧と、送
信電極2に印加される送信信号φBの対接地電圧とが発
生する電気力線が、導電性の回転体3で遮蔽される。こ
の状態では、受信電極4に誘起される対接地電圧は、図
3(a)に示すように極めて小さい振幅の信号となる。
この状態では残留位相情報も無意味な雑音成分が大部分
を占めている。
FIG. 3 is a waveform diagram showing the modulation process of the received signal φC according to the embodiment shown in FIGS. 1 and 2. When the position of the hole 5 is apart from the transmitting electrodes 1 and 2, a ground voltage of the transmission signal φA applied to the transmission electrode 1 and a ground voltage of the transmission signal φB applied to the transmission electrode 2 are generated. The lines of electric force generated are shielded by the conductive rotating body 3. In this state, the voltage to ground induced in the receiving electrode 4 becomes a signal having an extremely small amplitude as shown in FIG.
In this state, the residual phase information is also dominated by meaningless noise components.

【0031】その後回転体3が回転して、穴5が図2に
示す如く送信電極1と受信電極4の間に位置した時は、
受信電極4には送信電極1の対接地電圧は伝達するが、
送信電極2の対接地電圧は回転体3に遮蔽されて伝達し
ない。つまり受信信号φCは図3(b)に示す如く振幅
は小さいが送信信号φAとほぼ同位相の信号となる。
After that, when the rotating body 3 rotates and the hole 5 is located between the transmitting electrode 1 and the receiving electrode 4 as shown in FIG.
Although the ground voltage of the transmission electrode 1 is transmitted to the reception electrode 4,
The voltage to ground of the transmission electrode 2 is shielded by the rotating body 3 and does not transmit. That is, the reception signal φC has a small amplitude as shown in FIG. 3B, but has a phase substantially the same as that of the transmission signal φA.

【0032】さらに回転体3の回転が進み穴5が図2の
矢印の方向に移動して、図1の様に送信電極1と送信電
極2の中間に位置した場合は、受信電極4には送信信号
φAと送信信号φBが合成された信号が伝達するため、
図3(c)に示すように、受信信号φCは、送信信号φ
Aと送信信号φBの中間位相の信号となる。
When the rotation of the rotating body 3 further advances and the hole 5 moves in the direction of the arrow in FIG. 2 and is located between the transmitting electrode 1 and the transmitting electrode 2 as shown in FIG. Since the combined signal of the transmission signal φA and the transmission signal φB is transmitted,
As shown in FIG. 3C, the received signal φC is the transmitted signal φ
The signal has an intermediate phase between A and the transmission signal φB.

【0033】さらに続けて回転体3が回転して穴5が送
信電極2と受信電極4の間に位置した時は、送信信号φ
Bだけが受信電極4に伝達するので、受信信号φCは図
3(d)に示すように送信信号φBとほぼ同位相の信号
となる。
When the rotating body 3 is further rotated and the hole 5 is positioned between the transmitting electrode 2 and the receiving electrode 4, the transmitting signal φ is transmitted.
Since only B is transmitted to the reception electrode 4, the reception signal φC becomes a signal having substantially the same phase as the transmission signal φB as shown in FIG.

【0034】つまり回転体3の穴5が送信電極1、2の
近傍から離れている時は受信信号φCは殆ど振幅の無い
状態であり、回転体3が回転を続け送信電極1、2を通
過する時は、受信信号φCは振幅をもった信号を伝達
し、受信信号φCの位相は送信信号φAの位相から送信
信号φBの位相へ除除に変化していく。この受信信号φ
Cの位相変化、または振幅変化、さらにその両方を検波
する事によって、回転体5の基準位置を検出する事がで
きる。
That is, when the hole 5 of the rotating body 3 is separated from the vicinity of the transmitting electrodes 1 and 2, the received signal φC has almost no amplitude, and the rotating body 3 continues to rotate and passes through the transmitting electrodes 1 and 2. In this case, the reception signal φC transmits a signal having an amplitude, and the phase of the reception signal φC is gradually changed from the phase of the transmission signal φA to the phase of the transmission signal φB. This received signal φ
The reference position of the rotating body 5 can be detected by detecting the phase change of C, the amplitude change, or both.

【0035】図1および図2の構造では、穴5の近接を
受信信号φCの振幅で検出し、一定以上の振幅の場合受
信信号φCの位相検波情報を正当なものとする判断して
回転体3の位置検出を行なう事が容易に出来る。受信信
号φCが一定以下の振幅では公知のスケルチ回路を働か
せて穴位置検出回路動作を停止する。導電性の回転体3
を用いる場合、受信信号φCに対する送信信号φAおよ
びφBの遮蔽効果は大きいので、上記スケルチ動作を利
用し易い。なお、スケルチ回路の具体的構成は後で詳述
する。
In the structure shown in FIGS. 1 and 2, the proximity of the hole 5 is detected by the amplitude of the received signal φC, and when the amplitude exceeds a certain level, the phase detection information of the received signal φC is judged to be valid and the rotor is rotated. It is easy to detect the position of 3. When the received signal φC has an amplitude below a certain level, a well-known squelch circuit is activated to stop the hole position detection circuit operation. Conductive rotating body 3
In the case of using, since the shielding effect of the transmission signals φA and φB with respect to the reception signal φC is great, the squelch operation is easy to use. The specific configuration of the squelch circuit will be described later in detail.

【0036】前述のように受信信号φCの位相は、送信
信号φAとφBの間の値をとり、同振幅も回転体3の機
械的位置の関数として変化する。これは電場を表現する
三角関数の合成公式から簡単に導出される。以降、交流
信号φAとφBを特に時刻tを変数とする角速度ωの時
間の周期関数として表現する場合にはφA(ωt)ある
いはφB(ωt)の如くし、略記する場合にはφAとφ
Bの如くして用いる事とする。また、位相の異なる二つ
の送信信号による基準位置検出について説明したが、周
波数の異なる信号による位置検出も可能である。
As described above, the phase of the reception signal φC takes a value between the transmission signals φA and φB, and the same amplitude also changes as a function of the mechanical position of the rotating body 3. This is easily derived from the composition formula of trigonometric functions that represent the electric field. Hereinafter, when the AC signals φA and φB are expressed as a periodic function of the time of the angular velocity ω with the time t as a variable, they are represented by φA (ωt) or φB (ωt), and in the abbreviation, φA and φB are used.
It will be used as in B. Further, although the reference position detection using two transmission signals having different phases has been described, position detection using signals having different frequencies is also possible.

【0037】次に受信信号φCの、振幅と位相の関係に
ついて図4によりさらに説明を続ける。図4(a)およ
び図4(b)に、送信信号φA、φBが同一周波数で異
なる位相の場合の、受信信号φCの位相と振幅の関係を
示す。図4(a)は、受信信号φCを、Cos(ωt)
をx軸に、Sin(ωt)をy軸にベクトル表示した図
である。
Next, the relationship between the amplitude and the phase of the received signal φC will be further described with reference to FIG. FIGS. 4A and 4B show the relationship between the phase and amplitude of the reception signal φC when the transmission signals φA and φB have the same frequency and different phases. FIG. 4A shows the received signal φC as Cos (ωt)
FIG. 3 is a diagram in which X is plotted on the x-axis and Sin (ωt) is plotted on the y-axis.

【0038】図4(a)において、穴5が送信信号φA
を送信する送信電極1の真下に位置した時の受信信号φ
CをPs(a)、送信信号φBを送信する送信電極2の
真下に位置した時の受信信号φCをPs(b)、送信電
極1と送信電極2の中間位置にある時の受信信号φCを
Ps(m)として表している(s=1、2、3)。
In FIG. 4A, the hole 5 indicates the transmission signal φA.
Signal φ when it is located directly below the transmitting electrode 1 for transmitting
C is Ps (a), the reception signal φC when the transmission signal φB is located directly below the transmission electrode 2 is Ps (b), and the reception signal φC when the transmission electrode 1 and the transmission electrode 2 are in the intermediate position is It is represented as Ps (m) (s = 1, 2, 3).

【0039】P1(a)→P1(m)→P1(b)の径
路31は、送信信号φAとφBの位相差がπ/2の場合
のベクトル軌跡を示し、同様にP2(a)→P2(m)
→P2(b)の径路32は、送信信号φAとφBの位相
差が3π/4の場合のベクトル軌跡を示し、P3(a)
→P3(m)→P3(b)の径路33は、送信信号φA
とφBの位相差がπに近接した場合のベクトル軌跡を示
し、各径路途中の点をPs(x)であらわす。
A path 31 of P1 (a) → P1 (m) → P1 (b) shows a vector locus when the phase difference between the transmission signals φA and φB is π / 2, and similarly P2 (a) → P2. (M)
→ The path 32 of P2 (b) shows a vector locus when the phase difference between the transmission signals φA and φB is 3π / 4, and P3 (a)
→ P3 (m) → P3 (b) path 33, the transmission signal φA
A vector locus in the case where the phase difference between φB and φB is close to π is shown, and a point in the middle of each path is represented by Ps (x).

【0040】各経路上の点Ps(x)での検出電圧の振
幅は、点O→点Ps(x)のベクトルの長さが示してい
る。但し受信信号φCの振幅に関しては、相対値で表現
している。また、各経路上の点Ps(x)での検出電圧
の位相は、x軸への投影長さの成分で示している。例え
ば送信信号φAとφBの位相差がπである径路33で
は、π/2位相が進み、振幅は円の半径rと等しいP3
(a)の状態からスタートし、P3(m)で位相0、振
幅小の状態を通過して、P3(b)のπ/2位相が遅
れ、振幅は円の半径rに等しい位置まで移動する。
The amplitude of the detected voltage at the point Ps (x) on each path is represented by the length of the vector from the point O to the point Ps (x). However, the amplitude of the received signal φC is expressed as a relative value. The phase of the detected voltage at the point Ps (x) on each path is indicated by the component of the projection length on the x axis. For example, in the path 33 in which the phase difference between the transmission signals φA and φB is π, π / 2 phase advances, and the amplitude is equal to the radius r of the circle P3.
Starting from the state of (a), passing through the state of phase 0 and small amplitude at P3 (m), the π / 2 phase of P3 (b) is delayed, and the amplitude moves to a position equal to the radius r of the circle. .

【0041】図4(b)は上述の位相と振幅の関係を、
回転体3の回転角度の関数として、それぞれ個別に表し
た図である。図4(b)において、横軸は回転体3の穴
5の移動距離、縦軸は振幅および位相を表している。送
信信号φAとφBの位相差が、π/2、3π/4、約π
の時、振幅の径路はそれぞれ34、35,36、位相の
径路はそれぞれ37、38、39の線で示す。
FIG. 4B shows the relationship between the phase and the amplitude described above,
FIG. 4 is a diagram individually showing as a function of a rotation angle of the rotating body 3. In FIG. 4B, the horizontal axis represents the moving distance of the hole 5 of the rotating body 3, and the vertical axis represents the amplitude and the phase. The phase difference between the transmission signals φA and φB is π / 2, 3π / 4, about π
, The amplitude paths are indicated by the lines 34, 35 and 36, respectively, and the phase paths are indicated by the lines 37, 38 and 39, respectively.

【0042】図4(b)に示すように、送信信号φAと
φBの位相差がπ/2を越えてπまで増加するにつれて
振幅変動が大になり変調位相差も大になる。送信信号φ
AとφBの位相差がπに近づくと、受信信号φCの振幅
は双峰特性を示し、峰と峰の中間の振幅が低下して位相
情報検出に支障が生じるので、位相差がπよりある程度
小に設定するほうが良い。実際上、受信振幅が大きくな
る回転角度位置での受信信号位相情報のみを抽出して用
いる工夫が必要である。但し、振幅変動は、振幅が極端
に小にならない限り飽和増幅により問題なく補って一定
にする事が可能である。
As shown in FIG. 4B, as the phase difference between the transmission signals φA and φB exceeds π / 2 and increases to π, the amplitude fluctuation increases and the modulation phase difference also increases. Transmission signal φ
When the phase difference between A and φB approaches π, the amplitude of the received signal φC exhibits a bimodal characteristic, and the amplitude between the peaks decreases, which interferes with phase information detection. It is better to set it small. In practice, it is necessary to devise and use only the received signal phase information at the rotation angle position where the received amplitude becomes large. However, the amplitude fluctuation can be compensated and made constant by saturation amplification unless the amplitude becomes extremely small.

【0043】また、位相検出ではなく振幅の変化を位置
検出に用いる場合には、送信信号φAとφBの位相差を
πに近づける事で穴中心位置付近での受信信号φCの振
幅関数の急峻性を利用する事ができる。つまり回転体3
の回転が進むにつれ、振幅の大きい位置を検出した後、
急激に振幅が減少し、また急激に振幅が増大する変化を
検出すれば、基準位置の検出を行うことができる。
When a change in amplitude is used for position detection instead of phase detection, the steepness of the amplitude function of the received signal φC near the hole center position is brought close to the phase difference between the transmitted signals φA and φB by π. Can be used. That is, the rotating body 3
After detecting the position with large amplitude,
The reference position can be detected by detecting a change in which the amplitude sharply decreases and the amplitude sharply increases.

【0044】複数送信信号の満たすべき要件の一つは、
直交関係にある複数の交流ベクトル信号成分を含み、受
信電極のベクトル和の振幅が常に0にならない事であ
る。一つの電極にSin(ωt)を印加する場合、他の
電極にはこの信号に直交するCos(ωt)成分あるい
はその高調波成分が含まれている必要がある。従って2
つの送信電極を用い、 φA=Sin(ωt−α/2) φB=Cos(ωt+α/2) ;(ωとαは定
数、tは時間) として位相差αを設定する場合には、α>πとする必要
がある。
One of the requirements to be satisfied by a plurality of transmission signals is
This means that the amplitude of the vector sum of the receiving electrodes does not always become zero, including a plurality of AC vector signal components that are in an orthogonal relationship. When Sin (ωt) is applied to one electrode, the other electrode must contain a Cos (ωt) component orthogonal to this signal or a harmonic component thereof. Therefore 2
When using one transmission electrode and setting the phase difference α as φA = Sin (ωt−α / 2) φB = Cos (ωt + α / 2); (ω and α are constants, t is time), α> π And need to.

【0045】両信号は必ずしも直交関係になくとも良い
が、直交ベクトル成分を含む必要がある。直交成分が周
波数を異なるもの、例えば φA=Sin(ωt+β) φB=Sin(n×ωt+γ);(n=2、3、4・・
・;βとγは定数) とした場合に、送信信号φAとφBの検出に両信号を作
成する基になった共通の信号を位相基準に用いた同期検
波回路を行い、差動増幅回路を用いて両同期検波出力信
号の差から位置検出信号を抽出する。
Both signals do not necessarily have to be in an orthogonal relationship, but it is necessary to include an orthogonal vector component. Orthogonal components having different frequencies, for example, φA = Sin (ωt + β) φB = Sin (n × ωt + γ); (n = 2, 3, 4, ...
・; Β and γ are constants, a synchronous detection circuit using the common signal that is the basis for creating both signals for detection of the transmission signals φA and φB as the phase reference is performed, and the differential amplification circuit is set. The position detection signal is extracted from the difference between the two synchronous detection output signals.

