JP2003254898A - Light wave coherence tomogram measuring system with composite light source - Google Patents

Light wave coherence tomogram measuring system with composite light source

Info

Publication number
JP2003254898A
JP2003254898A JP2002053240A JP2002053240A JP2003254898A JP 2003254898 A JP2003254898 A JP 2003254898A JP 2002053240 A JP2002053240 A JP 2002053240A JP 2002053240 A JP2002053240 A JP 2002053240A JP 2003254898 A JP2003254898 A JP 2003254898A
Authority
JP
Japan
Prior art keywords
light source
light
optical system
dimensional optical
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002053240A
Other languages
Japanese (ja)
Other versions
JP3628663B2 (en
Inventor
Manabu Sato
学 佐藤
Naohiro Tanno
直弘 丹野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP2002053240A priority Critical patent/JP3628663B2/en
Publication of JP2003254898A publication Critical patent/JP2003254898A/en
Application granted granted Critical
Publication of JP3628663B2 publication Critical patent/JP3628663B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light wave coherence tomogram measuring system with a composite light source capable of efficiently superimposing a plurality of beams of light one on another and achieving a high spatial resolution. <P>SOLUTION: The system is provided with both a two-dimensional optical system A for the composite light source and an optical system B for measurements and capable of achieving a high spatial resolution. The two-dimensional optical system A for the composite light source comprises a low-coherence light emitting element 1 for emitting the plurality of beams of light, a plurality of lenses 2 and 3, and a diffusing plate 4 and is capable of efficiently superimposing the plurality of beams of light one on another. The optical system B for measurements uses the uniformly superimposed light from the two-dimensional optical system A for the composite light source. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、合成光源を有する
光波コヒーレンス断層画像測定システムに関するもので
ある。 【0002】 【従来の技術】スペクトル関数は、ウィーナーヒンチン
の定理により、コヒーレンス関数とフーリエ変換で関係
付けられており、光源の中心波長、スペクトル幅からコ
ヒーレンス長が与えられる。また、光波コヒーレンス断
層画像化法では、奥行き空間分解能は原理的にコヒーレ
ンス長の半分で与えられる。よって、いかにコヒーレン
ス長の短い光源を実現するかが問題となる。 【0003】これに対して、米国のMITのグループ
は、レーザ光源にモードロックの技術を用いて、1μm
程度のコヒーレンス長を有する光源を実現させている
が、実用面では、装置が大型、高価、操作が困難などの
問題がある(参照文献1:OPTICS LETTER
S September 1,1999.Vol.2
4.No.17.pp.1221〜1223)。 【0004】これに対して、複数の光源を組み合わせ各
発光素子の強度を制御してコヒーレンス長を短くする提
案が本願発明者によりなされた(参照文献2:Opti
csJapan 2001 講演予稿集 Novemb
er 5−7,2001pp.395〜396)。 【0005】 【発明が解決しようとする課題】実際の合成では、上記
した参考文献2に開示されているように、ビームスプリ
ッター(BS)が汎用されているが、反射率がRの場
合、透過率(1−R)が無駄になってしまい効率的でな
く、複数のビームスプリッター(BS)の使用において
は大きな問題があった。 【0006】本発明は、上記問題点を除去し、効率よく
複数の光を重ね合わせることができ、高空間分解能化を
図り得る合成光源を有する光波コヒーレンス断層画像測
定システムを提供することを目的とする。 【0007】 【課題を解決するための手段】本発明は、上記目的を達
成するために、 〔1〕合成光源を有する光波コヒーレンス断層画像測定
システムにおいて、複数の光を出射する低コヒーレンス
発光素子と、複数のレンズと、拡散板からなり、効率よ
く複数の光を重ね合わせることができる合成光源用二次
元光学系と、この合成光源用二次元光学系からの均一に
重畳された光を用いた測定用光学系とを具備することを
特徴とする。 【0008】 【発明の実施の形態】以下、本発明の実施の形態につい
て詳細に説明する。 【0009】図1は本発明の実施例を示す合成光源用二
次元光学系を用いた光波コヒーレンス断層画像測定シス
テムの模式図である。 【0010】この実施例において、合成光源用二次元光
学系を用いた光波コヒーレンス断層画像測定システム
は、ケーラー照明を用いた合成光源用二次元光学系Aと
試料を含む測定用光学系Bからなる。 【0011】図1において、ケーラー照明を用いた合成
光源用二次元光学系Aは、発光面積の比較的大きいLE
Dやスーパールミネッセントダイオード(SLD)など
の低コヒーレンス発光素子1と二つのレンズ(コンデン
サレンズ)2,3と、拡散板4とからなる。 【0012】一方、試料を含む測定用光学系Bは、集光
レンズ5、ビームスプリッター(BS)6、参照ミラー
7、位相変調用の振動素子8、試料9、集光レンズ1
0、イメージセンサ11からなる。 【0013】まず、この実施例で用いられるケーラー照
明を用いた合成光源用二次元光学系について説明する。
ここでは一般に顕微鏡の照明に用いられている、ケーラ
ー照明について説明する(参照文献3:生物顕微鏡の基
礎 著者 八鹿寛二 培風館pp.83〜105参
照)。 【0014】一つの点光源から発した光は二つのレンズ
を通って平行光束となり標本面を照明する。隣の点光源
からの光も同様に一様に広がった平行光束となり、異な
る角度で標本面を照明する。従って、光源がフィラメン
トのような形状の場合もそれは点光源の集合と考えら
れ、それぞれの点光源からの光は、先と同様に点光源の
位置に対応した角度で、同一標本面を一様に照明する。
よって、試料を均一に照明できることから顕微鏡では広
く用いられている。 【0015】以下、本発明の合成光源用二次元光学系A
について説明する。 【0016】図1に示すように、各発光素子1からの光
は、ケーラー照明の原理に従ってレンズ3の右出射面を
異なった角度で一様に照明するので、結局すべての発光
素子1からの光は均一に重畳される。ここで、これらの
光は出射角度がある発光素子の点光源に対応するので、
これを均一化してどの出射方向にもすべての発光素子の
光が含まれるようにする必要がある。 【0017】図2はその合成光源用二次元光学系の模式
図である。 【0018】この図において、21は各発光素子(低コ
ヒーレンス)、22,23はレンズ(コンデンサレン
ズ)、24は拡散板、25は絞りのバネである。 【0019】コンデンサレンズ22の前の焦点面、つま
り、絞りのある位置に光源としての各点(発光素子)2
1をおけば、光源21の各点から照射した光は、平行光
源となってコンデンサレンズ22,23を出て、拡散板
24面を照らす。従って、コンデンサレンズ22の前の
焦点面に光源21をおけば、光源の形や光源の部分的な
明暗の“むら”に関係なく、拡散板24面は均一な明る
さで照明される。 【0020】したがって、図1及び図2に示すように、
拡散板4,24を用いてある発光素子1,21から入射
