JP2003254902A - Method and device for observing three dimensional localization of in vivo expressed gene - Google Patents

Method and device for observing three dimensional localization of in vivo expressed gene

Info

Publication number
JP2003254902A
JP2003254902A JP2002057935A JP2002057935A JP2003254902A JP 2003254902 A JP2003254902 A JP 2003254902A JP 2002057935 A JP2002057935 A JP 2002057935A JP 2002057935 A JP2002057935 A JP 2002057935A JP 2003254902 A JP2003254902 A JP 2003254902A
Authority
JP
Japan
Prior art keywords
image
biological sample
observing
gene
marker
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002057935A
Other languages
Japanese (ja)
Other versions
JP3796623B2 (en
Inventor
Hideo Yokota
秀夫 横田
Sakiko Nakamura
佐紀子 中村
Atsushi Yoshiki
淳 吉木
Akitake Makinouchi
昭武 牧野内
Toshiro Higuchi
俊郎 樋口
Ryutaro Himeno
龍太郎 姫野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN Institute of Physical and Chemical Research
Original Assignee
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research filed Critical RIKEN Institute of Physical and Chemical Research
Priority to JP2002057935A priority Critical patent/JP3796623B2/en
Priority to US10/377,671 priority patent/US7280680B2/en
Publication of JP2003254902A publication Critical patent/JP2003254902A/en
Application granted granted Critical
Publication of JP3796623B2 publication Critical patent/JP3796623B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To observe localization of an in vivo expressed gene in the whole of one individual of an organism such as an animal or a plant. <P>SOLUTION: A gene recombined organism sample having a marker detectable when a specific gene is expressed is sequentially cut, and a sectional image forming the image of a cut surface is picked up for every cut of the organism sample. The three dimensional localization of the expressed gene in the organism sample is observed by observing the three dimensional organism sample based on the image picked up for every cut. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、生体内発現遺伝子
の3次元局在の観察方法およびその装置に関し、さらに
詳細には、動物や植物などの生体内において各種遺伝子
の発現状況を観察する際に用いて好適な生体内発現遺伝
子の3次元局在の観察方法およびその装置に関する。
TECHNICAL FIELD The present invention relates to a method and apparatus for observing the three-dimensional localization of a gene expressed in a living body, and more specifically, when observing the expression status of various genes in a living body such as an animal or a plant. The present invention relates to a method for observing the three-dimensional localization of an in vivo expressed gene and a device therefor.

【0002】[0002]

【発明の背景】従来、生体内部で発現した遺伝子、即
ち、生体内発現遺伝子の局在を観察するにあたっては、
試料となる生体(本明細書においては、「試料となる生
体」を「生体試料」と適宜に称することとする。)を切
片化し、切片化した生体試料を観察することにより、生
体試料内における発現遺伝子の2次元配置を観察すると
いう手法がとられていた。
BACKGROUND OF THE INVENTION Conventionally, in observing the localization of genes expressed in vivo, that is, genes expressed in vivo,
A living body to be a sample (in the present specification, the “living body to be a sample” will be appropriately referred to as a “biological sample”) is sectioned, and the sectioned biological sample is observed, thereby A method of observing the two-dimensional arrangement of expressed genes has been adopted.

【0003】また、上記したような観察手法を行う際
に、観察対象となる遺伝子に対して発現時に検出が可能
となるマーカー(標識)を組み込み、このマーカーを組
み込んだ遺伝子を有する遺伝子組み換え生体試料を観察
するようにして、生体試料内部における特定の遺伝子の
発現部位を分別することが可能になってきている。
When performing the above-mentioned observation method, a gene (recombinant) biological sample having a marker (label) which can be detected at the time of expression is incorporated into the gene to be observed, and the gene having the marker is incorporated. It is becoming possible to separate the expression site of a specific gene in a biological sample by observing.

【0004】なお、マーカーとしては、蛍光物質、発光
物質あるいは色素などを用いることができ、具体的に
は、GFP、EGFP、YFP、RFP、ルシフェリ
ン、メラニン色素などがある。
As the marker, a fluorescent substance, a luminescent substance, a dye or the like can be used, and specific examples thereof include GFP, EGFP, YFP, RFP, luciferin and melanin dye.

【0005】これらの観察には、比較的大きなマクロ観
察では実体顕微鏡が用いられているが、生体試料全体を
透かしてみることから観察可能な範囲が限定されている
とともに、微小な部位の観察が困難であり分解能が悪い
という問題点があった。
For these observations, a stereomicroscope is used for relatively large macro observations, but the observable range is limited because the entire biological sample is seen through, and it is also possible to observe minute parts. It was difficult and the resolution was poor.

【0006】このため、従来の観察手法によってでは、
生体一個体全体における生体内発現遺伝子の局在を観察
することが極めて困難であるという問題点があった。
Therefore, according to the conventional observation method,
There has been a problem that it is extremely difficult to observe the localization of a gene expressed in a living body as a whole.

【0007】また、切片化して発現遺伝子を観察する方
法として、「in−situ Hybridizati
on」が有るが、この方法では、蛍光物質や色素などの
マーカーを生体試料内部に浸透させる必要があり、生体
試料内部を均一に染色することは困難であった。
As a method for observing the expressed gene by sectioning, "in-situ Hybridizati" is used.
However, with this method, it is necessary to permeate a marker such as a fluorescent substance or a dye into the inside of the biological sample, and it is difficult to uniformly stain the inside of the biological sample.

【0008】[0008]

【発明が解決しようとする課題】本発明は、上記したよ
うな従来の技術の有する問題点に鑑みてなされたもので
あり、その目的とするところは、動物や植物などの生体
一個体全体における生体内発現遺伝子の局在を観察する
ことを可能にした生体内発現遺伝子の3次元局在の観察
方法およびその装置を提供しようとするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the problems of the above-mentioned conventional techniques, and its object is to provide a single living organism such as an animal or a plant. An object of the present invention is to provide a method and apparatus for observing the three-dimensional localization of an in vivo expressed gene, which makes it possible to observe the localization of an in vivo expressed gene.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、本発明による生体内発現遺伝子の3次元局在の観察
方法あるいはその装置においては、特定の遺伝子の発現
時に検出が可能となるマーカーを有する遺伝子組み換え
生体試料を連続して切断し、当該切断毎にその切断面の
画像たる断面画像を観察することを繰り返して、生体試
料内部の3次元構造を再構築することにより生体試料体
内での発現遺伝子の3次元局在を観察するようにしたも
のである。
To achieve the above object, in the method for observing the three-dimensional localization of an in vivo expressed gene or its apparatus according to the present invention, a marker that can be detected when a specific gene is expressed. In the biological sample body by continuously cutting a genetically modified biological sample having the following, and observing a cross-sectional image that is an image of the cut surface for each cutting, to reconstruct a three-dimensional structure inside the biological sample. The three-dimensional localization of the expressed gene is observed.

【0010】即ち、本発明のうち請求項1に記載の発明
は、特定の遺伝子の発現時に検出が可能となるマーカー
を有する遺伝子組み換え生体試料を連続して切断し、上
記生体試料の切断毎に該切断面の画像たる断面画像を撮
像し、上記切断毎に撮像した画像に基づいて3次元的な
上記生体試料の観察を行うことにより、上記生体試料体
内での発現遺伝子の3次元局在を観察するようにしたも
のである。
That is, the invention according to claim 1 of the present invention continuously cuts a genetically modified biological sample having a marker that can be detected when a specific gene is expressed, and every time the biological sample is cut, By taking a cross-sectional image that is an image of the cut surface and observing the biological sample three-dimensionally based on the image taken for each cutting, the three-dimensional localization of the expressed gene in the biological sample body is confirmed. It was made to be observed.

【0011】また、本発明のうち請求項2に記載の発明
は、特定の遺伝子の発現時に検出が可能となるマーカー
を有する遺伝子組み換え生体試料と、上記生体試料を連
続して切断する切断手段と、上記生体試料の切断毎に該
切断面の画像たる断面画像を撮像する撮像手段と、上記
撮像手段が撮像した画像に基づいて3次元的な上記生体
試料の画像を生成する画像処理手段とを有し、上記画像
処理手段が生成した3次元的な上記生体試料の画像の観
察を行うことにより、上記生体試料体内での発現遺伝子
の3次元局在を観察するようにしたものである。
Further, the invention according to claim 2 of the present invention comprises a genetically modified biological sample having a marker which can be detected when a specific gene is expressed, and a cutting means for continuously cutting the biological sample. An image pickup unit that picks up a cross-sectional image that is an image of the cut surface every time the biological sample is cut, and an image processing unit that generates a three-dimensional image of the biological sample based on the image picked up by the image pickup unit. By observing the three-dimensional image of the biological sample generated by the image processing means, the three-dimensional localization of the expressed gene in the biological sample body is observed.

【0012】[0012]

【発明の実施の形態】以下、添付の図面に基づいて、本
発明による生体内発現遺伝子の3次元局在の観察方法お
よびその装置の実施の形態の一例を詳細に説明するもの
とする。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the method for observing the three-dimensional localization of an in vivo expressed gene and the apparatus therefor according to the present invention will be described below in detail with reference to the accompanying drawings.

【0013】図1には、本発明による生体内発現遺伝子
の3次元局在の観察装置の実施の形態の一例を示す概念
構成説明図が示されている。
FIG. 1 is a conceptual structural explanatory view showing an example of an embodiment of an apparatus for observing the three-dimensional localization of a gene expressed in vivo according to the present invention.

【0014】この本発明による生体内発現遺伝子の3次
元局在の観察装置(以下、「本装置」と適宜に称す
る。)は、観察対象の試料たる生体試料として、特定の
遺伝子の発現時に検出が可能となるマーカーを組み込ん
だ遺伝子を有する遺伝子組み換え体を用いる。
The apparatus for observing the three-dimensional localization of an in-vivo expressed gene according to the present invention (hereinafter appropriately referred to as "the present apparatus") is detected as a biological sample as an observation target when a specific gene is expressed. A gene recombinant having a gene incorporating a marker that enables

【0015】ここで、上記した特定の遺伝子の発現時に
検出が可能となるマーカーを有する遺伝子組み換え体を
作出するにあたっては、例えば、卵細胞に組み換えDN
Aをインジェクションする手法を用いてもよいし、ま
た、集合キメラにより組み換え遺伝子体を作出する手法
を用いてもよい。
Here, when producing a gene recombinant having a marker that can be detected when the above-mentioned specific gene is expressed, for example, recombinant DN is added to egg cells.
A method of injecting A may be used, or a method of producing a recombinant gene body by an assembly chimera may be used.

【0016】即ち、本発明において生体試料として用い
られる遺伝子組み換え体は、どのような手法により作出
されたものでもよく、本発明はその作出の手法に制限さ
れるものではない。
That is, the gene recombinant used in the present invention as a biological sample may be produced by any method, and the present invention is not limited to the production method.

【0017】また、マーカーとしては、従来より公知の
蛍光物質、発光物質あるいは色素などを用いることがで
き、具体的には、GFP、EGFP、YFP、RFP、
ルシフェリン、メラニン色素などを用いればよい。しか
しながら、マーカーについても、上記したものに限定さ
れるものではなく、特定の遺伝子の発現時に検出が可能
となるものであるならば、上記以外の物質を適宜に用い
ることができる。
As the marker, a conventionally known fluorescent substance, luminescent substance, dye or the like can be used. Specifically, GFP, EGFP, YFP, RFP,
Luciferin, melanin pigment, etc. may be used. However, the markers are not limited to those described above, and substances other than those described above can be used as appropriate as long as they can be detected when a specific gene is expressed.

【0018】なお、マーカーの検出にあたっては、例え
ば、電磁波を用いるようにすればよい。具体的には、電
磁波として白色光を用いる場合には、幅広い波長の光を
当てて反射してきた特定の波長を検出するものであるた
め、マーカーとして色素を用いる場合には白色光での観
察が可能となる。即ち、マーカーとして色素を用いる場
合には、非特異的な波長の電磁波を照射して、特異的な
波長の電磁波を受けて検出する。
Incidentally, in detecting the marker, for example, electromagnetic waves may be used. Specifically, when white light is used as the electromagnetic wave, it is to detect a specific wavelength reflected by applying light of a wide wavelength, so when using a dye as a marker, it is possible to observe with white light. It will be possible. That is, when a dye is used as a marker, an electromagnetic wave having a non-specific wavelength is irradiated and an electromagnetic wave having a specific wavelength is received and detected.

【0019】また、マーカーとして発光する物質を用い
る場合には、電磁波を照射する必要はなく、特異的な波
長の電磁波を受けて検出する。
When a substance that emits light is used as the marker, it is not necessary to irradiate the electromagnetic wave, and the electromagnetic wave having a specific wavelength is received for detection.

【0020】さらに、マーカーとして蛍光色素を用いる
場合には、特異的な波長の電磁波を照射して、特異的な
波長の電磁波を受けて検出する。
Further, when a fluorescent dye is used as the marker, an electromagnetic wave having a specific wavelength is irradiated and an electromagnetic wave having a specific wavelength is received and detected.

【0021】図1に示す本装置は、マーカーとして生体
内で発現したときに所定の波長の光を照射すると励起さ
れることにより発光したり発色したりして他の遺伝子と
異なる振る舞いをする蛍光物質を組み込んだ遺伝子を有
する遺伝子組み換え体よりなる生体試料(以下、「マー
カー組み込み遺伝子組み換え生体試料」と適宜に称す
る。)をナイフにより切断して、当該マーカー組み込み
遺伝子組み換え生体試料の断面を作成する切断手段とし
ての断面作成装置(スライサ)10と、断面作成装置1
0により作成されたマーカー組み込み遺伝子組み換え生
体試料の断面に対して、当該マーカー組み込み遺伝子組
み換え生体試料のマーカーを励起するための所定の波長
の光を照射する光源12と、断面作成装置10に作成さ
れるとともに光源12によって所定の波長の光を照射さ
れたマーカー組み込み遺伝子組み換え生体試料の断面の
画像を撮像するCCDカメラ14などにより構成される
撮像手段としての断面画像観察部と、断面画像観察部に
より撮像されたマーカー組み込み遺伝子組み換え生体試
料の断面の画像を記憶する画像記録装置16と、断面作
成装置10ならびに画像記録装置16の動作を制御する
ための制御信号を出力するパーソナルコンピュータなど
により構成される制御装置18と、画像記録装置16に
記録されたマーカー組み込み遺伝子組み換え生体試料の
断面の画像に対する画像処理を行って任意の断面や立体
画像(3次元画像)などの処理画像を生成する画像処理
手段としての画像処理装置(グラフィックワークステー
ション)20と、画像記録装置16に記録されたマーカ
ー組み込み遺伝子組み換え生体試料の断面の画像や画像
処理装置20により処理された任意の断面や立体像(3
次元像)などの処理画像を表示するモニタ22とを有
し、観察者24はモニタ22を監視することにより、マ
ーカー組み込み遺伝子組み換え生体試料におけるマーカ
ー組み込み遺伝子の発現状態を観察する。
The present apparatus shown in FIG. 1 is a fluorescent substance which, when expressed in a living body as a marker, emits light or develops color when excited by irradiation with light having a predetermined wavelength, and behaves differently from other genes. A biological sample composed of a genetically modified substance having a gene incorporating a substance (hereinafter appropriately referred to as "marker-incorporated genetically modified biological sample") is cut with a knife to prepare a cross section of the marker-incorporated genetically modified biological sample. Cross-section creation device (slicer) 10 as cutting means, and cross-section creation device 1
The light source 12 for irradiating the cross section of the marker-incorporated genetically modified biological sample created by 0 with light of a predetermined wavelength for exciting the marker of the marker-incorporated genetically modified biological sample, and the cross-section preparing device 10 are prepared. In addition, the cross-sectional image observing section serving as an imaging unit configured by a CCD camera 14 or the like for taking a cross-sectional image of the marker-incorporated genetically modified biological sample irradiated with light of a predetermined wavelength by the light source 12 It is composed of an image recording device 16 that stores an image of an imaged cross-section of a genetically modified biological sample incorporating a marker, a cross-section creation device 10, and a personal computer that outputs a control signal for controlling the operation of the image recording device 16. Markers recorded in the control device 18 and the image recording device 16 An image processing device (graphic work station) 20 as an image processing means for performing image processing on an image of a cross section of an integrated genetically modified biological sample to generate a processed image such as an arbitrary cross section or a stereoscopic image (three-dimensional image); An image of a cross-section of the marker-incorporated genetically modified biological sample recorded in the recording device 16 or an arbitrary cross-section or three-dimensional image processed by the image processing device 20 (3
The observer 24 observes the monitor 22 to observe the expression state of the marker-incorporated gene in the marker-integrated gene recombinant biological sample.

【0022】なお、マーカーとして、発光物質などを用
いる場合には、本装置に光源12を設ける必要はない。
When a luminescent substance or the like is used as the marker, it is not necessary to provide the light source 12 in this device.

【0023】ここで、断面作成装置10、断面画像観察
部、画像記録装置16、制御装置18、画像処理装置2
0ならびにモニタ22としては、例えば、本願発明者ら
により提案された特公平7−109384号「試料面切
り出し装置を具備する自動検査装置」、特開平10−2
6586号「試料観察方法およびその装置」あるいは特
開平10−26586号「試料観察方法およびその装
置」などにおいて示すような装置を用いることができ
る。
Here, the cross-section creation device 10, the cross-section image observation unit, the image recording device 16, the control device 18, and the image processing device 2 are provided.
0 and the monitor 22 are, for example, Japanese Patent Publication No. 7-109384 “Automatic inspection device equipped with a sample surface cutting device” proposed by the inventors of the present application, Japanese Patent Laid-Open No. 10-2.
An apparatus such as that disclosed in Japanese Patent No. 6586, "Sample Observation Method and Apparatus Therefor" or Japanese Patent Application Laid-Open No. 10-265586, "Sample Observation Method and Apparatus therefor" can be used.

【0024】上記した各公報に開示された装置は、観察
対象の試料を切断して、その切断面の断面画像を観察す
ることを繰り返して試料内部の3次元構造を再構築する
装置である。
The apparatus disclosed in each of the above publications is an apparatus for reconstructing the three-dimensional structure inside the sample by repeatedly cutting the sample to be observed and observing the cross-sectional image of the cut surface.

【0025】以上の構成において、上記した本装置の動
作の一例について説明するが、マーカー組み込み遺伝子
組み換え生体試料としては、上記したように各種の方法
で作出されたマーカー組み込み遺伝子組み換え生体試料
を用いることができる。
An example of the operation of the above-described device having the above-mentioned structure will be described. As the marker-incorporated gene recombinant biological sample, the marker-incorporated gene recombinant biological sample produced by various methods as described above is used. You can

【0026】また、マーカーを励起する光源12として
は、例えば、ハロゲン光源やキセノン水銀光源などを、
適宜にフィルターなどを組み合わせて用いることができ
る。即ち、この光源12から照射される光としては、白
色光や蛍光などを適宜に設定すればよい。
As the light source 12 for exciting the marker, for example, a halogen light source or a xenon mercury light source,
A filter or the like can be appropriately combined and used. That is, as the light emitted from the light source 12, white light, fluorescence, or the like may be set appropriately.

【0027】即ち、光源12としてハロゲン光源と光学
フィルターを用いたキセノン水銀光源とを用いるように
すると、ハロゲン光源による白色光観察とキセノン水銀
光源および光学フィルターによるV・B・G励起の蛍光
観察との同時観察が可能となる。
That is, when a halogen light source and a xenon mercury light source using an optical filter are used as the light source 12, white light observation by the halogen light source and V, B, and G excitation fluorescence observation by the xenon mercury light source and the optical filter are performed. It is possible to observe simultaneously.

【0028】ここで、断面作成装置10は、例えば、
「15mm×12mm×120mm〜180mm×15
0mm×200mm」の大きさのマーカー組み込み遺伝
子組み換え生体試料を、最小10μmの厚さで切断する
ことができる。
Here, the cross-section creating apparatus 10 is, for example,
"15 mm x 12 mm x 120 mm to 180 mm x 15
A marker-incorporated genetically modified biological sample having a size of “0 mm × 200 mm” can be cut to a minimum thickness of 10 μm.

【0029】断面画像観察部は、断面作成装置10がマ
ーカー組み込み遺伝子組み換え生体試料を切断する毎
に、その切断面に光源12から照射された光を照射する
ことにより観察する。この断面画像観察部は、例えば、
マーカー組み込み遺伝子組み換え生体試料の切断面はハ
ロゲン光源による白色光観察と、キセノン水銀光源およ
び光学フィルターによるV・B・G励起の蛍光観察との
同時観察が可能であるように構成することができる。
The cross-section image observing unit observes the cross-section creation device 10 by irradiating the cut surface with light emitted from the light source 12 every time the marker-incorporated genetically modified biological sample is cut. This cross-sectional image observation unit, for example,
The cross section of the genetically modified biological sample incorporating the marker can be configured so that white light observation with a halogen light source and fluorescence observation of V, B, and G excitation with a xenon mercury light source and an optical filter can be performed simultaneously.

【0030】画像記録装置16においては、観察した切
断面の断面画像を記録する際に、同一の切断面に関し
て、白色光における観察を示す断面画像をはじめに記録
し、次ぎに蛍光における観察を示す断面画像を記録する
ように、画像処理装置20により制御した。
In the image recording device 16, when recording a cross-sectional image of an observed cut surface, a cross-sectional image showing observation with white light is first recorded for the same cut surface, and then a cross-section showing observation with fluorescent light is recorded. The image processing apparatus 20 controls to record an image.

【0031】画像処理装置20は、画像記録装置16に
記録した断面画像を画像処理することにより、白色光の
観察時における任意の断面の画像や立体画像あるいは蛍
光の観察時における任意の断面の画像や立体画像を示す
データをモニタ22に出力し、モニタ22は出力された
データに基づいて画像を映し出す。
The image processing device 20 performs image processing on the cross-sectional image recorded in the image recording device 16 to obtain an image of an arbitrary cross-section when observing white light, a stereoscopic image, or an image of an arbitrary cross-section when observing fluorescence. And data indicating a stereoscopic image are output to the monitor 22, and the monitor 22 displays an image based on the output data.

【0032】次ぎに、上記した本装置によって行った実
験結果について説明すると、マーカー組み込み遺伝子組
み換え生体試料として、アクチンプロモータにEGFP
を連結して遺伝子組み換えを行ったグリーンマウス(G
reenMice(C57BL/6TgN(act−E
GFP)OsbC14−Y01−FM131)(参考文
献3 Ikawa et al.FEBS Lette
rs 430(1998)83−87 「‘Green
mice’and their potential
usage in biological rese
arch」))を用いた。
Next, the results of the experiments carried out by the above-mentioned device will be explained. As a marker-incorporated gene-recombinant biological sample, EGFP was added to the actin promoter.
Green mouse (G
reenMice (C57BL / 6TgN (act-E
GFP) OsbC14-Y01-FM131) (Reference 3 Ikawa et al. FEBS Lette).
rs 430 (1998) 83-87 "'Green
mice 'and ther potential
usage in biological rese
arch ")) was used.

【0033】ここで、マーカー組み込み遺伝子組み換え
生体試料は、PFA固定・PBS洗浄の後に凍結包埋し
た。包埋したマーカー組み込み遺伝子組み換え生体試料
は、「−45℃」の環境下において、断面作成装置10
により切断された。なお、断面作成装置10は、切断に
用いるナイフの回転数90rpmとし、切削の厚さ30
μmとした。
Here, the marker-incorporated genetically modified biological sample was frozen-embedded after PFA fixation and PBS washing. The embedded marker-incorporated genetically modified biological sample is subjected to the cross-section preparation device 10 under the environment of “−45 ° C.”.
Was cut by. In addition, the cross-section creating apparatus 10 has a rotation speed of a knife used for cutting of 90 rpm and a cutting thickness of 30 rpm.
μm.

【0034】また、光源12による観察光源としては白
色光と蛍光とを用いて観察し、切削断面数1736枚で
あり、切断画像の撮影時間はおよそ30分であった。
The observation by the light source 12 was carried out by using white light and fluorescent light as the observation light source, the number of cut sections was 1736, and the shooting time of the cut image was about 30 minutes.

【0035】図2乃至図4に、白色光で観察した連続断
面画像の中から抽出した3枚の画像を示す。図2は腹部
の画像であり、図3は胸部の画像であり、図4は頭部の
画像である。
2 to 4 show three images extracted from continuous cross-sectional images observed with white light. 2 is an image of the abdomen, FIG. 3 is an image of the chest, and FIG. 4 is an image of the head.

【0036】また、図2乃至図4に示す画像と同一断面
を蛍光で観察した結果を、図5乃至図7に示す。図5は
図2に対応する腹部の画像であり、図6は図3に対応す
る胸部の画像であり、図7は図4に対応する頭部の画像
である。
5 to 7 show the results of observing the same section with fluorescence as the images shown in FIGS. 2 to 4 by fluorescence. 5 is an image of the abdomen corresponding to FIG. 2, FIG. 6 is an image of the chest corresponding to FIG. 3, and FIG. 7 is an image of the head corresponding to FIG.

【0037】図5乃至図7において、色の薄い部位がG
FPが発現している部分である(なお、図5乃至図7に
おいては、GFPが発現している部分は、実際には緑色
に発色している)。
In FIGS. 5 to 7, the light-colored portion is G.
This is a portion in which FP is expressed (note that in FIGS. 5 to 7, the portion in which GFP is expressed actually develops green).

【0038】画像処理装置20において、画像記録装置
16に記録された断面画像を元にレイキャスティングに
より立体画像の構築を行った。図8に白色光で撮影した
画像を元に脊椎に沿って切断した立体画像を示す。ま
た、図9に同一条件で蛍光観察した画像を元に構築した
図8に対応する立体画像を示す。
In the image processing device 20, a three-dimensional image is constructed by ray casting based on the sectional image recorded in the image recording device 16. FIG. 8 shows a stereoscopic image cut along the spine based on an image taken with white light. Further, FIG. 9 shows a stereoscopic image corresponding to FIG. 8 constructed on the basis of an image obtained by fluorescence observation under the same conditions.

【0039】図8に示す白色光の画像においては、内臓
と体の全体の様子が分かる。また、図9に示す蛍光の画
像により、GFPが軟骨と皮膚表面などの部位で強く発
現していることが分かる。
In the white light image shown in FIG. 8, the internal organs and the entire body can be seen. In addition, it can be seen from the fluorescence image shown in FIG. 9 that GFP is strongly expressed in sites such as cartilage and skin surface.

【0040】この実験において用いたマーカー組み込み
遺伝子組み換え生体試料は、アクチンの発現によりGF
Pが蛍光を発することから、これらの部位でアクチンの
発現が活発であると推察できる。
The marker-incorporated genetically modified biological sample used in this experiment was treated with GF by the expression of actin.
Since P fluoresces, it can be inferred that actin expression is active at these sites.

【0041】即ち、本装置によれば、生体試料一個体内
の発現遺伝子の3次元局在をミクロンの精度で高速に観
察することが可能となった。
That is, according to the present apparatus, it becomes possible to observe the three-dimensional localization of the expressed gene in one individual biological sample at high speed with micron accuracy.

【0042】[0042]

【発明の効果】本発明は、以上説明したように構成され
ているので、動物や植物などの生体一個体全体における
生体内発現遺伝子の局在を観察することができるように
なるという優れた効果を奏する。
EFFECTS OF THE INVENTION Since the present invention is configured as described above, the excellent effect that it becomes possible to observe the localization of an in vivo expressed gene in an entire living organism such as an animal or a plant. Play.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による生体内発現遺伝子の3次元局在の
観察装置の実施の形態の一例を示す概念構成説明図であ
る。
FIG. 1 is a conceptual configuration explanatory view showing an example of an embodiment of an observation apparatus for three-dimensional localization of a gene expressed in vivo according to the present invention.

【図2】白色光で観察した連続断面画像の中から抽出し
た腹部の画像である。
FIG. 2 is an image of an abdomen extracted from continuous cross-sectional images observed with white light.

【図3】白色光で観察した連続断面画像の中から抽出し
た胸部の画像である。
FIG. 3 is an image of a chest extracted from continuous cross-sectional images observed with white light.

【図4】白色光で観察した連続断面画像の中から抽出し
た頭部の画像である。
FIG. 4 is an image of a head extracted from a continuous cross-sectional image observed with white light.

【図5】蛍光で観察した連続断面画像の中から抽出した
図2に示す画像と同一断面の腹部の画像である。
FIG. 5 is an image of the abdomen of the same cross section as the image shown in FIG. 2 extracted from the continuous cross section images observed by fluorescence.

【図6】蛍光で観察した連続断面画像の中から抽出した
図3に示す画像と同一断面の胸部の画像である。
6 is an image of a chest having the same cross section as the image shown in FIG. 3 extracted from the continuous cross section images observed by fluorescence.

【図7】蛍光で観察した連続断面画像の中から抽出した
図4に示す画像と同一断面の頭部の画像である。
7 is an image of the head having the same cross section as the image shown in FIG. 4 extracted from the continuous cross section images observed by fluorescence.

【図8】白色光で撮影した画像を元に脊椎に沿って切断
した状態を再構築した立体画像である。
FIG. 8 is a stereoscopic image reconstructed from a state taken along the spine based on an image taken with white light.

【図9】図8に示す条件と同一条件で蛍光観察した画像
を元に脊椎に沿って切断した状態を再構築した立体画像
である。
9 is a three-dimensional image obtained by reconstructing a state cut along the spine based on an image observed by fluorescence under the same conditions as shown in FIG.

【符号の説明】[Explanation of symbols]

10 断面作成装置(スライサ) 12 光源 14 CCDカメラ 16 画像記録装置 18 制御装置 20 画像処理装置(グラフィックワークステー
ション) 22 モニタ 24 観察者
10 Cross Section Creating Device (Slicer) 12 Light Source 14 CCD Camera 16 Image Recording Device 18 Control Device 20 Image Processing Device (Graphic Workstation) 22 Monitor 24 Observer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉木 淳 茨城県つくば市高野台3丁目1番1号 理 化学研究所筑波研究所内 (72)発明者 牧野内 昭武 埼玉県和光市広沢2番1号 理化学研究所 内 (72)発明者 樋口 俊郎 埼玉県和光市広沢2番1号 理化学研究所 内 (72)発明者 姫野 龍太郎 埼玉県和光市広沢2番1号 理化学研究所 内 Fターム(参考) 2F065 AA04 BB27 BB30 CC16 FF04 JJ03 JJ26 TT07 2G043 AA03 BA16 DA02 EA01 JA02 KA02 LA03 NA05 2G059 AA05 AA06 BB12 CC16 DD12 EE06 EE07 FF01 FF02 GG10 JJ02 KK04 MM10 PP04 4B024 AA11 AA20 CA03 DA02 FA10 HA11 4B029 AA23 BB20    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Jun Yoshiki             3-1-1 Takanodai, Tsukuba City, Ibaraki Prefecture             Institute for Chemical Research Tsukuba Research Center (72) Inventor Akitake Makinouchi             2-1, Hirosawa, Wako-shi, Saitama RIKEN             Within (72) Inventor Toshiro Higuchi             2-1, Hirosawa, Wako-shi, Saitama RIKEN             Within (72) Inventor Ryutaro Himeno             2-1, Hirosawa, Wako-shi, Saitama RIKEN             Within F term (reference) 2F065 AA04 BB27 BB30 CC16 FF04                       JJ03 JJ26 TT07                 2G043 AA03 BA16 DA02 EA01 JA02                       KA02 LA03 NA05                 2G059 AA05 AA06 BB12 CC16 DD12                       EE06 EE07 FF01 FF02 GG10                       JJ02 KK04 MM10 PP04                 4B024 AA11 AA20 CA03 DA02 FA10                       HA11                 4B029 AA23 BB20

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 特定の遺伝子の発現時に検出が可能とな
るマーカーを有する遺伝子組み換え生体試料を連続して
切断し、 前記生体試料の切断毎に該切断面の画像たる断面画像を
撮像し、 前記切断毎に撮像した画像に基づいて3次元的な前記生
体試料の観察を行うことにより、前記生体試料体内での
発現遺伝子の3次元局在を観察するものである生体内発
現遺伝子の3次元局在の観察方法。
1. A genetically modified biological sample having a marker that can be detected when a specific gene is expressed is continuously cut, and a cross-sectional image that is an image of the cut surface is taken every time the biological sample is cut, A three-dimensional station of an in-vivo expressed gene for observing the three-dimensional localization of an expressed gene in the inside of the biological sample by observing the three-dimensional biological sample based on an image captured for each cutting. Current observation method.
【請求項2】 特定の遺伝子の発現時に検出が可能とな
るマーカーを有する遺伝子組み換え生体試料と、 前記生体試料を連続して切断する切断手段と、 前記生体試料の切断毎に該切断面の画像たる断面画像を
撮像する撮像手段と、 前記撮像手段が撮像した画像に基づいて3次元的な前記
生体試料の画像を生成する画像処理手段とを有し、前記
画像処理手段が生成した3次元的な前記生体試料の画像
の観察を行うことにより、前記生体試料体内での発現遺
伝子の3次元局在を観察するものである生体内発現遺伝
子の3次元局在の観察装置。
2. A genetically modified biological sample having a marker that can be detected when a specific gene is expressed, a cutting means for continuously cutting the biological sample, and an image of the cut surface for each cutting of the biological sample. A three-dimensional image generated by the image processing unit, which has an image capturing unit that captures a barrel cross-sectional image and an image processing unit that generates a three-dimensional image of the biological sample based on the image captured by the image capturing unit. An apparatus for observing the three-dimensional localization of an in-vivo expressed gene for observing the three-dimensional localization of an expressed gene in the biological sample by observing an image of the biological sample.
JP2002057935A 2002-03-04 2002-03-04 Method and apparatus for observing three-dimensional localization of gene expressed in vivo Expired - Fee Related JP3796623B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002057935A JP3796623B2 (en) 2002-03-04 2002-03-04 Method and apparatus for observing three-dimensional localization of gene expressed in vivo
US10/377,671 US7280680B2 (en) 2002-03-04 2003-03-04 Method and apparatus for observing three-dimensional localizations of in vivo expressed genes as well as method and apparatus for observing minute three-dimensional localizations of in vivo expressed genes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002057935A JP3796623B2 (en) 2002-03-04 2002-03-04 Method and apparatus for observing three-dimensional localization of gene expressed in vivo

Publications (2)

Publication Number Publication Date
JP2003254902A true JP2003254902A (en) 2003-09-10
JP3796623B2 JP3796623B2 (en) 2006-07-12

Family

ID=28668073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002057935A Expired - Fee Related JP3796623B2 (en) 2002-03-04 2002-03-04 Method and apparatus for observing three-dimensional localization of gene expressed in vivo

Country Status (1)

Country Link
JP (1) JP3796623B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8189898B2 (en) 2005-08-29 2012-05-29 Riken Gene expression image constructing method and gene expression image constructing system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8189898B2 (en) 2005-08-29 2012-05-29 Riken Gene expression image constructing method and gene expression image constructing system

Also Published As

Publication number Publication date
JP3796623B2 (en) 2006-07-12

Similar Documents

Publication Publication Date Title
CN107003242B (en) System and method for controlling imaging depth in tissue using fluorescence microscope with ultraviolet excitation after staining with fluorescent agent
US9964489B2 (en) System and method for controlling depth of imaging in tissues using fluorescence microscopy under ultraviolet excitation following staining with fluorescing agents
US20200096425A1 (en) Method and System for Imaging and Analysis of a Biological Specimen
Liu et al. Sustained deep-tissue voltage recording using a fast indicator evolved for two-photon microscopy
Nitin et al. Molecular imaging of glucose uptake in oral neoplasia following topical application of fluorescently labeled deoxy‐glucose
Keklikoglou et al. Micro-CT for biological and biomedical studies: A comparison of imaging techniques
Ma et al. Non-invasive whole-body imaging of adult zebrafish with optoacoustic tomography
CN109414151A (en) Cancer detection device, method for detecting cancer and the coloring agent for cancer detection
Ying et al. Real‐time noninvasive optical diagnosis for colorectal cancer using multiphoton microscopy
Wang et al. Autofluorescence imaging and spectroscopy of human lung cancer
CN112592936A (en) Tandem fragment fluorescence complementary system and construction method and application thereof
WO2018175565A1 (en) System and method for controlling depth of imaging in tissues using fluorescence microscopy under ultraviolet excitation following staining with fluorescing agents
Weiner et al. The pathogen–host interface in three dimensions: correlative FIB/SEM applications
Jiang et al. Label-free imaging of brain and brain tumor specimens with combined two-photon excited fluorescence and second harmonic generation microscopy
Martin et al. A novel approach for assessing cardiac fibrosis using label-free second harmonic generation
JP2003254902A (en) Method and device for observing three dimensional localization of in vivo expressed gene
JP2011062348A (en) Endoscope system
WO2007026705A1 (en) Method of constructing gene expression image and system for constructing gene expression image
Debeir et al. Models of cancer cell migration and cellular imaging and analysis
Nambiar et al. Diagnostic aids in detection of oral precancer and cancer: Past to present
Enninga et al. Roundtrip explorations of bacterial infection: from single cells to the entire host and back
Weber et al. High-speed, multi-z confocal microscopy for voltage imaging in densely labeled neuronal populations
JP4148392B2 (en) Method and apparatus for observing fine three-dimensional localization of gene expressed in vivo
Farkas Biomedical Applications of Translational Optical Imaging: From Molecules to Humans
Jiang et al. Diagnostic application of multiphoton microscopy in epithelial tissues

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031201

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060403

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees