JP2003249279A - Producing method of porous semiconductor layer, and dye sensitized solar cell - Google Patents

Producing method of porous semiconductor layer, and dye sensitized solar cell

Info

Publication number
JP2003249279A
JP2003249279A JP2002050034A JP2002050034A JP2003249279A JP 2003249279 A JP2003249279 A JP 2003249279A JP 2002050034 A JP2002050034 A JP 2002050034A JP 2002050034 A JP2002050034 A JP 2002050034A JP 2003249279 A JP2003249279 A JP 2003249279A
Authority
JP
Japan
Prior art keywords
dye
film
semiconductor layer
titanium oxide
porous semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002050034A
Other languages
Japanese (ja)
Inventor
Toshiko Imai
寿子 今井
Kazuhiro Enomoto
和弘 榎本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2002050034A priority Critical patent/JP2003249279A/en
Publication of JP2003249279A publication Critical patent/JP2003249279A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2036Light-sensitive devices comprising an oxide semiconductor electrode comprising mixed oxides, e.g. ZnO covered TiO2 particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Abstract

<P>PROBLEM TO BE SOLVED: To make different dyes co-adsorbed on a surface of a porous semiconductor layer efficiently. <P>SOLUTION: It is a manufacturing method of the porous semiconductor layer in which two or more kinds of dyes which are different from each other are co-adsorbed on the surface, and it includes at least a production process in which a coat film soluble to a specific solvent is formed on a part of the surface of the porous semiconductor layer, subsequently, the production process in which first dye dissolved is adsorbed on the surface of the porous semiconductor layer, the production process in which subsequently the dye on the coat film is removed together with the coat film using the solvent, and further, the production process in which a second dye is adsorbed on the surface of the porous semiconductor layer. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、多孔質半導体層の
作製方法及び色素増感型太陽電池に関する。具体的に
は、本発明は、相異なる色素を多孔質半導体層の表面に
効率よく共吸着さすことにより、高効率でかつ分光増感
領域の広い色素増感型太陽電池用の多孔質半導体層を製
造する方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing a porous semiconductor layer and a dye-sensitized solar cell. Specifically, the present invention is a porous semiconductor layer for a dye-sensitized solar cell having high efficiency and a wide spectral sensitization region by efficiently co-adsorbing different dyes on the surface of the porous semiconductor layer. To a method of manufacturing.

【0002】[0002]

【従来の技術】近年の産業の発達によりエネルギー及び
電力の使用量が急増している。そのため二酸化炭素等の
地球温暖化物質の排出も増え、地球環境を守るため無視
できない量になっている。太陽エネルギーを電気に変換
する太陽電池は、直接には二酸化炭素を排出せずに電力
を製造できるので、その普及が期待されている。しか
し、従来のシリコンを使用した太陽電池は、製造コスト
が高い問題があり、大規模電力用としては期待されるよ
うな普及に至っていない。
2. Description of the Related Art Due to recent industrial development, the amount of energy and electric power used has increased rapidly. Therefore, the emission of global warming substances such as carbon dioxide has increased, and the amount is not negligible in order to protect the global environment. A solar cell that converts solar energy into electricity can produce electric power without directly emitting carbon dioxide, and thus is expected to be widely used. However, the conventional solar cell using silicon has a problem of high manufacturing cost, and has not been widely used as expected for large-scale electric power.

【0003】このシリコンを使用した太陽電池に替わる
製造コストが低い太陽電池として、半導体電極に可視光
を吸収する色素を吸着した湿式太陽電池が注目されてい
る。半導体自身が本来もつ光吸収領域より低いエネルギ
ー領域で、言い換えれば長波長側で光電変換させる原理
は光増感と呼ばれ古くから知られていた。しかし、それ
を光電変換素子に応用し太陽電池とした場合、変換効率
は低かった。
As a solar cell having a low manufacturing cost, which is an alternative to the solar cell using silicon, a wet type solar cell in which a dye that absorbs visible light is adsorbed on a semiconductor electrode is attracting attention. The principle of photoelectric conversion in the energy region lower than the original light absorption region of the semiconductor itself, in other words, on the long wavelength side, is called photosensitization and has been known for a long time. However, when it was applied to a photoelectric conversion element to form a solar cell, the conversion efficiency was low.

【0004】M.Graetzelらは、Natur
e、vol.357、737ページ(1991年)に、
n型半導体である酸化チタンを微粒子化しフイルム状に
形成し、それに色素としてルテニウム錯体(RuL
2(NCS)2、L=4,4−ジカルボキシル−2,2’
ビピリジン)を表面に吸着させた光電変換素子が発表さ
れている。酸化チタンの微粒子を用いることにより表面
粗さ係数であるラフネスファクタ(電極内実表面積/投
影面積)が大きくなる。これにより光の受光面積が大き
くなるので、変換効率が大幅に向上した。
M. Graetzel et al., Nature
e, vol. 357, p. 737 (1991),
Titanium oxide, which is an n-type semiconductor, is made into fine particles and formed into a film, and a ruthenium complex (RuL
2 (NCS) 2 , L = 4,4-dicarboxyl-2,2 ′
A photoelectric conversion device in which (bipyridine) is adsorbed on the surface has been announced. By using fine particles of titanium oxide, the roughness factor (actual surface area in the electrode / projected area), which is the surface roughness coefficient, increases. As a result, the light receiving area is increased, and the conversion efficiency is greatly improved.

【0005】しかし、J.Am.Chem.Soc,V
ol.115,No14,6382ページ(1993
年)のM.Graetzelらの論文にあるように、こ
の色素は波長530〜550nmをピークとし400〜
800nmの波長しか利用していない。太陽光は紫外光
から赤外光に至るまでエネルギーのスペクトル分布が広
い。したがって、この方法では太陽光のエネルギーの一
部しか利用できない問題がある。変換効率を上げるため
には太陽エネルギーを十分吸収することが重要である。
However, J. Am. Chem. Soc, V
ol. 115, No. 14, page 6382 (1993
Year). As in the article by Graetzel et al., This dye has a peak at a wavelength of 530 to 550 nm and a wavelength of 400 to
Only the wavelength of 800 nm is used. Sunlight has a wide energy spectral distribution from ultraviolet light to infrared light. Therefore, this method has a problem that only a part of the energy of sunlight can be used. It is important to absorb enough solar energy to improve the conversion efficiency.

【0006】従来技術1として、特開平9−19974
4号公報には、色素の吸収波長域を拡大させる新規増感
色素とそれを用いた湿式太陽電池が開示されている。こ
れは、新規色素をナノ構造をもつ酸化物半導体に吸着さ
せたものである。
As prior art 1, Japanese Patent Laid-Open No. 9-19974
Japanese Unexamined Patent Publication (Kokai) No. 4 discloses a new sensitizing dye that expands the absorption wavelength range of the dye and a wet solar cell using the same. This is a novel dye adsorbed on an oxide semiconductor having a nanostructure.

【0007】従来技術2として、Jpn.J.App
l.Phys.Vol.37,L132−135ぺ−
ジ,Part2,No2A(1998年)には、複数の
色素を酸化チタンに吸着させる技術が開示されている。
すなわち、2つの色素テトラスルホニドガリウムフタロ
シアニン(GaTsPc)とテトラスルホニド亜鉛ポル
フェリン(ZnTsPP)をDMSO溶液に溶解し酸化
チタンに吸着させたものである。
As prior art 2, Jpn. J. App
l. Phys. Vol. 37, L132-135 page
J. Part2, No2A (1998) discloses a technique of adsorbing a plurality of dyes on titanium oxide.
That is, two dyes, tetrasulfonidogallium phthalocyanine (GaTsPc) and tetrasulfonido zinc porferin (ZnTsPP) were dissolved in a DMSO solution and adsorbed on titanium oxide.

【0008】従来技術3として、特開2000−245
466号公報には、光スペクトルの吸収波長領域を拡大
し、光エネルギーから電気エネルギーへの変換特性を向
上させる新規増感色素とそれを用いた湿式太陽電池が開
示されている。これは導電性基板上に複数の半導体層が
積層して設けられ、導電性基板の対極をなす導電性基板
上に触媒が吸着され、両導電性基板の間に電解質層が設
けられ、半導体層ごとに異なる吸収波長を有する色素が
吸着され、入射光側に位置する半導体層の色素の吸収波
長が、半導体層の後方の半導体層の色素の吸収波長より
短波長になっている光電変換素子である。
As the prior art 3, Japanese Patent Laid-Open No. 2000-245
Japanese Patent No. 466 discloses a new sensitizing dye that expands the absorption wavelength region of the optical spectrum and improves the conversion characteristic of light energy into electric energy, and a wet solar cell using the same. This is provided by stacking a plurality of semiconductor layers on a conductive substrate, a catalyst is adsorbed on the conductive substrate that is the opposite electrode of the conductive substrate, and an electrolyte layer is provided between the conductive substrates. A photoelectric conversion element in which a dye having a different absorption wavelength is adsorbed, and the absorption wavelength of the dye in the semiconductor layer located on the incident light side is shorter than the absorption wavelength of the dye in the semiconductor layer behind the semiconductor layer. is there.

【0009】従来技術4として、表示素子、又は看板等
の複数の部位に複数の色を配置した、色素増感型太陽電
池が開示されている。これは透明電極と、その上に設け
られた透明半導体層と、透明半導体層表面の複数の部位
に吸着した複数色の増感色素吸着部と、増感色素吸着部
上に設けられたキャリア移動層と、キャリア移動層上に
設けられたべつの透明電極とから構成された色素増感型
太陽電池である。
As the prior art 4, there is disclosed a dye-sensitized solar cell in which a plurality of colors are arranged at a plurality of parts such as a display element or a signboard. This is a transparent electrode, a transparent semiconductor layer provided on the transparent electrode, sensitizing dye adsorbing parts of plural colors adsorbed on plural parts of the transparent semiconductor layer surface, and carrier transfer provided on the sensitizing dye adsorbing part. A dye-sensitized solar cell comprising a layer and another transparent electrode provided on the carrier transfer layer.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、従来技
術1による多孔質半導体層及びその作製方法は、単独の
色素を使用しているので、新規色素といえども吸収スペ
クトルの範囲が限定されてしまう。そのため太陽光を利
用する場合、太陽光のごく一部のスペクトルしか吸収で
きず、その結果、この多孔質半導体層を用いた光電変換
素子全体の光電変換効率は低いものとなる。
However, since the porous semiconductor layer and the method for producing the same according to the prior art 1 use a single dye, the range of the absorption spectrum is limited even for a new dye. Therefore, when utilizing sunlight, only a small part of the spectrum of sunlight can be absorbed, and as a result, the photoelectric conversion efficiency of the entire photoelectric conversion element using this porous semiconductor layer becomes low.

【0011】また、従来技術2による多孔質半導体層及
びその作製方法は、光子−電子変換量子効率(IPC
E)が短波長側400〜500nmの波長で前述の色素
ZnTsPPに比べ激減し、長波長側600〜750n
mで若干向上し吸収波長域は拡大が認められる。しかし
これを用いた光電変換素子は、光電流として大きな値が
得られないため全体の光電変換効率は小さい。この原因
として、色素の会合やそれによる色素同士の相互作用で
光励起された色素から半導体電極に全ての電荷が注入さ
れないことが考えられる。
In addition, the porous semiconductor layer and the method for manufacturing the same according to the prior art 2 have a photon-electron conversion quantum efficiency (IPC).
E) is drastically reduced at the wavelength of 400 to 500 nm on the short wavelength side as compared with the above-mentioned dye ZnTsPP, and 600 to 750 n on the long wavelength side.
It is slightly improved with m and the absorption wavelength range is expanded. However, the photoelectric conversion element using this does not have a large photocurrent, so that the overall photoelectric conversion efficiency is low. As a cause of this, it is conceivable that not all charges are injected into the semiconductor electrode from the dye photoexcited by the association of the dyes and the resulting interaction between the dyes.

【0012】また、従来技術3による多孔質半導体層及
びその作製方法は、半導体層を焼成しておらず半導体層
中のキャリア移動が阻害され再結合が促進されるため、
高い電子輸送効率を実現することができず、これを用い
た光電変換素子は高い変換効率を得ることはできない。
また構造上の観点から複数色素を用いた光電変換素子に
おいては、色素の吸光特性に基づいて色素の吸着量を制
御し波長ごとに無駄な吸収を抑え、かつ高い収集効率を
実現することが不可欠である。しかし、該従来技術によ
る作製方法では複数の半導体層を形成するにあたり同一
の溶剤を用いるため実際には層間のオーバーラップが起
こり組織的な半導体層の形成が不可能である。もしくは
2つの層の間に第三の層が形成される。そのため、多孔
質電極へ設計どおりに複数色素を吸着させることは困難
である。
Further, in the porous semiconductor layer and the method for manufacturing the same according to the prior art 3, since the semiconductor layer is not baked, carrier transfer in the semiconductor layer is hindered and recombination is promoted.
High electron transport efficiency cannot be realized, and a photoelectric conversion element using this cannot obtain high conversion efficiency.
From a structural point of view, in photoelectric conversion elements using multiple dyes, it is essential to control the amount of dye adsorption based on the light absorption characteristics of the dyes, suppress wasteful absorption for each wavelength, and achieve high collection efficiency. Is. However, in the manufacturing method according to the conventional technique, the same solvent is used to form a plurality of semiconductor layers, so that an overlap between layers actually occurs and it is impossible to form a systematic semiconductor layer. Alternatively, a third layer is formed between the two layers. Therefore, it is difficult to adsorb multiple dyes to the porous electrode as designed.

【0013】また、従来技術4による多孔質半導体層及
びその作製方法は、デザイン性は高いが複数の色素を光
の入射方向へ積層させる形での色素吸着を組織だって行
うことはできないため、これを用いた光電変換素子は高
い変換効率を得ることはできない。
Further, the porous semiconductor layer and the method for producing the same according to the prior art 4 have a high designability, but the dye adsorption in the form of stacking a plurality of dyes in the light incident direction cannot be performed even by the tissue, and therefore The photoelectric conversion element using is unable to obtain high conversion efficiency.

【0014】[0014]

【課題を解決するための手段】本発明者等は、上記課題
を解決するため種々の検討をした結果、半導体層中のキ
ャリア輸送や半導体層表面での光電子移動を阻害させる
ことなく光スペクトルの吸収波長領域を拡大し、光電変
換の収集効率を向上させるとともに、表示装置としての
機能も併せもつ多孔質半導体層の作製方法を見出し、本
発明にいたった。
Means for Solving the Problems As a result of various investigations for solving the above problems, the inventors of the present invention have found that the optical spectrum of an optical spectrum can be obtained without hindering carrier transport in the semiconductor layer or photoelectron transfer on the surface of the semiconductor layer. The inventors have found a method for producing a porous semiconductor layer that expands the absorption wavelength region, improves photoelectric conversion collection efficiency, and also has a function as a display device, and arrived at the present invention.

【0015】かくして本発明によれば、表面に相異なる
2種以上の色素が共吸着した多孔質半導体層の製造方法
であって、多孔質半導体層の表面の一部に特定の溶媒に
可溶な皮膜を設ける工程、ついで溶解させた第一の色素
を該多孔質半導体層の表面に吸着させる工程、ついで該
溶媒により皮膜上の色素を皮膜と共に取り除く工程、更
には第二の色素を該多孔質半導体層の表面に吸着させる
工程を少なくとも含む多孔質半導体層の作製方法が提供
される。
Thus, according to the present invention, there is provided a method for producing a porous semiconductor layer in which two or more kinds of different dyes are co-adsorbed on the surface, wherein a part of the surface of the porous semiconductor layer is soluble in a specific solvent. A film, a step of adsorbing the dissolved first dye on the surface of the porous semiconductor layer, a step of removing the dye on the film together with the film with the solvent, and a second dye Provided is a method for producing a porous semiconductor layer, which includes at least a step of adsorbing it on the surface of the porous semiconductor layer.

【0016】更に、本発明によれば、上記方法により得
られた多孔質半導体層を光電変換層として用いた色素増
感型太陽電池が提供される。
Further, according to the present invention, there is provided a dye-sensitized solar cell using the porous semiconductor layer obtained by the above method as a photoelectric conversion layer.

【0017】[0017]

【発明の実施の形態】本発明では、多孔質半導体層表面
への相異なる色素をあらかじめ設計されたとおりの部位
に吸着させるため以下のような技術的手段を採用してい
る。多孔質半導体層上の第一の色素を吸着させたい部位
に、あらかじめ特定の溶媒に溶解する皮膜をもうけてお
く。皮膜が設けられた多孔質半導体層の表面に第二の色
素を吸着させた後、該溶媒により皮膜及び皮膜上の第二
の色素を取り除き、次いで皮膜を取り除いた部分へ第一
の色素を吸着させることにより、2種類の色素を意図し
た部分へ吸着させることができる。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, the following technical means are adopted in order to adsorb different dyes on the surface of a porous semiconductor layer to a site designed in advance. A film that dissolves in a specific solvent is provided in advance on the portion of the porous semiconductor layer where the first dye is to be adsorbed. After adsorbing the second dye on the surface of the porous semiconductor layer provided with the film, the film and the second dye on the film are removed by the solvent, and then the first dye is adsorbed on the part where the film is removed. By doing so, the two kinds of dyes can be adsorbed to the intended portion.

【0018】本発明で使用できる多孔質半導体とは、一
般に光電変換材料用に使用されるものであれば特に限定
されるものではなく、例えば、酸化チタン、酸化亜鉛、
酸化タングステン、酸化スズ、チタン酸バリウム、チタ
ン酸ストロンチウム、硫化カドミウム等の公知の半導体
の1種又は2種以上を用いることができる。なかでも、
安定性、安全性の点から酸化チタンが好ましい。なお、
本発明で使用される酸化チタンは、アナターゼ型酸化チ
タン、ルチル型酸化チタン、無定形酸化チタン、メタチ
タン酸、オルソチタン酸等の種々の酸化チタン、あるい
は水酸化チタン、含酸化チタン等のすべてが包含され
る。EOSIN Y等の一部の色素については、酸化亜
鉛/酸化スズを適切な比率で混合し用いることで光電子
移動特性を向上させることができる。
The porous semiconductor that can be used in the present invention is not particularly limited as long as it is generally used for photoelectric conversion materials. For example, titanium oxide, zinc oxide,
One or more known semiconductors such as tungsten oxide, tin oxide, barium titanate, strontium titanate, and cadmium sulfide can be used. Above all,
Titanium oxide is preferable in terms of stability and safety. In addition,
Titanium oxide used in the present invention, anatase type titanium oxide, rutile type titanium oxide, amorphous titanium oxide, metatitanic acid, various titanium oxide such as orthotitanic acid, or titanium hydroxide, titanium oxide etc. Included. For some dyes such as EOSIN Y, the photoelectron transfer characteristics can be improved by mixing and using zinc oxide / tin oxide in an appropriate ratio.

【0019】多孔質半導体層の形状は、特に限定され
ず、粒子の凝集体、板状等の形状を取り得る。
The shape of the porous semiconductor layer is not particularly limited, and may be an aggregate of particles, a plate shape or the like.

【0020】次に、多孔質半導体層の表面の一部には皮
膜が形成される。皮膜は、特定の溶媒に溶解せず、皮膜
の表面に付着又は吸着した色素とともに溶解、剥離又は
沈殿する物質からなることが好ましい。また、皮膜は、
皮膜で覆われていない多孔性半導体の表面への色素の吸
着を妨げないようなものを使用することが好ましい。具
体的には、酸化マグネシウム、酸化カルシウム、酸化セ
シウム等のアルカリ土類金属を含む化合物が挙げられ
る。例えば、皮膜には、皮膜を構成する物質とは別の組
成の物質を包含していてもよい。
Next, a film is formed on a part of the surface of the porous semiconductor layer. The film is preferably composed of a substance that does not dissolve in a specific solvent but dissolves, peels off or precipitates together with the dye attached or adsorbed on the surface of the film. Also, the film is
It is preferable to use a material that does not interfere with the adsorption of the dye on the surface of the porous semiconductor which is not covered with the film. Specific examples include compounds containing alkaline earth metals such as magnesium oxide, calcium oxide, and cesium oxide. For example, the film may include a substance having a composition different from that of the substance forming the film.

【0021】表面の一部に皮膜をもつ多孔質半導体層
は、皮膜のない微粒子半導体を含むペーストと皮膜をも
つ微粒子半導体を含むペーストをそれぞれ用意し、パタ
ーニングが可能な塗布法により作製することができる。
塗布法としては、スキージ法、印刷法、又はインクジェ
ット等のノンインパクト法が適用される。更に、多孔質
半導体層の所望の位置に皮膜を形成しうる材料を含む溶
液をスプレーしたり、該材料を含む溶液中に部分的に浸
漬したりすることで形成することも可能である。
The porous semiconductor layer having a film on a part of its surface may be prepared by a coating method which allows patterning by preparing a paste containing a fine particle semiconductor having no film and a paste containing a fine particle semiconductor having a film. it can.
As a coating method, a squeegee method, a printing method, or a non-impact method such as inkjet is applied. Further, it can be formed by spraying a solution containing a material capable of forming a film on a desired position of the porous semiconductor layer or by partially immersing the solution in a solution containing the material.

【0022】本発明では、複数種類の皮膜を用いること
で、3種類もしくはそれ以上の色素を多孔質半導体層の
意図した部分へ吸着させることができる。
In the present invention, by using a plurality of types of films, it is possible to adsorb three or more types of dyes to the intended portion of the porous semiconductor layer.

【0023】本発明で使用しうる色素としては、太陽電
池用の場合、発電効率からは長波長側に、太陽電池の耐
久性からは短波長側に制約が生じるため、主に400〜
1200nmの波長を利用することが妥当となる。光電
子移動の性能に優れた色素では単体で300〜400n
m程度の波長域に対し光電子移動が実現できることを考
えると、半導体多孔質層上へ吸着させる色素の種類は2
ないし3が適当である。
In the case of a solar cell, the dye that can be used in the present invention is limited to a long wavelength side from the viewpoint of power generation efficiency and a short wavelength side from the durability of the solar cell.
It makes sense to use a wavelength of 1200 nm. In the case of a dye with excellent photoelectron transfer performance, it is 300-400n by itself.
Considering that photoelectron transfer can be realized in the wavelength range of about m, the number of kinds of dyes to be adsorbed on the semiconductor porous layer is 2
3 to 3 are suitable.

【0024】ここで使用することができる色素は、分光
増感剤として機能する色素であり、特に可視光領域及び
/又は赤外光領域に吸収をもつものであれば問題はな
い。具体的には、ローズベンガル、ローダミンB等のキ
サンテン系色素;マラカイトグリーン、クリスタルバイ
オレット等のトリフルメタン色素、[perylene
−bis(4−dicarboxylphenyl)−
3,4,9,10−tetraCarboxylici
mide]等のペリレン系色素、銅フタロシアニン及
び、Phys.Rev.Lett V81,N14,p
2154−2957(1998年)に開示されているよ
うな亜鉛フタロシアニン[2,9,16,23−tet
ra(4−Carboxyphenoxy)phtha
locyanine Zinc(II)]等の金属フタ
ロシアニン、クロロフィル、ヘミン、又はルテニウム、
オスミウム、鉄、亜鉛を1以上含有する錯体(特開平1
−220380号、特表平5−504023号公報に記
載)等の金属錯塩、EOSINY等が挙げられる。
The dye that can be used here is a dye that functions as a spectral sensitizer, and there is no problem as long as it has absorption in the visible light region and / or the infrared light region. Specifically, xanthene-based dyes such as rose bengal and rhodamine B; triflumethane dyes such as malachite green and crystal violet, [perylene]
-Bis (4-dicarboxylphenyl)-
3,4,9,10-tetraCarboxylici
perene-based dyes such as copper, phthalocyanine, and Phys. Rev. Lett V81, N14, p
Zinc phthalocyanine [2,9,16,23-tet as disclosed in 2154-2957 (1998).
ra (4-Carboxyphenoxy) phtha
locyanine Zinc (II)] and other metal phthalocyanines, chlorophyll, hemin, or ruthenium,
Complex containing at least one of osmium, iron and zinc
-220380, JP-A-5-504023) and the like, metal complex salts, EOSINY, and the like.

【0025】上記色素の内、特に金属錯塩は、酸化物半
導体からなる多孔質半導体層に吸着したとき吸収波長域
が著しく長波長領域へ拡張されるという特性をもつた
め、広い吸収波長域を必要とする光電変換素子を作製す
る場合は好ましい。
Of the above dyes, the metal complex salt, in particular, has a characteristic that the absorption wavelength range is remarkably extended to a long wavelength range when adsorbed on the porous semiconductor layer made of an oxide semiconductor, so that a wide absorption wavelength range is required. It is preferable to produce a photoelectric conversion element having

【0026】色素の吸着方法は特に限定されず、公知の
方法をいずれも使用することができる。例えば、色素を
溶解した溶液に皮膜の形成された多孔質半導体層を浸漬
し、乾燥させる方法が挙げられる。
The method of adsorbing the dye is not particularly limited, and any known method can be used. For example, a method of immersing the porous semiconductor layer on which a film is formed in a solution in which a dye is dissolved and then drying it can be mentioned.

【0027】皮膜の除去方法としては、対応する皮膜の
種類に応じて、選択された除去溶液に浸漬する方法が挙
げられる。除去溶液としては、例えば、塩酸、硝酸、リ
ン酸、希硫酸等の無機酸溶液あるいはこれらの混酸、酢
酸、フェノール、トリフロロメチルスルホン酸等の有機
酸溶液が挙げられる。
As a method of removing the film, a method of immersing in a removing solution selected according to the type of the corresponding film can be mentioned. Examples of the removal solution include inorganic acid solutions such as hydrochloric acid, nitric acid, phosphoric acid, and dilute sulfuric acid, or mixed acid thereof, and organic acid solutions such as acetic acid, phenol, and trifluoromethylsulfonic acid.

【0028】本発明の方法により得られた多孔質半導体
層は、太陽電池の光電変換層に好適に使用できる。つま
り、多孔質半導体層は、十分な電子輸送を行うことがで
きる。更に、あらかじめ設計した部位に皮膜をもつこと
で、色素の吸着部位を設計どおりに制御することができ
る。また、好ましい多孔質半導体と色素の組み合わせを
選ぶことで、高い光電変換効率を有する色素増感型太陽
電池用酸化物半導体電極を提供することができる。
The porous semiconductor layer obtained by the method of the present invention can be suitably used for a photoelectric conversion layer of a solar cell. That is, the porous semiconductor layer can carry out sufficient electron transport. Furthermore, by having a film on the site designed in advance, the adsorption site of the dye can be controlled as designed. In addition, by selecting a preferable combination of a porous semiconductor and a dye, an oxide semiconductor electrode for a dye-sensitized solar cell having high photoelectric conversion efficiency can be provided.

【0029】また、多孔質半導体層は異なる種類の色素
が別々の部位に吸着されていて異なる種類の色素の会合
や相互作用がないので光電子移動が阻害されることが無
い。更に複数の色素により増感されるため、入射光の広
い波長領域を用いた太陽電池を作製することができる。
Further, since different kinds of dyes are adsorbed at different sites in the porous semiconductor layer and there is no association or interaction between different kinds of dyes, photoelectron transfer is not hindered. Further, since it is sensitized by a plurality of dyes, a solar cell using a wide wavelength region of incident light can be manufactured.

【0030】[0030]

【実施例】以下に、本発明の実施例を説明するが、本発
明はこれらの実施例に限定されるものではない。
EXAMPLES Examples of the present invention will be described below, but the present invention is not limited to these examples.

【0031】(実施例1)2種類の色素を異なる多孔質
半導体膜へ吸着させた多孔質半導体層の作製方法を図1
(ア)〜図2(カ)を用いて説明する。図1(ア)〜図
2(カ)において1は酸化チタン多孔質膜、2は1と異
なる色素を吸着させる酸化チタン多孔質膜、3はSol
aronix社製ルテニウム535[cis−dith
iocyanine−n−bis(2,2’−bipy
ridy−4,4’−dicarboxylicaci
d)ruthenium](以下ルテニウム色素)、4
は[perylene−bis(4−dicarbox
ylphenyl)−3,4,9,10−tetraC
arboxylicimide](以下ペリレン色
素)、5は酸化マグネシウム皮膜、6は透明基板、7は
透明導電膜である。また酸化マグネシウム皮膜をもつ酸
化チタン多孔質膜をA、Aの元となる酸化チタン多孔質
膜をAlとする。
Example 1 FIG. 1 shows a method for producing a porous semiconductor layer in which two kinds of dyes are adsorbed on different porous semiconductor films.
This will be described with reference to (A) to FIG. 1A to 2F, 1 is a titanium oxide porous film, 2 is a titanium oxide porous film that adsorbs a dye different from 1, and 3 is Sol.
ruthenium 535 [cis-dith made by aronix
iocyanine-n-bis (2,2'-bipy
rigid-4,4'-dicarboxylicaci
d) ruthenium] (hereinafter ruthenium dye), 4
Is [perylene-bis (4-dicarbox
ylphenyl) -3,4,9,10-tetraC
Arboxylicimide] (hereinafter referred to as perylene dye), 5 is a magnesium oxide film, 6 is a transparent substrate, and 7 is a transparent conductive film. The titanium oxide porous film having the magnesium oxide film is A, and the titanium oxide porous film which is the source of A is Al.

【0032】酸化チタン多孔質膜1の元になる、酸化チ
タン多孔質膜Aを作製する塗液は、市販の酸化チタン粒
子(テイカ株式会社社製、商品名AMT−600、アナ
ターゼ型結晶、平均粒径30nm、比表面積50mm2
/g)4.0gとジエチレングリコールモノメチルエー
テル20mlとをガラスビーズを使用し、ペイントシェ
イカーで6時間分散させ、酸化チタン懸濁液を調製し
た。この酸化チタン懸濁液をドクターブレードを用い
て、透明導電膜7上へ塗布し100℃で30分間予備乾
燥した後、460℃で40分間酸素下で焼成し、10m
m×30mmの面積で、膜厚8μm、比表面積48mm
2/g、密度2.1g/cm3の酸化チタン多孔質膜Al
を作製した(図1(ア)参照) 次に上記酸化チタン多孔質膜Al表面に、酸化マグネシ
ウム皮膜5を作製する。市販のマグネシウムエトキシド
20gを250mlの無水エタノールで希釈し、撹拌す
る。べつに、5gの水と酢酸20gを250mlの無水
エタノールで希釈したものを用意し、先に作製した液に
加えよく撹拌する。作製した液を、上記酸化チタン多孔
質膜表面に0.1ml滴下する。280℃で12時間保
持し、表面に酸化マグネシウム皮膜をもつ酸化チタン多
孔質膜Aを作製した(図1(イ)参照)。
The coating liquid for forming the titanium oxide porous film A, which is the basis of the titanium oxide porous film 1, is a commercially available titanium oxide particle (trade name AMT-600 manufactured by Teika Co., Ltd., anatase type crystal, average). Particle size 30 nm, specific surface area 50 mm 2
/ G) 4.0 g and diethylene glycol monomethyl ether 20 ml were dispersed for 6 hours with a paint shaker using glass beads to prepare a titanium oxide suspension. This titanium oxide suspension was applied onto the transparent conductive film 7 using a doctor blade, pre-dried at 100 ° C. for 30 minutes, and then baked at 460 ° C. for 40 minutes under oxygen to give 10 m.
mx30mm area, film thickness 8μm, specific surface area 48mm
2 / g, density 2.1 g / cm 3 titanium oxide porous film Al
(See FIG. 1 (A)) Next, a magnesium oxide film 5 is formed on the surface of the titanium oxide porous film Al. 20 g of commercially available magnesium ethoxide is diluted with 250 ml of absolute ethanol and stirred. Prepare 5 g of water and 20 g of acetic acid diluted with 250 ml of absolute ethanol, add to the liquid prepared above, and stir well. 0.1 ml of the prepared liquid is dropped on the surface of the titanium oxide porous film. It was kept at 280 ° C. for 12 hours to prepare a titanium oxide porous film A having a magnesium oxide film on its surface (see FIG. 1 (a)).

【0033】表面に酸化マグネシウム皮膜5をもつ酸化
チタン多孔質膜A上に、更に上記酸化チタン懸濁液をド
クターブレードを用いて塗布し、100℃で30分間予
備乾燥した後、460℃で40分間酸素下で焼成し、酸
化チタン多孔質膜2を作製した(図1(ウ)参照)。
On the titanium oxide porous film A having the magnesium oxide film 5 on its surface, the above titanium oxide suspension was further applied by using a doctor blade, pre-dried at 100 ° C. for 30 minutes, and then at 460 ° C. 40. The titanium oxide porous film 2 was produced by firing under oxygen for a minute (see FIG. 1C).

【0034】次にルテニウム色素3を無水エタノールに
濃度4×10-4モル/リットルで溶解させ吸着用色素溶
液を作製した。上で得られた酸化チタン多孔質膜A、2
と透明導電膜7を具備した透明基板6をこの吸着用色素
溶液に10時間浸漬させ、色素を吸着させる。その後、
無水エタノールで数回洗浄し約60℃で約20分間乾燥
させた(図2(エ)参照)。
Next, ruthenium dye 3 was dissolved in absolute ethanol at a concentration of 4 × 10 -4 mol / liter to prepare a dye solution for adsorption. Titanium oxide porous membrane A, 2 obtained above
The transparent substrate 6 provided with the transparent conductive film 7 is immersed in the dye solution for adsorption for 10 hours to adsorb the dye. afterwards,
It was washed several times with absolute ethanol and dried at about 60 ° C. for about 20 minutes (see FIG. 2D).

【0035】ここで、色素を吸着させた上記基板を、p
H2〜5に調整した塩酸に30分浸漬させ、酸化チタン
多孔質膜A上の酸化マグネシウム皮膜を取り除く。酸化
チタン多孔質膜A上に吸着していたルテニウム色素3も
共に除去され、酸化チタン多孔質膜1が形成される(図
2(オ)参照)。
Here, the substrate on which the dye is adsorbed is
The magnesium oxide film on the titanium oxide porous film A is removed by immersing it in hydrochloric acid adjusted to H2 to 5 for 30 minutes. The ruthenium dye 3 adsorbed on the titanium oxide porous film A is also removed, and the titanium oxide porous film 1 is formed (see FIG. 2E).

【0036】次にペリレン色素4を無水エタノールに濃
度4×10-4モル/リットルで溶解させ吸着用色素溶液
を作製した。上で得られた酸化チタン多孔質膜1、2と
透明導電膜7を具備した透明基板6をこの吸着用色素溶
液に10時間浸漬させ、色素を吸着させる。その後、無
水エタノールで数回洗浄し約60℃で約20分間乾燥さ
せた。ペリレン色素4はすでにルテニウム色素3が吸着
した酸化チタン多孔質膜2にはほとんど吸着せず、主に
酸化チタン多孔質膜1に吸着する。これにより2種類の
色素を異なる多孔質半導体膜へ吸着させた多孔質半導体
層を作製することができる(図2(カ)参照)。
Next, perylene dye 4 was dissolved in absolute ethanol at a concentration of 4 × 10 -4 mol / liter to prepare a dye solution for adsorption. The transparent substrate 6 having the titanium oxide porous films 1 and 2 and the transparent conductive film 7 obtained above is dipped in the adsorbing dye solution for 10 hours to adsorb the dye. Then, it was washed several times with absolute ethanol and dried at about 60 ° C. for about 20 minutes. The perylene dye 4 is hardly adsorbed on the titanium oxide porous film 2 on which the ruthenium dye 3 has already been adsorbed, but is mainly adsorbed on the titanium oxide porous film 1. This makes it possible to produce a porous semiconductor layer in which two kinds of dyes are adsorbed on different porous semiconductor films (see FIG. 2F).

【0037】この多孔質半導体層を用いて、短絡電流値
を向上させることで変換効率を向上させる色素増感型太
陽電池の製造方法について図3を用いて以下に説明す
る。図3において、11は色素を吸着させた多孔質半導
体層、12は透明基板、13は透明導電膜、14は導電
性基板、15は白金膜、16は酸化還元性電解液、17
はスペーサーを示している。
A method for producing a dye-sensitized solar cell using this porous semiconductor layer to improve the conversion efficiency by improving the short-circuit current value will be described below with reference to FIG. In FIG. 3, 11 is a porous semiconductor layer on which a dye is adsorbed, 12 is a transparent substrate, 13 is a transparent conductive film, 14 is a conductive substrate, 15 is a platinum film, 16 is a redox electrolytic solution, 17
Indicates a spacer.

【0038】スペーサー17を図3に示すように透明導
電膜13上に設置する。このときのスペーサーは、多孔
質半導体層11より厚くなければならない。具体的に
は、ポリエチレン熱融着フイルム(三井デュポン社製、
厚さ50μm)を30mm×2mmに成形したものを用
いる。その後、導電性基板4の導電面に白金膜15を約
1μmの膜厚で蒸着し、白金膜15と色素を吸着させた
多孔質半導体層11が対向する形で重ね合わす。そのま
まクリップで固定し90℃下に10分置いて、白金膜1
5と色素を吸着させた多孔質半導体層11をスペーサー
17により融着し固定する。
The spacer 17 is placed on the transparent conductive film 13 as shown in FIG. The spacer at this time must be thicker than the porous semiconductor layer 11. Specifically, polyethylene heat fusion film (Mitsui DuPont,
A product having a thickness of 50 μm) molded into 30 mm × 2 mm is used. After that, a platinum film 15 having a thickness of about 1 μm is vapor-deposited on the conductive surface of the conductive substrate 4, and the platinum film 15 and the porous semiconductor layer 11 having the dye adsorbed thereon are overlapped with each other. Fix it with a clip as it is and place it at 90 ° C for 10 minutes.
The porous semiconductor layer 11 adsorbing 5 and the dye is fused and fixed by the spacer 17.

【0039】注入する酸化還元性電解液16は、アセト
ニトリルを溶媒として濃度0.3モル/リットルのヨウ
化リチウムと濃度0.03モル/リットルのヨウ素を溶
解させて作製した。この酸化還元性電解液16を白金膜
15と多孔質半導体層11の間に注入する。
The redox electrolytic solution 16 to be injected was prepared by dissolving lithium iodide having a concentration of 0.3 mol / liter and iodine having a concentration of 0.03 mol / liter using acetonitrile as a solvent. The redox electrolytic solution 16 is injected between the platinum film 15 and the porous semiconductor layer 11.

【0040】上述の方法により、短絡電流値18.2m
A/cm2、開放電圧0.65V、F.F.0.68、
変換効率8.04%の性能を有する色素増感型太陽電池
が得られた。従来の方法により作製した酸化チタンによ
る多孔質半導体層を用いた色素増感型太陽電池の特性
(短絡電流値14.0mA/cm2、開放電圧0.67
V、F.F.0.63、変換効率5.90%)と比較し
特に短絡電流が向上することで太陽電池の変換効率が向
上している。
A short circuit current value of 18.2 m was obtained by the above method.
A / cm 2 , open voltage 0.65 V, F.A. F. 0.68,
A dye-sensitized solar cell having a conversion efficiency of 8.04% was obtained. Characteristics of a dye-sensitized solar cell using a porous semiconductor layer made of titanium oxide prepared by a conventional method (short-circuit current value 14.0 mA / cm 2 , open-circuit voltage 0.67).
V, F. F. 0.63 and conversion efficiency 5.90%), the conversion efficiency of the solar cell is improved because the short-circuit current is particularly improved.

【0041】(実施例2)2種類の色素を異なる多孔質
半導体膜へ吸着させデザイン性を向上させた多孔質半導
体層の製造方法について図4(ア)〜図5(ク)を用い
て以下に説明する。図4(ア)〜図5(ク)において、
21は酸化チタン多孔質膜、22は21と異なる色素を
吸着させる酸化チタン多孔質膜、23はルテニウム色
素、24はクマリン色素、25は酸化マグネシウム皮
膜、26は透明基板、27は透明導電膜、28はポリエ
チレン薄膜である。また酸化マグネシウム皮膜をもつ酸
化チタン多孔質膜をB、Bの元となる酸化チタン多孔質
膜をBlとする。
Example 2 A method for producing a porous semiconductor layer in which two kinds of dyes are adsorbed on different porous semiconductor films to improve designability will be described below with reference to FIGS. 4 (a) to 5 (k). Explained. 4 (A) to 5 (K),
21 is a titanium oxide porous film, 22 is a titanium oxide porous film which adsorbs a dye different from 21, a ruthenium dye, 24 is a coumarin dye, 25 is a magnesium oxide film, 26 is a transparent substrate, 27 is a transparent conductive film, 28 is a polyethylene thin film. Further, a titanium oxide porous film having a magnesium oxide film is referred to as B, and a titanium oxide porous film which is a source of B is referred to as Bl.

【0042】酸化チタン多孔質膜21のもとになる、酸
化チタン多孔質膜Blを作製する塗液は、酸化チタンペ
ースト(Solaronix 社製、Ti−Nanox
ide D/SP)を用いた。これをスクリーン印刷に
より、透明導電膜23上の酸化チタン多孔質膜21を作
製する部位に印刷する。130℃で10分乾燥させたの
ち、500℃で20分焼成し酸化チタン多孔質膜Blを
作製する(図1(ア)参照)。その後、酸化チタン多孔
質膜2を作製することになる部位に、市販のベンゼンに
市販のポリスチレン(分子量10万)を1重量%溶解さ
せたコーティング液を塗布しポリスチレン薄膜28を形
成する(図4(イ)参照)。
The coating liquid for forming the titanium oxide porous film Bl, which is the basis of the titanium oxide porous film 21, is titanium oxide paste (Ti-Nanox manufactured by Solaronix Co., Ltd.).
ide D / SP) was used. This is screen-printed on a portion of the transparent conductive film 23 where the titanium oxide porous film 21 is to be produced. After being dried at 130 ° C. for 10 minutes, it is baked at 500 ° C. for 20 minutes to produce a titanium oxide porous film Bl (see FIG. 1A). Then, a coating solution prepared by dissolving 1% by weight of commercially available polystyrene (molecular weight: 100,000) in commercially available benzene is applied to a site where the titanium oxide porous film 2 is to be formed, to form a polystyrene thin film 28 (FIG. 4). (See (a)).

【0043】次に上記酸化チタン多孔質膜Bl表面に、
酸化マグネシウム皮膜を作製する。市販のマグネシウム
エトキシド20gを250mlの無水エタノールで希釈
し、撹拌する。べつに、5gの水と酢酸20gを250
mlの無水エタノールで希釈したものを用意し、先に作
製した液に加えよく撹拌する。作製した液を、上記酸化
チタン多孔質膜表面に0.1ml滴下する。280℃で
12時間保持し、表面に酸化マグネシウム皮膜をもつ酸
化チタン多孔質膜Bを作製した(図4(ウ)参照)。
Next, on the surface of the titanium oxide porous film Bl,
A magnesium oxide film is prepared. 20 g of commercially available magnesium ethoxide is diluted with 250 ml of absolute ethanol and stirred. 250g of water and 20g of acetic acid
Prepare a solution diluted with ml of absolute ethanol, add to the solution prepared above, and stir well. 0.1 ml of the prepared liquid is dropped on the surface of the titanium oxide porous film. It was kept at 280 ° C. for 12 hours to prepare a titanium oxide porous film B having a magnesium oxide film on its surface (see FIG. 4C).

【0044】この基板をアセトンに1時間放置すること
で、酸化チタン多孔質膜22を作製する部位の酸化マグ
ネシウムを取り除くことができる(図4(エ)参照)。
By leaving this substrate in acetone for 1 hour, the magnesium oxide at the site where the titanium oxide porous film 22 is formed can be removed (see FIG. 4D).

【0045】つづいて酸化チタン多孔質膜22を次のよ
うに作製する。酸化チタンペースト(Solaroni
x社製、Ti−Nanoxide D/SP)を用い
た。これをスクリーン印刷により、酸化チタン多孔質膜
2を作製する部位に印刷する。130℃で10分乾燥さ
せたのち、500℃で20分焼成し酸化チタン多孔質膜
22を作製する(図5(オ)参照)。
Subsequently, the titanium oxide porous film 22 is prepared as follows. Titanium oxide paste (Solaroni
Ti-Nanoxide D / SP manufactured by X Co. was used. This is printed by screen printing on the site where the titanium oxide porous film 2 is to be produced. After being dried at 130 ° C. for 10 minutes, it is baked at 500 ° C. for 20 minutes to form the titanium oxide porous film 22 (see FIG. 5E).

【0046】このあとの操作は実施例1に準じて行い酸
化チタン多孔質膜21,22上に異なる色素を吸着さ
せ、2種類の色素を異なる多孔質半導体膜へ吸着させデ
ザイン性を向上させた多孔質半導体層を作製することが
できる。更に実施例1に準じて同様の換作を行い色素増
感型太陽電池を作製することができる。上述の方法によ
り、短絡電流値16.2mA/cm2、開放電圧0.7
2V、F.F.0.64、変換効率7.46%の性能を
有する色素増感型太陽電池が得られた。従来の方法によ
り作製した酸化チタンによる多孔質半導体電極を用いた
色素増感型太陽電池の特性(短絡電流値14.0mA/
cm2、開放電圧0.67V、F.F.0.63、変換
効率5.90%)と比較し特に短絡電流の値が向上する
ことで太陽電池の変換効率が向上している。また、酸化
チタン多孔質膜上の透明導電膜側の部位には、ルテニウ
ム色素(赤)、クマリン色素(黄)があらかじめ設計さ
れた位置に吸着されているため単一の色素を用いたばあ
い、及び実施例1に見られるように入射光方向へ色素を
積層させる構造のものと比較しデザイン性も向上してい
る。
Subsequent operations were carried out according to Example 1, and different dyes were adsorbed on the titanium oxide porous films 21 and 22, and two kinds of dyes were adsorbed on different porous semiconductor films to improve the design. A porous semiconductor layer can be produced. Further, a dye sensitized solar cell can be prepared by performing the same modification as in Example 1. According to the above method, the short circuit current value is 16.2 mA / cm 2 and the open circuit voltage is 0.7.
2V, F.I. F. A dye-sensitized solar cell having a performance of 0.64 and a conversion efficiency of 7.46% was obtained. Characteristics of a dye-sensitized solar cell using a porous semiconductor electrode made of titanium oxide manufactured by a conventional method (short-circuit current value 14.0 mA /
cm 2 , open-circuit voltage 0.67 V, F.I. F. 0.63, conversion efficiency 5.90%), the conversion efficiency of the solar cell is improved because the value of the short-circuit current is particularly improved. In addition, ruthenium dye (red) and coumarin dye (yellow) are adsorbed at pre-designed positions on the transparent conductive film side of the titanium oxide porous film. And the design is improved as compared with the structure in which the dye is laminated in the incident light direction as seen in Example 1.

【0047】(実施例3)複数の色素を多孔質半導体膜
の任意の位置へ吸着させることでデザイン性を向上させ
表示体としての機能をもつ酸化物多孔質膜の製造方法に
ついて図6(ア)〜図8(ケ)を用いて以下に説明す
る。図6(ア)〜図8(ケ)において31は酸化チタン
多孔質膜、32は31と異なる色素を吸着させる酸化チ
タン多孔質膜、33は31,32と異なる色素を吸着さ
せる酸化チタン多孔質膜、34はルテニウム色素、35
は[2,9,16,23−tetra(4−Carbo
xyphenoxy)phthalocyanine
Zinc(II)](以下亜鉛フタロシアニン色素)、
36はペリレン色素、37は酸化マグネシウム皮膜、3
8は酸化バリウム皮膜、39は透明基板、40は透明導
電膜である。また酸化バリウム皮膜をもつ酸化チタン多
孔質膜をC、Cの元となる酸化チタン多孔質膜をCl、
酸化マグネシウム皮膜をもつ酸化チタン多孔質膜をDと
する。
Example 3 A method for producing an oxide porous film having a function as a display by improving the design by adsorbing a plurality of dyes at arbitrary positions on the porous semiconductor film is shown in FIG. ) To FIG. 8 (X) will be described below. In FIGS. 6A to 8C, 31 is a titanium oxide porous film, 32 is a titanium oxide porous film that adsorbs a dye different from 31, and 33 is a titanium oxide porous film that adsorbs a dye different from 31 and 32. Membrane, 34 is ruthenium dye, 35
Is [2, 9, 16, 23-tetra (4-Carbo
xyphenoxy) phthalocyanine
Zinc (II)] (hereinafter zinc phthalocyanine dye),
36 is a perylene dye, 37 is a magnesium oxide film, 3
8 is a barium oxide film, 39 is a transparent substrate, and 40 is a transparent conductive film. Further, the titanium oxide porous film having the barium oxide film is C, the titanium oxide porous film which is the source of C is Cl,
A titanium oxide porous film having a magnesium oxide film is designated as D.

【0048】酸化チタン多孔質膜31のもとになる酸化
チタン多孔質膜Clを作製する塗液は、酸化チタンペー
スト(Solaronix社製、Ti−Nanoxid
eD/SP)を用いた。これをスクリーン印刷により、
透明導電膜40上の、酸化チタン多孔質膜31を作製す
る部位に印刷する。130℃で10分乾燥させたのち、
500℃で20分焼成し酸化チタン多孔質膜Clを作製
する(図6(ア)参照)。
The coating liquid for forming the titanium oxide porous film Cl, which is the basis of the titanium oxide porous film 31, is a titanium oxide paste (Ti-Nanoxid manufactured by Solaronix Co., Ltd.).
eD / SP) was used. By screen printing this,
Printing is performed on the transparent conductive film 40 on the site where the titanium oxide porous film 31 is to be produced. After drying at 130 ° C for 10 minutes,
It is baked at 500 ° C. for 20 minutes to produce a titanium oxide porous film Cl (see FIG. 6A).

【0049】次に、上記酸化チタン多孔質膜Cl表面
に、酸化バリウム皮膜38を作製する。市販のバリウム
イソプロポキシド15gを250mlの2−プロパノー
ルで希釈し、撹拌する。これにアセチルアセトン10m
lをくわえ更に酢酸15mlと水の2−プロパノール溶
液250ml(0.1vol%)を加え撹拌を続ける。
作製した液を、上記酸化チタン多孔質膜Cl表面に0.
1ml滴下する。280℃で12時間保持し、表面に酸
化バリウム皮膜38をもつ酸化チタン多孔質膜Cを作製
した(図6(イ)参照)。
Next, a barium oxide film 38 is formed on the surface of the titanium oxide porous film Cl. 15 g of commercial barium isopropoxide are diluted with 250 ml of 2-propanol and stirred. Acetylacetone 10m
In addition, 15 ml of acetic acid and 250 ml (0.1 vol%) of 2-propanol solution of water are added, and stirring is continued.
The prepared liquid was applied to the surface of the titanium oxide porous membrane Cl in an amount of 0.
Add 1 ml dropwise. It was kept at 280 ° C. for 12 hours to prepare a titanium oxide porous film C having a barium oxide film 38 on its surface (see FIG. 6A).

【0050】酸化チタン多孔質膜32を作製する塗液
は、酸化チタンペースト(Solaronix社製、T
i−Nanoxide T/SP)を用いた。これをス
クリーン印刷により、酸化チタン多孔質膜2を作製する
部位に印刷する(このとき一部もしくはすべてが酸化チ
タン多孔質膜1上にあってもよい)。130℃で10分
乾燥させたのち、500℃で20分焼成し酸化チタン多
孔質膜32を作製する(図6(ウ)参照)。
The coating liquid for forming the titanium oxide porous film 32 is a titanium oxide paste (T-type, manufactured by Solaronix).
i-Nanoxide T / SP) was used. This is printed by screen printing on the site where the titanium oxide porous film 2 is to be produced (at this time, part or all may be on the titanium oxide porous film 1). After being dried at 130 ° C. for 10 minutes, it is baked at 500 ° C. for 20 minutes to produce a titanium oxide porous film 32 (see FIG. 6C).

【0051】酸化チタン多孔質膜33のもとになる酸化
チタン多孔質膜Dは以下のように作製する。
The titanium oxide porous film D, which is the basis of the titanium oxide porous film 33, is manufactured as follows.

【0052】市販のマグネシウムエトキシド20gを2
50mlの無水エタノールで希釈し、撹拌する。べつ
に、5gの水と酢酸20gを250mlの無水エタノー
ルで希釈したものを用意し、先に作製した液に加えよく
撹拌する。作製した液10mlに酸化チタン粒子(テイ
カ株式会社社製、商品名AMT−600、アナターゼ型
結晶、平均粒径30nm、比表面積50mm2/g)
4.0gを加えよく撹拌した後80℃で2日放置する。
沈殿物のみ取り出し280℃で12時間保持し、酸化マ
グネシウム皮膜をもつ酸化チタン粒子を作製した。この
粒子とジエチレングリコールモノメチルエーテル20m
lとをガラスビーズを使用し、ペイントシェイカーで6
時間分散させ、酸化チタン懸濁液を調製した。この酸化
チタン懸濁液をドクターブレードを用いて、酸化チタン
多孔質膜31、32上に塗布した。100℃で30分間
予備乾燥した後、460℃で40分間酸素下で焼成し、
マグネシウム皮膜をもつ酸化チタン多孔質膜Dを作製す
る(図7(エ)参照)。
2 g of 20 g of commercially available magnesium ethoxide
Dilute with 50 ml absolute ethanol and stir. Prepare 5 g of water and 20 g of acetic acid diluted with 250 ml of absolute ethanol, add to the liquid prepared above, and stir well. Titanium oxide particles (trade name AMT-600, manufactured by Teika Co., Ltd., anatase type crystal, average particle size 30 nm, specific surface area 50 mm 2 / g) were added to 10 ml of the prepared liquid.
After adding 4.0 g and stirring well, the mixture is left at 80 ° C. for 2 days.
Only the precipitate was taken out and kept at 280 ° C. for 12 hours to prepare titanium oxide particles having a magnesium oxide film. 20m of this particle and diethylene glycol monomethyl ether
1 and 6 using glass beads with a paint shaker
It was dispersed for a time to prepare a titanium oxide suspension. This titanium oxide suspension was applied onto the titanium oxide porous films 31 and 32 using a doctor blade. After predrying at 100 ° C for 30 minutes, calcination at 460 ° C for 40 minutes under oxygen,
A titanium oxide porous film D having a magnesium film is produced (see FIG. 7D).

【0053】次に亜鉛フタロシアニン色素35をアセト
ンに濃度4×10-4モル/リットルで溶解させ吸着用色
素溶液を作製した。上で得られた酸化チタン多孔質膜
C,32,Dと透明導電膜40を具備した透明基板39
をこの吸着用色素溶液に10時間浸漬させ、色素を吸着
させる(図7(オ)参照)。
Next, the zinc phthalocyanine dye 35 was dissolved in acetone at a concentration of 4 × 10 -4 mol / liter to prepare a dye solution for adsorption. A transparent substrate 39 having the titanium oxide porous films C, 32 and D obtained above and a transparent conductive film 40.
Is immersed in this dye solution for adsorption for 10 hours to adsorb the dye (see FIG. 7E).

【0054】その後、無水エタノールで数回洗浄し約6
0℃で約20分間乾燥させた。このとき、酸化チタン多
孔質膜C上の酸化バリウムが除去されるため酸化チタン
多孔質膜C上にあった色素は除去することができる。こ
れにより酸化チタン多孔質膜31が形成される(図7
(カ)参照)。
After that, it was washed several times with absolute ethanol to about 6
It was dried at 0 ° C. for about 20 minutes. At this time, since barium oxide on the titanium oxide porous film C is removed, the dye on the titanium oxide porous film C can be removed. As a result, the titanium oxide porous film 31 is formed (FIG. 7).
(See (f)).

【0055】次にルテニウム色素34を無水エタノール
に濃度4×10-4モル/リットルで溶解させ吸着用色素
溶液を作製した。上で得られた酸化チタン多孔質膜3
1,32、Dと透明導電膜40を具備した透明基板39
をこの吸着用色素溶液に10時間浸漬させ、色素を吸着
させる。その後、無水エタノールで数回洗浄し約60℃
で約20分間乾燥させた(図8(キ)参照)。
Next, the ruthenium dye 34 was dissolved in absolute ethanol at a concentration of 4 × 10 -4 mol / liter to prepare a dye solution for adsorption. Titanium oxide porous film 3 obtained above
1, 32, D and a transparent substrate 39 having a transparent conductive film 40
Is immersed in this adsorption dye solution for 10 hours to adsorb the dye. After that, wash several times with absolute ethanol and about 60 ℃
And dried for about 20 minutes (see FIG. 8 (ki)).

【0056】ルテニウム色素34は、すでに亜鉛フタロ
シアニン色素35が吸着した酸化チタン多孔質膜32に
はほとんど吸着しない。ここで、色素を吸着させた上記
基板を、pH2〜5に調整した塩酸に30分浸潰させ、
酸化チタン多孔質膜D上の酸化マグネシウム皮膜を取り
除く。酸化チタン多孔質膜D上に吸着していたルテニウ
ム色素も共に除去される。したがって、ルテニウム色素
34は主に酸化チタン多孔質膜31上に吸着している。
またこれにより酸化チタン多孔質膜33が形成される
(図8(ク)参照)。
The ruthenium dye 34 is hardly adsorbed on the titanium oxide porous film 32 on which the zinc phthalocyanine dye 35 has already been adsorbed. Here, the substrate on which the dye is adsorbed is immersed in hydrochloric acid adjusted to pH 2 to 5 for 30 minutes,
The magnesium oxide film on the titanium oxide porous film D is removed. The ruthenium dye adsorbed on the titanium oxide porous film D is also removed. Therefore, the ruthenium dye 34 is mainly adsorbed on the titanium oxide porous film 31.
Further, as a result, the titanium oxide porous film 33 is formed (see FIG. 8C).

【0057】次にペリレン色素36を無水エタノールに
濃度4×10-4モル/リットルで溶解させ吸着用色素溶
液を作製した。上で得られた酸化チタン多孔質膜31、
32、33と透明導電膜13を具備した透明基板12を
この吸着用色素溶液に10時間浸漬させ、色素を吸着さ
せる。その後、無水エタノールで数回洗浄し約60℃で
約20分間乾燥させた。ペリレン色素36はすでに亜鉛
フタロシアニン35、ルテニウム色素34が吸着した酸
化チタン多孔質膜31,32にはほとんど吸着せず、主
に酸化チタン多孔質膜33に吸着する(図8(ケ)参
照)。
Next, the perylene dye 36 was dissolved in absolute ethanol at a concentration of 4 × 10 -4 mol / liter to prepare a dye solution for adsorption. The titanium oxide porous film 31 obtained above,
The transparent substrate 12 provided with 32 and 33 and the transparent conductive film 13 is immersed in the dye solution for adsorption for 10 hours to adsorb the dye. Then, it was washed several times with absolute ethanol and dried at about 60 ° C. for about 20 minutes. The perylene dye 36 is almost not adsorbed to the titanium oxide porous films 31 and 32 to which the zinc phthalocyanine 35 and the ruthenium dye 34 have already been adsorbed, but is mainly adsorbed to the titanium oxide porous film 33 (see FIG. 8 (v)).

【0058】これにより複数の色素を多孔質半導体層の
任意の位置へ吸着させ光電流を増加させることにより光
電変換効率を向上させデザイン性を向上させ表示体とし
ての機能をもつ酸化物多孔質膜作製することができる。
As a result, a plurality of dyes are adsorbed on arbitrary positions of the porous semiconductor layer to increase photocurrent, thereby improving photoelectric conversion efficiency and improving designability, and a porous oxide film having a function as a display body. Can be made.

【0059】更に実施例1に準じて同様の操作を行い色
素増感型太陽電池を作製することができる。上述の方法
により、短絡電流値22.4mA/cm2、開放電圧
0.68V、F.F.0.64、変換効率9.75%の
性能を有する色素増感型太陽電池が得られた。従来の方
法により作製した酸化チタンによる多孔質半導体電極を
用いた色素増感型太陽電池の特性(短絡電流値20.3
mA/cm2、開放電圧0.67V、F.F.0.6
3、変換効率8.56%)と比較し特に短絡電流の値が
向上することで太陽電池の変換効率が向上している。ま
た実施例2と比較しても、ルテニウム色素(赤)、ペリ
レン色素(黄)及び亜鉛フタロシアニン色素(緑)を用
いていることから更にデザイン性、変換効率を向上させ
ることができる。
Furthermore, a dye-sensitized solar cell can be prepared by performing the same operation as in Example 1. According to the method described above, the short circuit current value is 22.4 mA / cm 2 , the open circuit voltage is 0.68 V, the F.S. F. A dye-sensitized solar cell having a performance of 0.64 and a conversion efficiency of 9.75% was obtained. Characteristics of a dye-sensitized solar cell using a porous semiconductor electrode made of titanium oxide produced by a conventional method (short circuit current value 20.3
mA / cm 2 , open voltage 0.67 V, F.I. F. 0.6
3, the conversion efficiency is 8.56%), and the conversion efficiency of the solar cell is improved because the value of the short-circuit current is particularly improved. Further, as compared with Example 2, since the ruthenium dye (red), the perylene dye (yellow) and the zinc phthalocyanine dye (green) are used, the designability and conversion efficiency can be further improved.

【0060】(実施例4)複数の色素を複数の多孔質半
導体から構成された多孔質半導体膜の任意の位置へ吸着
させることでデザイン性を向上させ、表示体としての機
能をもつ多孔質半導体層の製造方法について図9(ア)
〜図11(ケ)を用いて以下に説明する。図9(ア)〜
図11(ケ)において、41は酸化スズ・酸化亜鉛多孔
質膜、42は酸化チタン多孔質膜、43は42と異なる
色素を吸着させる酸化チタン多孔質膜、44はEOSI
N Y、45は亜鉛フタロシアニン色素、46はペリレ
ン色素、47は酸化マグネシウム皮膜、48は酸化バリ
ウム皮膜、49は透明基板、50は透明導電膜である。
また酸化マグネシウム皮膜をもつ酸化チタン多孔質膜を
E、酸化バリウム皮膜をもつ酸化スズ・酸化亜鉛多孔質
膜をF、Fの元となる酸化スズ・酸化亜鉛多孔質膜をF
lとする。
(Example 4) A porous semiconductor having a function as a display body is improved by adsorbing a plurality of dyes on an arbitrary position of a porous semiconductor film composed of a plurality of porous semiconductors. Figure 9 (a) about the manufacturing method of the layer
~ It demonstrates below using FIG. Figure 9 (a) ~
In FIG. 11 (K), 41 is a tin oxide / zinc oxide porous film, 42 is a titanium oxide porous film, 43 is a titanium oxide porous film that adsorbs a dye different from 42, and 44 is EOSI.
NY, 45 is a zinc phthalocyanine dye, 46 is a perylene dye, 47 is a magnesium oxide film, 48 is a barium oxide film, 49 is a transparent substrate, and 50 is a transparent conductive film.
Further, the titanium oxide porous film having the magnesium oxide film is E, the tin oxide / zinc oxide porous film having the barium oxide film is F, and the tin oxide / zinc oxide porous film which is the source of F is F.
Let l.

【0061】酸化スズ・酸化亜鉛多孔質膜41のもとに
なる酸化スズ・酸化亜鉛多孔質膜Flを作製する塗液
は、AlraAesarの酸化すずコロイド水溶液(1
5w%)1.5mlに氷酢酸をスポイトで4滴くわえ更
に酸化亜鉛の粉体(Aldrich、99.9%)0.
3g、トリトンX(スポイトで4滴)、メタノール20
mlを加えよく撹拌し調製した。
The coating liquid for forming the tin oxide / zinc oxide porous film Fl, which is the base of the tin oxide / zinc oxide porous film 41, is a tin oxide colloid aqueous solution (1) of Alla Aesar.
(5 w%) 1.5 ml of glacial acetic acid with a dropper, and zinc oxide powder (Aldrich, 99.9%).
3g, Triton X (4 drops with dropper), methanol 20
It was prepared by adding ml and stirring well.

【0062】この酸化すず・酸化亜鉛懸濁液をスプレー
法を用いて、マスクをおいた透明電極に塗付し、100
℃で30分間予備乾燥した後、460℃で40分間酸素
下で焼成し、10mm×30mmの面積で、膜厚15μ
mの酸化すず・酸化亜鉛多孔質膜Flを作製した(図9
(ア)参照)。なお、酸化スズ、酸化亜鉛による多孔質
膜は後述の色素EOSIN Yを用いると特に好まし
い。
This tin oxide / zinc oxide suspension was applied to a masked transparent electrode by a spray method to obtain 100
After pre-drying at 30 ° C for 30 minutes, calcination at 460 ° C for 40 minutes under oxygen, and 10 mm x 30 mm area, film thickness 15μ
A tin oxide / zinc oxide porous film Fl of m was prepared (FIG. 9).
(See (a)). In addition, it is particularly preferable to use the dye EOSIN Y described later for the porous film made of tin oxide or zinc oxide.

【0063】次に上記酸化スズ・酸化亜鉛多孔質膜Fl
表面に、酸化バリウム皮膜48を作製する。市販のバリ
ウムイソプロポキシド15gを250mlの2−プロパ
ノールで希釈し、撹拌する。これにアセチルアセトン1
0mlをくわえ更に酢酸15mlと水の2−プロパノー
ル溶液250ml(0.1vol%)を加え撹拌を続け
る。作製した液を、上記酸化スズ・酸化亜鉛多孔質膜表
面に0.1ml滴下する。280℃で12時間保持し、
表面に酸化バリウム皮膜48をもつ酸化スズ・酸化亜鉛
多孔質膜Fを作製した(図9(イ)参照)。
Next, the tin oxide / zinc oxide porous film Fl
A barium oxide film 48 is formed on the surface. 15 g of commercial barium isopropoxide are diluted with 250 ml of 2-propanol and stirred. Acetylacetone 1
In addition to 0 ml, acetic acid 15 ml and water 2-propanol solution 250 ml (0.1 vol%) are added and stirring is continued. 0.1 ml of the prepared liquid is dropped on the surface of the tin oxide / zinc oxide porous film. Hold at 280 ° C for 12 hours,
A tin oxide / zinc oxide porous film F having a barium oxide film 48 on its surface was prepared (see FIG. 9A).

【0064】酸化チタン多孔質膜42を作製する塗液
は、酸化チタンペースト(Solaronix社製、T
i−Nanoxide T/SP)を用いた。これをス
クリーン印刷により、酸化チタン多孔質膜41を作製す
る部位に印刷する(このとき一部もしくはすべてが酸化
スズ・酸化亜鉛多孔質膜F上にあってもよい)。130
℃で10分乾燥させたのち、500℃で20分焼成し酸
化チタン多孔質膜42を作製する(図9(ウ)参照)。
The coating liquid for forming the titanium oxide porous film 42 is a titanium oxide paste (T-type, manufactured by Solaronix).
i-Nanoxide T / SP) was used. This is printed by screen printing on the site where the titanium oxide porous film 41 is to be produced (at this time, part or all may be on the tin oxide / zinc oxide porous film F). 130
After being dried at 0 ° C. for 10 minutes, it is baked at 500 ° C. for 20 minutes to produce a titanium oxide porous film 42 (see FIG. 9C).

【0065】酸化チタン多孔質膜43のもとになる酸化
チタン多孔質膜Eは以下のように作製する。
The titanium oxide porous film E, which is the basis of the titanium oxide porous film 43, is manufactured as follows.

【0066】市販のマグネシウムエトキシド20gを2
50mlの無水エタノールで希釈し、撹拌する。べつ
に、5gの水と酢酸20gを250mlの無水エタノー
ルで希釈したものを用意し、先に作製した液に加えよく
撹拌する。作製した液10mlに酸化チタン粒子(テイ
カ株式会社社製、商品名AMT−600、アナターゼ型
結晶、平均粒径30nm、比表面積50mm2/g)
4.0gを加えよく撹拌した後80℃で1日放置する。
沈殿物のみ取り出し230℃で12時間保持し、酸化マ
グネシウム皮瞭をもつ酸化チタン粒子を作製した。この
粒子とジエチレングリコールモノメチルエーテル20m
lと、エタノール20mlに溶解させたエチルセルロー
ス(分子量4万)15gをガラスビーズを使用し、ペイ
ントシェイカーで6時間分散させる。その後エタノール
を蒸発させることで酸化チタンペーストを調製した。こ
の酸化チタンペーストをスクリーン印刷により、酸化ス
ズ・酸化亜鉛多孔質膜F、酸化チタン多孔質膜42が作
成された基板上に塗布した(このとき一部もしくはすべ
てが酸化スズ・酸化亜鉛多孔質膜F、酸化チタン多孔質
膜42上にあってもよい)。100℃で30分間予備乾
燥した後、460℃で40分間酸素下で焼成し、酸化マ
グネシウム皮膜をもつ酸化チタン多孔質膜Eを作製した
(図9(エ)参照)。
2 g of 20 g of commercially available magnesium ethoxide
Dilute with 50 ml absolute ethanol and stir. Prepare 5 g of water and 20 g of acetic acid diluted with 250 ml of absolute ethanol, add to the liquid prepared above, and stir well. Titanium oxide particles (trade name AMT-600, manufactured by Teika Co., Ltd., anatase type crystal, average particle size 30 nm, specific surface area 50 mm 2 / g) were added to 10 ml of the prepared liquid.
After adding 4.0 g and stirring well, the mixture is left at 80 ° C. for 1 day.
Only the precipitate was taken out and kept at 230 ° C. for 12 hours to prepare titanium oxide particles having a magnesium oxide appearance. 20m of this particle and diethylene glycol monomethyl ether
1 and 15 g of ethyl cellulose (molecular weight 40,000) dissolved in 20 ml of ethanol are dispersed for 6 hours with a paint shaker using glass beads. Then, ethanol was evaporated to prepare a titanium oxide paste. This titanium oxide paste was applied by screen printing onto the substrate on which the tin oxide / zinc oxide porous film F and the titanium oxide porous film 42 were formed (at this time, a part or all of the tin oxide / zinc oxide porous film was formed). F, may be on the titanium oxide porous film 42). After preliminary drying at 100 ° C. for 30 minutes, firing was performed at 460 ° C. for 40 minutes under oxygen to prepare a titanium oxide porous film E having a magnesium oxide film (see FIG. 9D).

【0067】次に亜鉛フタロシアニンをアセトンに濃度
4×10-4モル/リットルで溶解させ吸着用色素溶液を
作製した。上で得られた酸化スズ・酸化亜鉛多孔質膜
F、酸化チタン多孔質膜2、Fと透明導電膜50を具備
した透明基板49をこの吸着用色素溶液に10時間浸漬
させ、色素を吸着させる(図10(オ)参照)。
Next, zinc phthalocyanine was dissolved in acetone at a concentration of 4 × 10 -4 mol / liter to prepare a dye solution for adsorption. The transparent substrate 49 provided with the tin oxide / zinc oxide porous film F, the titanium oxide porous film 2, F and the transparent conductive film 50 obtained above is immersed in this adsorbing dye solution for 10 hours to adsorb the dye. (See FIG. 10E).

【0068】その後、無水エタノールで数回洗浄し約6
0℃で約20分間乾燥させた。このとき、酸化スズ・酸
化亜鉛多孔質膜F上の酸化バリウムが除去されるため酸
化スズ・酸化亜鉛多孔質膜F上にあった色素は除去する
ことができる。これにより酸化スズ・酸化亜鉛多孔質膜
41が形成される(図10(カ)参照)。
After that, it was washed several times with absolute ethanol to about 6
It was dried at 0 ° C. for about 20 minutes. At this time, since barium oxide on the tin oxide / zinc oxide porous film F is removed, the dye on the tin oxide / zinc oxide porous film F can be removed. As a result, the tin oxide / zinc oxide porous film 41 is formed (see FIG. 10F).

【0069】次にEOSIN Y44を無水エタノール
に濃度4×10-4モル/リットルで溶解させ吸着用色素
溶液を作製した。上で得られた酸化スズ・酸化亜鉛多孔
質膜41、酸化チタン多孔質膜42、Eと透明導電膜5
0を具備した透明基板49をこの吸着用色素溶液に10
時間浸漬させ、色素を吸着させる。その後、無水エタノ
ールで数回洗浄し約60℃で約20分間乾燥させた(図
10(キ)参照)。
Next, EOSIN Y44 was dissolved in absolute ethanol at a concentration of 4 × 10 -4 mol / liter to prepare a dye solution for adsorption. The tin oxide / zinc oxide porous film 41, the titanium oxide porous film 42, E obtained above and the transparent conductive film 5
The transparent substrate 49 containing 0 is added to the dye solution for adsorption in an amount of 10
Dip for a time to adsorb the dye. Then, it was washed several times with absolute ethanol and dried at about 60 ° C. for about 20 minutes (see FIG. 10 (K)).

【0070】EOSIN Y44は、すでに亜鉛フタロ
シアニン45が吸着した酸化チタン多孔質膜42にはほ
とんど吸着しない。ここで、色素を吸着させた上記基板
を、pH2〜5に調整した塩酸に30分浸漬させ、酸化
チタン多孔質膜E上の酸化マグネシウム皮膜を取り除
く。酸化チタン多孔質膜E上に吸着していたEOSIN
Y44も共に除去される。したがって、EOSIN Y
44は主に酸化スズ・酸化亜鉛多孔質膜41上に吸着し
ている。この工程により酸化チタン多孔質膜43が形成
される(図11(ク)参照)。
EOSIN Y44 is hardly adsorbed on the titanium oxide porous film 42 on which the zinc phthalocyanine 45 has already been adsorbed. Here, the substrate on which the dye is adsorbed is immersed in hydrochloric acid adjusted to pH 2 to 5 for 30 minutes to remove the magnesium oxide film on the titanium oxide porous film E. EOSIN adsorbed on the titanium oxide porous film E
Y44 is also removed. Therefore, EOSIN Y
44 is mainly adsorbed on the tin oxide / zinc oxide porous film 41. By this step, the titanium oxide porous film 43 is formed (see FIG. 11C).

【0071】次にペリレン色素46を無水エタノールに
濃度4×10-4モル/リットルで溶解させ吸着用色素溶
液を作製した。上で得られた酸化スズ・酸化亜鉛多孔質
膜41、酸化チタン多孔質膜42、43と透明導電膜5
0を具備した透明基板49をこの吸着用色素溶液に10
時間浸漬させ、色素を吸着させる。その後、無水エタノ
ールで数回洗浄し約60℃で約20分間乾燥させた(図
11(ケ)参照)。
Next, the perylene dye 46 was dissolved in absolute ethanol at a concentration of 4 × 10 -4 mol / liter to prepare a dye solution for adsorption. The tin oxide / zinc oxide porous film 41, the titanium oxide porous films 42 and 43, and the transparent conductive film 5 obtained above.
The transparent substrate 49 containing 0 is added to the dye solution for adsorption in an amount of 10
Dip for a time to adsorb the dye. Then, it was washed several times with absolute ethanol and dried at about 60 ° C. for about 20 minutes (see FIG. 11 (X)).

【0072】ペリレン色素46はすでに亜鉛フタロシア
ニン45、EOSIN Y44が吸着した酸化スズ・酸
化亜鉛多孔質膜41、酸化チタン多孔質膜43にはほと
んど吸着せず、主に酸化チタン多孔質膜42に吸着す
る。これにより複数の色素を複数の多孔質半導体から構
成された多孔質半導体膜の任意の位置へ吸着させること
でデザイン性を向上させ、表示体としての機能をもつ多
孔質半導体層を作製することができる(図11(ケ)参
照)。
The perylene dye 46 is hardly adsorbed to the tin oxide / zinc oxide porous film 41 and the titanium oxide porous film 43 to which the zinc phthalocyanine 45 and the EOSIN Y44 have been adsorbed, but is mainly adsorbed to the titanium oxide porous film 42. To do. As a result, it is possible to improve the designability by adsorbing a plurality of dyes at an arbitrary position of a porous semiconductor film composed of a plurality of porous semiconductors, and to manufacture a porous semiconductor layer having a function as an indicator. It can be done (see FIG. 11 (K)).

【0073】更に実施例1に準じて同様の操作を行い色
素増感型太陽電池を作製することができる。上述の方法
により、短絡電流値22.5mA/cm2、開放電圧
0.69V、F.F.0.68、変換効率10.56%
の性能を有する色素増感型太陽電池が得られた。従来の
方法及び実施例1〜3記載の方法により作製した酸化チ
タンによる多孔質半導体電極を用いた色素増感型太陽電
池の特性と比較し特に短絡電流の値が向上することで太
陽電池の変換効率が向上している。また3種類の色素を
用いることで、実施例3と同等のデザイン性を有してい
る。
Furthermore, a dye-sensitized solar cell can be produced by performing the same operation as in Example 1. According to the method described above, the short-circuit current value was 22.5 mA / cm 2 , the open circuit voltage was 0.69 V, and the F.I. F. 0.68, conversion efficiency 10.56%
A dye-sensitized solar cell having the above performance was obtained. Conversion of the solar cell by improving the value of the short-circuit current in comparison with the characteristics of the dye-sensitized solar cell using the porous semiconductor electrode made of titanium oxide produced by the conventional method and the method described in Examples 1 to 3 Efficiency is improving. Further, by using three kinds of dyes, it has a design property equivalent to that of Example 3.

【0074】[0074]

【発明の効果】以上のように、本発明は、多孔質半導体
層の別の部位に異なる色素を吸着させるため、表面の一
部にあらかじめ特定の溶媒に溶解する皮膜が設けられた
多孔質半導体層の表面に分子を吸着させた後、該溶媒に
より皮膜とその上の色素を取り除き、皮膜を取り除いた
部分へ先に吸着されたものと異なる色素を吸着させるこ
とにより、複数の色素を意図した部分へ吸着させること
ができる。
Industrial Applicability As described above, according to the present invention, in order to adsorb different dyes to different parts of the porous semiconductor layer, a porous semiconductor having a film which is dissolved in a specific solvent in advance is formed on a part of the surface. After adsorbing molecules on the surface of the layer, the solvent and the dye on it are removed, and a dye different from the one previously adsorbed is adsorbed on the part where the film has been removed, so that multiple dyes are intended. It can be adsorbed to a part.

【0075】この方法を用いれば、太陽電池として動作
するときも十分な電子輸送を行う多孔質半導体層を用い
ることができる。更に、あらかじめ設計した部位に皮膜
をもつ多孔質半導体層を作製することで、色素の吸着部
位を設計どおりに制御することができる。
By using this method, it is possible to use a porous semiconductor layer that sufficiently transports electrons even when operating as a solar cell. Furthermore, by producing a porous semiconductor layer having a film on a predesigned site, the dye adsorption site can be controlled as designed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1にかかわる多孔質半導体層の
作製方法を説明する概略図である。
FIG. 1 is a schematic diagram illustrating a method for manufacturing a porous semiconductor layer according to Example 1 of the present invention.

【図2】本発明の実施例1にかかわる多孔質半導体層の
作製方法を説明する概略図である。
FIG. 2 is a schematic view illustrating a method for manufacturing a porous semiconductor layer according to Example 1 of the present invention.

【図3】本発明の実施例により作製された多孔質半導体
層を用いた色素増感型太陽電池の構成図である。
FIG. 3 is a configuration diagram of a dye-sensitized solar cell using a porous semiconductor layer produced according to an example of the present invention.

【図4】本発明の実施例2にかかわる多孔質半導体層の
作製方法を説明する概略図である。
FIG. 4 is a schematic view illustrating a method for manufacturing a porous semiconductor layer according to Example 2 of the present invention.

【図5】本発明の実施例2にかかわる多孔質半導体層の
作製方法を説明する概略図である。
FIG. 5 is a schematic view illustrating a method for manufacturing a porous semiconductor layer according to Example 2 of the present invention.

【図6】本発明の実施例3にかかわる多孔質半導体層の
作製方法を説明する概略図である。
FIG. 6 is a schematic diagram illustrating a method for manufacturing a porous semiconductor layer according to Example 3 of the present invention.

【図7】本発明の実施例3にかかわる多孔質半導体層の
作製方法を説明する概略図である。
FIG. 7 is a schematic diagram illustrating a method for manufacturing a porous semiconductor layer according to Example 3 of the present invention.

【図8】本発明の実施例3にかかわる多孔質半導体層の
作製方法を説明する概略図である。
FIG. 8 is a schematic view illustrating a method for manufacturing a porous semiconductor layer according to Example 3 of the present invention.

【図9】本発明の実施例4にかかわる多孔質半導体層の
作製方法を説明する概略図である。
FIG. 9 is a schematic view illustrating a method for producing a porous semiconductor layer according to Example 4 of the present invention.

【図10】本発明の実施例4にかかわる多孔質半導体層
の作製方法を説明する概略図である。
FIG. 10 is a schematic diagram illustrating a method for manufacturing a porous semiconductor layer according to Example 4 of the present invention.

【図11】本発明の実施例4にかかわる多孔質半導体層
の作製方法を説明する概略図である。
FIG. 11 is a schematic view illustrating a method for manufacturing a porous semiconductor layer according to Example 4 of the present invention.

【符号の説明】[Explanation of symbols]

1、21、31、42 酸化チタン多孔質膜 2 1と異なる色素を吸着させる酸化チタン多孔質膜 3、23、34 ルテニウム色素 4、36、46 ペリレン色素 5、25、37、47 酸化マグネシウム皮膜 6、12、26、39、49 透明基板 7、13、27、40、50 透明導電膜 11 色素を吸着させた多孔質半導体層 15 白金膜 16 酸化還元性電解液 17 スペーサー 22 21と異なる色素を吸着させる酸化チタン多孔質
膜 24 クマリン色素 28 ポリエチレン薄膜 32 31と異なる色素を吸着させる酸化チタン多孔質
膜 33 31,32と異なる色素を吸着させる酸化チタン
多孔質膜 35、45 亜鉛フタロシアニン色素 38、48 酸化バリウム皮膜 41 酸化スズ・酸化亜鉛多孔質膜 43 42と異なる色素を吸着させる酸化チタン多孔質
膜 44 EOSIN Y A、B、D、E 酸化マグネシウム皮膜をもつ酸化チタ
ン多孔質膜 A1 Aの元となる酸化チタン多孔質膜 B1 Bの元となる酸化チタン多孔質膜 C 酸化バリウム皮膜をもつ酸化チタン多孔質膜 C1 Cの元となる酸化チタン多孔質膜 F 酸化バリウム皮膜をもつ酸化スズ・酸化亜鉛多孔質
膜 F1 Fの元となる酸化スズ・酸化亜鉛多孔質膜
1, 21, 31, 42 Titanium oxide porous film 21 Titanium oxide porous film for adsorbing a dye different from 1 3, 23, 34 Ruthenium dye 4, 36, 46 Perylene dye 5, 25, 37, 47 Magnesium oxide film 6 , 12, 26, 39, 49 Transparent substrate 7, 13, 27, 40, 50 Transparent conductive film 11 Porous semiconductor layer 15 adsorbing dye 15 Platinum film 16 Redox electrolyte 17 Spacer 22 21 Adsorbing dye different from Titanium oxide porous film 24 Coumarin dye 28 Polyethylene thin film 32 31 Titanium oxide porous film 33 that adsorbs a dye different from 31 31 Titanium oxide porous film 35 that adsorbs a dye different from 31, 32 Zinc phthalocyanine dye 38, 48 Oxidation Barium film 41 Tin oxide / zinc oxide porous film 43 42 Titanium oxide porous film that adsorbs a different dye Membrane 44 EOSIN Y A, B, D, E Titanium oxide porous film A1 having a magnesium oxide film as a source Titanium oxide porous film B1 B as a source of titanium oxide porous film C B having a barium oxide film as an oxide Titanium oxide porous film F that is the source of titanium porous film C1 C Tin oxide / zinc oxide porous film F1 that has a barium oxide film Tin oxide / zinc oxide porous film that is the source of F1 F

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5F051 AA14 BA18 GA03 5H032 AA06 AS06 AS16 AS19 BB05 EE16    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 5F051 AA14 BA18 GA03                 5H032 AA06 AS06 AS16 AS19 BB05                       EE16

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 表面に相異なる2種以上の色素が共吸着
した多孔質半導体層の製造方法であって、多孔質半導体
層の表面の一部に特定の溶媒に可溶な皮膜を設ける工
程、ついで溶解させた第一の色素を該多孔質半導体層の
表面に吸着させる工程、ついで該溶媒により皮膜上の色
素を皮膜と共に取り除く工程、更には第二の色素を該多
孔質半導体層の表面に吸着させる工程を少なくとも含む
多孔質半導体層の作製方法。
1. A method for producing a porous semiconductor layer in which two or more kinds of different dyes are co-adsorbed on the surface, wherein a film soluble in a specific solvent is provided on a part of the surface of the porous semiconductor layer. A step of adsorbing the dissolved first dye on the surface of the porous semiconductor layer, a step of removing the dye on the film together with the film by the solvent, and a second dye on the surface of the porous semiconductor layer A method for producing a porous semiconductor layer, comprising at least the step of adsorbing onto a porous semiconductor layer.
【請求項2】 特定の溶媒が、少なくとも有機酸化合物
又は無機酸化合物を含有している請求項1に記載の多孔
質半導体層の作製方法。
2. The method for producing a porous semiconductor layer according to claim 1, wherein the specific solvent contains at least an organic acid compound or an inorganic acid compound.
【請求項3】 皮膜が、アルカリ土類金属から構成され
ている請求項1又は2に記載の多孔質半導体層の作製方
法。
3. The method for producing a porous semiconductor layer according to claim 1, wherein the film is composed of an alkaline earth metal.
【請求項4】 請求項1〜3のいずれか1つに記載の方
法により得られた多孔質半導体層を光電変換層として用
いた色素増感型太陽電池。
4. A dye-sensitized solar cell using a porous semiconductor layer obtained by the method according to claim 1 as a photoelectric conversion layer.
JP2002050034A 2002-02-26 2002-02-26 Producing method of porous semiconductor layer, and dye sensitized solar cell Pending JP2003249279A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002050034A JP2003249279A (en) 2002-02-26 2002-02-26 Producing method of porous semiconductor layer, and dye sensitized solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002050034A JP2003249279A (en) 2002-02-26 2002-02-26 Producing method of porous semiconductor layer, and dye sensitized solar cell

Publications (1)

Publication Number Publication Date
JP2003249279A true JP2003249279A (en) 2003-09-05

Family

ID=28662392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002050034A Pending JP2003249279A (en) 2002-02-26 2002-02-26 Producing method of porous semiconductor layer, and dye sensitized solar cell

Country Status (1)

Country Link
JP (1) JP2003249279A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006080384A1 (en) * 2005-01-27 2006-08-03 Nippon Kayaku Kabushiki Kaisha Modified titanium oxide microparticle and photoelectric transducer making use of the same
WO2006109769A1 (en) * 2005-04-11 2006-10-19 Nippon Kayaku Kabushiki Kaisha Electrolyte composition for photoelectric converter and photoelectric converter using same
CN100388510C (en) * 2004-05-13 2008-05-14 中国科学院化学研究所 Electrode pair of dyestuff sensitized Nano crystal thin film of solar cell
WO2009016869A1 (en) * 2007-07-27 2009-02-05 Sony Corporation Coloring matter-sensitized photoelectric conversion element, process for producing the coloring matter-sensitized photoelectric conversion element, electronic equipment, semiconductor electrode, and process for rpoducing the semiconductor electrode
WO2010053105A1 (en) * 2008-11-05 2010-05-14 ソニー株式会社 Dye-sensitized solar cell and process for producing same
KR100978401B1 (en) * 2008-02-26 2010-08-26 한국과학기술연구원 Multiple-dyes sensitized solar cells and method for preparing the same
KR101001547B1 (en) 2004-01-28 2010-12-17 삼성에스디아이 주식회사 A fabric solar cell and a method for preparing the same
WO2013027838A1 (en) 2011-08-25 2013-02-28 独立行政法人物質・材料研究機構 Dye-sensitized solar cell and sensitizing dye
US20150083225A1 (en) * 2011-12-28 2015-03-26 Barry Breen Titania microstructure in a dye solar cell
JP2015060820A (en) * 2013-09-20 2015-03-30 積水化学工業株式会社 Dye-sensitized solar cell and method of manufacturing the same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101001547B1 (en) 2004-01-28 2010-12-17 삼성에스디아이 주식회사 A fabric solar cell and a method for preparing the same
CN100388510C (en) * 2004-05-13 2008-05-14 中国科学院化学研究所 Electrode pair of dyestuff sensitized Nano crystal thin film of solar cell
WO2006080384A1 (en) * 2005-01-27 2006-08-03 Nippon Kayaku Kabushiki Kaisha Modified titanium oxide microparticle and photoelectric transducer making use of the same
JP4909256B2 (en) * 2005-01-27 2012-04-04 日本化薬株式会社 Modified titanium oxide fine particles and photoelectric conversion element using the same
WO2006109769A1 (en) * 2005-04-11 2006-10-19 Nippon Kayaku Kabushiki Kaisha Electrolyte composition for photoelectric converter and photoelectric converter using same
JP5089381B2 (en) * 2005-04-11 2012-12-05 日本化薬株式会社 Electrolyte composition for photoelectric conversion element and photoelectric conversion element using the same
WO2009016869A1 (en) * 2007-07-27 2009-02-05 Sony Corporation Coloring matter-sensitized photoelectric conversion element, process for producing the coloring matter-sensitized photoelectric conversion element, electronic equipment, semiconductor electrode, and process for rpoducing the semiconductor electrode
JP2009032547A (en) * 2007-07-27 2009-02-12 Sony Corp Dye-sensitized photoelectric conversion element, its manufacturing method, electronic equipment, semiconductor electrode, and its manufacturing method
KR100978401B1 (en) * 2008-02-26 2010-08-26 한국과학기술연구원 Multiple-dyes sensitized solar cells and method for preparing the same
JP2010113905A (en) * 2008-11-05 2010-05-20 Sony Corp Dye-sensitized solar cell and process for producing the same
WO2010053105A1 (en) * 2008-11-05 2010-05-14 ソニー株式会社 Dye-sensitized solar cell and process for producing same
WO2013027838A1 (en) 2011-08-25 2013-02-28 独立行政法人物質・材料研究機構 Dye-sensitized solar cell and sensitizing dye
US20150083225A1 (en) * 2011-12-28 2015-03-26 Barry Breen Titania microstructure in a dye solar cell
JP2015060820A (en) * 2013-09-20 2015-03-30 積水化学工業株式会社 Dye-sensitized solar cell and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JP5135774B2 (en) Photoelectric conversion element and solar cell
JP5206092B2 (en) Photoelectric conversion element and solar cell
JP2008186752A (en) Photoelectric conversion element and solar cell
JP2010009786A (en) Dye sensitized solar cell, and dye sensitized solar cell module
JP5519681B2 (en) Dyes containing chromophores with attached acyloin groups
JP2009037861A (en) Dye-sensitized solar cell module
JP2003249279A (en) Producing method of porous semiconductor layer, and dye sensitized solar cell
JP4574897B2 (en) Dye-sensitized solar cell and method for producing the same
JP2003059547A (en) Dye sensitizing photoelectric transfer element
JP5620496B2 (en) Metal complex dye, photoelectric conversion element and photoelectrochemical cell
JP2000285975A (en) Semiconductor for photoelectric conversion and photoelectric conversion element
JP2010003557A (en) Dye-sensitized solar cell, its manufacturing method, and dye-sensitized solar cell module
JP5347329B2 (en) Photoelectric conversion element and solar cell
JP5217475B2 (en) Photoelectric conversion element and solar cell
JP5233318B2 (en) Photoelectric conversion element and solar cell
JPH1167285A (en) Photoelectric conversion element and photo electrochemical cell
JP2003123858A (en) Organic dye sensitized metal oxide semiconductor electrode, and solar battery having the semiconductor electrode
JP2003298082A (en) Composite semiconductor
JP5298654B2 (en) Photoelectrode, method for producing dye-sensitized solar cell including the same, and dye-sensitized solar cell
JP4094319B2 (en) Composite semiconductor with thin film layer
JP2009043482A (en) Dye-sensitized solar cell, and dye-sensitized solar cell module
WO2012017873A1 (en) Metal complex dye, photoelectric conversion element and photoelectrochemical cell
JP2010282780A (en) Photoelectric conversion element and solar cell
JP5332114B2 (en) Photoelectric conversion element and solar cell
JP2008111321A (en) Building board with solar cell