JP2003250820A - Method of blood vessel regeneration and method and device for cell separation and recovery - Google Patents

Method of blood vessel regeneration and method and device for cell separation and recovery

Info

Publication number
JP2003250820A
JP2003250820A JP2002060282A JP2002060282A JP2003250820A JP 2003250820 A JP2003250820 A JP 2003250820A JP 2002060282 A JP2002060282 A JP 2002060282A JP 2002060282 A JP2002060282 A JP 2002060282A JP 2003250820 A JP2003250820 A JP 2003250820A
Authority
JP
Japan
Prior art keywords
cells
vascular endothelial
endothelial progenitor
separation filter
cell separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002060282A
Other languages
Japanese (ja)
Other versions
JP2003250820A5 (en
Inventor
Toyoaki Murohara
豊明 室原
Mika Aoki
美香 青木
Shuji Terajima
修司 寺嶋
Kanchi Yasutake
幹智 安武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Medical Co Ltd
Original Assignee
Asahi Medical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Medical Co Ltd filed Critical Asahi Medical Co Ltd
Priority to JP2002060282A priority Critical patent/JP2003250820A/en
Priority to US10/373,704 priority patent/US20030180705A1/en
Publication of JP2003250820A publication Critical patent/JP2003250820A/en
Priority to US10/834,191 priority patent/US20040224300A1/en
Publication of JP2003250820A5 publication Critical patent/JP2003250820A5/ja
Pending legal-status Critical Current

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Materials For Medical Uses (AREA)
  • Prostheses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and a device for separating and recoverying endothelial progenitor cells of a blood vessel efficiently by an easy operation and in an imperfect open system, and to provide a method to regenerate blood vessels by utilizing the endothelial progenitor cells of the blood vessel. <P>SOLUTION: The method of blood vessel regeneration includes the following processes. A cell suspending liquid containing the endothelial progenitor cells of the blood vessel and admixed cells is filtered through a cell separation filter which enables the passage of at least the admixed cells and capture of the endothelial progenitor cells of the blood vessel. The endothelial progenitor cells of the blood vessel trapped in the cell separation filter are recovered by introducing a fluid into the cell separation filter. The recovered endothelial progenitor cells of the blood vessel are used for the blood vessel regeneration. The invention relates to the method and the device to separate and recover the endothelial progenitor cells of the blood vessel used for the method of the blood vessel regeneration. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、血管の再生に用い
られる血管内皮前駆細胞と夾雑細胞とを含む細胞浮遊液
から血管内皮前駆細胞を分離回収して、血管の再生に使
用する方法及び装置に関する。更に詳細には、本発明
は、血管の病変部位および/または欠損を修復再生する
ために用いる血管内皮前駆細胞の分離回収、及び該分離
回収した細胞を用いた血管の修復再生に関する。
TECHNICAL FIELD The present invention relates to a method and apparatus for separating and recovering vascular endothelial progenitor cells from a cell suspension containing vascular endothelial progenitor cells and foreign cells used for regenerating blood vessels and using them for vascular regeneration. Regarding More specifically, the present invention relates to the separation and recovery of vascular endothelial progenitor cells used to repair and regenerate lesions and / or defects of blood vessels, and the repair and regeneration of blood vessels using the separated and recovered cells.

【0002】[0002]

【従来の技術】糖尿病、高血圧症、高脂血症、肥満など
の生活習慣病は血管障害の危険因子であり、最終的には
閉塞性動脈硬化症(ASO(Arteriosclerosis obliteran
s))、心筋梗塞、腎不全などの臓器不全を引き起こ
す。これらの生活習慣病の患者数は極めて多く、血管治
療は現代医療の最重要課題と言っても過言ではない。
BACKGROUND ART Lifestyle-related diseases such as diabetes, hypertension, hyperlipidemia, and obesity are risk factors for vascular disorders, and eventually obstructive arteriosclerosis (ASO (Arteriosclerosis obliteran
s)), causing organ failure such as myocardial infarction and renal failure. The number of patients with these lifestyle-related diseases is extremely large, and it is no exaggeration to say that vascular treatment is the most important issue in modern medicine.

【0003】例えば下肢壊疽を引き起こす閉塞性動脈硬
化症では、下腿切断を余儀なくされる例が少なくなく、
患者のQOL(Quality of life)は著しく低下する(米国で
年間150,000人、日本で年間2,000人、最新医学56巻、第
8号1748-1754(2001))。それら虚血状態に陥った組織
・臓器の治療法としては、カテーテルによる血管拡張
術、静脈グラフトを用いて血行を外科的に再建する方法
などが行われてきたが、重度の患者には有効な手段とな
りえていない。
For example, in arteriosclerosis obliterans that causes gangrene of the lower extremities, amputation of the lower leg is often required,
The patient's QOL (Quality of life) decreases significantly (150,000 in the United States annually, 2,000 in Japan annually, Volume 56 of the latest medicine, Vol.
No. 8 1748-1754 (2001)). As methods for treating these ischemic tissues / organs, vasodilation using a catheter and surgically reconstructing blood circulation using a vein graft have been performed, but they are effective for severe patients. It cannot be a means.

【0004】近年、新しい治療法として血管新生療法
(therapeutic angiogenesis)が行われつつある。血管
新生療法には大きく分けて遺伝子治療と細胞移植法があ
る。遺伝子治療ではVEGF(Vascular endothelial growth
factor)、HGF(Hepatocytegrowth factor)のプラスミド
を虚血病変部位に注入し、血流の改善が報告されている
(Circulation, 98:2800-2804,1998 / Hypertension, 3
3:1379-1384,1999)。一方、細胞移植法では骨髄由来単
核球を閉塞性動脈硬化症患者の下腿に注入し、良好な結
果を得ている(最新医学56巻、第8号1755-1764(200
1))。また、臍帯血及び末梢血の単核球から培養用デ
ィッシュに付着するアタッチング細胞(attaching細
胞)と名付けられた血管内皮前駆細胞をラットに移植す
ると、未処置のコントロール群に比べ効果的に血流の改
善が可能であったとの報告がある(The Journal of Cli
nical Investigation,105:1527-1536,2000)。
In recent years, as a new therapeutic method, angiogenic therapy (therapeutic angiogenesis) is being performed. Angiogenesis therapy is broadly divided into gene therapy and cell transplantation. In gene therapy, VEGF (Vascular endothelial growth
factor) and HGF (Hepatocyte growth factor) plasmids have been reported to be injected into ischemic lesions to improve blood flow.
(Circulation, 98: 2800-2804, 1998 / Hypertension, 3
3: 1379-1384, 1999). On the other hand, in the cell transplantation method, bone marrow-derived mononuclear cells were injected into the lower leg of a patient with arteriosclerosis obliterans, and good results have been obtained (Latest Medicine Vol. 56, No. 1 1755-1764 (200).
1)). In addition, transplantation of vascular endothelial progenitor cells, which are named as attaching cells from umbilical cord blood and peripheral blood mononuclear cells, that attach to the culture dish, to blood flow was more effective than in the untreated control group. Have been reported to have been improved (The Journal of Cli
nical Investigation, 105: 1527-1536, 2000).

【0005】一般に細胞移植法においては、虚血部位で
血管内皮前駆細胞が効率的に血管形成するように、また
in vitroでの細胞増幅を効率的に行うために血液中の赤
血球、血小板、顆粒球等を除去し血管内皮前駆細胞を含
む単核球を分離濃縮する。濃縮方法としては、ファルマ
シア社製Ficoll等の比重遠心法が主流であるが、界面を
揺らさないなど作業が煩雑であること、処理時間が長い
(2時間程度)、開放系で雑菌のコンタミネーションが
懸念されることなど課題も多く、臨床応用に好適な細胞
処理方法が望まれている。また、遠心法は細胞回収率が
低く、移植に必要な血管内皮前駆細胞を得るために多量
の原料血液を採血する必要があり、血液提供者の負担が
大きいという問題がある。
Generally, in the cell transplantation method, vascular endothelial precursor cells are efficiently vascularized at the ischemic site, and
In order to efficiently perform cell expansion in vitro, erythrocytes, platelets, granulocytes, etc. in blood are removed and mononuclear cells containing vascular endothelial progenitor cells are separated and concentrated. As the concentration method, the gravity centrifuge method such as Ficoll manufactured by Pharmacia is mainstream, but the work is complicated such as not shaking the interface, the processing time is long (about 2 hours), and the contamination of bacteria is open system. There are many problems such as concerns, and a cell treatment method suitable for clinical application is desired. In addition, the centrifugation method has a problem that the cell recovery rate is low, and it is necessary to collect a large amount of raw blood in order to obtain vascular endothelial progenitor cells necessary for transplantation, which imposes a heavy burden on blood donors.

【0006】一方、血液医学の分野においては、造血組
織、即ち骨髄の再生である造血幹細胞移植はすでに通常
の医療として確立されており、同分野で用いる造血幹細
胞の分離濃縮には、例えば特開平8−104643号公
報で提案されている、簡便操作が特徴であるフィルター
法が利用されている。
On the other hand, in the field of hematology, hematopoietic stem cell transplantation, which is regeneration of hematopoietic tissue, that is, bone marrow, has already been established as a normal medical treatment, and isolation and concentration of hematopoietic stem cells used in the field are described in, for example, Japanese Patent Application Laid-Open No. The filter method, which is characterized by simple operation, is proposed in Japanese Patent Laid-Open No. 8-104643.

【0007】[0007]

【発明が解決しようとする課題】本発明の課題は、簡便
かつ非完全開放系で血管内皮前駆細胞を効率的に分離回
収する方法及び装置を提供し、さらに、その血管内皮前
駆細胞を利用して血管を再生する方法を提供することに
ある。
The object of the present invention is to provide a method and a device for efficiently separating and collecting vascular endothelial progenitor cells in a simple and incompletely open system, and further utilizing the vascular endothelial progenitor cells. To provide a method for regenerating blood vessels.

【0008】[0008]

【課題を解決するための手段】本発明者らはかかる課題
を解決すべく、鋭意検討を進めた。その結果、造血幹細
胞の濃縮分離に用いるフィルターを用いて、血管内皮前
駆細胞の濃縮分離をも可能になるという驚くべき発見を
行い、更に分離濃縮した血管内皮前駆細胞を用いて血管
再生が可能であることを見出した。
[Means for Solving the Problems] The inventors of the present invention have made earnest studies to solve the problems. As a result, we made a surprising discovery that it is possible to concentrate and separate vascular endothelial progenitor cells using a filter used for the concentrated separation of hematopoietic stem cells, and it is possible to revascularize by using the separated and concentrated vascular endothelial progenitor cells. I found that there is.

【0009】すなわち本発明は、血管内皮前駆細胞と夾
雑細胞とを含む細胞浮遊液を少なくとも夾雑細胞を通過
させ血管内皮前駆細胞を捕捉する細胞分離フィルターに
通液すること、該細胞分離フィルターに液体を導入して
該細胞分離フィルターに一旦捕捉された血管内皮前駆細
胞を回収すること、回収された血管内皮前駆細胞を血管
の再生に使用することを含む血管の再生方法に関する。
本発明では、細胞浮遊液を細胞分離フィルターに通液し
た後、該細胞分離フィルターに液体を導入して細胞分離
フィルターに残存する夾雑細胞を実質的に除去する工程
を含むことが好ましい。また、本発明は、そのような血
管の再生方法に用いる血管内皮前駆細胞を分離回収する
方法及び装置にも関する。
That is, according to the present invention, a cell suspension containing vascular endothelial progenitor cells and foreign cells is passed through a cell separation filter that passes at least foreign cells and captures vascular endothelial precursor cells, and the liquid is passed through the cell separation filter. The present invention relates to a method for regenerating blood vessels, which comprises recovering vascular endothelial progenitor cells once introduced into the cell separation filter and using the collected vascular endothelial progenitor cells for regenerating blood vessels.
In the present invention, it is preferable to include a step of passing the cell suspension through the cell separation filter and then introducing a liquid into the cell separation filter to substantially remove contaminating cells remaining in the cell separation filter. The present invention also relates to a method and device for separating and collecting vascular endothelial progenitor cells used in such a method for regenerating blood vessels.

【0010】[0010]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明で言う血管内皮前駆細胞とは、骨髄、末梢血、臍
帯血などの血液中に存在し、細胞表面に少なくともKDR
(Kinase Domain-containing Receptor)を発現してい
る細胞を言う。また、本発明で言うアタッチング細胞
(attaching細胞)とは、骨髄、末梢血、臍帯血などの
血液中に存在し、フィブロネクチン、ビトロネクチン、
コラーゲン、ゼラチンなどの細胞外マトリックスをコー
トした表面で培養した際に付着する細胞を言う。アタッ
チング細胞(attaching細胞)の大多数は紡錘形の形態
を呈している。また、アタッチング細胞(attaching細
胞)の表面マーカーを解析するとKDR(Kinase Domain-c
ontaining Receptor)を発現している細胞が30〜70%程
度あり、アタッチング細胞(attaching細胞)中には血
管内皮前駆細胞が豊富に含まれている。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below.
The vascular endothelial progenitor cells referred to in the present invention are present in blood such as bone marrow, peripheral blood and cord blood, and have at least KDR on the cell surface.
A cell expressing (Kinase Domain-containing Receptor). The attaching cells referred to in the present invention are present in blood such as bone marrow, peripheral blood and cord blood, and include fibronectin, vitronectin,
Cells attached when cultured on a surface coated with an extracellular matrix such as collagen or gelatin. The majority of attaching cells have a spindle-shaped morphology. In addition, analysis of surface markers on attaching cells (Kinase Domain-c
About 30 to 70% of the cells express ontaining Receptor), and vascular endothelial progenitor cells are abundantly contained in the attaching cells.

【0011】本発明で言う夾雑細胞とは、血管内皮前駆
細胞が存在する部位にしばしば混在する、赤血球、血小
板、顆粒球など血管への分化能を有していない細胞のこ
とを言う。顆粒球は自家移植であっても炎症反応を引き
起こすため、また赤血球は血管への分化誘導効率を大き
く低下させ、またin vivoでは非自己の個体に混入した
場合免疫副作用を引き起こす恐れがあるため、本発明に
おいては特に除去されることが望ましい細胞群である。
The term "contaminant cells" as used in the present invention means cells that do not have the ability to differentiate into blood vessels, such as erythrocytes, platelets and granulocytes, that are often present in the site where vascular endothelial precursor cells are present. Granulocytes cause an inflammatory reaction even after autologous transplantation, and red blood cells significantly reduce the efficiency of inducing differentiation into blood vessels, and may cause immune side effects when mixed with non-self individuals in vivo. In the present invention, it is a cell group that is particularly desired to be removed.

【0012】本発明において「血管内皮前駆細胞と夾雑
細胞とを含む細胞浮遊液」とは、少なくとも血管内皮前
駆細胞を含む細胞浮遊液であれば良く、骨髄液、臍帯血
(臍帯血管から採血されたものだけでなく、胎盤血管か
ら採血されたものも含む)、末梢血、リンパ液及びこれ
らに遠心分離等何らかの処理を施したもの、あるいは各
種臓器や組織から抽出した細胞を何らかの液体に再浮遊
したものなどがあげられる。その中でも、骨髄液、臍帯
血、G-CSF動員末梢血は血管内皮前駆細胞を多く含み本
発明で好適に用いられる細胞浮遊液である。
In the present invention, the "cell suspension containing vascular endothelial progenitor cells and foreign cells" may be any cell suspension containing at least vascular endothelial progenitor cells, such as bone marrow fluid and umbilical cord blood (collected from umbilical cord blood vessels. (Including those collected from placental blood vessels), peripheral blood, lymph, and those that have been subjected to some treatment such as centrifugation, or cells extracted from various organs and tissues were resuspended in some liquid. Something is included. Among them, bone marrow fluid, umbilical cord blood, and G-CSF-mobilized peripheral blood are cell suspensions containing a large amount of vascular endothelial progenitor cells and are preferably used in the present invention.

【0013】本発明で言う「少なくとも夾雑細胞は通過
して血管内皮前駆細胞は捕捉する細胞分離フィルター」
とは、濾材を液体導入口と液体導出口を有する容器に充
填したものである。濾材の形状としては、不織布、スポ
ンジ状構造体が体積あたりの表面積が大きく、取扱性が
容易で、細胞浮遊液の流れ性が良いため、本発明におい
て好ましい。
"A cell separation filter that passes at least contaminating cells and captures vascular endothelial progenitor cells" in the present invention
Is a container filled with a filter medium having a liquid inlet and a liquid outlet. As the shape of the filter medium, a nonwoven fabric or a sponge-like structure has a large surface area per volume, is easy to handle, and has good flowability of a cell suspension, which is preferable in the present invention.

【0014】不織布の場合、繊維径は1.0μm以上3
0μm以下であり、好ましくは1.0μm以上20μm
以下であり、さらにより好ましくは1.5μm以上10
μm以下である。1.0μm未満では血管内皮前駆細胞
が強固に捕捉されてしまい回収困難となる可能性があ
る。また、30μmを超えると血管内皮前駆細胞が繊維
に捕捉されず素通りする可能性が高くなる。いずれの場
合も回収率の低下につながるおそれがあるので好ましく
ない。
In the case of non-woven fabric, the fiber diameter is 1.0 μm or more 3
0 μm or less, preferably 1.0 μm or more and 20 μm
Or less, and even more preferably 1.5 μm or more and 10
μm or less. If it is less than 1.0 μm, the vascular endothelial progenitor cells may be captured tightly and may be difficult to collect. If it exceeds 30 μm, the vascular endothelial progenitor cells are more likely to pass through without being captured by the fibers. Either case is not preferable because it may lead to a reduction in the recovery rate.

【0015】また、スポンジ状構造体を用いる場合、孔
径は通常2.0μm以上25μm以下であり、好ましく
は3.0μm以上20μm以下であり、さらにより好ま
しくは4.0μm以上15μm以下である。2.0μm
未満では流れ性が著しく劣り、通液自体が困難になるお
それがあり、また25μmを超えると血管内皮前駆細胞
の捕捉率が低下し、回収率の低下を招くので好ましくな
い。
When a sponge-like structure is used, the pore size is usually 2.0 μm or more and 25 μm or less, preferably 3.0 μm or more and 20 μm or less, and more preferably 4.0 μm or more and 15 μm or less. 2.0 μm
If it is less than 25 μm, the flowability is remarkably inferior, and it may be difficult to pass the liquid. If it exceeds 25 μm, the capture rate of vascular endothelial progenitor cells is lowered and the recovery rate is lowered.

【0016】濾材の材料として、成形性、滅菌性や細胞
毒性が低いという点で好ましいものを例示すると、ポリ
エチレン、ポリプロピレン、ポリスチレン、アクリル樹
脂、ナイロン、ポリエステル、ポリカーボネート、ポリ
アクリルアミド、ポリウレタン等の合成高分子、アガロ
ース、セルロース、酢酸セルロース、キチン、キトサ
ン、アルギン酸塩等の天然高分子、ヒドロキシアパタイ
ト、ガラス、アルミナ、チタニア等の無機材料、ステン
レス、チタン、アルミニム等の金属があげられる。ま
た、濾材に細胞浮遊液が均一に流れるように、例えば特
公平6−51060号公報で提案されているヒドロキシ
エチルメタクリレートを主成分とする合成高分子で濾材
を親水化処理してもよい。
As a material of the filter medium, preferable examples are those having low moldability, sterilization property and low cytotoxicity, and synthetic materials such as polyethylene, polypropylene, polystyrene, acrylic resin, nylon, polyester, polycarbonate, polyacrylamide and polyurethane can be used. Examples include molecules, natural polymers such as agarose, cellulose, cellulose acetate, chitin, chitosan, and alginates, inorganic materials such as hydroxyapatite, glass, alumina, and titania, and metals such as stainless steel, titanium, and aluminum. In order to make the cell suspension flow uniformly through the filter medium, the filter medium may be hydrophilized with, for example, a synthetic polymer containing hydroxyethyl methacrylate as a main component proposed in Japanese Patent Publication No. 6-51060.

【0017】この濾材を充填する、液体導入口と液体導
出口を有する容器の材質としては成形性や滅菌性に優
れ、細胞毒性が低いという点で好ましいものを例示する
と、ポリエチレン、ポリプロピレン、ポリスチレン、ア
クリル樹脂、ナイロン、ポリエステル、ポリカーボネー
ト、ポリアクリルアミド、ポリウレタン、塩化ビニル等
の合成高分子、ヒドロキシアパタイト、ガラス、アルミ
ナ、チタニア等の無機材料、ステンレス、チタン、アル
ミニウム等の金属があげられるが、これらに限定される
ものではない。
As a material of a container having a liquid inlet and a liquid outlet, which is filled with this filter medium, preferred examples are polyethylene, polypropylene, polystyrene, which are excellent in moldability and sterilization and have low cytotoxicity. Acrylic resins, nylon, polyester, polycarbonate, polyacrylamide, polyurethane, synthetic polymers such as vinyl chloride, hydroxyapatite, inorganic materials such as glass, alumina and titania, and metals such as stainless steel, titanium and aluminum. It is not limited.

【0018】容器の構造としては、形状は直方体、立方
体、円柱形、楕円柱形などがあげられるが、いずれの形
状でもよい。また、液体導入口と液体導出口の位置とし
ては、液体導入口は濾材の最上層に液体を導入できる位
置であればよく、また液体導出口は濾材の最下層から液
体を導出できる位置であれば良い。
Examples of the structure of the container include a rectangular parallelepiped, a cube, a cylinder, an elliptic cylinder, and the like, but any shape may be used. Further, the positions of the liquid inlet and the liquid outlet may be any positions as long as the liquid inlet can introduce the liquid to the uppermost layer of the filter medium, and the liquid outlet is a position where the liquid can be led out from the lowermost layer of the filter medium. Good.

【0019】本発明で言う「細胞分離フィルターに残存
する夾雑細胞を実質的に除去する液体」とは、細胞に悪
影響を及ぼさない液体であればいかなる液体も使用可能
であるが、いくつか例示すると生理食塩水、ダルベッコ
リン酸塩緩衝液(D-PBS)やハンクス液(HBS
S)などの緩衝液、RPMI-1640などの培地があ
げられる。この液体の導入方向としては血管内皮前駆細
胞と夾雑細胞を含む細胞浮遊液の細胞分離フィルターへ
の通液方向と同一方向あるいは逆方向が考えられるが、
同一方向の方が捕捉された細胞が漏出する可能性が低い
傾向にあるのでより好ましい。
The "liquid for substantially removing the contaminating cells remaining in the cell separation filter" in the present invention can be any liquid as long as it does not adversely affect the cells, but some examples will be given. Physiological saline, Dulbecco's phosphate buffer (D-PBS) and Hanks' solution (HBS)
Buffer solutions such as S) and culture media such as RPMI-1640. The direction of introduction of this liquid is considered to be the same direction as the direction of passage of the cell suspension containing vascular endothelial progenitor cells and foreign cells to the cell separation filter, or the opposite direction,
The same direction is more preferable because the trapped cells tend to leak less.

【0020】本発明で言う「夾雑細胞を実質的に通過さ
せ」とは、細胞浮遊液中の夾雑細胞の60%以上を通過
させることを言い、「血管内皮前駆細胞を実質的に捕捉
する」とは細胞浮遊液中の血管内皮前駆細胞の60%以
上を捕捉することを言い、「夾雑細胞を実質的に除去す
る」とは、細胞分離フィルターに残存する夾雑細胞の6
0%以上を除去することを言う。
In the present invention, "substantially passing contaminated cells" means passing 60% or more of the contaminated cells in the cell suspension, "substantially capturing vascular endothelial progenitor cells". Means capturing 60% or more of vascular endothelial progenitor cells in the cell suspension, and “substantially removing contaminating cells” means that 6 of contaminating cells remaining in the cell separation filter are removed.
It means to remove 0% or more.

【0021】本発明で言う「細胞分離フィルターに捕捉
された血管内皮前駆細胞を回収する流体」とは、細胞に
悪影響を及ぼさない流体であればいかなる流体も使用で
きるが、いくつか例示すると、生理食塩水、D-PBS
(ダルベッコリン酸塩緩衝液)、HBSS(ハンクス
液)などの緩衝液、RPMI-1640などの培地があ
げられる。これらの液体に、細胞保護、栄養補給、抗凝
固性付与、凍結保存時の凍害防止、粘度向上(回収率向
上に有効な場合がある)等の目的で必要に応じ、アルブ
ミン、グロブリン、グルコース、サッカロース、トレハ
ロース、クエン酸化合物、EDTA、ジメチルスルホキ
シド、デキストラン、ポリビニルピロリドン、グリセリ
ン、キチン誘導体、ヒドロキシエチルデンプン、ゼラチ
ン等を添加してもよい。また、ここで言う流体とは、液
体単体のみならず、空気、アルゴン、窒素など細胞に悪
影響を及ぼさない気体を混合したものも含まれる。流体
の導入方向としては血管内皮前駆細胞と夾雑細胞を含む
細胞浮遊液の細胞分離フィルターへの通液方向と同一方
向あるいは逆方向が考えられるが、逆方向の方が高い回
収率が得られる傾向にあるのでより好ましい。
The "fluid for recovering vascular endothelial progenitor cells trapped by the cell separation filter" in the present invention can be any fluid as long as it does not adversely affect the cells. Saline, D-PBS
(Dulbeccolate buffer), buffer such as HBSS (Hank's solution), and medium such as RPMI-1640. These liquids may be supplemented with albumin, globulin, glucose, etc. as necessary for the purpose of cell protection, nutritional supplementation, anticoagulant protection, frost damage prevention during cryopreservation, viscosity improvement (may be effective in improving recovery rate), etc. Saccharose, trehalose, citric acid compounds, EDTA, dimethyl sulfoxide, dextran, polyvinylpyrrolidone, glycerin, chitin derivatives, hydroxyethyl starch, gelatin and the like may be added. Further, the fluid mentioned here includes not only a liquid simple substance but also a mixture of air, argon, nitrogen, and other gases that do not adversely affect cells. The fluid may be introduced in the same direction as the direction in which the cell suspension containing vascular endothelial progenitor cells and foreign cells is passed through the cell separation filter, or in the opposite direction, but the reverse direction tends to yield a higher recovery rate. It is more preferable because it is

【0022】本発明で言う「回収された血管内皮前駆細
胞を血管の再生に使用する」とは、細胞分離フィルター
に一旦捕捉させ回収した血管内皮前駆細胞を自己の個体
に移植できるのみならず、別の個体への移植、あるいは
生体外で血管の再生に利用することを言う。更に本発明
で得られた血管内皮前駆細胞は、そのまま、あるいは必
要に応じさらなる分離精製、培養、活性化、分化誘導、
増幅、遺伝子導入、凍結保存、第34回日本人工臓器学
会大会予稿集S1-1で提案されている人工血管との複
合化などの各種処理が施された後、各部血管の病変およ
び/または欠損の治療や基礎科学分野の研究に用いられ
る。
The term "use the recovered vascular endothelial progenitor cells for the regeneration of blood vessels" in the present invention means not only that the vascular endothelial progenitor cells once captured by the cell separation filter and recovered can be transplanted into an individual, It is used to transplant to another individual or to regenerate blood vessels in vitro. Furthermore, the vascular endothelial progenitor cells obtained in the present invention may be used as they are, or if necessary, further separation and purification, culture, activation, differentiation induction,
After undergoing various treatments such as amplification, gene transfer, cryopreservation, complexation with artificial blood vessels proposed in the 34th Annual Meeting of the Japanese Society for Artificial Organs S1-1, lesions and / or defects of blood vessels of each part It is used in the treatment of and for research in basic science fields.

【0023】細胞分離フィルターから通過流出した赤血
球は、基礎科学実験用赤血球検体としての利用や人工赤
血球の原料となるヘモグロビンの採取目的に用いること
ができる。また、輸血用血液として患者に輸血すること
もでき、特に血管内皮前駆細胞を自己の個体に移植する
場合は、個体の貧血予防になるためより好ましい。
The red blood cells that have passed through the cell separation filter can be used as a red blood cell sample for basic science experiments and for the purpose of collecting hemoglobin, which is a raw material for artificial red blood cells. In addition, it can be transfused into a patient as blood for transfusion, and in particular, transplantation of vascular endothelial progenitor cells into an autologous individual is more preferable because it prevents anemia of the individual.

【0024】本発明で言う「細胞外マトリックス上に付
着したアタッチング細胞(attaching細胞)を回収する
こと」とは、細胞分離フィルターで回収された細胞を細
胞外マトリックスがコートされた基材に付着した細胞を
回収することを言う。より具体的には、例えば、細胞分
離フィルターで回収された細胞を細胞培養用培地に浮遊
させ、細胞外マトリックスがコートされた基材表面、例
えば細胞培養用プラスチックディッシュに播種し、数日
間培養後、赤血球、顆粒球等の非付着細胞を含む上清を
除去し、付着したアタッチング細胞(attaching細胞)
をトリプシン含EDTA等の酵素処理で剥離するか、EDTA含
PBSを添加して37℃でインキュベートし、浮遊させて回
収することを言う。このようにフィルターで分離した血
管内皮前駆細胞を含む細胞浮遊液からアタッチング細胞
(attaching細胞)を回収することは、血管再生を阻害
する赤血球、炎症反応を引き起こす顆粒球を効率的に除
去できるため、血管再生には非常に好ましい。ここで言
う細胞培養用培地とは、アタッチング細胞(attaching
細胞)が基材に付着し血管内皮前駆細胞の表面マーカー
の発現を維持するものであればよいが、血清成分、ヘパ
リン、内皮細胞成長因子などを含んだものが好適に用い
られる。血清成分は特に限定しないが、例えば非働化血
清、自己血清、ウシ胎児血清などが用いられる。
In the present invention, "collecting the attaching cells attached to the extracellular matrix" means that the cells collected by the cell separation filter are attached to the substrate coated with the extracellular matrix. It means to collect cells. More specifically, for example, the cells collected by the cell separation filter are suspended in a medium for cell culture, seeded on the surface of a substrate coated with an extracellular matrix, for example, a plastic dish for cell culture, and cultured for several days. , The erythrocytes, granulocytes, and other non-adherent cells are removed, and the attached cells are attached.
Peel with an enzyme treatment such as EDTA containing trypsin, or
This means adding PBS and incubating at 37 ° C, suspending and collecting. By collecting the attaching cells from the cell suspension containing the vascular endothelial progenitor cells thus separated by the filter, erythrocytes that inhibit vascular regeneration and granulocytes that cause an inflammatory reaction can be efficiently removed. Highly preferred for revascularization. The cell culture medium mentioned here is an attaching cell (attaching cell).
Cells) that adhere to the substrate and maintain the expression of the surface marker of vascular endothelial progenitor cells, but those containing serum components, heparin, endothelial cell growth factor, etc. are preferably used. The serum component is not particularly limited, but for example, inactivated serum, autologous serum, fetal bovine serum, etc. are used.

【0025】本発明で言う「アタッチング細胞(attach
ing細胞)をヒト臍帯静脈内皮細胞と細胞外マトリック
ス上で共培養すること」とは、播種細胞濃度が0.1〜5×
105/ml、細胞比率がアタッチング細胞(attaching細
胞)/ヒト臍帯静脈内皮細胞=0.3〜3.0、上記細胞培養
用培地の各条件下で共培養することであって、わずか2
〜3時間で血管様のネットワークが確認できるため、移
植前の血管内皮前駆細胞の機能を確認する方法としても
好ましい。
[0025] In the present invention, "attaching cells (attach
ing cells) on the extracellular matrix with human umbilical vein endothelial cells "means that the seeding cell concentration is 0.1-5 ×
10 5 / ml, the cell ratio is attaching cells / human umbilical vein endothelial cells = 0.3 to 3.0, and the cell culture medium is co-cultured under the conditions of only 2
Since a blood vessel-like network can be confirmed in about 3 hours, it is also preferable as a method for confirming the function of vascular endothelial progenitor cells before transplantation.

【0026】本発明で言う細胞外マトリックスとは、フ
ィブロネクチン、ビトロネクチン、ゼラチン、コラーゲ
ン、ラミニンなどのことを言い、これらを単一或いはMa
trigel(ベクトンディッキンソン社製)のようにコラー
ゲンとラミニンが複合されたものを用いてもよい。また
BIO-COAT(ベクトンディッキンソン社製)のような細胞
外マトリックスがプラスチックディッシュにコートされ
た市販のものを用いてもよい。
The extracellular matrix referred to in the present invention refers to fibronectin, vitronectin, gelatin, collagen, laminin, etc., which are single or Ma.
A composite of collagen and laminin such as trigel (manufactured by Becton Dickinson) may be used. Also
A commercially available product in which an extracellular matrix such as BIO-COAT (manufactured by Becton Dickinson) is coated on a plastic dish may be used.

【0027】[0027]

【実施例】以下に実施例により本発明をより詳細に説明
するが、本発明はこれらにより限定されるものではな
い。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto.

【実施例1】臍帯血から細胞分離フィルターを用いて血
管内皮前駆細胞を分離し、in vitroで血管を再生する方
法を例示する。 1.細胞分離回収装置 平均繊維径2.3μmのポリエステル不織布(目付約6
0g/m2、嵩高約0.3mm)18枚と平均繊維径1
2μmのポリエステル不織布(目付約100g/m2
嵩高約0.47mm)16枚を重ね、押し切りカッター
で35mm角に切断し濾材とした。この濾材を容器外寸
(縦×横×厚み)41×41×18mmで液体流出口と
液体流入口を対角線上に持つポリカーボネート製容器の
入口側に平均繊維径2.3μmのポリエステル不織布
が、出口側に平均繊維径12μmのポリエステル不織布
が来るように充填して細胞分離フィルター8とした。ま
た、不織布を親水化処理する目的でヒドロキシエチルメ
タクリレート−ジメチルアミノエチルメタクリレート共
重合体(モル比で97:3)の1%エタノール溶液を該
細胞分離フィルターの液体流出口から通液し、窒素ガス
で余分なポリマー溶液をパージした後、60℃で16時
間以上真空乾燥させた。この細胞分離フィルター8の入
口側には図1に示すように先端がスパイク1で、途中に
細胞回収バッグ7へ分岐するT字管4を有するチューブ
2を接続した。また、細胞分離回収フィルター8の出口
側には途中に通常はキャップで蓋がされキャップを外し
てシリンジが接続可能なアダプター10を有し、末端が
ドレインバッグ12に接続されるチューブ9を接続し細
胞分離回収装置とした。
Example 1 A method of regenerating blood vessels in vitro by separating vascular endothelial progenitor cells from cord blood using a cell separation filter will be illustrated. 1. Cell separation / collection device Polyester nonwoven fabric with an average fiber diameter of 2.3 μm
0 g / m 2 , bulkiness of about 0.3 mm) 18 sheets and average fiber diameter 1
2 μm polyester non-woven fabric (Basis weight: approx. 100 g / m 2 ,
16 pieces having a bulkiness of about 0.47 mm) were piled up and cut into 35 mm square with a push-cutting cutter to obtain a filter medium. This filter medium is 41 x 41 x 18 mm in outer dimensions (length x width x thickness) of a polycarbonate container having a liquid outlet and a liquid inlet on a diagonal line, and a polyester non-woven fabric having an average fiber diameter of 2.3 μm is provided on the inlet side. The cell separation filter 8 was filled with a polyester nonwoven fabric having an average fiber diameter of 12 μm on the side. Further, for the purpose of hydrophilicizing the nonwoven fabric, a 1% ethanol solution of hydroxyethyl methacrylate-dimethylaminoethyl methacrylate copolymer (molar ratio 97: 3) was passed through the liquid outlet of the cell separation filter to obtain nitrogen gas. After purging the excess polymer solution with, the product was vacuum dried at 60 ° C. for 16 hours or more. As shown in FIG. 1, a tube 2 having a spike 1 at its tip and a T-shaped tube 4 branching to a cell recovery bag 7 was connected to the inlet side of the cell separation filter 8 as shown in FIG. Further, on the outlet side of the cell separation / collection filter 8, there is provided an adapter 10 which is usually covered with a cap and which can be connected to a syringe by removing the cap, and a tube 9 whose end is connected to a drain bag 12 is connected. The cell separation and collection device was used.

【0028】2.原料血液 28mlの抗凝固剤(CPD)入りの血液バッグに繋がったチ
ューブの先端に接続されている注射針を臍帯静脈に穿刺
し、落差で臍帯血を回収した。回収中臍帯血が凝固しな
いように血液バッグを水平状態で傾けながら抗凝固剤
(CPD)と十分混和させた。フィルターで濾過するまで
は室温で保存し、48時間以内に処理した。抗凝固剤を
含めた全血液量は100mlであった。
2. An injection needle connected to the tip of a tube connected to a blood bag containing 28 ml of raw blood and an anticoagulant (CPD) was punctured into the umbilical vein, and umbilical cord blood was collected by a drop. During collection, the blood bag was tilted horizontally to prevent it from coagulating, and was thoroughly mixed with the anticoagulant (CPD). Stored at room temperature until filtered and processed within 48 hours. The total blood volume including anticoagulant was 100 ml.

【0029】3.細胞分離回収操作 1.で作製した細胞分離回収装置のスパイク1に2.の
臍帯血入り血液バッグ(以下、血液バッグ)を接続し
た。クランプ5を閉じて血液バッグと細胞分離フィルタ
ー8のみが連通するようにし、アダプター10のキャッ
プをした状態にし、細胞分離フィルター8とドレインバ
ッグ12のみが連通する方向にして臍帯血を細胞分離フ
ィルター8に落差で通液濾過し、細胞分離フィルター8
から流出した濾液をドレインバッグ12に回収した。空
になった血液バッグに生理食塩水を注入後、細胞分離フ
ィルター8に40mlの生理食塩水を通液し、細胞分離
フィルター8内に残存する赤血球を洗い流し、この洗液
もドレインバッグ12に回収した。次にアダプター10
に16mlデキストラン40中に、2mlヒト血清アル
ブミン(25%溶液)及び空気19mlを入れた30m
l注射器(ルアーロック口)を接続し、クランプ11を
閉じて注射器と細胞分離フィルター8のみが連通する方
向にし、クランプ3を閉じて細胞分離フィルター8と細
胞回収バッグ7のみが連通する方向にした。次に注射器
のプランジャーを手で押すことで細胞分離回収フィルタ
ー8に捕捉されている細胞を回収バッグ7に回収した。
3. Cell separation and collection operation 1. 1. In spike 1 of the cell separation and collection device prepared in 2. A blood bag containing cord blood (hereinafter, referred to as a blood bag) was connected. The clamp 5 is closed so that only the blood bag and the cell separation filter 8 communicate with each other, the adapter 10 is capped, and only the cell separation filter 8 and the drain bag 12 communicate with each other so that the cord blood is separated from the cell separation filter 8. The cell separation filter 8 is filtered by passing through the head.
The filtrate flowing out of the drain bag 12 was collected. After injecting physiological saline into the empty blood bag, 40 ml of physiological saline is passed through the cell separation filter 8 to wash away the erythrocytes remaining in the cell separation filter 8, and this washing solution is also collected in the drain bag 12. did. Next adapter 10
30 ml of 2 ml human serum albumin (25% solution) and 19 ml air in 16 ml dextran 40
l Syringe (luer lock port) was connected, clamp 11 was closed so that only syringe and cell separation filter 8 were in communication, and clamp 3 was closed so that only cell separation filter 8 and cell collection bag 7 were in communication. . Next, the cells captured by the cell separation / collection filter 8 were collected in the collection bag 7 by manually pushing the plunger of the syringe.

【0030】4.再生方法及び評価結果 回収バッグに回収された単核球は、臍帯血中の単核球の
80%であった。回収された単核球を20%FBS、ウシ下垂
体エキス(Gibco社製)、ヘパリン(10unit/ml)、を
添加したMedium199に3×107/10mlの濃度で浮遊させ、
ゼラチンをコートした100mmプラスチックディッシュに
播種し、37℃の5%CO2インキュベータ内で培養した。結
果を図2に示した。図2によると、培養48時間以内に
細胞塊が発生し(図2−1)、培養3日目ではプラスチ
ィックディッシュに付着した細胞塊の端から紡錘形のア
タッチング細胞(attaching細胞)が現れていることが
分かる(図2-2及び図2−3)。これらアタッチング
細胞(attaching細胞)の70%以上が内皮細胞の特徴であ
るレクチン結合能とアセチルLDLの取り込み能とを有し
ていた。図2−4は、蛍光染色する前のアタッチング細
胞(attaching細胞)を、図2−5及び図2−6は、レ
クチン結合能及びアセチルLDL取り込み能を示すため蛍
光染色した後の蛍光顕微鏡写真である。また、これらの
アタッチング細胞(attaching細胞)はRT-PCRの解析結
果から、内皮細胞に特徴的なKDR、CD31、ecNOS、AC13
3、endothelin-1、LOX-1、GAPDHを発現していた(図2
−7)。図3には、図2−1〜図2−6に示した顕微鏡
写真を分かりやすく図示した。図3−1〜図3−6がそ
れぞれ図2−1〜図2−6に対応している。培養7日目
に得られたアタッチング細胞(attaching細胞)は、播
種単核球の10%で、フローサイトメトリー法によるKD
R陽性細胞の解析から血管内皮前駆細胞は原料血液の単
核球の6%であった。7日間培養したアタッチング細胞
(attaching細胞)を1mMのEDTA含PBSを用いて37℃で1
5分間インキュベートして浮遊させ、更にPKH2-GLで蛍光
標識した後、PKH26標識のHUVEC(ヒト臍帯静脈内皮細
胞)と1:1の細胞比率で、Total1×105cells/mlの細
胞濃度になるように、前述の細胞培養用培地で調整し
た。更に、マトリゲル(ベクトンディッキンソン社製)
をコートした35mmプラスチックディッシュに2ml播種
し、37℃の5%CO2インキュベータ内で共培養した。2〜3
時間後に蛍光顕微鏡にて観察したところ、赤色のHUVEC
と緑色のアタッチング細胞(attaching細胞)が入り混じ
った血管様のネットワーク構造が現れ、血管への分化を
確認できた(図4)。実施例1で用いた分析は、The Jo
urnal of Clinical Investigation,105,1527-1536(200
0)で開示された方法で実施した。
4. Regeneration Method and Evaluation Results The mononuclear cells collected in the collection bag were 80% of the mononuclear cells in the cord blood. The recovered mononuclear cells 20% FBS, (manufactured by Gibco Co.) bovine pituitary extract, heparin (10 units / ml), Medium 199 in suspended at a concentration of 3 × 10 7 / 10ml was added,
The seeds were seeded on a gelatin-coated 100 mm plastic dish and cultured in a 5% CO 2 incubator at 37 ° C. The results are shown in Fig. 2. According to FIG. 2, a cell mass was generated within 48 hours of culture (FIG. 2-1), and spindle-shaped attaching cells appeared from the end of the cell mass attached to the plastic dish on the 3rd day of culture. Can be seen (FIGS. 2-2 and 2-3). 70% or more of these attaching cells had the lectin binding ability and the acetyl LDL uptake ability which are the characteristics of endothelial cells. Fig. 2-4 is an attaching cell before fluorescent staining, and Figs. 2-5 and 2-6 are fluorescent micrographs after fluorescent staining for showing lectin binding ability and acetyl LDL uptake ability. is there. Moreover, from these RT-PCR analysis results, these attaching cells (attaching cells) were characterized by KDR, CD31, ecNOS, and AC13, which are characteristic of endothelial cells.
3, endothelin-1, LOX-1, and GAPDH were expressed (Fig. 2
-7). FIG. 3 illustrates the micrographs shown in FIGS. 2-1 to 2-6 in an easy-to-understand manner. 3-1 to 3-6 correspond to FIGS. 2-1 to 2-6, respectively. Attaching cells obtained on the 7th day of culturing were 10% of the seeded mononuclear cells, which were KD by flow cytometry.
From the analysis of R-positive cells, vascular endothelial progenitor cells were 6% of the mononuclear cells of the raw blood. Attaching cells that had been cultivated for 7 days were incubated with 1 mM PBS containing EDTA at 37 ° C for 1
After incubating for 5 minutes to suspend and further fluorescently label with PKH2-GL, the total cell concentration is 1 × 10 5 cells / ml with PKH26-labeled HUVEC (human umbilical vein endothelial cells) at a 1: 1 ratio. As described above, the cell culture medium was prepared. Matrigel (Becton Dickinson)
2 ml was plated on a 35 mm plastic dish coated with and co-cultured in a 5% CO 2 incubator at 37 ° C. 2-3
When observed with a fluorescence microscope after a lapse of time, red HUVEC
A blood vessel-like network structure in which the green and green attaching cells mixed together appeared, and the differentiation into blood vessels was confirmed (Fig. 4). The analysis used in Example 1 is The Jo
urnal of Clinical Investigation, 105,1527-1536 (200
It was carried out by the method disclosed in 0).

【0031】[0031]

【実施例2】臍帯血から細胞分離フィルターを用いて血
管内皮前駆細胞を分離し、in vivoで血管を再生する方
法を例示する。 1.細胞分離回収装置 実施例1と同じ。 2.原料血液 実施例1と同じ。 3.細胞分離回収操作 実施例1と同じ。 4.再生方法及び評価結果 ヌードラットの左後足を虚血状態にし、実施例1と同様
に分離したアタッチング細胞(attaching細胞)を虚血
部に3×105個移植した。移植後に流速を検知するレーザ
ードップラー血流計(LDI;Moor Instruments社製)に
て血流を調べた結果、7日目には血流の回復を認め、更
に21日目には虚血状態にしなかった右後足と同等の血流
を確認できた(図5)。
Example 2 A method for regenerating blood vessels in vivo by separating vascular endothelial progenitor cells from cord blood using a cell separation filter will be illustrated. 1. Cell separation / collection device Same as in Example 1. 2. Raw blood Same as in Example 1. 3. Cell separation and collection procedure Same as in Example 1. 4. Regeneration Method and Evaluation Results The left hindpaw of nude rats was placed in an ischemic state, and 3 × 10 5 attaching cells (attaching cells) separated in the same manner as in Example 1 were transplanted to the ischemic region. As a result of examining the blood flow with a laser Doppler blood flow meter (LDI; made by Moor Instruments) that detects the flow velocity after transplantation, recovery of the blood flow was observed on the 7th day, and an ischemic state was established on the 21st day. Blood flow equivalent to that of the right hind paw, which was not present, could be confirmed (Fig. 5).

【0032】[0032]

【比較例1】臍帯血から比重遠心法で血管内皮前駆細胞
を分離し、in vitroで血管を再生する方法を例示する。 1.原料血液 実施例1と同じ。 2.細胞分離回収操作 5mlのHistopaque(Sigma社製)を15mlのコニカルチュー
ブに注入し、3mlの臍帯血をリン酸緩衝液で6mlに希釈し
たものを界面を揺らさないようにHistopaque上に重層し
た。室温にて475×gで45分間遠心後、単核球層を回収し
た。100mlの臍帯血を全てこの方法で処理した。 3.評価結果 2.で得られた単核球を集め、リン酸緩衝液でで2回洗
浄した。単核球の回収率は原料血液中の25%であっ
た。回収された単核球を20%FBS、ウシ下垂体エキス(Gi
bco社製)、ヘパリン(10unit/ml)、を添加したMediu
m199に3×107/10mlの濃度で浮遊させ、ゼラチンをコー
トした100mmプラスチックディッシュに播種し、37℃の5
%CO2インキュベータ内で培養した。培養48時間以内に
細胞塊が発生し、培養3日目ではプラスチィックディッ
シュに付着した細胞塊の端から紡錘形のアタッチング細
胞(attaching細胞)が現れた。培養7日目に得られた
アタッチング細胞(attaching細胞)は播種単核球の1
0%で、フローサイトメトリー法によるKDR陽性細胞の
解析から血管内皮前駆細胞は原料血液の単核球の1%で
あった。比較例1で用いた分析は、The Journal of Cli
nical Investigation,105,1527-1536(2000)で開示され
た方法で実施した。
Comparative Example 1 A method of regenerating blood vessels in vitro by separating vascular endothelial progenitor cells from cord blood by a gravity centrifuge method will be exemplified. 1. Raw blood Same as in Example 1. 2. Cell Separation and Collection Operation 5 ml of Histopaque (manufactured by Sigma) was injected into a 15 ml conical tube, and 3 ml of cord blood diluted with phosphate buffer to 6 ml was layered on the Histopaque without shaking the interface. After centrifugation at 475 xg for 45 minutes at room temperature, the mononuclear cell layer was collected. All 100 ml cord blood was processed this way. 3. Evaluation result 2. The mononuclear cells obtained in 1. were collected and washed twice with phosphate buffer. The recovery rate of mononuclear cells was 25% of the raw blood. Collected mononuclear cells were treated with 20% FBS, bovine pituitary extract (Gi
Medico with bco) and heparin (10 unit / ml) added
m199 in suspended at a concentration of 3 × 10 7 / 10ml, seeded in 100mm plastic dish coated with gelatin, 5 of 37 ° C.
Cultured in a% CO 2 incubator. Cell clusters were generated within 48 hours of culture, and spindle-shaped attaching cells appeared from the end of the cell clusters attached to the plastic dish on day 3 of culture. Attaching cells obtained on day 7 of culture were 1 of seeded mononuclear cells.
At 0%, analysis of KDR-positive cells by flow cytometry revealed that vascular endothelial progenitor cells were 1% of source blood mononuclear cells. The analysis used in Comparative Example 1 is based on The Journal of Cli.
nical Investigation, 105, 1527-1536 (2000).

【0033】[0033]

【発明の効果】以上のように、本発明によれば、簡便な
短時間の操作で且つ非完全開放系で血管内皮前駆細胞を
分離回収でき、効率的な血管再生が可能である。したが
って、本発明は、これまでの実験室レベルの実験医療か
ら脱皮してルーチンの医療行為への発展に貢献すること
極めて大である。また、非常に稀な血管内皮前駆細胞を
高率に回収できるので、採血量を減らすことができ血液
提供者の負担軽減に大きく寄与する。更に、移植前に回
収された血管内皮前駆細胞の機能確認が短時間でできる
ために、移植成績向上に大きく寄与する。
As described above, according to the present invention, vascular endothelial progenitor cells can be separated and collected by a simple and short-time operation and in an incompletely open system, and efficient blood vessel regeneration is possible. Therefore, the present invention is extremely important to contribute to the development of routine medical procedures by breaking away from conventional laboratory-level experimental medical care. In addition, since extremely rare vascular endothelial progenitor cells can be collected at a high rate, the amount of blood collected can be reduced, which greatly contributes to reducing the burden on blood donors. Furthermore, the function of vascular endothelial progenitor cells collected before transplantation can be confirmed in a short time, which greatly contributes to the improvement of transplantation results.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1で使用した細胞分離回収装置の模式図
である。
FIG. 1 is a schematic diagram of a cell separation / collection device used in Example 1.

【図2】実施例1で得られたアタッチング細胞(attach
ing細胞)の光学顕微鏡写真、蛍光顕微鏡写真及びRT-PC
R解析図を示す。
FIG. 2 Attaching cells (attach) obtained in Example 1
ing cells) optical microscope photograph, fluorescence microscope photograph and RT-PC
The R analysis diagram is shown.

【図3】実施例1で得られたアタッチング細胞(attach
ing細胞)の光学顕微鏡写真及び蛍光顕微鏡写真を図面
化したものである。
FIG. 3 Attaching cells (attach) obtained in Example 1
ing cell) and an optical microscope photograph and a fluorescence microscope photograph of the cells.

【図4】実施例1にてin vitroで再生された血管の蛍光
顕微鏡写真である。
FIG. 4 is a fluorescence micrograph of blood vessels regenerated in vitro in Example 1.

【図5】実施例2にてレーザードップラー解析装置で測
定したヌードラット虚血部の血流量の経時的回復を示し
た図である。
FIG. 5 is a diagram showing the recovery of blood flow in the ischemic region of a nude rat over time measured by a laser Doppler analyzer in Example 2.

【符号の説明】[Explanation of symbols]

1 スパイク 2 チューブ 3 クランプ 4 T字管 5 クランプ 6 チューブ 7 回収バッグ 8 細胞分離フィルター 9 チューブ 10 アダプター 11 クランプ 12 ドレインバッグ 1 spike 2 tubes 3 clamps 4 T-tube 5 clamps 6 tubes 7 collection bags 8 Cell separation filter 9 tubes 10 Adapter 11 clamps 12 drain bag

───────────────────────────────────────────────────── フロントページの続き (72)発明者 寺嶋 修司 大分県大分市大字里2111−2 旭メディカ ル株式会社内 (72)発明者 安武 幹智 大分県大分市大字里2111−2 旭メディカ ル株式会社内 Fターム(参考) 4B065 AA90 BD18 CA44 4C081 AB13 CD29 CD34 DA03 EA02 4C097 AA15 BB01 DD15 MM04 MM05   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Shuji Terashima             2111-2 Ozai, Oita-shi, Oita Asahi Medica             Le Co., Ltd. (72) Inventor Mikitomo Yasutake             2111-2 Ozai, Oita-shi, Oita Asahi Medica             Le Co., Ltd. F-term (reference) 4B065 AA90 BD18 CA44                 4C081 AB13 CD29 CD34 DA03 EA02                 4C097 AA15 BB01 DD15 MM04 MM05

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】血管内皮前駆細胞と夾雑細胞とを含む細胞
浮遊液を、少なくとも夾雑細胞を実質的に通過させ血管
内皮前駆細胞は実質的に捕捉する細胞分離フィルターに
通液すること、該細胞分離フィルターに流体を導入して
該細胞分離フィルターに捕捉された血管内皮前駆細胞を
回収すること、回収された血管内皮前駆細胞を血管の再
生に使用することを含む血管の再生方法。
1. A cell suspension containing vascular endothelial progenitor cells and foreign cells is passed through a cell separation filter that substantially passes at least foreign cells and substantially captures the vascular endothelial precursor cells. A method for regenerating blood vessels, which comprises introducing a fluid into a separation filter to recover vascular endothelial progenitor cells captured by the cell separation filter, and using the recovered vascular endothelial progenitor cells for regenerating blood vessels.
【請求項2】細胞浮遊液を細胞分離フィルターに通液し
た後、さらに、該細胞分離フィルターに液体を導入して
細胞分離フィルターに残存する夾雑細胞を実質的に除去
する工程を含む請求項1に記載の血管の再生方法。
2. The method further comprising, after passing the cell suspension through a cell separation filter, further introducing a liquid into the cell separation filter to substantially remove contaminating cells remaining in the cell separation filter. The method for regenerating blood vessels according to.
【請求項3】血管内皮前駆細胞と夾雑細胞とを含む細胞
浮遊液が臍帯血、骨髄、G-CSF(Granulocyte-Colony Sti
mulating Factor)動員末梢血のいずれかである請求項1
又は2に記載の血管の再生方法。
3. A cell suspension containing vascular endothelial progenitor cells and foreign cells, which is cord blood, bone marrow, or G-CSF (Granulocyte-Colony Sti).
Mulator Factor) Mobilization Peripheral blood either.
Or the method for regenerating a blood vessel according to 2.
【請求項4】細胞分離フィルターから回収された血管内
皮前駆細胞を、さらに細胞外マトリックス上で培養し
て、細胞外マトリックス上に付着したアタッチング細胞
(attaching細胞)を回収する工程を含む請求項1〜3
のいずれかに記載の血管の再生方法。
4. The method further comprising the step of further culturing the vascular endothelial progenitor cells recovered from the cell separation filter on an extracellular matrix to recover the attaching cells attached to the extracellular matrix. ~ 3
The method for regenerating a blood vessel according to any one of 1.
【請求項5】さらにアタッチング細胞(attaching細
胞)をヒト臍帯静脈内皮細胞と細胞外マトリックス上で
共培養することからなる請求項4記載の血管の再生方
法。
5. The method for regenerating blood vessels according to claim 4, further comprising co-culturing the attaching cells with human umbilical vein endothelial cells on an extracellular matrix.
【請求項6】血管内皮前駆細胞と夾雑細胞とを含む細胞
浮遊液を、少なくとも夾雑細胞を実質的に通過させ血管
内皮前駆細胞は実質的に捕捉する細胞分離フィルターに
通液すること、該細胞分離フィルターに流体を導入して
該細胞分離フィルターに捕捉された血管内皮前駆細胞を
回収することを含む血管内皮前駆細胞の分離回収方法。
6. A cell suspension containing vascular endothelial progenitor cells and foreign cells is passed through a cell separation filter that substantially passes at least foreign cells and substantially captures the vascular endothelial precursor cells. A method for separating and collecting vascular endothelial progenitor cells, which comprises introducing a fluid into a separation filter to recover the vascular endothelial progenitor cells captured by the cell separation filter.
【請求項7】少なくとも入口と出口とを有する細胞分離
フィルター、該細胞分離フィルターの入口より上流にあ
る細胞浮遊液注入手段及び血管内皮前駆細胞回収手段、
細胞分離フィルターの出口より下流にある細胞分離フィ
ルターから血管内皮前駆細胞を回収するための流体を注
入する手段及び夾雑細胞を回収する手段、を含む血管内
皮前駆細胞の分離回収装置。
7. A cell separation filter having at least an inlet and an outlet, a cell suspension injection means and a vascular endothelial progenitor cell recovery means upstream from the inlet of the cell separation filter,
A device for separating and recovering vascular endothelial progenitor cells, comprising a means for injecting a fluid for recovering vascular endothelial progenitor cells from a cell separation filter downstream of the outlet of the cell separation filter and a means for recovering contaminant cells.
JP2002060282A 1997-01-24 2002-03-06 Method of blood vessel regeneration and method and device for cell separation and recovery Pending JP2003250820A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002060282A JP2003250820A (en) 2002-03-06 2002-03-06 Method of blood vessel regeneration and method and device for cell separation and recovery
US10/373,704 US20030180705A1 (en) 1997-01-24 2003-02-27 Method of regenerating blood vessels
US10/834,191 US20040224300A1 (en) 1997-01-24 2004-04-29 Method for separating nucleated cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002060282A JP2003250820A (en) 2002-03-06 2002-03-06 Method of blood vessel regeneration and method and device for cell separation and recovery

Publications (2)

Publication Number Publication Date
JP2003250820A true JP2003250820A (en) 2003-09-09
JP2003250820A5 JP2003250820A5 (en) 2005-09-02

Family

ID=28669693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002060282A Pending JP2003250820A (en) 1997-01-24 2002-03-06 Method of blood vessel regeneration and method and device for cell separation and recovery

Country Status (1)

Country Link
JP (1) JP2003250820A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007089536A (en) * 2005-09-30 2007-04-12 Tokai Univ Method for inducing differentiation to endothelial progenitor cell using notch ligand
JP2007527242A (en) * 2004-03-05 2007-09-27 カイロン コーポレーション In vitro test system for predicting patient tolerance of therapeutic agents
WO2008142862A1 (en) 2007-05-18 2008-11-27 National University Corporation Asahikawa Medical College Anticancer therapy by transplanting vascular endothelial progenitor cells
WO2012020566A1 (en) 2010-08-10 2012-02-16 国立大学法人旭川医科大学 Highly functionalized stem cell/progenitor cell by ape1 gene transfection
WO2020179380A1 (en) * 2019-03-06 2020-09-10 公立大学法人名古屋市立大学 Preparation and expansion culture of endothelial progenitor cell

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007527242A (en) * 2004-03-05 2007-09-27 カイロン コーポレーション In vitro test system for predicting patient tolerance of therapeutic agents
JP2007089536A (en) * 2005-09-30 2007-04-12 Tokai Univ Method for inducing differentiation to endothelial progenitor cell using notch ligand
WO2008142862A1 (en) 2007-05-18 2008-11-27 National University Corporation Asahikawa Medical College Anticancer therapy by transplanting vascular endothelial progenitor cells
US8491887B2 (en) 2007-05-18 2013-07-23 National University Corporation Asahikawa Medical University Anticancer therapy by transplanting vascular endothelial progenitor cells
WO2012020566A1 (en) 2010-08-10 2012-02-16 国立大学法人旭川医科大学 Highly functionalized stem cell/progenitor cell by ape1 gene transfection
WO2020179380A1 (en) * 2019-03-06 2020-09-10 公立大学法人名古屋市立大学 Preparation and expansion culture of endothelial progenitor cell

Similar Documents

Publication Publication Date Title
JP5944832B2 (en) Leukocyte or mononuclear cell separation method, separation material
US20010036624A1 (en) Cell separation method
JP5975985B2 (en) Mononuclear cell preparation material, and mononuclear cell preparation method using the preparation material
JP5515133B2 (en) Bone regeneration composition manufacturing equipment
WO2004018615A1 (en) Fibrin-containing composition
JP6204193B2 (en) Method for producing cell concentrate
EP1689855A1 (en) Tangential flow filtration devices and methods for stem cell enrichment
US20040152190A1 (en) Method of separating and concentrating cells for kidney regfneration
JP6196222B2 (en) Method for producing cell concentrate
JP5336109B2 (en) Methods for enriching mononuclear cells and platelets
JP5800797B2 (en) Cell concentration / recovery method and cell recovery solution
US20020031757A1 (en) Method of regenerating a tissue
WO2004033396A2 (en) Method for enriching adherent monocyte populations
US20030180705A1 (en) Method of regenerating blood vessels
JP2002087971A (en) Method for separating living body tissue-regenerating cell and device for the same
JP2003250820A (en) Method of blood vessel regeneration and method and device for cell separation and recovery
JP3938973B2 (en) Cell separation method
JP6169972B2 (en) Stem cell isolation method
JP4333936B2 (en) Method for obtaining cells for regeneration of living bone tissue
JP4412621B2 (en) Cell separation method
JPH119270A (en) Separation and recovery of nucleated cell and separating and recovering device for nucleated cell
JP5923292B2 (en) Bone marrow treatment method
JP4833443B2 (en) How to collect hematopoietic stem cells
JP2002080377A5 (en)
JP2011010582A (en) Filter for separating adult stem cell, and method of separating the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050304

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080620

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081029

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081110

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090109

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20090130