【0046】次に、複数の送受信信号の各種の伝達経路
構造について、図5を用いて説明する。図5は、位置情
報検出信号の伝達径路についての説明図であり、図5
(a)〜図5(d)まで5種類の実施の形態を示す。
Next, various transmission path structures of a plurality of transmission / reception signals will be described with reference to FIG. FIG. 5 is an explanatory diagram of the transmission path of the position information detection signal.
5 (a) to 5 (d) show five types of embodiments.

【0047】図5(a)は、複数の送信電極51、52
と、単一の受信電極55からなる構造の説明図である。
送信電極51、52から位相または周波数の異なる送信
信号53、54を回転体500の穴を通過して受信電極
55へ合成して伝達する。つまり同一周波数で異なる位
相の信号、あるいは異なる周波数の信号を複数の送信電
極51、52からそれぞれ送信し、受信電極側では単独
の受信電極55により受信し、該複数伝送経路間の伝送
特性の差異を比較し、機械的な回転体500の位置の関
数として差異を抽出する。特に、位相復調の送受システ
ムにより外乱電場雑音の影響を抑圧して正確な輪列位置
測定が出来る。これは音質が良好で雑音電波に強いFM
(周波数変調=等価的に位相変調)放送システムに対応
している。
FIG. 5A shows a plurality of transmitting electrodes 51, 52.
FIG. 3 is an explanatory diagram of a structure including a single receiving electrode 55.
Transmission signals 53 and 54 having different phases or frequencies from the transmission electrodes 51 and 52 pass through the holes of the rotator 500 and are combined and transmitted to the reception electrode 55. That is, signals having the same frequency but different phases or signals having different frequencies are respectively transmitted from the plurality of transmitting electrodes 51 and 52, and are received by the single receiving electrode 55 on the receiving electrode side, and the difference in the transmission characteristics between the plurality of transmission paths is obtained. Are extracted and the difference is extracted as a function of the position of the mechanical rotating body 500. In particular, the transmission / reception system of phase demodulation suppresses the influence of disturbance electric field noise and enables accurate train wheel position measurement. This FM has good sound quality and is strong against noise radio waves.
(Frequency modulation = equivalently phase modulation) Broadcast system is supported.

【0048】図5(a)の構造は本発明の位置検出機構
の、適合性の高い第一候補である。位相差のある複数交
流電場を同時送信して受信電極近傍電場の位相差の変化
を検出する構成は、以下に述べるように検出感度と信頼
性が高い。送信電極51、52からは数kHzの周波数
で数十度〜百数十度の位相オフセットの複数の正弦波信
号を電場として送信し、受信電極55では位相と振幅が
回転体で変調された信号を受信し、検波し分析する。
The structure of FIG. 5 (a) is a highly compatible first candidate for the position detecting mechanism of the present invention. The configuration for simultaneously transmitting a plurality of alternating electric fields having a phase difference and detecting a change in the phase difference of the electric field near the receiving electrode has high detection sensitivity and reliability as described below. From the transmission electrodes 51 and 52, a plurality of sinusoidal signals having a phase offset of several tens to several hundreds of degrees at a frequency of several kHz are transmitted as an electric field, and the reception electrode 55 is a signal whose phase and amplitude are modulated by a rotating body. Receive, detect and analyze.

【0049】送受信をタイミングをずらせて行い、受信
情報を記憶回路に記憶し、後から受信した複数データを
比較する手法も可能であるが、回路雑音と演算誤差か
ら、異伝送路の信号差分演算は伝送路空間内で同時に済
ませ、同差分を検出する方法の方が優れている。同時送
信の場合は伝送路の重なりと受信電極共通化のために干
渉電場を発生でき、受信電極55上では送信信号53、
54の重ね合わせ干渉の結果、位相と振幅が変調された
信号が得られる。この電磁波の干渉による差分は電磁気
の重ね合わせの原理で行われるので雑音発生がなく、S
/N(=信号対雑音比)劣化問題が生じない優れた方法
である。このように、回転体500を電磁波の鋭敏な位
相変調機構として用いる所は本発明の特徴である。
A method is possible in which transmission and reception are performed at different timings, the received information is stored in a storage circuit, and a plurality of data received later are compared, but signal difference calculation of different transmission lines is performed due to circuit noise and calculation error. Is better at the same time in the transmission path space and detecting the same difference. In the case of simultaneous transmission, an interference electric field can be generated due to the overlapping of the transmission lines and the common use of the receiving electrodes, and the transmitting signal 53,
The 54 superposition interference results in a phase and amplitude modulated signal. Since the difference due to the interference of the electromagnetic waves is based on the principle of superposition of electromagnetic waves, no noise is generated and S
/ N (= signal-to-noise ratio) This is an excellent method without deterioration problems. Thus, the use of the rotating body 500 as a mechanism for sensitively modulating electromagnetic waves is a feature of the present invention.

【0050】複数送信を互いに異なるタイミングで送信
する方式も考えられる。この場合の受信電極55には単
独の正弦波信号が受信されるだけであるが、同一時計シ
ステム内部であるので送信元の信号を基準に用いて伝達
された受信信号の精密な位相測定を行う事が可能であ
り、時間軸上の異なるタイミングで受信された異なる送
信電極からの信号の位相の精密測定が出来る。しかし、
微小信号の位相及び振幅の差分を取る回路的処理を受信
回路経由後に行う事になるので、S/N(=信号対雑音
比)の点では、伝送路上で重ね合わせの原理を利用して
直接差分処理が出来る、同時送信同時受信の構成に対比
して劣るものになる。
A method of transmitting a plurality of transmissions at different timings is also conceivable. In this case, the receiving electrode 55 only receives a single sine wave signal, but since it is inside the same clock system, the transmitted signal is used as a reference to perform precise phase measurement of the received signal. It is possible to perform precise measurement of the phase of signals from different transmission electrodes received at different timings on the time axis. But,
Since the circuit-like processing for obtaining the difference between the phase and the amplitude of a minute signal is performed after passing through the receiving circuit, in terms of S / N (= signal-to-noise ratio), the principle of superposition is directly used on the transmission line. This is inferior to the configuration of simultaneous transmission and simultaneous reception capable of differential processing.

【0051】図5(b)は、複数の送信電極56、57
と、複数の受信電極60、61からなる構造の説明図で
ある。送信電極56、57から位相または周波数の異な
る信号58、59をそれぞれ送信し、回転体500の穴
を通過して受信電極60、61へ別々に伝達する。
FIG. 5B shows a plurality of transmitting electrodes 56 and 57.
FIG. 3 is an explanatory diagram of a structure including a plurality of receiving electrodes 60 and 61. Signals 58 and 59 having different phases or frequencies are transmitted from the transmitting electrodes 56 and 57, respectively, and transmitted to the receiving electrodes 60 and 61 through the holes of the rotating body 500.

【0052】つまりこれは複数の受信電極56、57か
ら、複数伝送経路間の伝送特性の差異を比較し、測定分
析する方式である。単一送信電極と単一受信電極の伝送
路の測定では、輪列の機械的ながたつきによる誤差がそ
のまま検出されるために検出誤差が大きく、測定結果の
信頼性がかなり低下する。検出は振幅変調でも位相変調
でも可能であるが、受信信号の差分作成と比較を、受信
電極60、61の後の回路処理で行うために、回路の内
部雑音の影響を受けやすく、図5(a)で前述した、空
間からいきなり差分信号を抽出する複数電極同時送信で
単一受信電極同時検出する機構に比較すると、位置検出
の感度が低下する傾向がある。
That is, this is a method of comparing, measuring and analyzing differences in transmission characteristics from a plurality of receiving electrodes 56 and 57 among a plurality of transmission paths. In the measurement of the transmission line of the single transmission electrode and the single reception electrode, the error due to the mechanical rattling of the train wheel is detected as it is, so the detection error is large and the reliability of the measurement result is considerably lowered. The detection can be performed by amplitude modulation or phase modulation, but since the difference creation and comparison of the reception signals are performed by the circuit processing after the reception electrodes 60 and 61, they are easily affected by the internal noise of the circuit, and therefore, FIG. Compared to the above-described mechanism for simultaneously detecting a single receiving electrode by simultaneous transmission of a plurality of electrodes for extracting a differential signal from space as described in a), the sensitivity of position detection tends to decrease.

【0053】図5(c)は、単一の送信電極62と、複
数の受信電極65、66からなる構造の説明図である。
送信電極62から複数の信号63、64を送信し、回転
体500の穴を通過して受信電極65、66へ伝達す
る。
FIG. 5C is an explanatory diagram of a structure composed of a single transmitting electrode 62 and a plurality of receiving electrodes 65 and 66.
A plurality of signals 63 and 64 are transmitted from the transmitting electrode 62, pass through the holes of the rotating body 500, and are transmitted to the receiving electrodes 65 and 66.

【0054】つまり、単1送信電極62に対して複数の
受信電極65、66を備え、該複数受信電極65、66
に誘起される複数信号の相互比較を行う構成である。受
信のタイミング及び比較のタイミングは複数受信電極6
5、66について同時である必要はない。周波数が等し
く位相はほぼ等しい信号であるから、雑音除去のために
送信信号基準で同期検波してフィルタリングするホモダ
イン検波手法がとられる。電極数が減らないわりに検出
精度が低くなるので利点は少ない。
That is, a plurality of receiving electrodes 65 and 66 are provided for the single transmitting electrode 62, and the plurality of receiving electrodes 65 and 66 are provided.
This is a configuration for performing a mutual comparison of a plurality of signals induced by. The reception timing and the comparison timing are determined by the plurality of receiving electrodes 6.
It does not have to be the same for 5,66. Since the signals have the same frequency and substantially the same phase, the homodyne detection method of synchronous detection and filtering based on the transmission signal is used to remove noise. Although the number of electrodes does not decrease, the detection accuracy decreases, so there is little advantage.

【0055】しかし複数の送信信号63、64を作る回
路的複雑さは減る。また複数の受信電極65、66によ
る複数の輪列部材の位置検出を行う場合には、時分割し
て、順次送信電極62と受信電極65、66を群に分類
して時分割切替を行う構成が実現でき、このような場合
には、単1送信電極62で複数受信電極65、66とす
る構成も日板位置検出など誤差許容範囲の大きい検出部
分には充分成り立つ。
However, the circuit complexity of producing the plurality of transmission signals 63, 64 is reduced. Further, when the positions of a plurality of train wheel members are detected by the plurality of receiving electrodes 65 and 66, the time division is performed, the transmitting electrode 62 and the receiving electrodes 65 and 66 are sequentially classified into groups, and time division switching is performed. In such a case, the configuration in which the single transmitter electrode 62 is used as the plurality of receiver electrodes 65 and 66 is also sufficiently applicable to a detection portion having a large error allowable range such as the date plate position detection.

【0056】図5(d)は、単一の送信電極69と、単
一の受信電極70からなる構造の説明図である。単一の
送信電極69から周波数の異なる同期関係にある信号6
8、67を送信し、回転体500の穴を通過して受信電
極70へ伝達する。
FIG. 5D is an explanatory diagram of a structure composed of a single transmitting electrode 69 and a single receiving electrode 70. A signal 6 from a single transmitting electrode 69 in a synchronous relationship with different frequencies.
8 and 67 are transmitted, pass through the hole of the rotating body 500, and are transmitted to the receiving electrode 70.

【0057】つまり、一対の送信及び受信電極を回転体
500近傍に配置し、異なる周波数のキャリア電波を該
送信電極69から送信して受信電極70で同時あるいは
時間的に近接した別時刻に受信し、各周波数に対応する
伝送特性データを同一回転体の位置で相互比較して伝送
特性の差異の変化を輪列回転位置の関数として採取し、
回転体500の位置を推定する方式が可能である。電極
の数が2で済む利点がある。
That is, a pair of transmitting and receiving electrodes are arranged in the vicinity of the rotator 500, and carrier radio waves of different frequencies are transmitted from the transmitting electrode 69 and received by the receiving electrode 70 at the same time or at another time close to each other. , The transmission characteristic data corresponding to each frequency are mutually compared at the position of the same rotating body, and the change in the difference in the transmission characteristic is sampled as a function of the train wheel rotation position,
A method of estimating the position of the rotating body 500 is possible. There is an advantage that the number of electrodes can be two.

【0058】図5(e)は、送信電極と受信電極を同一
電極とした構造の説明図である。送受信電極71から周
波数の異なる信号72、73を送信し、その信号は回転
体500の近傍を経由して再び送受信電極71で受信す
る。
FIG. 5E is an explanatory view of a structure in which the transmitting electrode and the receiving electrode are the same electrode. Signals 72 and 73 having different frequencies are transmitted from the transmitting / receiving electrode 71, and the signals are received again by the transmitting / receiving electrode 71 via the vicinity of the rotating body 500.

【0059】つまり、送信電極と受信電極を兼用して一
つだけ用意し、高出力インピーダンス素子を介して定電
圧駆動回路により該電極を複数の異なる周波数の交流電
源で駆動し、回転体に近接した送受信兼用電極71の電
極電圧と位相を基の定電圧駆動回路の電圧及び位相と比
較する。駆動集積回路の出入力端子と該集積回路内部の
定電圧駆動回路とで変化を検出する。あるいは異なる周
波数で同時にあるいは時間的に近接して間欠的に複数回
測定し、送受信電極の電磁的負荷特性の周波数依存性か
ら回転体500の機械的位置情報を採集する。
That is, only one transmission electrode and one reception electrode are prepared, and the electrodes are driven by AC power supplies of a plurality of different frequencies through a high output impedance element to drive the electrodes in proximity to the rotating body. The electrode voltage and phase of the transmission / reception combined electrode 71 are compared with the voltage and phase of the constant voltage drive circuit based on the electrode voltage. The change is detected by the input / output terminal of the drive integrated circuit and the constant voltage drive circuit inside the integrated circuit. Alternatively, the mechanical position information of the rotating body 500 is collected from the frequency dependence of the electromagnetic load characteristics of the transmission / reception electrodes, by measuring at different frequencies simultaneously or temporally closely and intermittently a plurality of times.

【0060】検出感度は低いが、検出のための電極数が
一つで良いために小型化の利点がある。高インピーダン
ス素子は、時計用集積回路内に形成した高抵抗を用い、
集積回路外部の湿度や電磁場の影響を押さえる。検出感
度低下及び輪列のがたつきの影響は免れないが、掛け時
計や置き時計など、体積的に余裕がある場合には十分利
用可能である。
Although the detection sensitivity is low, there is an advantage of miniaturization because only one electrode is required for detection. The high impedance element uses a high resistance formed in the integrated circuit for a watch,
Suppresses the effects of humidity and electromagnetic fields outside the integrated circuit. Although it is unavoidable that the detection sensitivity is lowered and the train wheel is rattled, it can be sufficiently used when there is a sufficient volume such as a wall clock or a table clock.