した光を散乱させて、出射角度に広がりを持たせ光を均
一化させることができる。 【0021】以上より、円形内のいかなる点でもすべて
の発光素子1,21の光を含む合成光源が実現される。 【0022】一方、試料を含む測定用光学系Bにおいて
は、光源は、レンズ5でBS6を介して試料(試料面)
9に結像し、試料9が照明される。BS6からの参照光
は参照光ミラー7で反射されるが、その際位相変調用の
振動素子8により、ドップラーシフトされる。 【0023】よって、ドップラーシフト周波数を有する
干渉画像がイメージセンサ11で測定され、位相シフト
法などの手法により表面・断層画像が測定される。 【0024】なお、本発明は上記実施例に限定されるも
のではなく、本発明の趣旨に基づいて種々の変形が可能
であり、これらを本発明の範囲から排除するものではな
い。 【0025】 【発明の効果】以上、詳細に説明したように、本発明に
よれば、以下のような効果を奏することができる。 【0026】(A)汎用的で安価な半導体発光素子を高
効率に重畳させた合成光源によって高空間分解能化が可
能になる。したがって、約一桁のコストダウン、小型・
軽量化、光源の簡素化から安定化・信頼性の向上を図る
ことができる。 【0027】(B)医学分野では汎用化に伴う医療サー
ビスの向上、さらに、半導体産業分野への需要拡大など
の波及効果も考えられる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical coherence tomographic image measuring system having a combined light source. 2. Description of the Related Art A spectral function is related to a coherence function by Fourier transform according to Wiener-Kingtin's theorem, and a coherence length is given from a center wavelength and a spectral width of a light source. In the lightwave coherence tomographic imaging method, the depth spatial resolution is given in principle by half of the coherence length. Therefore, how to realize a light source with a short coherence length becomes a problem. On the other hand, the MIT group in the United States uses a mode lock technology for a laser
Although a light source having a coherence length of the order is realized, there are problems in practical use such as a large, expensive, and difficult operation of the device (see Reference 1: OPTICS LETTER).
S September 1, 1999. Vol. 2
4. No. 17. pp. 1221-1223). [0004] On the other hand, the inventor of the present invention has proposed to reduce the coherence length by controlling the intensity of each light emitting element by combining a plurality of light sources (see Reference 2: Opti).
csJapan 2001 Proceedings Novemb
er 5-7, 2001 pp. 395-396). [0005] In actual synthesis, a beam splitter (BS) is widely used as disclosed in the above-mentioned reference 2, but when the reflectance is R, the beam splitter is not transmitted. The rate (1-R) was wasted and was inefficient, and there was a major problem in using multiple beam splitters (BS). SUMMARY OF THE INVENTION An object of the present invention is to provide a lightwave coherence tomographic image measuring system having a combined light source capable of eliminating the above-mentioned problems, efficiently superimposing a plurality of lights, and achieving high spatial resolution. I do. According to the present invention, there is provided a light coherence tomographic image measuring system having a combined light source, comprising: a low coherence light emitting element for emitting a plurality of lights; A two-dimensional optical system for a combined light source, comprising a plurality of lenses and a diffusion plate, capable of efficiently superimposing a plurality of light beams, and using uniformly superimposed light from the two-dimensional optical system for the combined light source. A measuring optical system. [0008] Embodiments of the present invention will be described below in detail. FIG. 1 is a schematic diagram of an optical wave coherence tomographic image measuring system using a two-dimensional optical system for a combined light source showing an embodiment of the present invention. In this embodiment, a lightwave coherence tomographic image measurement system using a two-dimensional optical system for a synthetic light source includes a two-dimensional optical system A for a synthetic light source using Koehler illumination and an optical system for measurement B including a sample. . In FIG. 1, a two-dimensional optical system A for a synthetic light source using Koehler illumination has an LE having a relatively large light emitting area.
It comprises a low coherence light emitting element 1 such as D or super luminescent diode (SLD), two lenses (condenser lenses) 2 and 3, and a diffusion plate 4. On the other hand, the measuring optical system B including the sample includes a condenser lens 5, a beam splitter (BS) 6, a reference mirror 7, a phase modulation vibrating element 8, a sample 9, and a condenser lens 1.
0, consisting of an image sensor 11. First, a two-dimensional optical system for a combined light source using Koehler illumination used in this embodiment will be described.
Here, Koehler illumination, which is generally used for illumination of a microscope, will be described (see Reference 3: Fundamentals of Biological Microscope Author, Kanji Yoka, Baifukan, pp. 83-105). Light emitted from one point light source passes through two lenses and becomes a parallel light beam to illuminate the specimen surface. Similarly, the light from the adjacent point light source also becomes a uniformly spread parallel light beam, and illuminates the sample surface at different angles. Therefore, even when the light source has a shape like a filament, it is considered to be a set of point light sources, and the light from each point light source uniformly illuminates the same sample surface at an angle corresponding to the position of the point light source as before. To illuminate.
Therefore, it is widely used in a microscope because it can uniformly illuminate a sample. Hereinafter, a two-dimensional optical system A for a synthetic light source according to the present invention will be described.
Will be described. As shown in FIG. 1, the light from each light emitting element 1 uniformly illuminates the right exit surface of the lens 3 at a different angle in accordance with the principle of Koehler illumination. Light is superimposed uniformly. Here, since these lights correspond to the point light sources of the light emitting elements having an emission angle,
It is necessary to make this uniform so that the light of all the light emitting elements is included in any outgoing direction. FIG. 2 is a schematic diagram of the two-dimensional optical system for the combined light source. In this figure, 21 is each light emitting element (low coherence), 22 and 23 are lenses (condenser lenses), 24 is a diffusion plate, and 25 is a diaphragm spring. Each point (light emitting element) 2 as a light source is located at a focal plane before the condenser lens 22, that is, at a position where an aperture is located.
If 1, the light emitted from each point of the light source 21 becomes a parallel light source, exits the condenser lenses 22 and 23, and illuminates the surface of the diffusion plate 24. Therefore, if the light source 21 is placed on the focal plane in front of the condenser lens 22, the surface of the diffuser plate 24 is illuminated with uniform brightness regardless of the shape of the light source or the "unevenness" of the light source. Therefore, as shown in FIGS. 1 and 2,
The light incident from the light emitting elements 1 and 21 using the diffusion plates 4 and 24 is scattered, so that the emission angle can be widened and the light can be made uniform. As described above, a combined light source including light from all the light emitting elements 1 and 21 at any point in the circle is realized. On the other hand, in the measuring optical system B including the sample, the light source is a lens (sample surface) through the BS 6 via the lens 5.
9 and the sample 9 is illuminated. The reference light from the BS 6 is reflected by the reference light mirror 7, but is Doppler-shifted by the vibrating element 8 for phase modulation. Therefore, an interference image having a Doppler shift frequency is measured by the image sensor 11, and a surface / tomographic image is measured by a technique such as a phase shift method. It should be noted that the present invention is not limited to the above embodiment, but various modifications are possible based on the spirit of the present invention, and these are not excluded from the scope of the present invention. As described above, according to the present invention, the following effects can be obtained. (A) It is possible to achieve high spatial resolution by using a synthetic light source in which general-purpose and inexpensive semiconductor light emitting elements are superposed with high efficiency. Therefore, cost reduction of about one digit,
It is possible to improve stability and reliability by reducing the weight and simplifying the light source. (B) In the field of medicine, there is a possibility that a medical service will be improved due to generalization, and a ripple effect such as an increase in demand in the semiconductor industry will be considered.

【図面の簡単な説明】 【図1】本発明の実施例を示す合成光源用二次元光学系
を用いた光波コヒーレンス断層画像測定システムの模式
図である。 【図2】本発明にかかる合成光源用二次元光学系の模式
図である。 【符号の説明】 A 合成光源用二次元光学系 1,21 低コヒーレンス発光素子 2,3,22,23 レンズ(コンデンサレンズ) 4,24 拡散板 5,10 集光レンズ B 測定用光学系 6 ビームスプリッター(BS) 7 参照ミラー 8 位相変調用の振動素子 9 試料 11 イメージセンサ 25 絞りのバネ
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram of a lightwave coherence tomographic image measurement system using a two-dimensional optical system for a combined light source, showing an embodiment of the present invention. FIG. 2 is a schematic view of a two-dimensional optical system for a synthetic light source according to the present invention. [Description of Signs] A Two-dimensional optical system for synthesized light source 1, 21 Low coherence light-emitting element 2, 3, 22, 23 Lens (condenser lens) 4, 24 Diffusing plate 5, 10 Condensing lens B Measurement optical system 6 Beam Splitter (BS) 7 Reference mirror 8 Vibrating element 9 for phase modulation 9 Sample 11 Image sensor 25 Spring of diaphragm

フロントページの続き Fターム(参考) 2F065 AA52 DD03 FF04 FF51 GG07 GG13 HH03 JJ03 LL04 LL12 UU07 2G059 AA05 BB12 EE09 GG01 GG02 JJ11 JJ13 JJ22 JJ26 KK04Continuation of front page    F term (reference) 2F065 AA52 DD03 FF04 FF51 GG07                       GG13 HH03 JJ03 LL04 LL12                       UU07                 2G059 AA05 BB12 EE09 GG01 GG02                       JJ11 JJ13 JJ22 JJ26 KK04

Claims (1)

【特許請求の範囲】 【請求項1】(a)複数の光を出射する低コヒーレンス
発光素子と、複数のレンズと、拡散板からなり、効率よ
く複数の光を重ね合わせることができる合成光源用二次
元光学系と、(b)該合成光源用二次元光学系からの均
一に重畳された光を用いた測定用光学系とを具備するこ
とを特徴とする合成光源を有する光波コヒーレンス断層
画像測定システム。
Claims: 1. A combined light source comprising a low coherence light emitting element for emitting a plurality of lights, a plurality of lenses, and a diffusion plate, and capable of superimposing a plurality of lights efficiently. Lightwave coherence tomographic image measurement having a synthetic light source, comprising: a two-dimensional optical system; and (b) a measuring optical system using light uniformly superimposed from the two-dimensional optical system for the synthetic light source. system.
JP2002053240A 2002-02-28 2002-02-28 Lightwave coherence tomography system with synthetic light source Expired - Fee Related JP3628663B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002053240A JP3628663B2 (en) 2002-02-28 2002-02-28 Lightwave coherence tomography system with synthetic light source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002053240A JP3628663B2 (en) 2002-02-28 2002-02-28 Lightwave coherence tomography system with synthetic light source

Publications (2)

Publication Number Publication Date
JP2003254898A true JP2003254898A (en) 2003-09-10
JP3628663B2 JP3628663B2 (en) 2005-03-16

Family

ID=28664715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002053240A Expired - Fee Related JP3628663B2 (en) 2002-02-28 2002-02-28 Lightwave coherence tomography system with synthetic light source

Country Status (1)

Country Link
JP (1) JP3628663B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006317349A (en) * 2005-05-13 2006-11-24 Fujikura Ltd Optical sensing system
US7372575B2 (en) 2004-12-06 2008-05-13 Fujinon Corporation Optical tomographic apparatus
KR101332222B1 (en) 2004-08-06 2013-11-22 더 제너럴 하스피탈 코포레이션 Process, system and software arrangement for determining at least one location in a sample using an optical coherence tomography
CN113720823A (en) * 2021-05-17 2021-11-30 丹望医疗科技(上海)有限公司 Method for detecting maximum sectional area of organoid and application thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101332222B1 (en) 2004-08-06 2013-11-22 더 제너럴 하스피탈 코포레이션 Process, system and software arrangement for determining at least one location in a sample using an optical coherence tomography
US7372575B2 (en) 2004-12-06 2008-05-13 Fujinon Corporation Optical tomographic apparatus
JP2006317349A (en) * 2005-05-13 2006-11-24 Fujikura Ltd Optical sensing system
JP4679962B2 (en) * 2005-05-13 2011-05-11 株式会社フジクラ Optical sensing system
CN113720823A (en) * 2021-05-17 2021-11-30 丹望医疗科技(上海)有限公司 Method for detecting maximum sectional area of organoid and application thereof

Also Published As

Publication number Publication date
JP3628663B2 (en) 2005-03-16

Similar Documents

Publication Publication Date Title
TWI460468B (en) Optical imaging system using structured illumination
TWI634398B (en) Lighting device using coherent light source
JP5168526B2 (en) Projection-type image display device
CN105372256B (en) Surface detecting system and method
US6910772B2 (en) Image display apparatus
TW200402608A (en) Illuminating method, exposing method, and device for therefor
EP0883302A3 (en) Projection type liquid crystal display device
CN103365054B (en) Illuminator and display device
CN110836892B (en) Diffraction super-resolution microscopic imaging method and system
CN116124752A (en) Tissue bionic die body based on multispectral regulation and control and generation method thereof
EP1191796A3 (en) Optical apparatus and projection type display apparatus
JP6307517B2 (en) Vibration measuring method and interferometer
JP5207013B2 (en) Illumination device and optical device
JP2003254898A (en) Light wave coherence tomogram measuring system with composite light source
US20020027594A1 (en) Parallel-processing, optical distance-measuring device
JP2019045431A (en) Optical image measurement device
JP4345127B2 (en) Lighting device and lighting method
JP2004191114A (en) Detection point scanning method by optical interferometer integrated driving in optical coherence tomography and optical coherence tomography device
US7600898B2 (en) Illuminating device for linearly illuminating a flat object
JP2004271965A (en) Illuminator, and projection device
CN117451683B (en) Super-resolution microscopic imaging system, imaging method of sample to be detected and gene sequencer
US20230078844A1 (en) Illumination System with Etendue-Squeezing Module and Method Thereof
SU673839A1 (en) Shift interferometer
TW202109124A (en) Optical system and detection method therof
US7180669B2 (en) Method and system for generating substantially uniform speckle patterns

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041207

A61 First payment of annual fees (during grant procedure)

Effective date: 20041208

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees