JP2003246971A - Method for adhering foil or film, and target for measuring shock wave speed, obtained by the method - Google Patents

Method for adhering foil or film, and target for measuring shock wave speed, obtained by the method

Info

Publication number
JP2003246971A
JP2003246971A JP2002047779A JP2002047779A JP2003246971A JP 2003246971 A JP2003246971 A JP 2003246971A JP 2002047779 A JP2002047779 A JP 2002047779A JP 2002047779 A JP2002047779 A JP 2002047779A JP 2003246971 A JP2003246971 A JP 2003246971A
Authority
JP
Japan
Prior art keywords
film
foil
shock wave
organic solvent
substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002047779A
Other languages
Japanese (ja)
Inventor
Keiji Nagai
圭治 長井
Takayoshi Norimatsu
孝好 乗松
Tatsuhiko Yamanaka
龍彦 山中
Kazuo Tanaka
和夫 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Technology Licensing Organization Co Ltd
Original Assignee
Kansai Technology Licensing Organization Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Technology Licensing Organization Co Ltd filed Critical Kansai Technology Licensing Organization Co Ltd
Priority to JP2002047779A priority Critical patent/JP2003246971A/en
Publication of JP2003246971A publication Critical patent/JP2003246971A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for adhering a foil or a film having a thickness suitable for a material in a field in which a machining accuracy of a submicron order is required such as target for measuring laser-induced shock wave speed, to provide a P-N type semiconductor and an electrode for solar battery without using an adhesive. <P>SOLUTION: The method for adhering the foil or the film comprises for forming an organic monomolecular film on the surface of the object, B, and adhering the film or the foil, A through the monomolecular film. The first step comprises wetting the B with a first organic solvent dissolving a surface- treating agent enabling self assembly, and washing the surface with a second organic solvent same to or different from the first organic solvent. The second step involves putting the surface and the A together while leaving the second organic solvent on the surface of the B so that air may not present between them. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、金属箔の接着方
法に属し、この接着方法は特にP−N接合型半導体、太
陽電池、衝撃波速度計測用ターゲットなどのようにサブ
ミクロンオーダーの加工精度が要求される製造分野に好
適に利用されうる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for adhering a metal foil, and this adhering method has a submicron-order processing accuracy particularly for P-N junction type semiconductors, solar cells, shock wave velocity measurement targets and the like. It can be suitably used in the required manufacturing field.

【0002】[0002]

【従来の技術】P−N接合型半導体、太陽電池、衝撃波
速度計測用ターゲットなどの製造分野においては部材と
部材との接合部分の厚さが性能に影響することがある。
例えばP型半導体とN型半導体とを個別に形成した後、
接合してP−N接合型半導体を完成する場合、両者の間
に厚い接着剤層を介在させると、P−N間を電子が移動
しにくくなるから、できれば接着剤なしで接合したい。
太陽電池におけるシリコンと電極との接合においても同
様である。従って、従来は通常、蒸着法などで直接接合
するしかなかった。衝撃波速度の計測においては、被測
定物質が衝撃波駆動物質の表面の一部に接着されたもの
がターゲットとして計測に供される。衝撃波速度の計測
方法としてはインピーダンスミスマッチ法と速度干渉計
による直接計測法とが知られている。インピーダンスミ
スマッチ法の場合、衝撃波駆動物質の表面に被測定物質
と並べて標準物質も接着される。そして、衝撃波駆動物
質より出た衝撃波が被測定物質及び標準物質を通過する
時間を同時に測定し、被測定物質及び標準物質の各厚さ
をそれぞれの衝撃波通過時間で除すことにより、それぞ
れの衝撃波速度が求められる。標準物質とは、既にユー
ゴニオ関数(Hugoniot function)がよく知られた物質
であり、その衝撃波速度と被測定物質の衝撃波速度との
比較により、被測定物質のユーゴニオ関数が求められ
る。直接計測法の場合は衝撃波駆動物質の表面に接着さ
れるのは、被測定物質だけである。
2. Description of the Related Art In the field of manufacturing PN junction type semiconductors, solar cells, shock wave velocity measurement targets and the like, the thickness of the joint between members may affect the performance.
For example, after separately forming a P-type semiconductor and an N-type semiconductor,
When a PN junction type semiconductor is completed by joining, if a thick adhesive layer is interposed between the two, it becomes difficult for electrons to move between PN, so it is desirable to join without an adhesive.
The same applies to the junction between the silicon and the electrode in the solar cell. Therefore, conventionally, only the direct bonding method such as the vapor deposition method has been usually available. In the measurement of shock wave velocity, a substance to be measured adhered to a part of the surface of a shock wave driving substance is used as a target for measurement. The impedance mismatch method and the direct measurement method using a velocity interferometer are known as methods for measuring the velocity of a shock wave. In the case of the impedance mismatch method, the standard substance is also attached to the surface of the shock wave driving substance side by side with the substance to be measured. Then, by simultaneously measuring the time taken for the shock wave emitted from the shock wave driving substance to pass through the measured substance and the standard substance, and dividing each thickness of the measured substance and the standard substance by the respective shock wave passage time, Speed is required. The standard substance is a substance whose Hugoniot function is already well known, and the Yugonio function of the substance to be measured can be obtained by comparing the shock wave velocity with the velocity of the shock wave of the substance to be measured. In the case of the direct measurement method, only the substance to be measured is bonded to the surface of the shock wave driving substance.

【0003】いずれにしても被測定物質の厚さを衝撃波
の通過時間で除すことにより、衝撃波速度を求めること
に変わりはない。そして、その通過時間は、衝撃波が衝
撃波駆動物質より出た直後から被測定物質を通過し終わ
るまでの時間である。従って、接着剤を用いて衝撃波駆
動物質と被測定物質とが接着されている構造では、衝撃
波が接着剤を通過する時間も上記の通過時間として表示
されることから、被測定物質及び駆動物質の厚さに比べ
て接着剤の厚さは極力薄いのが望ましい。この点、爆薬
を用いて発生させられた従来の衝撃波は、定常状態の持
続時間が長いので、被測定物質を十分に厚くすることが
でき、接着剤の厚さを無視しても支障無かった。
In any case, the shock wave velocity is still obtained by dividing the thickness of the substance to be measured by the transit time of the shock wave. Then, the passage time is the time from immediately after the shock wave is emitted from the shock wave driving substance to when the shock wave is completely passed through the substance to be measured. Therefore, in a structure in which the shock wave driving substance and the substance to be measured are adhered using an adhesive, the time taken for the shock wave to pass through the adhesive is also displayed as the above passage time. It is desirable that the thickness of the adhesive is as thin as possible compared to the thickness. In this respect, the conventional shock wave generated using explosives has a long steady-state duration, so the substance to be measured can be made sufficiently thick, and there is no problem even if the thickness of the adhesive is ignored. .

【0004】[0004]

【発明が解決しようとする課題】一方、レーザー誘起に
よって発生させられる近年の衝撃波は持続時間が短いの
で、被測定物質及び駆動物質も薄くしなければならず、
接着剤の厚さを無視することができない。そのため、例
えば駆動物質を熱分解可能な有機物の上にスパッタリン
グし、更にその上に被測定物質を接着剤によらずスパッ
タリングなどの蒸着法によって形成した後、有機物を熱
分解して除去しなければならなかった。
On the other hand, since the shock wave in recent years generated by laser induction has a short duration, the substance to be measured and the driving substance also have to be thin,
The thickness of the adhesive cannot be ignored. Therefore, for example, the driving substance should be sputtered on a thermally decomposable organic substance, and the substance to be measured must be formed thereon by a vapor deposition method such as sputtering without using an adhesive, and then the organic substance must be thermally decomposed and removed. did not become.

【0005】しかし、蒸着法による第一の問題は、計測
に必要な膜厚を得るには非常に長い時間を要することで
ある。第二の問題は、得られる薄膜の接着強度が弱いの
で、計測に供される前の移動過程で破壊されることがあ
り、取り扱いにくいことである。これらの問題は上記P
−N型半導体や太陽電池においても同様である。第三の
問題は、被測定物質が金属に限られてしまい、有機高分
子などの耐熱性の無い材料を被測定物質とすることがで
きないことである。それ故、この発明の課題は、レーザ
ー誘起衝撃波速度の計測用ターゲット、半導体、太陽電
池の電極などに適当な厚さを有する箔状ないし膜状物体
を、接着剤を用いずに対象物に接着する方法を提供する
ことにある。
However, the first problem with the vapor deposition method is that it takes a very long time to obtain the film thickness required for measurement. The second problem is that the obtained thin film has a low adhesive strength, so that it may be destroyed during the moving process before being subjected to the measurement, which makes it difficult to handle. These problems are described in P above.
The same applies to -N type semiconductors and solar cells. The third problem is that the substance to be measured is limited to metal, and a material having no heat resistance such as an organic polymer cannot be used as the substance to be measured. Therefore, an object of the present invention is to bond a foil-shaped or film-shaped object having an appropriate thickness to a laser-induced shock wave velocity measurement target, a semiconductor, an electrode of a solar cell or the like to an object without using an adhesive. To provide a way to do.

【0006】[0006]

【課題を解決するための手段】その課題を解決するため
に、この発明の接着方法は、鏡面を有する箔状ないし膜
状物体と対象物とを接着する方法において、箔状ないし
膜状物体をA、対象物をBとするとき、Bの表面に有機
単分子膜を形成する第一の段階と、その有機単分子膜を
介してAの鏡面と接着する第二の段階とを備えることを
特徴とする。ここで、鏡面とは1μm以下、好ましくは
0.5μm以下の平均表面粗さを有する面をいう。
In order to solve the problem, the bonding method of the present invention is a method for bonding a foil-shaped or film-shaped object having a mirror surface to an object, A, when the object is B, it comprises a first step of forming an organic monomolecular film on the surface of B and a second step of adhering to the mirror surface of A via the organic monomolecular film. Characterize. Here, the mirror surface means a surface having an average surface roughness of 1 μm or less, preferably 0.5 μm or less.

【0007】この発明の接着方法によれば、有機単分子
膜が上記Bに共有結合にて結合し、有機単分子膜と上記
Aの鏡面とが分子間力及び負圧の作用により接着する。
従って、接着強度は高く、通常の移動過程で互いに離脱
することはない。また、箔状ないし膜状物体Aの接着面
は鏡面であって、このAと対象物Bとの間に介在するの
は、実質的に有機単分子膜のみであるから、接着層の厚
さは箔状ないし膜状物体及び対象物の厚さに対して無視
できる程度である。従って、その接着層がP−N接合間
や電極−発電材料間に介在しても接着層の電気抵抗を実
質的に無視することができる。尚、鏡面であるAの表面
にもBの表面と同一または異なる有機単分子膜が形成さ
れていると接着力が増す。
According to the bonding method of the present invention, the organic monomolecular film is covalently bonded to the B, and the organic monomolecular film and the mirror surface of the A are bonded by the action of intermolecular force and negative pressure.
Therefore, the adhesive strength is high and they do not separate from each other in the normal movement process. In addition, since the adhesive surface of the foil-shaped or film-shaped object A is a mirror surface, and only the organic monomolecular film is interposed between the object A and the object B, the thickness of the adhesive layer is Is negligible with respect to the thickness of foil-shaped or film-shaped objects and objects. Therefore, even if the adhesive layer is interposed between the P-N junction and between the electrode and the power generation material, the electric resistance of the adhesive layer can be substantially ignored. If an organic monomolecular film that is the same as or different from the surface of B is formed on the surface of A, which is a mirror surface, the adhesive force increases.

【0008】更に対象物Bは自己組織化などによって有
機単分子膜が形成されうるものであればよいから、金属
に限らずガラスなどの無機物であってもよい。また、対
象物Bの形状も限定されず、Bも箔状ないし膜状であっ
てもよい。他方、有機単分子膜と箔状ないし膜状物体A
とは分子間力及び負圧の作用により接着することから、
Aは金属などの無機物に限定されず、有機高分子であっ
てもよい。但し、次の好ましい第一及び第二段階を採用
する場合は、A及びBは親有機溶媒性の表面を有する物
に限られる。
Further, the object B is not limited to a metal and may be an inorganic material such as glass, as long as an organic monomolecular film can be formed by self-organization or the like. The shape of the object B is also not limited, and B may be foil-shaped or film-shaped. On the other hand, organic monomolecular film and foil-shaped or film-shaped object A
Is adhered by the action of intermolecular force and negative pressure,
A is not limited to an inorganic substance such as a metal and may be an organic polymer. However, when the following preferred first and second steps are adopted, A and B are limited to those having an organic solvent-philic surface.

【0009】この発明の好ましい第一及び第二の段階と
しては、前記第一の段階は、自己組織化可能な表面処理
剤が溶けた第一の有機溶媒でBを濡らし、第一の有機溶
媒と同じ又は異なる第二の有機溶媒にて洗浄する操作を
含み、前記第二の段階は、Bの表面に第二の有機溶媒が
残っている状態で空気が介在しないように当該表面とA
とが合わせられる操作を含むものである。尚、対象物B
も箔状ないし膜状をなすときは、Aと合わせる際に、A
の表面とBの表面とが密着するようにBを肉厚の部材で
裏当てするとよい。
As preferred first and second steps of the present invention, in the first step, B is wetted with a first organic solvent in which a self-assembling surface treating agent is dissolved, and the first organic solvent is used. And a step of washing with a second organic solvent which is the same as or different from the above.
It includes operations that are combined with. The object B
When forming a foil or film, when combining with A, A
B may be backed with a thick member so that the surface of B and the surface of B are in close contact with each other.

【0010】表面処理剤が溶けた第一有機溶媒で対象物
Bを濡らすと、対象物B上で表面処理剤が自己組織化
し、単分子ごとに配列して対象物Bと共有結合する。表
面処理剤としてアルキルハロシランを用いた場合は、図
1の状態になる。続いてこの反応による副生成物(図1
の場合、HCl)を第二有機溶媒で除去する。対象物B
上には表面処理剤に由来する有機単分子膜と第二有機溶
媒だけが残る。空気が介在しないように箔状ないし膜状
物体Aと対象物Bを合わせる通常の手段は、第二有機溶
媒中で行うものである。合わせられたAとBとの組み合
わせ体を第二有機溶媒中から取り出し、厚さ方向に圧力
を加えながらAのほぼ中心から周辺に向かって擦ること
により、余剰の第二有機溶媒が除かれる。こうしてAと
有機単分子膜とが分子間力と負圧の作用で接着する。
When the object B is wetted with the first organic solvent in which the surface treating agent is dissolved, the surface treating agent self-assembles on the object B and is arranged for each single molecule to covalently bond with the object B. When alkylhalosilane is used as the surface treatment agent, the state shown in FIG. 1 is obtained. Subsequently, a by-product of this reaction (Fig. 1
In the case of, HCl) is removed with a second organic solvent. Object B
Only the organic monolayer derived from the surface treatment agent and the second organic solvent remain on the top. The usual means for aligning the foil-shaped or film-shaped object A and the object B without the presence of air is to carry out in a second organic solvent. The combined combination of A and B is taken out of the second organic solvent and rubbed from the approximate center of A toward the periphery while applying pressure in the thickness direction, whereby the excess second organic solvent is removed. In this way, A and the organic monomolecular film are bonded by the action of intermolecular force and negative pressure.

【0011】表面処理剤として好ましいのは、例えばア
ルキルシラン、アルキルアルコキシシラン、アルキルハ
ロシラン、アルキルチオール及びアルキルイソニトリル
のうちから選ばれる1種以上である。第二の有機溶媒と
しては、例えば炭素数6以下の脂肪族炭化水素又は脂肪
族モノアルコールである。よって、この発明の方法によ
り得られる衝撃波速度計測用ターゲットは、被測定物質
とそれに接着された衝撃波駆動物質とからなる衝撃波速
度計測用ターゲットにおいて、被測定物質が箔状ないし
膜状物体からなり、衝撃波駆動物質が金属箔からなり、
接着が少なくとも一方の表面に形成された有機単分子膜
を介してなされていることを特徴とする。
The surface treatment agent is preferably at least one selected from alkylsilane, alkylalkoxysilane, alkylhalosilane, alkylthiol and alkylisonitrile. The second organic solvent is, for example, an aliphatic hydrocarbon having 6 or less carbon atoms or an aliphatic monoalcohol. Therefore, the shock wave velocity measuring target obtained by the method of the present invention is a shock wave velocity measuring target consisting of the measured substance and the shock wave driving substance adhered to the measured substance, and the measured substance is a foil-shaped or film-shaped object, Shock wave driving material is made of metal foil,
It is characterized in that the adhesion is performed via an organic monomolecular film formed on at least one surface.

【0012】[0012]

【実施例】−実施例1− 以下に本発明の接着方法の実施例を説明する。本例では
第一有機溶媒も第二有機溶媒もともにヘキサンとした。
表面処理剤としてはイソブチルトリクロロシランが用い
られた。尚、本例では請求項で規定するAもBも金属箔
である。
[Examples] -Examples-Examples of the bonding method of the present invention will be described below. In this example, both the first organic solvent and the second organic solvent were hexane.
Isobutyltrichlorosilane was used as the surface treatment agent. In this example, both A and B defined in the claims are metal foils.

【0013】[金属箔の接着]十分に乾燥させたガラス
製シャーレに乾燥させたヘキサン(関東化学製)10m
lとイソブチルトリクロロシラン(東京化成製)0.5
gを混合し、溶解させた。この溶液に1辺が2cm、厚
さ5μm、平均表面粗さ0.3μmの方形のアルミニウ
ム箔2枚を5分間浸けた。続いてヘキサンでアルミニウ
ム箔の表面を洗浄し、再び2枚のアルミニウム箔を純ヘ
キサン中に浸した。
[Adhesion of metal foil] 10 m of dried hexane (Kanto Chemical Co., Ltd.) on a sufficiently dried glass dish.
l and isobutyltrichlorosilane (manufactured by Tokyo Kasei) 0.5
g were mixed and dissolved. Two square aluminum foils each having a side of 2 cm, a thickness of 5 μm and an average surface roughness of 0.3 μm were immersed in this solution for 5 minutes. Subsequently, the surface of the aluminum foil was washed with hexane, and the two aluminum foils were again immersed in pure hexane.

【0014】次にアルミニウム箔をピンセットで動かし
て箔表面に十分にヘキサンをなじませた後、2枚の箔の
主面同士をヘキサン中で合わせた。そして、合わせたま
まヘキサン中から取り出し、一方の箔が上になるように
平らな台の上に置いた。直ちに、箔の上面を中央から周
辺に向けて擦ってヘキサンを箔の外に押し出し、更に箔
の上にガラス板を置いて押さえつけ、数時間放置した。
しばらくすると揮発したヘキサンに由来すると思われる
気泡からなる空隙が図2に示すように箔と箔の界面に生
じた。そこで、気泡を押し出すためにガラス板を擦っ
た。気泡が発生しなくなった時点をもって接着完了と定
めた。
Next, the aluminum foil was moved with tweezers so that the surface of the foil was sufficiently blended with hexane, and then the main surfaces of the two foils were put together in hexane. Then, it was taken out from hexane as it was, and placed on a flat table so that one foil faced up. Immediately, the upper surface of the foil was rubbed from the center toward the periphery to push hexane out of the foil, and a glass plate was placed on the foil and pressed down, and left for several hours.
After a while, voids composed of bubbles, which are thought to be derived from hexane that volatilized, were formed at the interface between the foils as shown in FIG. Then, the glass plate was rubbed to push out the bubbles. Adhesion was determined to be complete when no bubbles were generated.

【0015】[評価]互いに接着された2枚のアルミ箔
を大気中1mの高さからコンクリート上に落下させたと
ころ、アルミ箔同士が離れることはなかった。真空中で
も同様であった。尚、比較のために、表面処理剤を用い
ない以外は上記と同一条件でアルミ箔同士を合わせたと
ころ、落下と同時に互いに離れた。
[Evaluation] When two aluminum foils bonded to each other were dropped onto concrete from a height of 1 m in the atmosphere, the aluminum foils were not separated from each other. The same was true in vacuum. For comparison, when the aluminum foils were combined under the same conditions as above except that no surface treatment agent was used, they were separated from each other at the same time when they were dropped.

【0016】接着された2枚のアルミ箔の界面を図3の
上段に示すように側面から電子顕微鏡(日本電子製SE
M−840)で1000倍に拡大して観察し、撮影した
写真を図3(下段)として示す。図3(下段)に見られ
るように、接着面間の隙間にはアルミ箔の凹凸しか確認
できないことから、接着層の厚さは無視できる程度であ
る。また、顕微鏡観察は真空中3kVの高電圧下で行わ
れていることから、接着部分がこの環境においても損傷
を受けないことをも示している。
The interface between the two bonded aluminum foils is viewed from the side as shown in the upper part of FIG.
M-840) was observed at 1000 times magnification, and the photographed image is shown in FIG. 3 (bottom). As can be seen in FIG. 3 (bottom), since only the unevenness of the aluminum foil can be confirmed in the gap between the adhesive surfaces, the thickness of the adhesive layer is negligible. Further, since the microscopic observation is performed in a high voltage of 3 kV in a vacuum, it is shown that the bonded portion is not damaged even in this environment.

【0017】−実施例2− 2枚のアルミ箔の厚さがともに10μmであることと、
一方のアルミ箔の面積が他方のそれよりも小さいこと以
外は実施例1と同一条件でアルミ箔同士を接着した。便
宜上、本例では小面積のアルミ箔をステップ、大面積の
アルミ箔をベースと称する。
Example 2-Two aluminum foils each having a thickness of 10 μm,
The aluminum foils were bonded under the same conditions as in Example 1 except that the area of one aluminum foil was smaller than that of the other. For convenience, in this example, a small area aluminum foil is referred to as a step, and a large area aluminum foil is referred to as a base.

【0018】レーザー集束高度計(キーエンス社製)を
用いて、接着された2枚のアルミ箔の厚さを測定した。
図4の上段はステップとベースからなる積層体の断面形
状、下段は測定結果を示す。図4に見られるように、ス
テップの厚さが9.60μm、平均表面粗さが0.3μ
mであった。
A laser focusing altimeter (manufactured by Keyence Corporation) was used to measure the thickness of the two bonded aluminum foils.
The upper part of FIG. 4 shows the cross-sectional shape of the laminated body including the steps and the base, and the lower part shows the measurement results. As can be seen in FIG. 4, the step thickness is 9.60 μm and the average surface roughness is 0.3 μm.
It was m.

【0019】次に、接着されたアルミ箔積層体をターゲ
ットとして以下の手順でレーザー誘起衝撃波試験に供し
た。試験は高強度レーザー(激光モジュールGMII)を
用いて大阪大学レーザー核融合研究センターで行われ
た。レーザーパルスの時間的挙動はガウシアン分布であ
った。レーザー光は、f=1000mmのレンズによっ
て直接ターゲットのほぼ500μmの直径範囲に当てら
れた。照射エネルギーはレーザー強度9.3×1012
cm-2に相当する30Jまでとした。
Next, a laser-induced shock wave test was conducted with the adhered aluminum foil laminate as a target in the following procedure. The test was conducted at the Laser Fusion Research Center, Osaka University, using a high-intensity laser (Gekkou Module GMII). The temporal behavior of the laser pulse was Gaussian distribution. The laser light was directed directly onto the target in the approximately 500 μm diameter range by a lens of f = 1000 mm. Irradiation energy is laser intensity 9.3 × 10 12 W
It was set to 30 J corresponding to cm -2 .

【0020】衝撃波が平坦なターゲットを伝搬すると
き、ターゲット背面から放射した衝撃は衝撃温度に依存
して黒体放射を発する。このときのターゲット背面にお
ける放射率を時間ストリークカメラを用いて測定した。
信号をF/1.2対物レンズで集め、撮像レンズによっ
てストリークカメラのスリット上に撮像し、ストリーク
カメラを電荷結合素子(CCD)カメラ(16ビット、
512×640ピクセル)と接続した。このストリーク
カメラの検出可能波長は300〜1600nmで、空間
分解能はターゲット上で9μmより優れており、時間分
解能は137psより優れていた。
When a shock wave propagates through a flat target, the shock radiated from the back surface of the target emits black body radiation depending on the shock temperature. The emissivity on the back surface of the target at this time was measured using a time streak camera.
The signal is collected by the F / 1.2 objective lens and imaged on the slit of the streak camera by the imaging lens, and the streak camera is charged by a charge coupled device (CCD) camera (16 bits,
512 × 640 pixels). The detectable wavelength of this streak camera was 300 to 1600 nm, the spatial resolution was better than 9 μm on the target, and the temporal resolution was better than 137 ps.

【0021】ターゲット背面から発せられた衝撃波の撮
像に基づいて放射率を求めた。放射率を画像の垂直断面
に対応する時間の関数として図5に示す。基準点から衝
撃波放射までの時間は、図5に示されるように積層体及
び単層において各々3.74ns及び3.77nsであ
った。各ショットのレーザーエネルギーは、12.7J
及び12.5Jで、その差は1.5%とほとんど等し
く、時間分解能は0.1nsであった。よって、積層体
の接着層の厚さは衝撃波速度計測において無視できる程
度である。
The emissivity was determined based on the imaging of the shock wave emitted from the back surface of the target. The emissivity is shown in FIG. 5 as a function of time corresponding to the vertical section of the image. The time from the reference point to the shock wave emission was 3.74 ns and 3.77 ns in the laminate and the single layer, respectively, as shown in FIG. Laser energy of each shot is 12.7J
And 12.5 J, the difference was almost equal to 1.5% and the time resolution was 0.1 ns. Therefore, the thickness of the adhesive layer of the laminate is negligible in shock wave velocity measurement.

【0022】[0022]

【発明の効果】接着剤を介さずに金属箔を接着できるの
で、接着層による誤差を無くすることができ、サブミク
ロンオーダーの寸法精度が重視される種々の用途におい
て有益である。
Since the metal foil can be adhered without using an adhesive, the error due to the adhesive layer can be eliminated, which is useful in various applications where dimensional accuracy on the order of submicrons is important.

【図面の簡単な説明】[Brief description of drawings]

【図1】 アルミニウム箔表面と有機単分子膜との結合
構造を示す図である。
FIG. 1 is a diagram showing a bonding structure between an aluminum foil surface and an organic monomolecular film.

【図2】 アルミニウム箔同士の接着過程を示す断面図
である。
FIG. 2 is a cross-sectional view showing a process of bonding aluminum foils to each other.

【図3】 上段は接着された2枚のアルミニウム箔の界
面の電子顕微鏡による撮像方向を示す図、下段はその撮
像写真である。
FIG. 3 is a diagram showing an image pickup direction of an interface between two bonded aluminum foils by an electron microscope in the upper stage, and a photographed image is shown in the lower stage.

【図4】 上段は接着された2枚のアルミニウム箔を示
す断面図、下段はその積層体の厚さをレーザー集束高度
計によって測定した結果を示すグラフである。
FIG. 4 is a cross-sectional view showing two bonded aluminum foils, and a lower graph is a graph showing the results of measuring the thickness of the laminate with a laser focusing altimeter.

【図5】 放射率と画像の垂直断面に対応する時間の関
係を示すグラフである。
FIG. 5 is a graph showing a relationship between emissivity and time corresponding to a vertical section of an image.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田中 和夫 大阪府箕面市桜3−12−10 Fターム(参考) 4J040 HB09 HC17 HD03 HD32 JB11 KA23 MA02 MB03 PA04 PA07   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Kazuo Tanaka             3-12-10 Sakura, Minoh City, Osaka Prefecture F-term (reference) 4J040 HB09 HC17 HD03 HD32 JB11                       KA23 MA02 MB03 PA04 PA07

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】鏡面を有する箔状ないし膜状物体と対象物
とを接着する方法において、箔状ないし膜状物体をA、
対象物をBとするとき、 Bの表面に有機単分子膜を形成する第一の段階と、その
有機単分子膜を介してAの鏡面と接着する第二の段階と
を備えることを特徴とする接着方法。
1. A method for adhering a foil-shaped or film-shaped object having a mirror surface to an object, wherein the foil-shaped or film-shaped object is A,
When the object is B, it comprises a first step of forming an organic monomolecular film on the surface of B, and a second step of adhering to the mirror surface of A via the organic monomolecular film. How to glue.
【請求項2】前記第一の段階は、自己組織化可能な表面
処理剤が溶けた第一の有機溶媒でBを濡らし、第一の有
機溶媒と同じ又は異なる第二の有機溶媒にて洗浄する操
作を含み、 前記第二の段階は、Bの表面に第二の有機溶媒が残って
いる状態で空気が介在しないように当該表面とAとが合
わせられる操作を含む請求項1に記載の方法。
2. In the first step, B is wetted with a first organic solvent in which a self-assembling surface treatment agent is dissolved, and washed with a second organic solvent which is the same as or different from the first organic solvent. 2. The operation according to claim 1, wherein the second step includes an operation of combining the surface B with the surface A so that air is not present in the state where the second organic solvent remains on the surface B. Method.
【請求項3】前記箔状ないし膜状物体Aの表面にBの表
面と同一または異なる有機単分子膜が形成されており、
前記対象物BがAと同一または異なる箔状ないし膜状を
なしている請求項1または2に記載の方法。
3. An organic monomolecular film which is the same as or different from the surface of B is formed on the surface of the foil-shaped or film-shaped object A,
The method according to claim 1 or 2, wherein the object B has a foil shape or a film shape which is the same as or different from A.
【請求項4】前記表面処理剤が、アルキルシラン、アル
キルアルコキシシラン、アルキルハロシラン、アルキル
チオール及びアルキルイソニトリルのうちから選ばれる
1種以上である請求項2または3に記載の方法。
4. The method according to claim 2, wherein the surface treatment agent is one or more selected from alkylsilane, alkylalkoxysilane, alkylhalosilane, alkylthiol and alkylisonitrile.
【請求項5】前記第二の有機溶媒が、炭素数6以下の脂
肪族炭化水素又は脂肪族モノアルコールである請求項2
ないし4のいずれかに記載の方法。
5. The second organic solvent is an aliphatic hydrocarbon or aliphatic monoalcohol having 6 or less carbon atoms.
5. The method according to any one of 4 to 4.
【請求項6】被測定物質とそれに接着された衝撃波駆動
物質とからなる衝撃波速度計測用ターゲットにおいて、 被測定物質が箔状ないし膜状物体からなり、衝撃波駆動
物質が金属箔からなり、接着が少なくとも一方の表面に
形成された有機単分子膜を介してなされていることを特
徴とする衝撃波速度計測用ターゲット。
6. A shock wave velocity measuring target comprising a substance to be measured and a shock wave driving substance adhered thereto, wherein the substance to be measured is a foil-shaped or film-shaped object, the shock wave driving substance is a metal foil, and the adhesion is A shock wave velocity measurement target, characterized in that the target is formed through an organic monomolecular film formed on at least one surface.
JP2002047779A 2002-02-25 2002-02-25 Method for adhering foil or film, and target for measuring shock wave speed, obtained by the method Pending JP2003246971A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002047779A JP2003246971A (en) 2002-02-25 2002-02-25 Method for adhering foil or film, and target for measuring shock wave speed, obtained by the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002047779A JP2003246971A (en) 2002-02-25 2002-02-25 Method for adhering foil or film, and target for measuring shock wave speed, obtained by the method

Publications (1)

Publication Number Publication Date
JP2003246971A true JP2003246971A (en) 2003-09-05

Family

ID=28660751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002047779A Pending JP2003246971A (en) 2002-02-25 2002-02-25 Method for adhering foil or film, and target for measuring shock wave speed, obtained by the method

Country Status (1)

Country Link
JP (1) JP2003246971A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008034638A2 (en) * 2006-09-22 2008-03-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for metallising semiconductor elements and use thereof
WO2008152743A1 (en) * 2007-06-15 2008-12-18 Kazufumi Ogawa Bonding method, and biochemical chip and optical part produced using the method
WO2008152744A1 (en) * 2007-06-15 2008-12-18 Kazufumi Ogawa Bonding method, and biochemical chip and optical part produced using the method
US8334051B2 (en) 2007-05-30 2012-12-18 Empire Technology Development Llc Adhesion method, and biochemical chip and optical component made by the same
US8404078B2 (en) 2007-05-30 2013-03-26 Empire Technology Development Llc Adhesion method, and biochemical chip and optical component made by the same
US10535785B2 (en) 2014-12-19 2020-01-14 Sunpower Corporation Laser beam shaping for foil-based metallization of solar cells
US10566474B2 (en) 2013-12-20 2020-02-18 Sunpower Corporation Single-step metal bond and contact formation for solar cells
US10593825B2 (en) 2016-05-13 2020-03-17 Sunpower Corporation Roll-to-roll metallization of solar cells
US10615296B2 (en) 2014-03-28 2020-04-07 Sunpower Corporation Foil-based metallization of solar cells
US10672924B2 (en) 2015-10-29 2020-06-02 Sunpower Corporation Laser foil trim approaches for foil-based metallization for solar cells
US10700222B2 (en) 2014-03-28 2020-06-30 Sunpower Corporation Metallization of solar cells
US10727369B2 (en) 2016-09-30 2020-07-28 Sunpower Corporation Conductive foil based metallization of solar cells
US10879413B2 (en) 2013-12-20 2020-12-29 Sunpower Corporation Contacts for solar cells
US10971638B2 (en) 2016-07-01 2021-04-06 Sunpower Corporation Laser techniques for foil-based metallization of solar cells
US11276785B2 (en) 2018-04-06 2022-03-15 Sunpower Corporation Laser assisted metallization process for solar cell fabrication
US11362234B2 (en) 2018-04-06 2022-06-14 Sunpower Corporation Local patterning and metallization of semiconductor structures using a laser beam
US11362220B2 (en) 2018-04-06 2022-06-14 Sunpower Corporation Local metallization for semiconductor substrates using a laser beam
US11424373B2 (en) 2016-04-01 2022-08-23 Sunpower Corporation Thermocompression bonding approaches for foil-based metallization of non-metal surfaces of solar cells
US11646387B2 (en) 2018-04-06 2023-05-09 Maxeon Solar Pte. Ltd. Laser assisted metallization process for solar cell circuit formation
US11664472B2 (en) 2018-04-06 2023-05-30 Maxeon Solar Pte. Ltd. Laser assisted metallization process for solar cell stringing
US11894472B2 (en) 2015-06-26 2024-02-06 Maxeon Solar Pte. Ltd. Leave-in etch mask for foil-based metallization of solar cells
US11908958B2 (en) 2016-12-30 2024-02-20 Maxeon Solar Pte. Ltd. Metallization structures for solar cells
US11967657B2 (en) 2020-04-06 2024-04-23 Maxeon Solar Pte. Ltd. Foil-based metallization of solar cells

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008034638A2 (en) * 2006-09-22 2008-03-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for metallising semiconductor elements and use thereof
WO2008034638A3 (en) * 2006-09-22 2008-05-15 Fraunhofer Ges Forschung Method for metallising semiconductor elements and use thereof
JP2010504632A (en) * 2006-09-22 2010-02-12 フラウンホッファー−ゲゼルシャフト ツァー フェーデルング デア アンゲバンテン フォルシュング エー ファー Method for metallizing semiconductor elements and use thereof
US8003530B2 (en) 2006-09-22 2011-08-23 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Method for metallizing semiconductor elements and use thereof
US8334051B2 (en) 2007-05-30 2012-12-18 Empire Technology Development Llc Adhesion method, and biochemical chip and optical component made by the same
US8404078B2 (en) 2007-05-30 2013-03-26 Empire Technology Development Llc Adhesion method, and biochemical chip and optical component made by the same
US8597460B2 (en) 2007-05-30 2013-12-03 Empire Technology Development Llc Adhesion method, and biochemical chip and optical component made by the same
WO2008152743A1 (en) * 2007-06-15 2008-12-18 Kazufumi Ogawa Bonding method, and biochemical chip and optical part produced using the method
WO2008152744A1 (en) * 2007-06-15 2008-12-18 Kazufumi Ogawa Bonding method, and biochemical chip and optical part produced using the method
US10879413B2 (en) 2013-12-20 2020-12-29 Sunpower Corporation Contacts for solar cells
US10566474B2 (en) 2013-12-20 2020-02-18 Sunpower Corporation Single-step metal bond and contact formation for solar cells
US11616159B2 (en) 2013-12-20 2023-03-28 Sunpower Corporation Contacts for solar cells
US11784264B2 (en) 2013-12-20 2023-10-10 Maxeon Solar Pte. Ltd. Single-step metal bond and contact formation for solar cells
US11081601B2 (en) 2013-12-20 2021-08-03 Sunpower Corporation Single-step metal bond and contact formation for solar cells
US10700222B2 (en) 2014-03-28 2020-06-30 Sunpower Corporation Metallization of solar cells
US10615296B2 (en) 2014-03-28 2020-04-07 Sunpower Corporation Foil-based metallization of solar cells
US11817512B2 (en) 2014-12-19 2023-11-14 Maxeon Solar Pte. Ltd. Laser beam shaping for foil-based metallization of solar cells
US10535785B2 (en) 2014-12-19 2020-01-14 Sunpower Corporation Laser beam shaping for foil-based metallization of solar cells
US11374137B2 (en) 2014-12-19 2022-06-28 Sunpower Corporation Laser beam shaping for foil-based metallization of solar cells
US11894472B2 (en) 2015-06-26 2024-02-06 Maxeon Solar Pte. Ltd. Leave-in etch mask for foil-based metallization of solar cells
US10672924B2 (en) 2015-10-29 2020-06-02 Sunpower Corporation Laser foil trim approaches for foil-based metallization for solar cells
US11424373B2 (en) 2016-04-01 2022-08-23 Sunpower Corporation Thermocompression bonding approaches for foil-based metallization of non-metal surfaces of solar cells
US11101401B2 (en) 2016-05-13 2021-08-24 Sunpower Corporation Roll-to-roll metallization of solar cells
US10593825B2 (en) 2016-05-13 2020-03-17 Sunpower Corporation Roll-to-roll metallization of solar cells
US10971638B2 (en) 2016-07-01 2021-04-06 Sunpower Corporation Laser techniques for foil-based metallization of solar cells
US10727369B2 (en) 2016-09-30 2020-07-28 Sunpower Corporation Conductive foil based metallization of solar cells
US11908958B2 (en) 2016-12-30 2024-02-20 Maxeon Solar Pte. Ltd. Metallization structures for solar cells
US11362220B2 (en) 2018-04-06 2022-06-14 Sunpower Corporation Local metallization for semiconductor substrates using a laser beam
US11682737B2 (en) 2018-04-06 2023-06-20 Maxeon Solar Pte. Ltd. Laser assisted metallization process for solar cell fabrication
US11664472B2 (en) 2018-04-06 2023-05-30 Maxeon Solar Pte. Ltd. Laser assisted metallization process for solar cell stringing
US11646387B2 (en) 2018-04-06 2023-05-09 Maxeon Solar Pte. Ltd. Laser assisted metallization process for solar cell circuit formation
US11362234B2 (en) 2018-04-06 2022-06-14 Sunpower Corporation Local patterning and metallization of semiconductor structures using a laser beam
US11276785B2 (en) 2018-04-06 2022-03-15 Sunpower Corporation Laser assisted metallization process for solar cell fabrication
US11967657B2 (en) 2020-04-06 2024-04-23 Maxeon Solar Pte. Ltd. Foil-based metallization of solar cells

Similar Documents

Publication Publication Date Title
JP2003246971A (en) Method for adhering foil or film, and target for measuring shock wave speed, obtained by the method
TWI610374B (en) Adhesives for bonding handler wafers to device wafers and enabling mid-wavelength infrared laser ablation release
US8003530B2 (en) Method for metallizing semiconductor elements and use thereof
JP2016500918A (en) Method for processing a semiconductor wafer
US8314400B2 (en) Method to planarize three-dimensional structures to enable conformal electrodes
US20150017434A1 (en) Apparatus, hybrid laminated body, method, and materials for temporary substrate support
TWI753921B (en) Bonding materials of dissimilar coefficients of thermal expansion
CN108922861B (en) Integrated circuit repairing device and method based on infrared imaging positioning method
Zheng et al. Direct laser interference patterning and ultrafast laser-induced micro/nano structuring of current collectors for lithium-ion batteries
Nguyen et al. Deterministic assembly of arrays of lithographically defined WS2 and MoS2 monolayer features directly from multilayer sources into van der Waals heterostructures
US6177681B1 (en) Apparatus method for testing opening state for hole in semiconductor device
JP2020161717A (en) Semiconductor device, light detection system, light emitting system, and moving body
TWI290622B (en) Detection and repair system and method
US20160118283A1 (en) Anodized metal on carrier wafer
US11358381B1 (en) Method for attaching and detaching substrates during integrated circuit manufacturing
JP2002231986A (en) Method for manufacturing integrated thin film solar battery
JP2024513044A (en) Methods for mounting and removing boards during integrated circuit manufacturing
CN106340439A (en) Wafer structure for laser de-bonding processing
US20220306177A1 (en) Method for attaching and detaching substrates during integrated circuit manufacturing
Dang et al. Feasibility study of Si handler debonding by laser release
TW554551B (en) Method of fabricating organic light emitting diode
JP3802506B2 (en) Method and apparatus for measuring charge mobility of thin film and method for preparing sample for measuring charge mobility
Turkani et al. Photonic Debonding for Wafer-Level Packaging
Ehrhardt et al. Laser micro joining of thin metal films on flexible substrates for mechanical and electrical connections
CN114582781A (en) Electromagnetic field assisted laser dissociation bonding method