【0061】上記説明したいくつかの輪列位置検出構造
を総括して整理すると、輪列近傍に配置した電極によ
り、複数伝送経路経由で検出される異なる電磁波成分の
差異の変化を機械的輪列の回転移動位置の関数として検
出して輪列の位置情報を得る。要点は輪列位置を空間的
あるいは時間的に異なる伝送路で、複数種の交流電場を
キャリヤ信号として送信し、少なくとも一部共通の検出
部材で該電場を変調させ、伝送特性の差異を伝送空間中
で発現させて空間から直接差異を検出する。実際の時計
の機構では、機構の簡素化と体積縮小と厚み圧縮と組立
調整コスト低下と部材費用圧縮と駆動検出集積回路コス
ト圧縮の要請があり、これらの制約下で最適化を図る。
このために複雑な構造は許されず、また測定精度及び信
頼性の低下も許されない。
When the above-described several wheel train position detecting structures are summarized, the change in the difference between the different electromagnetic wave components detected via the plurality of transmission paths is mechanically changed by the electrodes arranged in the vicinity of the train wheel. To obtain the position information of the train wheel. The point is that the train wheel positions are spatially or temporally different, and a plurality of types of AC electric fields are transmitted as carrier signals, and the electric field is modulated by at least a part of the common detection member so that differences in transmission characteristics are transmitted. Express in and detect differences directly from space. In the mechanism of an actual timepiece, there are demands for simplification of the mechanism, volume reduction, thickness compression, assembly adjustment cost reduction, member cost reduction, and drive detection integrated circuit cost reduction, and optimization is attempted under these constraints.
For this reason, a complicated structure is not allowed, and a decrease in measurement accuracy and reliability is not allowed.

【0062】続いて、本発明を腕時計の秒針の針位置検
出機構に用いた場合の実施の形態について説明する。図
6は、秒針の位置検出機構を有する輪列部分の斜視図で
ある。図6において、46は電気機械変換機構のロータ
の回転を減速伝達する五番車である。五番車46は、四
番車47および信号変調部材である検出車43に同減速
比の回転を伝える。四番車47には秒針48が固定さ
れ、秒情報の表示を行なう。四番車47と検出車43
は、1回転を60ステップ、つまり1ステップ6度毎
の、同期したステップ運針をおこなう。
Next, an embodiment in which the present invention is applied to a hand position detecting mechanism of a second hand of a wristwatch will be described. FIG. 6 is a perspective view of a train wheel portion having a second hand position detecting mechanism. In FIG. 6, reference numeral 46 is a fifth wheel & pinion for decelerating and transmitting the rotation of the rotor of the electromechanical conversion mechanism. The fifth wheel & pinion 46 transmits rotation of the same reduction ratio to the fourth wheel & pinion 47 and the detection wheel 43 which is a signal modulation member. The second hand 48 is fixed to the fourth wheel 47 and displays the second information. Fourth wheel 47 and detection wheel 43
Performs one step of 60 rotations, that is, every 6 degrees of step, synchronized step movement.

【0063】検出車43は導電性を有する金属部材から
なり、図示していないが軸受部分で接地している。ま
た、検出車43の歯車部には穴45を有している。検出
車43は回転方向に対して、穴45によって電気伝導度
あるいは誘電率が他の部分と異なる構造となっている。
また、検出車43の穴45は、穴形状で無くても、回転
によって歯車上下面の電極との距離が変化する構造であ
れば、切欠け形状でも良いし、歯車の断面方向の凹凸で
も良い。検出車43の歯車の上側には送信電極41、4
2、下側には受信電極44が対向して非接触に近接配置
している。
The detection wheel 43 is made of a conductive metal member, and is grounded at a bearing portion (not shown). The gear wheel of the detection wheel 43 has a hole 45. The detection wheel 43 has a structure in which the electric conductivity or the dielectric constant is different from that of the other portions due to the hole 45 in the rotation direction.
Further, the hole 45 of the detection wheel 43 may have a notch shape or unevenness in the cross-sectional direction of the gear as long as the distance to the electrodes on the upper and lower surfaces of the gear changes with rotation even if the hole 45 does not have a hole shape. . The transmission electrodes 41, 4 are provided above the gears of the detection wheel 43.
2. On the lower side, the receiving electrodes 44 face each other and are arranged close to each other in a non-contact manner.

【0064】検出車43が1ステップづつ回転する度に
送信電極41、42から位相の異なる正弦波信号を送信
する。信号波形は完全な正弦波形状でなくても、近似形
状の波形でも良い。例えばある基準信号に対して送信電
極41は45度位相の進んだ正弦波信号φAを、送信電
極42は45度位相の遅れた正弦波信号φBを送信す
る。
Each time the detection wheel 43 rotates step by step, sine wave signals having different phases are transmitted from the transmission electrodes 41 and 42. The signal waveform may not be a perfect sine wave shape, but may be an approximate waveform. For example, the transmission electrode 41 transmits a sine wave signal φA with a phase advanced by 45 degrees with respect to a certain reference signal, and the transmission electrode 42 transmits a sine wave signal φB with a phase delayed by 45 degrees.

【0065】送受信電極付近に穴45が無い状態では、
電気的に接地された検出車43によって遮蔽されどちら
の信号も伝達しないが、検出車43が回転して穴45が
送信電極41の位置にくると、送信電極41と受信電極
44の間で正弦波信号φAの電圧変化が静電容量の変化
として受信電極44に伝達される。検出車43の回転が
進み穴45が送信電極41と送信電極42の間にくる
と、両方の送信信号が合成された信号が受信電極44に
伝達される。さらに回転が進み穴45が送信電極42の
位置にくると送信電極42の送信信号φBだけが伝達さ
れる。
With no hole 45 near the transmitting and receiving electrodes,
Although neither signal is transmitted because it is shielded by the detection wheel 43 that is electrically grounded, when the detection wheel 43 rotates and the hole 45 comes to the position of the transmission electrode 41, a sine wave is generated between the transmission electrode 41 and the reception electrode 44. The voltage change of the wave signal φA is transmitted to the receiving electrode 44 as the change of the electrostatic capacitance. When the rotation of the detection wheel 43 progresses and the hole 45 comes between the transmission electrode 41 and the transmission electrode 42, a signal obtained by combining both transmission signals is transmitted to the reception electrode 44. When the rotation further advances and the hole 45 reaches the position of the transmission electrode 42, only the transmission signal φB of the transmission electrode 42 is transmitted.

【0066】このように検出車43の回転により、受信
電極44で受信される信号φCは+45度から−45度
まで位相が変化するので、位相0度の基準信号に対して
受信信号φCの位相が0度をよぎる時を検出車43の基
準位置として検出する事ができる。よって検出車43と
同期関係にある秒針48の基準位置を検出する事ができ
る。
As described above, the rotation of the detection wheel 43 causes the phase of the signal φC received by the receiving electrode 44 to change from +45 degrees to −45 degrees, so that the phase of the reception signal φC with respect to the reference signal having the phase of 0 degrees. Can be detected as a reference position of the detection wheel 43 when it crosses 0 degree. Therefore, it is possible to detect the reference position of the second hand 48 which is in synchronization with the detection wheel 43.

【0067】次に本実施の形態を用いた時計の動作制御
について説明する。本実施の形態では、時分秒を三針表
示する時計とし、秒針を一つのモータで駆動し、以下説
明を省略するが分針と時針は別のモータで駆動する構造
とする。また付加機能を有した時計に応用した場合は、
秒針は秒表示を行なうだけでなく、日月うるう年等のカ
レンダ情報を切替表示したり、ストップウオッチやタイ
マ針等に切替使用する事も出来る。
Next, the operation control of the timepiece using this embodiment will be described. In this embodiment, a timepiece that displays three minutes of hours, minutes, and seconds is used, the second hand is driven by one motor, and the minute hand and the hour hand are driven by different motors, although the description is omitted below. When applied to a watch with additional functions,
The second hand not only displays the second, but can also switch and display calendar information such as day, month, and leap years, and can also be used by switching to a stopwatch or timer hand.

【0068】まず、組立時の秒針の取付方法を説明す
る。最初に図示されていないリューズの首引き操作を行
ないリセット状態にする。この時、電気機械変換機から
変換機駆動信号が出力され、秒輪列は1秒毎の早送り運
針を行なう。秒輪列を駆動させた後、送信電極41、4
2から送信信号φA、φBを運針がおこなわれる度に出
力し、受信電極44で受信信号φCを受信する。受信し
た受信信号φCの位相を検波して、基準信号に対して位
相が遅れた状態から進んだ状態に変化した瞬間を検出車
43の基準位置として検出して早送り運針を停止する。
検出車43と四番車47は同期回転しているので、検出
車43の基準位置を四番車47の基準位置とする事が出
来るので、この状態で四番車47に秒針48を正秒の位
置に合せて取りつける。
First, the method of attaching the second hand during assembly will be described. First, a crown pulling operation (not shown) is performed to bring the crown into a reset state. At this time, a converter drive signal is output from the electromechanical converter, and the second train wheel performs fast forward hand movement every one second. After driving the second wheel train, the transmission electrodes 41, 4
The transmission signals φA and φB are output from 2 each time the hand movement is performed, and the reception signal φC is received by the reception electrode 44. The phase of the received signal φC received is detected, and the instant when the phase changes from the state delayed from the reference signal to the state advanced is detected as the reference position of the detection wheel 43 and the fast-forwarding movement is stopped.
Since the detection wheel 43 and the fourth wheel & pinion 47 are synchronously rotating, the reference position of the detection wheel 43 can be set to the reference position of the fourth wheel & pinion 47. In this state, the second hand 48 is moved to the forward second. Install according to the position of.

【0069】秒針48を取りつけた後リューズを0段位
置に戻すと、変換機駆動信号を毎秒1パルスづつ出力し
て、秒針48は1秒毎に運針を開始し現在時刻の秒表示
を行なう。時計システム全体を制御するICは変換機駆
動信号を出力するとともに電気的計数機構で計数を行な
い、電気的時刻を保持する。電気的保持時刻は秒針48
の基準位置を検出した状態から計数を開始して、60回
の計数でリセットを行なう。検出車43が回転駆動する
度に送信電極41及び送信電極42から検出信号を送信
し、受信電極44で受信を行なう。もし検出車43がI
Cの駆動信号によって正確に回転駆動していれば、60
秒すなわち1分毎にもとの位置に戻り、基準位置が検出
される。つまり、60秒毎に秒針48の基準位置と電気
的保持時刻の0位置が一致する。
When the crown is returned to the 0-step position after attaching the second hand 48, the converter drive signal is output at 1 pulse per second, and the second hand 48 starts the hand movement every 1 second and displays the current time in seconds. The IC that controls the entire timepiece system outputs a converter drive signal and performs counting by an electrical counting mechanism to hold electrical time. The electrical holding time is the second hand 48
The counting is started from the state in which the reference position of is detected, and the reset is performed after 60 times of counting. Each time the detection wheel 43 is rotationally driven, a detection signal is transmitted from the transmission electrode 41 and the transmission electrode 42, and reception is performed by the reception electrode 44. If the detection vehicle 43 is I
If the rotation signal is accurately driven by the drive signal of C, 60
It returns to the original position every second, that is, every minute, and the reference position is detected. That is, the reference position of the second hand 48 and the 0 position of the electrical holding time coincide with each other every 60 seconds.

【0070】しかし検出車43が、衝撃や外部磁場など
の影響によって正常に回転駆動しなかったり、外力によ
って強制的に回転してしまった時は、秒針48の基準位
置と電気的保持時刻にズレが生じる。ズレが検出された
場合は、変換機駆動信号および針位置検出信号の出力を
続けて行ない、基準位置を検出するまで検出車43を正
転で早送り駆動させて、電気的保持時刻の0位置とのズ
レを補正する。本実施の形態では秒針48を駆動する変
換機と、図示されていない時分針を駆動する変換機を分
けた構造としたので、秒針48と同時に駆動する検出車
43を正転早送り駆動させても、時分の時刻情報がずれ
る事は無い。
However, when the detection wheel 43 does not rotate normally due to the influence of an impact or an external magnetic field or is forced to rotate due to an external force, the reference position of the second hand 48 and the electric holding time are displaced. Occurs. When the deviation is detected, the converter drive signal and the needle position detection signal are continuously output, and the detection wheel 43 is fast-forwarded in the forward rotation until the reference position is detected, and the electric holding time is set to the 0 position. Correct the deviation. In the present embodiment, the converter for driving the second hand 48 and the converter for driving the not-shown hour / minute hand are separated, so that even if the detection wheel 43 driven simultaneously with the second hand 48 is driven in the forward rotation fast forward mode. , Time information of hours and minutes does not shift.

【0071】以上のように、完成時計に衝撃や磁場など
の外的要因がかかって一時的に秒針48の基準位置がず
れても、1分毎に針位置の補正がおこなわれ、表示精度
の高い時計を実現する事ができる。また、指針位置がず
れても1分毎に補正されるのであれば、衝撃によるずれ
が懸念される大型の表示針を用いる事も可能となる。
As described above, even if the reference position of the second hand 48 is temporarily displaced due to an external factor such as a shock or a magnetic field on the completed timepiece, the hand position is corrected every one minute and the display accuracy is improved. A high clock can be realized. Further, if the pointer position is corrected every minute, it is possible to use a large-sized display needle that may be displaced due to impact.

【0072】前述した実施の形態では、金属部材からな
る検出車43に穴45を設ける構造としたが、図7に示
すようなプラスチチック製の歯車と金属板からなる構造
を用いる事も可能である。図7において検出車49はプ
ラスチック材により射出成形されており、導電性を有し
ない。検出車49の歯車上面に金属性の検出板50が配
置され、検出車49の軸に圧入固定されている。検出車
49が回転して検出板50が送受信電極の近傍にきた
時、送受信電極との間の静電容量に変化が生じるため、
位置情報の検出を行なう事ができる。この構造は検出車
49をプラスチック化する事により、製造コストの低減
を図る事ができる。
In the above-described embodiment, the hole 45 is provided in the detection wheel 43 made of a metal member, but it is also possible to use a structure made of a plastic gear and a metal plate as shown in FIG. is there. In FIG. 7, the detection wheel 49 is injection-molded with a plastic material and has no conductivity. A metallic detection plate 50 is arranged on the upper surface of the gear of the detection wheel 49 and is press-fitted and fixed to the shaft of the detection wheel 49. When the detection wheel 49 rotates and the detection plate 50 comes close to the transmission / reception electrodes, the capacitance between the transmission / reception electrodes changes.
Position information can be detected. This structure can reduce the manufacturing cost by making the detection wheel 49 plastic.

【0073】また、より簡素化した構造としてプラスチ
ック製の検出車の歯車面の一部に金属メッキを施すか、
逆に歯車面の一部以外の全面に金属メッキを施して、検
出車の回転によって送受信信号に変調を起こす構造も可
能である。プラスチック材によるコスト低減に加え、薄
型化の効果が期待できる。
Further, as a more simplified structure, metal plating is applied to a part of the gear surface of the detection wheel made of plastic, or
On the contrary, it is also possible to apply a metal plating to the entire surface other than a part of the gear surface so that the transmitted and received signals are modulated by the rotation of the detection wheel. In addition to the cost reduction of plastic materials, the effect of thinning can be expected.

【0074】次に本実施の形態の、時計システム全体の
ブロック構造を図8を用いて説明する。図8において、
光発電素子22と2次電池23を含む光充電電源を備え
ている。時計の時間の最小単位時間を作成するために、
水晶振動子を含む水晶発振器からなる時間基準信号発生
機構11を備え、この時間基準信号を分周して時計の時
刻保持の最小刻み時間である計時時間単位信号を分周回
路12で作成する。21は時計システム全体の動作を制
御するシステム制御機構である。分周回路12で作成し
た計時単位時間信号は、システム制御機構21の制御に
より、電気機械変換機構15の備えるパルスモータを駆
動するためのモータ駆動回路14に入力し、これと並行
して、計時時間信号を計数して電気的時刻を保持する電
気的計数回路13にも入力する。該電気機械変換機構1
5のパルスモータに連結した輪列機構16によって機械
的時刻情報は保持される。輪列機構16に保持された機
械的時刻情報は、機械的表示機構17の指針により表示
する。
Next, the block structure of the entire timepiece system of this embodiment will be described with reference to FIG. In FIG.
It is equipped with a light charging power source including a photovoltaic element 22 and a secondary battery 23. To create the minimum unit of time of the clock,
A time reference signal generation mechanism 11 composed of a crystal oscillator including a crystal oscillator is provided, and the frequency reference signal is frequency-divided to generate a clock time unit signal, which is the minimum time interval for holding the time of the clock, by the frequency divider circuit 12. Reference numeral 21 is a system control mechanism for controlling the operation of the entire timepiece system. The timekeeping unit time signal created by the frequency dividing circuit 12 is input to the motor drive circuit 14 for driving the pulse motor of the electromechanical conversion mechanism 15 under the control of the system control mechanism 21, and in parallel with this, the timekeeping It is also input to the electrical counting circuit 13 that counts the time signal and holds the electrical time. The electromechanical conversion mechanism 1
The mechanical time information is held by the train wheel mechanism 16 connected to the pulse motor 5 of FIG. The mechanical time information held in the train wheel mechanism 16 is displayed by the pointer of the mechanical display mechanism 17.

【0075】システム制御機構21の制御によって送信
回路機構203で位相の異なる正弦波信号を作成し、輪
列機構16の近傍に配置した送信電極18、19から出
力する。送信信号18、19は輪列機構16により特定
の変調を与えられた後、合成されて受信電極20に伝達
され受信回路機構200で受信信号を検出する。検出さ
れた受信信号は、検波回路機構202において、送信回
路機構203で作成された基準信号と位相比較を行な
い、その結果から輪列機構16の保持する機械的時刻情
報を検出する。システム制御機構21は、検波回路機構
202から得た機械的時刻情報と、電気的計数回路13
に保持された電気的時刻情報により、時刻同期あるいは
誤動作補正あるいは時刻設定の制御を行なう。尚、図示
していないが、システム制御機構21には外部から時刻
情報を入力する外部操作機構からの制御情報も入力さ
れ、輪列機構16を直接機械的に操作して機械的な時刻
設定も行う事が出来る。
Under the control of the system control mechanism 21, sine wave signals having different phases are generated by the transmission circuit mechanism 203 and output from the transmission electrodes 18 and 19 arranged near the train wheel mechanism 16. The transmission signals 18 and 19 are given a specific modulation by the train wheel mechanism 16, then combined and transmitted to the reception electrode 20, and the reception circuit mechanism 200 detects the reception signals. The detected reception signal is phase-compared with the reference signal generated by the transmission circuit mechanism 203 in the detection circuit mechanism 202, and the mechanical time information held by the train wheel mechanism 16 is detected from the result. The system control mechanism 21 uses the mechanical time information obtained from the detection circuit mechanism 202 and the electrical counting circuit 13
Control of time synchronization, malfunction correction, or time setting is performed based on the electrical time information stored in. Although not shown, the system control mechanism 21 also receives control information from an external operating mechanism for inputting time information from the outside, and directly mechanically operates the train wheel mechanism 16 to set mechanical time. You can do it.

【0076】続いて送信回路機構203、受信回路機構
200、検波回路機構202の具体的構成を順番に説明
していく。図9は、送信信号を作成する送信回路機構2
03のシステム構成の例を示す。71は水晶振動子であ
り、72は時計の保持時刻の刻みを作成するための正確
な周波数の水晶発振回路である。発振周波数は2の15
乗の周波数である。79は電気時計構成のための集積回
路である。73は集積回路79内に含まれる1/4分周
回路であり、本実施の形態では2の13乗の周波数のパ
ルス信号PaとPbを出力する。両信号はπ/2だけ位
相が異なる。74と76は2の13乗の周波数の信号の
みを増幅する帯域通過型増幅回路である。回路構成は抵
抗とコンデンサからなる通過帯域阻止フィルタ回路を反
転増幅回路75、77と組合せ、さらに抵抗式分圧回路
で分圧減衰させてあり、このために、特定周波数以外の
信号は減衰し、特性周波数のみが増幅される。この特定
周波数増幅回路と組み合わせる事により、デジタル回路
で作成されたパルス信号PaとPbから安定した振幅と
位相差の定まった正弦波信号φAとφBが作成される。
Next, the specific configurations of the transmission circuit mechanism 203, the reception circuit mechanism 200, and the detection circuit mechanism 202 will be described in order. FIG. 9 shows a transmitter circuit 2 for generating a transmission signal.
An example of the system configuration of No. 03 is shown. Reference numeral 71 is a crystal oscillator, and 72 is a crystal oscillating circuit having an accurate frequency for creating a tick of a time when the clock is held. Oscillation frequency is 2 of 15
It is the power of frequency. Reference numeral 79 is an integrated circuit for constructing an electric timepiece. Reference numeral 73 denotes a quarter frequency divider circuit included in the integrated circuit 79, which outputs pulse signals Pa and Pb having a frequency of 2 to the 13th power in the present embodiment. Both signals differ in phase by π / 2. Reference numerals 74 and 76 are band-pass type amplifier circuits for amplifying only the signal of the frequency of 2 to the 13th power. The circuit configuration is such that a pass band stop filter circuit consisting of a resistor and a capacitor is combined with the inverting amplifier circuits 75 and 77, and further divided by the resistance type voltage dividing circuit, so that signals other than a specific frequency are attenuated, Only the characteristic frequency is amplified. By combining with this specific frequency amplifier circuit, sine wave signals φA and φB with stable amplitude and phase difference are created from the pulse signals Pa and Pb created by the digital circuit.

【0077】次に図10は本発明の機構で用いられる、
輪列による変調機構の等価回路と検出用の前置増幅回路
からなる受信回路機構の例である。送信電極41と42
から異なる送信信号φA、φBが送信される。送信信号
φA、φBは検出車43を通過する伝送路86により位
相及び振幅が変調され、受信電極44に受信信号φCが
受信される。受信電極44の誘起信号φCの電圧は、伝
送路86のコンデンサからなる容量ブリッジによる電位
配分から対接地電位と位相が与えられる。受信信号φC
はその後増幅回路87により増幅される。位相検波する
場合、増幅器は位相情報だけがあれば良いので飽和増幅
されてパルス信号Pcとなる。
Next, FIG. 10 is used in the mechanism of the present invention.
It is an example of a receiving circuit mechanism including an equivalent circuit of a train wheel modulation mechanism and a preamplifier circuit for detection. Transmitting electrodes 41 and 42
Transmit different transmission signals φA and φB. The phase and amplitude of the transmission signals φA and φB are modulated by the transmission path 86 passing through the detection wheel 43, and the reception signal φC is received by the reception electrode 44. The voltage of the induced signal φC of the receiving electrode 44 is given a phase with respect to the ground potential from the potential distribution by the capacitive bridge formed of the capacitor of the transmission line 86. Received signal φC
Is then amplified by the amplifier circuit 87. In the case of phase detection, the amplifier only needs to have phase information, and is saturated and amplified to a pulse signal Pc.

【0078】図11は各回路機構における信号波形を示
す。各波形の相対的位相関係も維持されて表示されてい
る。φ15は図9における水晶発振回路72の水晶振動
子71の端子の対接地電圧波形である。P15は水晶振
動子の正弦波信号を整形して得られる2の15乗Hzすな
わち32768Hzのパルス信号であり、本発明の電気
時計の論理回路を動かす位相の刻みを定めるクロック信
号としても用いられている。P15を基に図9に示され
るパルス信号PaとPbが作成され、帯域通過増幅回路
を介して位相がπ/2づつ異なる2の13乗Hzすなわ
ち8192Hzの正弦波信号φA、φBが作成される。
なお周波数自体は任意選択出来る。通常の時計では量産
効果を上げるために業界の共通仕様として2のべき乗の
周波数の水晶振動子が用いられている。
FIG. 11 shows signal waveforms in each circuit mechanism. The relative phase relationship of each waveform is also maintained and displayed. φ15 is a voltage waveform with respect to the ground of the terminal of the crystal oscillator 71 of the crystal oscillation circuit 72 in FIG. P15 is a pulse signal of 2 @ 15 Hz, that is, 32768 Hz obtained by shaping a sine wave signal of a crystal oscillator, and is also used as a clock signal for defining a phase step for operating the logic circuit of the electric timepiece of the invention. There is. The pulse signals Pa and Pb shown in FIG. 9 are created based on P15, and the sine wave signals φA and φB of 2 to the 13th power Hz, that is, 8192 Hz, which are different in phase by π / 2, are created through the bandpass amplifier circuit. .
The frequency itself can be arbitrarily selected. Ordinary watches use a crystal oscillator with a power of 2 frequency as a common specification in the industry in order to improve the mass production effect.

【0079】正弦波信号φA、φBは、検出車43の回
転位置によって変調され、受信電極44には送信信号φ
AとφBの間の位相をとる受信信号φC(x)(x=
1、2、・・・)が伝達する。受信信号φCは、検出車
43が図6の矢印の方向に回転して、穴45が送信電極
41付近にある時は、送信信号φAに位相が近い受信信
号φC(1)、穴45が送信電極43付近にきた時は、
送信信号φBに位相が近い受信信号φC(2)のような
波形となり、位相が変化する。また、検出車43の穴4
5が送受信電極付近にない時は送信信号φA、φBは検
出車43に遮蔽されて受信電極44には伝達されず、受
信信号φC(3)は、ノイズ成分だけしか含まない振幅
のほとんど無い波形となる。
The sine wave signals φA and φB are modulated by the rotational position of the detection wheel 43, and the transmission signal φ is received by the receiving electrode 44.
Received signal φC (x) (x =
1, 2, ...) are transmitted. When the detection wheel 43 rotates in the direction of the arrow in FIG. 6 and the hole 45 is near the transmission electrode 41, the reception signal φC has a phase close to that of the transmission signal φA. When you come near the electrode 43,
The received signal φC (2) has a waveform close in phase to the transmitted signal φB, and the phase changes. Also, the hole 4 of the detection wheel 43
When 5 is not near the transmission / reception electrodes, the transmission signals φA and φB are shielded by the detection wheel 43 and are not transmitted to the reception electrode 44, and the reception signal φC (3) is a waveform that includes only noise components and has almost no amplitude. Becomes

【0080】この時の受信信号φC(3)は位置検出に
必要な位相成分が無いノイズ信号のため、後で詳述する
スケルチ回路でカットする。位相情報を含む受信信号φ
C(x)は電極間の静電容量の変化によって伝達される
ため、微小振幅の信号であるが、位相情報は保持されて
いる。受信信号φC(x)は図10に示す増幅回路87
で飽和増幅され、矩形の検出信号Pc(x)(x=1、
2、・・・)となる。
Since the received signal φC (3) at this time is a noise signal having no phase component necessary for position detection, it is cut by a squelch circuit which will be described in detail later. Received signal φ including phase information
Since C (x) is transmitted by a change in electrostatic capacitance between the electrodes, it is a signal with a small amplitude, but the phase information is retained. The received signal φC (x) is the amplification circuit 87 shown in FIG.
Is saturated and amplified by the rectangular detection signal Pc (x) (x = 1,
2, ...).

【0081】次に、受信信号の検波方式について説明を
進める。図12は受信信号の位相検波を行なう検波回路
機構を示す回路図であり、図13は検波結果の出力であ
る検波結果信号の波形図である。図12に示す検波回路
機構は、位相検波の基準となる位相基準信号に対して、
検出車43によって変調された受信信号の位相が進んで
いるか、あるいは遅れているかによって位相検波の出力
の電圧を変化させる構造である。
Next, the detection method of the received signal will be described. FIG. 12 is a circuit diagram showing a detection circuit mechanism that performs phase detection of a received signal, and FIG. 13 is a waveform diagram of a detection result signal which is an output of the detection result. The detection circuit mechanism shown in FIG. 12 has a phase reference signal that is a reference for phase detection.
This is a structure in which the voltage of the output of the phase detection is changed depending on whether the phase of the reception signal modulated by the detection wheel 43 is advanced or delayed.

【0082】図12において、データ入力フリップフロ
ップ216のクロックに、基準信号として図11に示す
信号Paと信号Pbの丁度中間位相であるパルス信号P
abを入力する。基準信号Pabは、送信信号作成の基
とする信号から論理回路とクロック信号により容易に正
確な位相オフセットで作成される。一方、受信信号φc
(x)を飽和増幅して整形した検出信号Pc(x)をフ
リップフロップ216のデータ信号として入力する。フ
リップフロップ216はクロック信号Pabの立ち上り
をトリガとして、検波結果信号Sens−Outを出力
する。
In FIG. 12, a pulse signal P, which is just an intermediate phase between the signal Pa and the signal Pb shown in FIG. 11 as a reference signal, is applied to the clock of the data input flip-flop 216.
Enter ab. The reference signal Pab is easily generated with a correct phase offset from the signal used as the basis of the transmission signal generation by the logic circuit and the clock signal. On the other hand, the received signal φc
The detection signal Pc (x) obtained by saturation-amplifying and shaping (x) is input as the data signal of the flip-flop 216. The flip-flop 216 outputs the detection result signal Sens-Out triggered by the rising edge of the clock signal Pab.

【0083】検出信号Pc(x)が図11に示す信号P
c(1)の如く、位相が基準信号Pabより進んでいる
時は、検波結果信号Sens−Out=”1”のHレベ
ルを出力し、検出車43の回転が進んで受信信号Pc
(x)が変調され、受信信号Pc(2)の如く位相が基
準信号Pabより遅れた時は、検波結果信号Sens−
Out=”0”のLレベルへ切り替わる。そして検波結
果信号Sens−OutがHレベルからLレベルへ切り
替わるタイミングを検出車43の基準位置として検出す
る事ができる。
The detection signal Pc (x) is the signal P shown in FIG.
When the phase is ahead of the reference signal Pab as in c (1), the H level of the detection result signal Sens-Out = "1" is output, and the rotation of the detection wheel 43 advances and the reception signal Pc
When (x) is modulated and the phase is delayed from the reference signal Pab like the received signal Pc (2), the detection result signal Sens-
It switches to the L level of Out = "0". Then, the timing at which the detection result signal Sens-Out switches from the H level to the L level can be detected as the reference position of the detection wheel 43.

【0084】続いて上述した構造とは別の位相検波方式
について説明する。検出信号Pc(1)、Pc(2)と
基準信号Pabから、図11に示すような充電指示信号
Pcrgと放電指示信号Pdcrgを、パルス発生手段
である論理回路で作成する。受信信号Pc(1)の位相
はPabよりも進んでおり、受信信号Pc(2)の位相
はPabよりも遅れているので、 Pcrg=[Pc]∩[/Pab] =[Pc1]∩[/Pab] P_dcrg =[/Pc]∩[Pab] =[/Pc2]∩[Pab] ;(∩は論理和、/は論理反転を表す) となる。
Next, a phase detection method different from the above structure will be described. From the detection signals Pc (1) and Pc (2) and the reference signal Pab, a charge instruction signal Pcrg and a discharge instruction signal Pdcrg as shown in FIG. 11 are created by a logic circuit which is pulse generation means. Since the phase of the reception signal Pc (1) is ahead of Pab and the phase of the reception signal Pc (2) is behind that of Pab, Pcrg = [Pc] ∩ [/ Pab] = [Pc1] ∩ [/ Pab] P_dcrg = [/ Pc] ∩ [Pab] = [/ Pc2] ∩ [Pab]; (∩ represents logical sum, / represents logical inversion).

【0085】送信信号周波数は2の13乗Hzすなわち
約8kHzであり、Pcrg=”1”のHレベルでは小
容量の蓄積コンデンサを抵抗を介して+側に充電し、P
dcrg=”1”のHレベルではコンデンサを−側に抵
抗を介して放電する。該コンデンサの充放電時定数を8
kHzの周期よりも1桁以上大にし、送信信号に対する
受信信号の位相情報を上記コンデンサの電圧として得
る。
The transmission signal frequency is 2 to the 13th power Hz, that is, about 8 kHz, and at the H level of Pcrg = "1", a small-capacity storage capacitor is charged to the + side through a resistor, and P
At the H level of dcrg = "1", the capacitor is discharged to the-side through the resistor. Charge and discharge time constant of the capacitor is 8
The phase information of the received signal with respect to the transmitted signal is obtained as the voltage of the capacitor by setting the frequency of the received signal to be larger than the period of kHz by one digit or more.

【0086】Pcの位相がPabよりも進んでいれば、
信号Pcrg=”1”が得られ、そのパルス幅は位相差
に比例して大になり、コンデンサの電圧は+側に飽和す
る。逆に遅れている場合は遅れ位相に比例したパルス幅
の信号Pdcrg=”1”が得られ、上記コンデンサの
電荷は−側に放電して上記コンデンサの電圧は0にな
る。このようにして、検出信号の位相変化をコンデンサ
の電圧変化に変換して読み取り、基準位置の検出をおこ
なう。
If the phase of Pc is ahead of Pab,
A signal Pcrg = "1" is obtained, the pulse width of which increases in proportion to the phase difference, and the voltage of the capacitor saturates on the + side. On the contrary, when the delay occurs, a signal Pdcrg = "1" having a pulse width proportional to the delay phase is obtained, the electric charge of the capacitor is discharged to the negative side, and the voltage of the capacitor becomes zero. In this way, the phase change of the detection signal is converted into the voltage change of the capacitor and read, and the reference position is detected.

【0087】図15に前述の蓄電コンデンサを用いた位
相検波機構の、具体的な回路例を示す。図15において
ゲート91は電荷蓄積用のコンデンサ92を抵抗93を
通じて+側に充電する。充電条件を行うスイッチ素子9
4をONにする条件は、 {検出出力:Pc=H} & {位相基準信号:Pab=L}& {非スケルチ:/Scl−out=H} =H で、ゲート91の論理レベルがLになり、PチャネルF
ET94(電界効果トランジスタ)がONとなり、抵抗
93を介してコンデンサ92が充電される。上記論理積
の内容を説明すると、非スケルチ:/Scl−out=
Hにより穴位置が検出電極近傍に存在している事を示
し、位相基準信号:Pab(ωt)=L、かつ検出出
力:Pc=Hにより、位相基準信号よりも検出出力の位
相が進んだ状態である事を示す。つまり図6において送
信電極41に穴45が近い事を意味する。
FIG. 15 shows a concrete circuit example of the phase detection mechanism using the above-mentioned storage capacitor. In FIG. 15, the gate 91 charges the charge storage capacitor 92 to the + side through the resistor 93. Switch element 9 for charging conditions
The condition for turning ON 4 is: {Detection output: Pc = H} & {Phase reference signal: Pab = L} & {Non-squelch: / Scl-out = H} = H, and the logic level of the gate 91 becomes L Becomes, P channel F
The ET 94 (field effect transistor) is turned on, and the capacitor 92 is charged via the resistor 93. Explaining the contents of the above logical product, non-squelch: / Scl-out =
H indicates that the hole position exists near the detection electrode, and the phase of the detection output is advanced from the phase reference signal by the phase reference signal: Pab (ωt) = L and the detection output: Pc = H. Is shown. That is, it means that the hole 45 is close to the transmitting electrode 41 in FIG.

【0088】同様に、コンデンサ92の放電条件は、放
電スイッチ素子がNチャネルトランジスタ96であり、
放電すべき条件で該Nチャネルトランジスタ96のゲー
ト電位をHレベルにする。ゲート95出力がHレベルに
なる条件は、 {検出出力:Pc=L} & {位相基準信号:Pab=H}& {非スケルチ:/Scl−out=H} =H である。FETスイッチ96がONになると、抵抗97
を通じて放電が行われる。この時の条件は、穴位置が検
出電極近傍に存在し、かつ位相基準信号よりも検出出力
の位相が遅れた状態である事を示す。つまり図6におい
て検出車43の回転が続き、送信電極42に穴45が近
い事を意味する。
Similarly, the discharge condition of the capacitor 92 is that the discharge switch element is the N-channel transistor 96,
The gate potential of the N-channel transistor 96 is set to H level under the condition of discharging. The condition that the output of the gate 95 becomes H level is: {Detection output: Pc = L} & {Phase reference signal: Pab = H} & {Non-squelch: / Scl-out = H} = H. When the FET switch 96 is turned on, the resistance 97
Is discharged through. The condition at this time indicates that the hole position exists near the detection electrode, and the phase of the detection output is delayed from the phase reference signal. That is, in FIG. 6, it means that the detection wheel 43 continues to rotate and the hole 45 is close to the transmission electrode 42.

【0089】ゲート91、96は検出信号Pcの振幅が
ある一定レベルである事を検出すると共に、位相基準信
号Pabに対して受信信号Pcの位相の遅れ進みを検出
して出力する、遅れ進み検出手段である。またFETス
イッチ94、96は、遅れ進み検出手段であるゲート9
1、96の出力によって充放電を切り替える、充放電切
り替え手段である。
The gates 91 and 96 detect that the amplitude of the detection signal Pc is at a certain level, and detect and output the phase delay of the received signal Pc with respect to the phase reference signal Pab, and output it. It is a means. Further, the FET switches 94 and 96 are gate 9 which is a delay / advance detection means.
It is charge / discharge switching means for switching charge / discharge according to the outputs of 1 and 96.

【0090】また実際の構成では、抵抗93とスイッチ
素子94を兼用させ、スイッチ素子94であるFETの
ON抵抗を適正値に設計して用い、わざわざ抵抗93を
付加する事はない。同様に抵抗97の機能はスイッチ素
子96である放電用FETのON抵抗に含ませた設計を
行う。電荷蓄積コンデンサ92の対接地電位Vcrg
と、電源電圧を抵抗98と99で分圧した基準電圧Vr
efとを電圧検出手段である比較器101で比較し、V
crg≧Vrefの条件の時、シュミット回路100を
介して論理出力として、検波結果信号Senc_out
のHレベルを出力する。
In the actual configuration, the resistor 93 and the switch element 94 are used in common, and the ON resistance of the FET which is the switch element 94 is designed to be an appropriate value and the resistor 93 is not added. Similarly, the function of the resistor 97 is designed to be included in the ON resistance of the discharging FET that is the switch element 96. Ground potential Vcrg of the charge storage capacitor 92
And a reference voltage Vr obtained by dividing the power supply voltage with resistors 98 and 99.
ef is compared with a comparator 101, which is a voltage detecting means, to obtain V
When crg ≧ Vref, the detection result signal Senc_out is output as a logical output via the Schmitt circuit 100.
The H level of is output.

【0091】図14には電荷蓄積コンデンサ92の対接
地電圧Vcrgの回転角度に対する関数形を示す。検出
車43の回転が進み穴45が送信電極42に近接した
時、電荷蓄積コンデンサは充電され、対接地電圧Vcr
gはは比較基準電圧111に対し”L”の状態から”
H”の状態に変化し、その後送信電極41と送信電極4
2の中間を通過すると電荷蓄積コンデンサ92は放電さ
れ、再び”L”の状態まで変化する。
FIG. 14 shows a functional form of the charge storage capacitor 92 with respect to the ground voltage Vcrg with respect to the rotation angle. When the rotation of the detection wheel 43 progresses and the hole 45 approaches the transmission electrode 42, the charge storage capacitor is charged, and the ground voltage Vcr is reached.
g is from "L" state to the comparison reference voltage 111
H ”, and then the transmission electrode 41 and the transmission electrode 4
After passing through the middle of 2, the charge storage capacitor 92 is discharged and changes to the "L" state again.

【0092】時計の輪列は機械寸法の全てに誤差が含ま
れているので、歯車の軸の上下方向にも回転方向にも動
作のクリアランスが存在するので、パルスモータ駆動の
バックラッシュの影響や時計の向きに応じて、検出電圧
Vcrgの電圧は大幅に変化し、位相も少し変化する。
例として112は時計上向き時の対接地電圧を示し、1
13は時計下向き時の対接地電圧を示す。
Since the train wheel of the timepiece includes an error in all of the machine dimensions, there is a clearance for operation in both the vertical direction and the rotating direction of the gear shaft. Depending on the direction of the clock, the voltage of the detection voltage Vcrg changes significantly and the phase also changes slightly.
As an example, 112 indicates the voltage to ground when the clock is turned up, 1
Reference numeral 13 indicates the voltage to ground when the device is turned clockwise.

【0093】位相検出情報は、検出電圧Vcrgが小の
状態では雑音の影響を受けて誤り信号が発生する。つま
り、コンデンサ92が充電され、比較基準電圧111に
対しLからHに移るタイミングはズレを生じる危険性が
大きい。しかし、検出電圧Vcrgが大の状態では確度
が高い。従って、検出電圧Vcrgが大の状態である穴
中心近傍で検出電圧VcrgがHからLに至る範囲では
雑音の影響を受け難く正確な位置情報が得られる。よっ
てVcrgが”H”の状態から”L”に変化する点11
4は時計の姿勢差等によっての変化を受けにくいので、
このタイミングを基準位置として読み取る事が有効であ
る。
Regarding the phase detection information, an error signal is generated under the influence of noise when the detection voltage Vcrg is small. That is, there is a high risk that the capacitor 92 is charged and the timing at which the reference voltage 111 changes from L to H shifts. However, the accuracy is high when the detection voltage Vcrg is large. Therefore, in the vicinity of the center of the hole where the detection voltage Vcrg is high, the position of the detection voltage Vcrg from H to L is not easily affected by noise and accurate position information can be obtained. Therefore, point 11 at which Vcrg changes from "H" to "L"
4 is less susceptible to changes due to differences in the attitude of the watch, so
It is effective to read this timing as the reference position.

【0094】FM放送では、遠方の放送局の微弱電波に
なって位相雑音が目立ってくると、受信機の検波回路が
過大な雑音を発生し、障害となる。これを防ぐために、
フル装備のFM受信機では受信信号の受信信号レベルに
閾値を設け、閾値以下の受信信号に対しては検波出力を
抑圧するスケルチ回路を用意している。本発明は時計内
部の近距離の電極間の信号の送受であるが、同様なスケ
ルチ回路導入により、検出電極が検出用パタン穴の周辺
及び同穴以外の場所に対して雑音抑圧する効果が得られ
る。
In FM broadcasting, when a weak radio wave from a distant broadcasting station causes phase noise to become conspicuous, the detection circuit of the receiver generates excessive noise, which becomes an obstacle. To prevent this
In a fully equipped FM receiver, a threshold value is set for the received signal level of the received signal, and a squelch circuit that suppresses the detection output for the received signal below the threshold value is prepared. The present invention is the transmission and reception of a signal between the electrodes within a short distance inside the timepiece, but by introducing a similar squelch circuit, it is possible to obtain the effect that the detection electrode suppresses the noise around the detection pattern hole and the place other than the hole. To be

【0095】スケルチ回路を受信信号の振幅の大きさで
識別して作成する他に、確実に補足された穴位置検出信
号のタイミングを基準として次に穴位置が検出される時
刻を予測し、それまでの期間の入力信号をマスクするタ
イムゲートによるスケルチも有効である。
In addition to identifying the squelch circuit based on the magnitude of the amplitude of the received signal to create the squelch circuit, the time at which the hole position is detected next is predicted based on the timing of the hole position detection signal that has been reliably captured, and Squelch by a time gate that masks the input signal in the period up to is also effective.

【0096】本発明の構成において、位相測定結果の情
報は被測定輪列歯車の穴位置を示し、通常、輪列を駆動
するパルスモータが駆動した後に毎回一度だけ輪列の回
転位置を確実に測定できれば良い。常時連続的に測定し
ている必要性はない。本発明の手法で検出する最も簡素
化した方式での検出情報は1ビットの情報であり、輪列
歯車の穴位置の回転角度が特定時刻に特定角度を越えて
いるか否かである。従って、輪列歯車の角度を確定する
には、計数リセットした上で電気的計数回路と輪列駆動
のパルスモータを、歯車1周分の数だけ並列駆動し、該
電気計数回路計数値をアドレスとして位置検出データを
記憶する。その後、番地に対するデータのパタンから結
果としての穴位置を決定出来る。
In the configuration of the present invention, the information of the phase measurement result indicates the hole position of the gear train to be measured, and normally, the rotational position of the gear train is ensured only once every time after the pulse motor for driving the gear train is driven. It would be good if it could be measured. It is not necessary to always measure continuously. The detection information in the simplest method detected by the method of the present invention is 1-bit information, and is whether or not the rotation angle of the hole position of the train wheel gear exceeds the specific angle at the specific time. Therefore, in order to determine the angle of the train wheel, after resetting the count, the electric counting circuit and the pulse motor for driving the train wheel are driven in parallel by the number of times of one rotation of the gear, and the count value of the electric counting circuit is addressed. The position detection data is stored as. The resulting hole position can then be determined from the data pattern for the address.

【0097】上記測定内容を整理すると、検出用のパタ
ン穴が検出電極近傍に存在しない状態から間欠的に位置
測定を行う。輪列回転の角度測定の手順を示すと、検出
用のパタン穴が検出電極に到達するまでの待機状態情報
の検出、検出用のパタン穴の到達から検出用のパタン穴
の中心までの間の検出データのLレベルの検出、さらに
検出用のパタン穴の中心で検出データがLレベルからH
レベルとなる変化の検出、その後の歯車の移動に対する
Hレベルの維持の確認、検出用のパタン穴が過ぎてから
元の回転位置までの待機状態情報の確認検出という順序
で測定を行う。
To summarize the above-mentioned measurement contents, the position measurement is intermittently performed from the state where the detection pattern hole does not exist near the detection electrode. The procedure for measuring the angle of rotation of the train wheel is as follows: detection of the standby state information until the detection pattern hole reaches the detection electrode, and between the arrival of the detection pattern hole and the center of the detection pattern hole. Detection of the L level of the detection data, and the detection data from the L level to the H level at the center of the detection pattern hole.
The measurement is performed in the order of detecting the change in the level, confirming that the H level is maintained with respect to the subsequent movement of the gear, and confirming and detecting the standby state information from the passage of the detection pattern hole to the original rotational position.

【0098】穴中心位置の測定を行うためには、穴位置
近傍に検出電極がある事の測定と、穴近傍位置における
角度位置の精密な測定が必要であり、測定データの全体
像から判断するには検出信号の振幅成分から測定データ
が雑音少なく、位相検波情報が意味を持つ”非待機状
態”である事を判定するか、位相検波回路が出力論理値
を変えたあとの一定待機時間帯を電気時計による待機時
間帯として記憶しておく回路が必要である。この振幅検
出信号あるいは電気計時系の時間帯信号から非スケルチ
信号{/Scl−out}ゲート信号を作成する。
In order to measure the hole center position, it is necessary to measure the presence of the detection electrode in the vicinity of the hole position and the precise measurement of the angular position in the vicinity of the hole, and it is judged from the overall image of the measurement data. Is determined from the amplitude component of the detection signal that the measured data is less noise and that the phase detection information is in a "non-standby state", or the phase detection circuit changes the output logic value for a certain waiting time It is necessary to have a circuit for storing as a standby time zone by an electric clock. A non-squelch signal {/ Scl-out} gate signal is generated from this amplitude detection signal or the time zone signal of the electric timekeeping system.

【0099】図16(a)は前記非スケルチ信号{/S
cl−out}を作成する為の雑音抑圧用の振幅検出回
路の一実施例を示す。微小の受信信号φCを受けて、定
増幅率の増幅回路132で増幅する。この増幅回路13
2には負帰還を掛けて増幅率を周囲温度や電源電圧に無
関係にK倍となるように抵抗分圧による1/Kの分圧負
帰還を掛けている。
FIG. 16A shows the non-squelch signal {/ S
An example of an amplitude detection circuit for noise suppression for creating cl-out} will be shown. The minute reception signal φC is received and amplified by the amplification circuit 132 having a constant amplification factor. This amplifier circuit 13
Negative feedback is applied to 2 to perform 1 / K partial voltage negative feedback by resistance voltage division so that the amplification factor becomes K times regardless of the ambient temperature and the power supply voltage.

【0100】振幅比較の基準とする閾値は、FET13
3の閾値とキャリア移動度で定まるほぼFET133の
閾値より少し高い値であり、閾値の温度特性と移動度の
温度特性が補償し合うように設定する。抵抗134でF
ET133の充電動作の電流レベルを定め、抵抗135
で放電電流レベルを定める。交流入力の受信信号φCの
波高値のK倍がFET133の閾値を越えるとコンデン
サ136の充電が始まり、放電抵抗135を充分大にし
ておくと、コンデンサ136にはFET133の閾値を
越える波高値に応じて電荷がサンプリング的に充電さ
れ、放電時定数程度の時間保持される。
The threshold used as the reference for the amplitude comparison is FET13.
It is a little higher than the threshold value of the FET 133 determined by the threshold value of 3 and the carrier mobility, and is set so that the temperature characteristics of the threshold value and the temperature characteristics of the mobility compensate each other. F with resistance 134
The current level of the charging operation of the ET133 is determined and the resistance 135
Defines the discharge current level. When K times the peak value of the AC input received signal φC exceeds the threshold value of the FET 133, charging of the capacitor 136 starts, and when the discharge resistance 135 is set sufficiently large, the capacitor 136 responds to the peak value exceeding the threshold value of the FET 133. The charges are charged in a sampling manner, and the charges are held for a time of about the discharge time constant.

【0101】このコンデンサ136に蓄積された電荷に
よるコンデンサ136の電圧Vcrgと、電源電圧を抵
抗137と138で分圧した電圧Vsclとが比較回路
139で比較され、その結果の論理値がラッチ回路14
0に送信信号の周期で記憶される。このようにして交流
の検出信号の波高値成分の分別と非スケルチ信号(/S
cl−out)の作成が実現出来る。FET133のソ
ース側電源電位を、+直流電源電圧の代わりに基準信号
Pabのパルス自体あるいはPabの高調波を除去した
正弦波電圧を分圧した電圧を印加する事で、周期変動閾
値とする事も出来る。高調波除去は、入力分圧回路と選
択増幅回路を組み合わせた図9の帯域通過型増幅回路7
4と同様の回路で実現出来る。
The voltage Vcrg of the capacitor 136 due to the charge accumulated in the capacitor 136 and the voltage Vscl obtained by dividing the power supply voltage by the resistors 137 and 138 are compared by the comparison circuit 139, and the resulting logical value is latched by the latch circuit 14.
It is stored in 0 at the cycle of the transmission signal. In this way, the peak value component of the AC detection signal is separated and the non-squelch signal (/ S
cl-out) can be created. The source side power supply potential of the FET 133 may be used as a cycle variation threshold value by applying a voltage obtained by dividing the pulse itself of the reference signal Pab or a sine wave voltage obtained by removing harmonics of Pab instead of the + DC power supply voltage. I can. The harmonic elimination is performed by the bandpass type amplification circuit 7 of FIG. 9 in which the input voltage dividing circuit and the selective amplification circuit are combined.
It can be realized with the same circuit as 4.

【0102】図16(a)の構成を機能ブロックで表す
と図16(b)の如くなる。図16(b)において、受
信信号φCは定増幅率の増幅回路142により一定の倍
率で増幅され、検波回路143により振幅成分が抽出さ
れ、比較回路144により基準電圧発生機構147で作
成された比較基準電圧と比較して設定振幅以上である事
を検出してラッチ記憶し、位相検波出力が意味を持つ事
を非スケルチ出力の論理信号出力として同期ラッチ回路
145でラッチし、非スケルチ信号(/Scl−ou
t)を出力する。
The structure of FIG. 16A is represented by functional blocks as shown in FIG. 16B. In FIG. 16B, the reception signal φC is amplified by the amplification circuit 142 with a constant amplification factor at a constant magnification, the amplitude component is extracted by the detection circuit 143, and the comparison circuit 144 creates the comparison by the reference voltage generation mechanism 147. The fact that the detected amplitude is equal to or larger than the set amplitude is detected and latched and stored, and the fact that the phase detection output has a meaning is latched by the synchronous latch circuit 145 as a logic signal output of the non-squelch output, and the non-squelch signal (/ Scl-ou
t) is output.

【0103】図17(a)は前記非スケルチ信号{/S
cl−out}を作成する為の振幅検出回路の別の実施
例である。微小の受信信号φCを受けて、定増幅率の増
幅回路169で増幅する。振幅閾値比較値として基準信
号Pabを抵抗151と152で分圧した電位を変動閾
値として与えている。やや複雑な回路になるが、Pab
から高調波成分を除去した信号に置き換える方式も合理
的な閾値になる。変動閾値と入力信号の定数倍の信号電
圧を比較増幅回路153で増幅し、ダイオード154で
整流し、コンデンサ155と抵抗168で定まる放電時
定数を持つ回路で一時的に結果を保持し、ラッチ回路1
56で論理値として記憶し、信号Pbをクロックとして
非スケルチ出力(/Scl−out)を出力する。
FIG. 17A shows the non-squelch signal {/ S
It is another embodiment of the amplitude detection circuit for creating cl-out}. The minute reception signal φC is received and amplified by the amplification circuit 169 having a constant amplification factor. As the amplitude threshold comparison value, the potential obtained by dividing the reference signal Pab by the resistors 151 and 152 is given as the fluctuation threshold. Although the circuit is a little complicated, Pab
The method of replacing with a signal from which harmonic components are removed is also a reasonable threshold. A signal voltage that is a constant multiple of the fluctuation threshold and the input signal is amplified by the comparison and amplification circuit 153, rectified by the diode 154, and the circuit having the discharge time constant determined by the capacitor 155 and the resistor 168 temporarily holds the result, and the latch circuit. 1
At 56, it is stored as a logical value, and a non-squelch output (/ Scl-out) is output using the signal Pb as a clock.

【0104】図17(a)の構成を機能ブロックで表す
と図17(b)の如くなる。図17(b)において、受
信信号φCをK倍の定倍率増幅率の増幅回路161で増
幅したK・φCと基準電圧発生機構164で作成された
比較基準電圧Vrefとは、比較増幅回路162に入力
されて飽和増幅され、検波回路163で検波し、同期ラ
ッチ回路165で一時記憶し、非スケルチ出力(/Sc
l−out)として出力する。
The structure of FIG. 17A is represented by functional blocks as shown in FIG. 17B. In FIG. 17B, K · φC obtained by amplifying the received signal φC by the amplification circuit 161 having a K-fold constant amplification factor and the comparison reference voltage Vref created by the reference voltage generation mechanism 164 are supplied to the comparison amplification circuit 162. The signal is input, saturated and amplified, detected by the detection circuit 163, temporarily stored by the synchronous latch circuit 165, and output by the non-squelch output (/ Sc
1-out).

【0105】以上説明した実施例の位置検出方式は、ま
ず受信信号φCの振幅を検出して穴が送受信電極に近い
事を検出し、続いて受信信号φCの位相情報によって正
確な位置検出を行なう構成としたが、位相の検出または
振幅の検出のいづれか一方だけでも位置検出を行なうこ
とは可能である。その場合、雑音等による位置検出の信
頼性では劣るが、回路構成を簡略化する事ができる。
In the position detecting method of the embodiment described above, first, the amplitude of the received signal φC is detected to detect that the hole is close to the transmitting / receiving electrodes, and then the position is accurately detected by the phase information of the received signal φC. Although the configuration is adopted, the position can be detected by only one of the phase detection and the amplitude detection. In that case, although the reliability of position detection due to noise or the like is poor, the circuit configuration can be simplified.

【0106】本発明の構成の要点の一つは、複数の伝送
路を用いて差動演算により機械機構のクリアランスの影
響を抑圧している点である。図18(a)は上記視点
で、送信信号φA、φBを個々の単独伝送路で伝達した
時の受信信号φCの成分を取り出した送信信号φA、φ
Bに対応するφC成分の振幅電圧の組を、{P1,Q
1}と{P2,Q2}の如く回転角を横軸とし振幅0の
軸に対して上下にあらわしている。歯車の軸方向のクリ
アランスに起因するがたつきは、例えば腕時計の姿勢差
に依存して受信信号の振幅の組は{P1,Q1}と{P
2,Q2}の如く差異が出る。従ってこのような単独伝
送路で検出電圧を一定のスライスレベルで切り分ける場
合、P1とP2の検出角度(=スライスレベルと検出レ
ベルの一致する回転角)は、腕時計の姿勢差で相違した
値を示す事になる。
One of the main points of the configuration of the present invention is that the influence of the clearance of the mechanical mechanism is suppressed by differential calculation using a plurality of transmission lines. From the above viewpoint, FIG. 18A shows the transmission signals φA, φ obtained by extracting the components of the reception signal φC when the transmission signals φA, φB are transmitted through the individual independent transmission paths.
The set of amplitude voltage of φC component corresponding to B is {P1, Q
1} and {P2, Q2}, the rotation angle is represented by the horizontal axis and the vertical axis with respect to the axis of zero amplitude. The rattling caused by the clearance in the axial direction of the gear depends on, for example, the attitude difference of the wristwatch, and the amplitude pairs of the received signals are {P1, Q1} and {P1.
2, Q2}. Therefore, when the detection voltage is divided at a constant slice level in such a single transmission line, the detection angles of P1 and P2 (= rotation angles at which the slice level and the detection level match) show different values due to the difference in attitude of the wristwatch. It will be a matter.

【0107】図18(a)のグラフの差分を計算したグ
ラフが図18(b)である。図中のD1=P1−Q1で
あり、D2=P2−Q2である。D1もD2も、差分出
力信号が符号を切り換える0クロス点の回転角の角度は
等しくなり、差分検出法により輪列のがたつきの影響が
軽減される事が判かる。
The graph obtained by calculating the difference between the graphs of FIG. 18A is shown in FIG. 18B. In the figure, D1 = P1-Q1 and D2 = P2-Q2. In both D1 and D2, it can be seen that the rotation angle at the 0 cross point at which the sign of the differential output signal switches is equal, and the difference detection method reduces the influence of rattling of the train wheel.

【0108】雑音を抑制して位置検出の信頼性を向上さ
せる別の構成を、以下に説明する。受信信号φCを、雑
音を抑制せずに飽和増幅した信号は、内部雑音まで飽和
レベルまで増幅してしまうのでスパイク状の雑音信号を
発生する。 しかし、例えば測定を続けて3回行ない、
これら3信号の多数決論理の出力をとれば、スパイク状
雑音が除去されたものになる。輪列歯車の測定は時計の
モ−タの間欠駆動の後で行えば良いから、実際の位置検
出は上記信号を間欠サンプリング検出する事になる。
Another configuration for suppressing noise and improving the reliability of position detection will be described below. A signal obtained by saturation-amplifying the received signal φC without suppressing noise also amplifies the internal noise to the saturation level, so that a spike-shaped noise signal is generated. However, for example, measurement is performed three times in a row,
If the majority logic output of these three signals is taken, the spike noise is removed. Since the measurement of the train wheel may be performed after the intermittent drive of the motor of the timepiece, the actual position detection is the intermittent sampling detection of the above signal.

【0109】さらに雑音除去の別の構成を説明する。受
信信号φCを、雑音を含んだまま増幅した検出信号はス
パイク状のノイズを含んだパルス信号となる。このパル
ス状の検出信号を公知の近似積分回路で構成される低域
周波数フィルタを通してスパイク雑音成分を除去してP
0(θ)とし、更にラッチ回路を用いて論理的に一定の短
時間△tだけ遅延したP△(θ)を作る。
Further, another configuration for removing noise will be described. The detection signal obtained by amplifying the received signal φC with noise included becomes a pulse signal containing spike-like noise. A spike noise component is removed from this pulsed detection signal through a low-pass frequency filter composed of a known approximate integration circuit to remove P.
0 (θ), and PΔ (θ) delayed by a logically constant short time Δt is created using a latch circuit.

【0110】P0(θ)とP△(θ)の反転信号の論理積を
Pdetとすると、 Pdet=P0(θ)・{/P△(θ)} は、細幅のスパイク雑音を除去した本信号のがLレベル
からHベルに変化する立ち上がりに一致したパルス幅△
tのパルスとなり、これは穴中心位置の角度を与えるも
のになる。低域フィルタ回路でスパイク雑音が充分除去
出来る場合は、穴位置検出の回路が大幅に簡素化出来
る。窓関数作成とスケルチ信号による雑音抑圧を省略出
来る。
Letting Pdet be the logical product of the inverted signals of P0 (θ) and PΔ (θ), Pdet = P0 (θ)  {/ PΔ (θ)} is a book with narrow spike noise removed. A pulse width that coincides with the rising edge of the signal changing from L level to H bell Δ
A pulse of t, which gives the angle of the hole center position. If the spike noise can be sufficiently removed by the low-pass filter circuit, the hole position detection circuit can be greatly simplified. It is possible to omit the window function creation and noise suppression by the squelch signal.

【0111】図19は、輪列歯車位置測定のタイミング
を説明する図である。時計のパルスモータ駆動の瞬間に
おいては、低消費電力の時計システムの中では平均消費
電力の100万倍もの飛び抜けた大きな瞬時電力消費を
するため、モータ駆動の間及び駆動直後では、電源の化
学電池の電圧の変動が生じる。また、駆動の瞬間には大
きな電磁雑音を発生する。従って、本発明の如き微弱電
界検出による位置検出の動作は、モータ駆動位相から充
分に離し、時間的ゆとりを持たせて実施する必要があ
る。
FIG. 19 is a diagram for explaining the timing of wheel train gear position measurement. At the moment of driving the pulse motor of the watch, in the watch system of low power consumption, a large instantaneous power consumption of 1 million times as much as the average power consumption is consumed. Voltage fluctuations occur. In addition, a large electromagnetic noise is generated at the moment of driving. Therefore, the position detection operation by the weak electric field detection as in the present invention needs to be carried out with sufficient time away from the motor drive phase.

【0112】また、微弱電界測定のために増幅回路の内
部雑音による妨害を考慮すると、位置測定そのものも、
複数回実施して、結果を多数決論理回路で処理し、最も
確からしい値を推定して用いる必要が生じる。図19に
示す測定は、モータ駆動の後、一定時間後に奇数回の位
置測定を行う場合のタイミングチャートの例を示してい
る。雑音発生範囲を避けたタイミングで奇数回測定した
検出結果の多数決によって、検出位置を決定する
Further, considering the interference due to the internal noise of the amplifier circuit for the weak electric field measurement, the position measurement itself is also
It is necessary to carry out a plurality of times, process the result with a majority logic circuit, estimate the most probable value and use it. The measurement shown in FIG. 19 shows an example of a timing chart in the case where the position measurement is performed an odd number of times after a predetermined time has elapsed after the motor is driven. The detection position is determined by the majority vote of the detection results that are measured an odd number of times while avoiding the noise generation range.

【0113】前述までの実施の形態においては、駆動輪
列によって時刻情報の位置検出を行なう構造について説
明したが、それ以外の実施の形態として、カレンダの表
示位置情報の検出にも応用できる。図20は日表示を行
なう日板301の位置検出構造を説明する略平面図であ
る。図20において日板301の表面には1〜31まで
の日表示印刷がされ、文字板の窓穴302から1つの日
表示を行なう。
In the above-mentioned embodiments, the structure for detecting the position of the time information by the driving wheel train has been described, but as another embodiment, it can be applied to the detection of the display position information of the calendar. FIG. 20 is a schematic plan view for explaining the position detecting structure of the date plate 301 for displaying the date. In FIG. 20, 1 to 31 date indications are printed on the surface of the date plate 301, and one date indication is performed from the window hole 302 of the dial.

【0114】図20においては1日を表示している。日
板301は図示していないが電気機械変換機のモータの
回転駆動が伝達されて、1日に1表示分回転駆動する。
日板301の3と4の印刷位置の上面側に送信電極30
3、304を、下面側に受信電極305を対向配置して
いる。また、日板301はプラスチック材で成形され、
その下面側には金属膜が塗布され時計ムーブに接地して
いるが、4の印刷位置の下面部分には円形306の非印
刷部を有している。
In FIG. 20, one day is displayed. Although not shown, the date dial 301 is rotationally driven by one display per day by the rotational drive of the motor of the electromechanical converter being transmitted.
The transmitting electrode 30 is provided on the upper surface side of the printing positions of 3 and 4 on the date plate 301.
3, 304 and the receiving electrode 305 are arranged to face each other on the lower surface side. In addition, the date plate 301 is formed of a plastic material,
A metal film is applied to the lower surface side of the watch move to be grounded, but the lower surface portion of the printing position of 4 has a circular non-printed portion 306.

【0115】図20の状態では送信電極304からの信
号だけが受信電極305に伝達し、送信電極303の信
号は日板301に遮蔽されて伝達しない。日板301が
一日分回転して、窓穴302に2が表示される時は、円
形306は送信電極303の位置に移動して、送信電極
303からの信号だけが受信電極305に伝達する。受
信電極305に伝達された信号の変化を読み取り、日板
301の基準位置を検出する事ができる。図示のように
日板301の位置検出を窓穴302と異なる日付位置で
行なえば、日表示に影響を与える事なく検出を行なう事
ができる。
In the state of FIG. 20, only the signal from the transmitting electrode 304 is transmitted to the receiving electrode 305, and the signal from the transmitting electrode 303 is shielded by the date plate 301 and is not transmitted. When the date plate 301 rotates for one day and 2 is displayed in the window 302, the circle 306 moves to the position of the transmitting electrode 303, and only the signal from the transmitting electrode 303 is transmitted to the receiving electrode 305. . The reference position of the date dial 301 can be detected by reading the change in the signal transmitted to the receiving electrode 305. As shown in the figure, if the position of the date plate 301 is detected at a date position different from that of the window hole 302, the date can be detected without affecting the date display.

【0116】腕時計の日板や月板や年板の位置確認が出
来ると、月末日付修正を要しない万年暦組込の腕時計が
簡単な機構で実現する。検出タイミングは夜中近傍に限
定して良い。検出の角度許容誤差も大である。従って、
送受信電極が2個ないし1個の振幅検出やインピーダン
ス検出が利用できる。電波修正腕時計の初期設定では、
受信情報に基づいて電気時刻系を瞬時に書き換え、次に
機械的時刻を電気時刻に同期させる事が必要になる。
If the positions of the date plate, the moon plate and the year plate of the wristwatch can be confirmed, the wristwatch incorporating the perennial calendar which does not require the end-of-month date correction can be realized by a simple mechanism. The detection timing may be limited to the vicinity of midnight. The detection angle tolerance is also large. Therefore,
Amplitude detection or impedance detection with two or one transmission / reception electrodes can be used. In the initial setting of the radio-controlled watch,
It is necessary to instantly rewrite the electric time system based on the received information and then synchronize the mechanical time with the electric time.

【0117】年月日時分の修正を秒の早送りで行うと多
大の時間が掛かるが、秒と時分と年月日の3ブロックに
分けて並列的に修正を行うとすれば画期的に速く初期記
憶設定が実現出来る。このような大幅な時刻シフトは電
源電池接続直後の様に発生頻度が数年に1回程度と低い
ため、時分秒を高速駆動しながら輪列送受信電極検出を
連続動作させ、歯車に刻み込んだコード穴を光学的に時
系列コードとして読み取る簡便手法でも良い。
It takes a lot of time to correct the year / month / day date / time by fast-forwarding seconds, but if the correction is divided into three blocks of seconds / hour / minute / year / month / day in parallel, it is epoch-making. The initial memory setting can be realized quickly. Since such a large time shift occurs only once every few years, such as immediately after connecting the power battery, the train wheel transmission / reception electrode detection is continuously operated while driving the hour / minute / second at high speed, and it is engraved in the gear. A simple method of optically reading the code hole as a time series code may be used.

【0118】[0118]

【発明の効果】以上、実施例に基づいて説明した如く、
腕時計の機械位置情報を、非接触、低電流、低電圧、省
スペース、低コストで実現でき、更には経時劣化の心配
のない高信頼性を有して実現できた。その結果、高信頼
保持時刻の腕時計・短時間時刻修正機能付電波修正腕時
計・月末自動修正機能付腕時計の実現や、大型指針の使
用のために、今まで必要とされながらも実現出来なかっ
た電場検出式薄型輪列位置検出機構が、本発明による輪
列通過複数伝送路を用いた差分検出法により、実現可能
となった。
As described above with reference to the embodiments,
The mechanical position information of the wristwatch can be realized without contact, with low current, low voltage, space saving, and low cost, and also with high reliability without fear of deterioration over time. As a result, due to the realization of watches with highly reliable holding time, radio-controlled watches with short time correction functions, and watches with automatic end-of-month correction functions, and the use of large hands, electric fields that have been required but could not be realized until now. A detection type thin train wheel position detection mechanism can be realized by the difference detection method using a plurality of train wheel passing multiple transmission paths according to the present invention.

【0119】従来考えられたような単一電場の直接検出
の手法では、電場の空間的強度変化を検出する原理を利
用となるので、電場の空間依存の強度変化は滑らかであ
り、輪列の特定点の鋭敏な検出は不可能である。また輪
列のクリアランスに起因する電場強度の時計姿勢差依存
性が大のために位置検出には使用出来なかった。これら
の隘路を、本発明の複数伝送路差分検出方式では解決し
ている。特に位相の差分を利用する事により、位相検波
回路と組み合わせて特定点通過で検出信号の振幅あるい
は極性が0を横切るように出来、空間位置の鋭敏検出の
設計が可能となった。また、差分検出により時計の姿勢
差の影響を軽減出来た。
Since the method of directly detecting a single electric field as conventionally considered uses the principle of detecting the spatial intensity change of the electric field, the spatially dependent intensity change of the electric field is smooth, and Sensitive detection of specific points is impossible. In addition, it could not be used for position detection because the electric field strength due to the clearance of the train wheel has a large dependency on the timepiece attitude. These bottlenecks are solved by the multiple transmission line difference detection method of the present invention. In particular, by utilizing the phase difference, the amplitude or polarity of the detection signal can be made to cross 0 when passing through a specific point in combination with a phase detection circuit, and it becomes possible to design sensitive detection of spatial position. Moreover, the influence of the difference in the attitude of the timepiece can be reduced by the difference detection.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の信号変調構造の概略を示す略平面図で
ある。
FIG. 1 is a schematic plan view showing an outline of a signal modulation structure of the present invention.

【図2】本発明の信号変調構造の概略を示す図1の略断
面図である。
2 is a schematic cross-sectional view of FIG. 1 showing an outline of a signal modulation structure of the present invention.

【図3】本発明の信号の変調経過を示す波形図である。FIG. 3 is a waveform diagram showing a modulation process of a signal of the present invention.

【図4】本発明の検出信号の振幅と位相特性を示す説明
図である。
FIG. 4 is an explanatory diagram showing amplitude and phase characteristics of a detection signal of the present invention.

【図5】本発明の各種の信号伝達経路を示す説明図であ
る。
FIG. 5 is an explanatory diagram showing various signal transmission paths of the present invention.

【図6】本発明を時計に応用した実施形態の斜視図であ
る。
FIG. 6 is a perspective view of an embodiment in which the present invention is applied to a timepiece.

【図7】本発明を時計に応用した時の、検出車の別の実
施形態を示す斜視図である。
FIG. 7 is a perspective view showing another embodiment of a detection wheel when the present invention is applied to a timepiece.

【図8】本発明を時計に応用した実施形態の時計システ
ム全体のブロック図である。
FIG. 8 is a block diagram of an entire timepiece system of an embodiment in which the present invention is applied to a timepiece.

【図9】本発明を時計に応用した実施形態の、送信回路
の回路図である。
FIG. 9 is a circuit diagram of a transmission circuit of an embodiment in which the present invention is applied to a timepiece.

【図10】本発明を時計に応用した実施形態の、変調機
構の等価回路と受信回路の回路図である。
FIG. 10 is a circuit diagram of an equivalent circuit of a modulation mechanism and a receiving circuit according to an embodiment in which the present invention is applied to a timepiece.

【図11】本発明を時計に応用した実施形態の、各部の
信号波形を示す波形図である。
FIG. 11 is a waveform diagram showing signal waveforms of various parts in the embodiment in which the present invention is applied to a timepiece.

【図12】本発明を時計に応用した実施形態の、受信信
号の位相検波を行なう回路図である。
FIG. 12 is a circuit diagram for performing phase detection of a received signal in an embodiment in which the present invention is applied to a timepiece.

【図13】本発明を時計に応用した実施形態の、検波結
果の出力である検出信号の波形図である。
FIG. 13 is a waveform diagram of a detection signal which is an output of a detection result of an embodiment in which the present invention is applied to a timepiece.

【図14】本発明を時計に応用した実施形態の、別の検
波機構に用いる電荷蓄積コンデンサの対接地電圧の出力
図である。
FIG. 14 is an output diagram of the voltage to ground of a charge storage capacitor used in another detection mechanism according to an embodiment in which the present invention is applied to a timepiece.

【図15】本発明を時計に応用した実施形態の、別の検
波機構の回路図である。
FIG. 15 is a circuit diagram of another detection mechanism of an embodiment in which the present invention is applied to a timepiece.

【図16】本発明を時計に応用した実施形態の、雑音制
御回路の回路図およびブロック図である。
FIG. 16 is a circuit diagram and a block diagram of a noise control circuit of an embodiment in which the present invention is applied to a timepiece.

【図17】本発明を時計に応用した実施形態の、別の雑
音制御回路の回路図およびブロック図である。
FIG. 17 is a circuit diagram and a block diagram of another noise control circuit according to an embodiment in which the present invention is applied to a timepiece.

【図18】本発明の複数伝送路の各単独伝送路検出出力
と差分出力特性を示す図である。
FIG. 18 is a diagram showing the individual transmission line detection output and differential output characteristics of a plurality of transmission lines of the present invention.

【図19】本発明の時計のモータ駆動と輪列位置検出の
タイミング関係を示す図である
FIG. 19 is a diagram showing a timing relationship between motor drive and wheel train position detection of the timepiece of the invention.

【図20】本発明をカレンダ表示時計に応用した実施の
形態の、日板部分を示す平面図である。
FIG. 20 is a plan view showing a date portion of an embodiment in which the present invention is applied to a calendar display timepiece.

【符号の説明】[Explanation of symbols]

1 送信電極 2 送信電極 3 回転体 4 受信電極 5 穴 41 送信電極 42 送信電極 43 検出車 44 受信電極 45 穴 47 四番車 1 transmitter electrode 2 Transmitting electrode 3 rotating bodies 4 receiving electrodes 5 holes 41 Transmitting electrode 42 Transmitting electrode 43 Detection vehicle 44 Receiving electrode 45 holes 47 Fourth wheel

フロントページの続き (72)発明者 岩倉 良樹 東京都西東京市田無町六丁目1番12号 シ チズン時計株式会社内 (72)発明者 五十嵐 清貴 東京都西東京市田無町六丁目1番12号 シ チズン時計株式会社内 Fターム(参考) 2F077 AA36 AA38 AA41 AA42 CC02 NN02 NN23 PP10 PP21 QQ11 TT04 TT06 TT21 TT62 TT82 2F082 AA01 DD06 FF01 FF10 GG00Continued front page    (72) Inventor Yoshiki Iwakura             6-12 Tanashi-cho, Nishi-Tokyo, Tokyo             Chisun Watch Co., Ltd. (72) Inventor Kiyoshi Igarashi             6-12 Tanashi-cho, Nishi-Tokyo, Tokyo             Chisun Watch Co., Ltd. F term (reference) 2F077 AA36 AA38 AA41 AA42 CC02                       NN02 NN23 PP10 PP21 QQ11                       TT04 TT06 TT21 TT62 TT82                 2F082 AA01 DD06 FF01 FF10 GG00

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】輪列等の角度回転位置の検出機構を有する
電気時計において、電場をキャリアとする複数の送信信
号を整形する送信回路機構と、該送信回路機構により成
形された前記出力信号を出力する送信電極と、該送信電
極と非接触に近接配置され、回転または往復運動により
前記複数の送信信号に変調を与える信号変調部材と、該
信号変調部材と非接触に近接配置され、該信号変調部材
によって変調された前記複数の送信信号を受信する受信
電極と、該受信電極に受信した受信信号を入力する受信
回路機構と、該受信回路機構に受信した前記受信信号の
電場伝搬特性により、前記信号変調部材の機械的位置情
報を検出する検波回路機構とを備えた事を特徴とする電
気時計。
1. An electric timepiece having a mechanism for detecting an angular rotation position of a train wheel or the like, wherein a transmission circuit mechanism for shaping a plurality of transmission signals using an electric field as a carrier and the output signal formed by the transmission circuit mechanism are provided. A transmitting electrode for outputting, a signal modulating member which is arranged in non-contact proximity to the transmitting electrode and which modulates the plurality of transmission signals by rotation or reciprocating motion, and a signal modulating member which is arranged in non-contact proximity to the signal modulating member. A receiving electrode that receives the plurality of transmission signals modulated by the modulation member, a receiving circuit mechanism that inputs the received signal received by the receiving electrode, and an electric field propagation characteristic of the received signal that is received by the receiving circuit mechanism, An electric timepiece comprising a detection circuit mechanism for detecting mechanical position information of the signal modulation member.
【請求項2】前記検波回路機構は位相検波回路機構であ
り、前記変調部材によって変調された受信信号の位相情
報から前記信号変調部材の機械的位置情報を検出するこ
とを特徴とする請求項1記載の電気時計。
2. The detection circuit mechanism is a phase detection circuit mechanism, and detects the mechanical position information of the signal modulation member from the phase information of the reception signal modulated by the modulation member. The listed electric clock.
【請求項3】前記検波回路機構は振幅検波回路機構であ
り、前記変調部材によって変調された受信信号の相対的
強度情報から前記信号変調部材の機械的位置情報を検出
することを特徴とする請求項1記載の電気時計。
3. The detection circuit mechanism is an amplitude detection circuit mechanism, and detects mechanical position information of the signal modulation member from relative intensity information of a reception signal modulated by the modulation member. The electric timepiece according to item 1.
【請求項4】前記検波回路機構は位相検波回路機構と振
幅検波回路機構とを共に備え、前記信号変調部材によっ
て変調された受信信号の相対強度情報から前記変調部材
の機械的位置情報の検出範囲を概略定め、前記信号変調
部材によって変調された受信信号の位相情報から前記信
号変調部材の位置情報を検出することを特徴とする請求
項1記載の電気時計。
4. The detection circuit mechanism includes both a phase detection circuit mechanism and an amplitude detection circuit mechanism, and a detection range of mechanical position information of the modulation member from relative intensity information of a reception signal modulated by the signal modulation member. 2. The electric timepiece according to claim 1, wherein the position information of the signal modulating member is detected from the phase information of the reception signal modulated by the signal modulating member.
【請求項5】前記複数の送信信号は、位相の異なる同一
周波数信号である事を特徴とする請求項1記載の電気時
計。
5. The electric timepiece according to claim 1, wherein the plurality of transmission signals are same frequency signals having different phases.
【請求項6】前記複数の送信信号は、周波数の異なる同
期関係にある信号である事を特徴とする請求項1記載の
電気時計。
6. The electric timepiece according to claim 1, wherein the plurality of transmission signals are signals having different frequencies and having a synchronous relationship.
【請求項7】前記複数の送信信号は、正弦波または正弦
波と近似形状の波形である事を特徴とする請求項1記載
の電気時計。
7. The electric timepiece according to claim 1, wherein each of the plurality of transmission signals has a sine wave or a waveform similar to a sine wave.
【請求項8】前記位相検波回路機構は位相検波の基準と
なる位相基準信号に対して、前記変調部材によって変調
された受信信号の位相が進んでいるか、あるいは遅れて
いるかによって位相検波の出力の電圧を変化させる事を
特徴とする請求項1記載の電気時計。
8. The phase detection circuit mechanism outputs a phase detection output depending on whether the phase of a reception signal modulated by the modulation member is advanced or delayed with respect to a phase reference signal serving as a reference for phase detection. The electric timepiece according to claim 1, wherein the voltage is changed.
【請求項9】前記位相検波回路機構は、位相基準信号に
対して前記変調部材によって変調された受信信号との位
相差をパルス幅とするパルス信号を出力するパルス発生
手段と、位相基準信号に対して前記受信信号の位相の遅
れ進みを検出して出力する遅れ進み検出手段と、該遅れ
進み出力により前記パルス信号のパルス幅に比例した電
荷量をコンデンサへの充電あるいは放電を切り替える、
充放電切り替え手段と、前記コンデンサの端子電圧を予
め設定された電圧で比較し出力する電圧検出手段とを有
する事を特徴とする請求項1記載の電気時計。
9. The phase detection circuit mechanism includes pulse generating means for outputting a pulse signal having a pulse width of a phase difference between the phase reference signal and a reception signal modulated by the modulating member, and a phase reference signal. On the other hand, a delay / advance detection means for detecting and outputting a delay / advance of the phase of the received signal, and switching the charging or discharging of the capacitor with the amount of charge proportional to the pulse width of the pulse signal by the delay / advance output,
The electric timepiece according to claim 1, further comprising a charge / discharge switching means and a voltage detecting means for comparing and outputting a terminal voltage of the capacitor at a preset voltage.
【請求項10】前記信号変調部材は、形状もしくは構成
部材の一部を電気伝導度あるいは誘電率が他の部分と異
なる構造とした事を特徴とする請求項1記載の電気時
計。
10. The electric timepiece according to claim 1, wherein the signal modulating member has a shape or a structure in which a part of the constituent member has a structure different in electric conductivity or dielectric constant from other parts.
【請求項11】前記信号変調部材は、導電性の金属材料
から成り、その一部に穴または切欠または凹凸形状を有
する構造とした事を特徴とする請求項1記載の電気時計
11. The electric timepiece according to claim 1, wherein the signal modulation member is made of a conductive metal material, and has a structure having a hole, a notch, or an uneven shape in a part thereof.
【請求項12】前記信号変調部材は、プラスチック等の
非導電性部材と、導電性の金属材料から成り、該金属材
料の一部に穴または切欠または凹凸形状を有する構造と
した事を特徴とする請求項1記載の電気時計。
12. The signal modulation member is made of a non-conductive member such as plastic and a conductive metal material, and has a structure in which a part of the metal material has a hole, a notch, or an uneven shape. The electric timepiece according to claim 1.
【請求項13】前記信号変調部材は、プラスチック等の
非導電性部材から成り、該非導電性部材の一部に、金属
メッキを施した事を特徴とする請求項1記載の電気時
計。
13. The electric timepiece according to claim 1, wherein the signal modulating member is made of a non-conductive member such as plastic, and a part of the non-conductive member is plated with metal.
【請求項14】前記信号変調部材は、電気機械変換機に
よって駆動される回転運動を指針表示まで伝達する輪列
の一部で構成され、前記信号変調部材の機械的位置情報
によって、前記輪列の基準位置を検出する機構を有する
事を特徴とする請求項1記載の電気時計。
14. The train wheel is constituted by a part of a train wheel for transmitting a rotary motion driven by an electromechanical converter to a pointer display, and the train wheel train is constituted by mechanical position information of the train signal modulator. 2. The electric timepiece according to claim 1, further comprising a mechanism for detecting the reference position of.
【請求項15】前記信号変調部材は、電気機械変換機に
よって駆動される回転運動を日付表示まで伝達する輪列
の一部または日付表示板で構成され、前記信号変調部材
の機械的位置情報によって、日表示板の基準位置を検出
し、時計回路に保持された電気的カレンダ情報によっ
て、小の月の月末非存日を自動的に排除する月末自動修
正機能を有する事を特徴とする請求項1記載の電気時
計。
15. The signal modulating member is constituted by a part of a train wheel or a date display plate for transmitting a rotational movement driven by an electromechanical converter up to a date display. , A standard month end correction function for automatically eliminating a month end nonexistent day of a small month by detecting the reference position of the date display board and the electric calendar information held in the clock circuit. The electric timepiece described in 1.
JP2002056936A 2002-03-04 2002-03-04 Electric clock Expired - Fee Related JP4215438B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2002056936A JP4215438B2 (en) 2002-03-04 2002-03-04 Electric clock
US10/493,898 US7436737B2 (en) 2002-03-04 2003-03-04 Electric timepiece
EP03743595A EP1482282B1 (en) 2002-03-04 2003-03-04 Electric timepiece
DE60318689T DE60318689T2 (en) 2002-03-04 2003-03-04 ELECTRIC CLOCK
PCT/JP2003/002493 WO2003074976A1 (en) 2002-03-04 2003-03-04 Electric timepiece

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002056936A JP4215438B2 (en) 2002-03-04 2002-03-04 Electric clock

Publications (2)

Publication Number Publication Date
JP2003255061A true JP2003255061A (en) 2003-09-10
JP4215438B2 JP4215438B2 (en) 2009-01-28

Family

ID=28667324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002056936A Expired - Fee Related JP4215438B2 (en) 2002-03-04 2002-03-04 Electric clock

Country Status (1)

Country Link
JP (1) JP4215438B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012154873A (en) * 2011-01-28 2012-08-16 Citizen Holdings Co Ltd Clock with pointer position detection function
CN103181080A (en) * 2009-12-11 2013-06-26 微晶片科技德国第二公司 Device and method for detecting a hand-held device being clasped by a hand
JP2013160771A (en) * 2012-02-08 2013-08-19 Swatch Group Research & Development Ltd Device for detecting and synchronizing position of wheel of clock mechanism
JP2016118559A (en) * 2014-12-23 2016-06-30 ウーテーアー・エス・アー・マニファクチュール・オロロジェール・スイス Electromechanical apparatus comprising capacitive device for detection of angular position of wheel set, and method for detection of angular position of wheel set
JP2019032309A (en) * 2017-08-04 2019-02-28 ウーテーアー・エス・アー・マニファクチュール・オロロジェール・スイス Timepiece movement with device detecting angle location of wheel
JP2019148512A (en) * 2018-02-27 2019-09-05 セイコーエプソン株式会社 Movement and watch
JP2019148513A (en) * 2018-02-27 2019-09-05 セイコーエプソン株式会社 Movement and watch
WO2022186386A1 (en) * 2021-03-05 2022-09-09 株式会社リベックス Position sensor
JP7474184B2 (en) 2020-11-19 2024-04-24 株式会社ミツバ Motor Control Device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103181080A (en) * 2009-12-11 2013-06-26 微晶片科技德国第二公司 Device and method for detecting a hand-held device being clasped by a hand
JP2012154873A (en) * 2011-01-28 2012-08-16 Citizen Holdings Co Ltd Clock with pointer position detection function
JP2013160771A (en) * 2012-02-08 2013-08-19 Swatch Group Research & Development Ltd Device for detecting and synchronizing position of wheel of clock mechanism
JP2016118559A (en) * 2014-12-23 2016-06-30 ウーテーアー・エス・アー・マニファクチュール・オロロジェール・スイス Electromechanical apparatus comprising capacitive device for detection of angular position of wheel set, and method for detection of angular position of wheel set
JP2019032309A (en) * 2017-08-04 2019-02-28 ウーテーアー・エス・アー・マニファクチュール・オロロジェール・スイス Timepiece movement with device detecting angle location of wheel
JP2019148513A (en) * 2018-02-27 2019-09-05 セイコーエプソン株式会社 Movement and watch
JP2019148512A (en) * 2018-02-27 2019-09-05 セイコーエプソン株式会社 Movement and watch
US11209778B2 (en) 2018-02-27 2021-12-28 Seiko Epson Corporation Movement and timepiece
US11262705B2 (en) 2018-02-27 2022-03-01 Seiko Epson Corporation Movement and timepiece
JP7102778B2 (en) 2018-02-27 2022-07-20 セイコーエプソン株式会社 Watch movements and watches
JP7130982B2 (en) 2018-02-27 2022-09-06 セイコーエプソン株式会社 Watch movements and watches
JP7474184B2 (en) 2020-11-19 2024-04-24 株式会社ミツバ Motor Control Device
WO2022186386A1 (en) * 2021-03-05 2022-09-09 株式会社リベックス Position sensor

Also Published As

Publication number Publication date
JP4215438B2 (en) 2009-01-28

Similar Documents

Publication Publication Date Title
JP3596464B2 (en) Timing device and control method of timing device
WO1999027423A1 (en) Electronic device and method for controlling electronic device
US9664534B2 (en) Electromechanical apparatus comprising a capacitive device for detection of the angular position of a wheel set, and method for detection of the angular position of a wheel set
JP5578103B2 (en) Electronic timepiece and reception control method for electronic timepiece
US7102964B2 (en) Time keeping apparatus and control method therefor
US7436737B2 (en) Electric timepiece
JP4215438B2 (en) Electric clock
US7079451B2 (en) Time measurement device and method of controlling the time measurement device
JP4846184B2 (en) Electric clock timing mechanism
US6278663B1 (en) Electronic apparatus and control method for electronic apparatus
JPH11223682A (en) Electronic equipment, control method for electronic equipment, timer and control method for timer
CN205750317U (en) A kind of Intelligent core, intelligent watch and gear train drive ripple test device
JP2001166071A (en) Clocking device and its control method
JP2004163128A (en) Position detecting system for electric timepiece
JP2002214367A (en) Clocking device
JP4377111B2 (en) Electric clock position detection system
KR100878153B1 (en) Clock for automatically correcting time error
JP4361255B2 (en) Electric clock position detection system
JP2001166076A (en) Clocking device and its control method
CN2586995Y (en) Automatic adjusting clock
EP2711789B1 (en) Electronic timepiece
JP2004233132A (en) Position detection system for electric clock
CN201355429Y (en) 12 digital display electronic watch chip with analog-digital watch and back light function
JP2000346961A (en) Portable electronic equipment and method for controlling the same
JP2004157142A (en) Timepiece device, and control method for the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081028

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081104

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4215438

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131114

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees