JP2003246851A - Biodegradable material having elastic property and artificial blood vessel formed therefrom - Google Patents

Biodegradable material having elastic property and artificial blood vessel formed therefrom

Info

Publication number
JP2003246851A
JP2003246851A JP2002049776A JP2002049776A JP2003246851A JP 2003246851 A JP2003246851 A JP 2003246851A JP 2002049776 A JP2002049776 A JP 2002049776A JP 2002049776 A JP2002049776 A JP 2002049776A JP 2003246851 A JP2003246851 A JP 2003246851A
Authority
JP
Japan
Prior art keywords
blood vessel
artificial blood
copolymer
biodegradable material
biodegradable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002049776A
Other languages
Japanese (ja)
Other versions
JP3680132B2 (en
Inventor
Katsuko Sakai
克子 酒井
Yasuyuki Sakai
康行 酒井
Fusae Miyata
房江 宮田
Takashi Ushida
多加志 牛田
Tetsuya Tateishi
哲也 立石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2002049776A priority Critical patent/JP3680132B2/en
Publication of JP2003246851A publication Critical patent/JP2003246851A/en
Application granted granted Critical
Publication of JP3680132B2 publication Critical patent/JP3680132B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To develop and provide an elastic material capable of recovery to its original form after expansion and capable of molding in an elastic specific form, particularly an artificial blood vessel, and a technique for molding. <P>SOLUTION: A fundamental structural unit having flexibility is formed by binding two or more materials with different crystallinities with a covalent bond. The resultant fundamental structural unit having flexibility is further bonded with more firm bond to form a polymer in three dimensional form The polymer can be molded in various products of plates, blocks, sponges, threads and so forth. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、自然界で分解され
るという生分解性を有しながら、伸縮性を有する素材、
およびそのような素材からなる物品、特に人工血管に関
するものである。
TECHNICAL FIELD The present invention relates to a stretchable material having biodegradability that is decomposed in nature.
And an article made of such a material, particularly an artificial blood vessel.

【0002】[0002]

【従来の技術】ポリ乳酸に代表される生分解性の材料が
既に報告されている。これらの材料は土壌中で分解され
て土に戻るために、環境に配慮した素材として、近年各
種の製品に加工する試みが検討されている。しかしなが
ら、今までに開発されてきた材料は、引っ張りや圧縮に
対して戻る能力が全くないと言ってもいいくらい著しく
伸縮性が低く、そのために、従来の材料の応用範囲は非
常に限定されたものになっていた。
2. Description of the Related Art Biodegradable materials represented by polylactic acid have already been reported. Since these materials are decomposed in the soil and returned to the soil, attempts to process them into various products have been studied in recent years as environmentally friendly materials. However, the materials that have been developed so far have extremely low stretchability to the point that they have no ability to return to pulling or compressing, which makes the application range of conventional materials very limited. It was a thing.

【0003】また、医療の分野でも、生体内で永久的に
残る材料は、発ガン、炎症など多くの2次的な疾患を引
き起こすことが既にわかっており、生体内で吸収されて
なくなる材料を誘導基盤材料として、多くの人工臓器が
設計、開発されてきている。
Also in the medical field, it has already been known that materials that remain permanently in the body cause many secondary diseases such as carcinogenesis and inflammation. Many artificial organs have been designed and developed as guide substrate materials.

【0004】さらに、医療の分野では、生分解性の人工
臓器用の材料として、生体内の臓器と同様の力学的な特
性を有する材料の開発が期待されていた。すなわち、生
体内の臓器と異なる力学的な特性を有する人工臓器を生
体内に移植すると、生体内で力学的な性質の違いに帰因
する連鎖反応が起こることがわかっていた。例えば、人
工血管の場合、生体内の血管は血圧によって、血管が伸
びたり、縮んだりするが、従来の生分解性材料による人
工血管では、伸縮性のあるものがなかったために、人工
血管と血管との間の吻合部で生ずるひずみが2次的な反
応を惹起することがわかっており、血管と同様の伸縮性
を有する生分解性の材料の開発が切望されていた。その
他の臓器でも同様の現象が起こるために、伸縮性のある
性質を有する生分解性の材料の開発が期待されていた。
Further, in the medical field, it has been expected to develop a material having mechanical properties similar to those of an in-vivo organ as a biodegradable artificial organ material. That is, it has been known that when an artificial organ having a mechanical property different from that of an in-vivo organ is transplanted into the in-vivo, a chain reaction due to a difference in mechanical properties occurs in the in-vivo. For example, in the case of an artificial blood vessel, the blood vessel in a living body expands or contracts depending on the blood pressure, but since no conventional artificial blood vessel made of biodegradable material has elasticity, the artificial blood vessel and the blood vessel are It has been known that the strain generated at the anastomosis portion between the blood vessel and the blood vessel causes a secondary reaction, and development of a biodegradable material having stretchability similar to that of blood vessels has been earnestly desired. Since the same phenomenon occurs in other organs, the development of biodegradable materials having elastic properties has been expected.

【0005】[0005]

【発明が解決しようとする課題】今までに、引っ張りま
たは圧縮時に戻る性質である伸縮性の(エラスティック
な)性質を有する生分解性の材料は報告されていない。
したがって、たとえば人工血管のようにゴムやクッショ
ンのような働きをもつ生分解性の材料の開発が大きな問
題として残されていた。
To date, no biodegradable materials have been reported that have elastic properties, which are the properties to return upon pulling or compression.
Therefore, the development of biodegradable materials that act like rubber and cushions, such as artificial blood vessels, has been left as a major problem.

【0006】[0006]

【課題を解決するための手段】以上のような情況の下
で、本発明者らは、生分解性の材料について鋭意研究し
た結果、カプロラクトンと乳酸および/またはグリコー
ル酸の共重合体(ブロックまたはランダムコポリマー)
からなる生分解性材料の共重合体末端に光重合性のアク
リレートなどの基をつけて硬化させると伸縮性のある素
材が得られることを見出した。
Under the circumstances as described above, the present inventors have earnestly studied biodegradable materials, and as a result, as a result, a copolymer of caprolactone and lactic acid and / or glycolic acid (block or Random copolymer)
It was found that a stretchable material can be obtained by attaching a group such as a photopolymerizable acrylate to the end of a copolymer of a biodegradable material consisting of and curing the material.

【0007】すなわち、本発明は、生分解性材料からな
る伸縮性の素材を提供する。この生分解性材料は、ポリ
エステル系の有機のポリマーからなり、特にカプロラク
トンと乳酸および/またはグリコール酸のブロックコポ
リマーからなるのが好ましい。このような伸縮性の生分
解性材料からなる素材から作成された物品は、引っ張り
または圧縮に対して、もとに戻る性質を有するため、ゴ
ムのような性質を有する一般的な造形物の作製が可能と
なる。
That is, the present invention provides a stretchable material made of a biodegradable material. This biodegradable material is composed of a polyester-based organic polymer, and particularly preferably a block copolymer of caprolactone and lactic acid and / or glycolic acid. Since an article made of such a material made of a stretchable biodegradable material has a property of returning to its original state when pulled or compressed, a general shaped article having a rubber-like property is produced. Is possible.

【0008】[0008]

【発明の実施の形態】以下、本発明を詳細に説明する。BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below.

【0009】本発明は、生分解性材料からなる伸縮性の
素材に係る。本発明で、「生分解性材料」とは、土壌中
で分解されて土に戻り、また、生体内で吸収されてなく
なるという生分解性を有する材料をいい、ポリエステル
系有機ポリマーがその代表例であり、たとえばカプロラ
クトン(特にε−カプロラクトン)と、乳酸(特にL−
乳酸)および/またはグリコール酸との共重合体があ
る。
The present invention relates to a stretchable material made of a biodegradable material. In the present invention, the "biodegradable material" refers to a material having biodegradability that is decomposed in soil and returned to the soil, and is not absorbed in the living body, and a typical example thereof is a polyester organic polymer. And, for example, caprolactone (especially ε-caprolactone) and lactic acid (especially L-
There are copolymers with lactic acid) and / or glycolic acid.

【0010】本発明で有用な前記共重合体はランダムコ
ポリマーでもブロックコポリマーでもよいが、カプロラ
クトン由来のブロックと乳酸および/またはグリコール
酸由来のブロックとからなるブロックコポリマーが特に
好ましい。また、必要に応じ、カプロラクトンと乳酸お
よび/またはグリコール酸の共重合体鎖を複数個有する
いわゆる星型ブロックコポリマーを用いることができ、
好ましい結果が得られる。
The copolymers useful in the present invention may be random or block copolymers, but block copolymers consisting of blocks derived from caprolactone and blocks derived from lactic acid and / or glycolic acid are particularly preferred. If necessary, a so-called star block copolymer having a plurality of copolymer chains of caprolactone and lactic acid and / or glycolic acid can be used,
Good results are obtained.

【0011】さらに、適度な力学的特性を引き出すため
に、ポリマーの分子量を目的に合わせて調整することが
できる。たとえば、コポリマーの分子量は500〜10
0,000の範囲、好ましくは1,000〜50,00
0の範囲とすることができる。また、ブロックコポリマ
ーの場合、カプロラクトン由来のブロックの分子量は5
00〜100,000が好ましく、乳酸および/または
グリコール酸由来のブロックの分子量は1,000〜5
0,000が好ましい。
Furthermore, in order to bring out appropriate mechanical properties, the molecular weight of the polymer can be tailored. For example, the molecular weight of the copolymer is 500-10.
In the range of 10,000, preferably 1,000 to 50,000
It can be in the range of 0. In the case of block copolymer, the molecular weight of the block derived from caprolactone is 5
00 to 100,000 is preferable, and the molecular weight of the block derived from lactic acid and / or glycolic acid is 1,000 to 5
10,000 is preferable.

【0012】このようなコポリマーは市販されているも
のでもよいし、公知の手法で製造されたものでもよい。
たとえば、特開平6−16799号公報参照。
Such a copolymer may be commercially available or may be produced by a known method.
See, for example, JP-A-6-16799.

【0013】本発明においては、このようなコポリマー
の末端に光反応性の基、たとえばアクリレート基および
/またはメタクリレート基を共有結合させる。これによ
り、この光重合性コポリマーは適当な放射線、たとえば
可視光やUV光により硬化させることができる。この末
端基の導入は当業者に公知の方法で実施することができ
る。
In the present invention, a photoreactive group such as an acrylate group and / or a methacrylate group is covalently bonded to the end of such a copolymer. This allows the photopolymerizable copolymer to be cured by suitable radiation, such as visible light or UV light. The introduction of this terminal group can be carried out by a method known to those skilled in the art.

【0014】本発明により伸縮性の素材が得られる理由
は完全に解明されているわけではないが、たとえば後述
の実施例に示す素材の場合、結晶性の異なる2つ以上の
ポリマーブロックを共有結合で結合させることによって
最小単位の柔軟な構成単位を形成し、これらをより強い
結合でつなぐことにより星型コポリマーが得られ、こう
してエラスティックな構成単位が結合したポリマーを3
次元的な形に成形すると、引っ張りや圧縮によってもと
に戻る性質を有する材料および成型物が作製されるもの
と考えることができる。
The reason why a stretchable material can be obtained by the present invention has not been completely clarified. For example, in the case of the materials shown in Examples below, two or more polymer blocks having different crystallinity are covalently bonded. By forming a flexible constitutional unit, which is the minimum unit, by connecting with a stronger bond, a star-shaped copolymer can be obtained.
It can be considered that when the material is molded into a three-dimensional shape, a material and a molded product having the property of returning to their original state by pulling or compressing are produced.

【0015】このような生分解性材料からなる本発明の
素材およびそれから作成される物品は、板状、ブロック
状、スポンジ状、糸状などのさまざまな形状を有するこ
とができ、硬いものから柔らかい造形物、さらには元に
戻る性質であるエラスティックな性質を有する生分解性
の造形物とすることができる。たとえば、医療材料およ
び医療製品、電化製品、家具に代表される一般的な造形
物、プラスチックボトル、惣菜用容器に代表される一般
的な飲食業界に関わる容器、また伸縮性の紐、パッキ
ン、クッションなどの一般家庭品として有用である。ま
た、このような物品は、人工臓器、特に人工血管、治療
器具を含む医療分野などに有用である。
The material of the present invention made of such a biodegradable material and the article made from the material can have various shapes such as a plate shape, a block shape, a sponge shape, and a thread shape, and from a hard material to a soft molding. The object can be a biodegradable shaped article having an elastic property of returning to the original shape. For example, medical materials and medical products, electrical appliances, general shaped objects represented by furniture, plastic bottles, containers related to the general food and beverage industry represented by prepared food containers, elastic strings, packings, and cushions. It is useful as a general household item such as. In addition, such an article is useful for artificial organs, particularly artificial blood vessels, medical fields including therapeutic instruments, and the like.

【0016】[0016]

【実施例】以下、実施例により、本発明を例示して詳細
に説明するが、本発明はいかなる意味でもこれらの実施
例に限定されるものではない。
EXAMPLES The present invention will now be described in detail by way of examples, but the present invention is not limited to these examples in any sense.

【0017】実施例1 結晶性の異なるL−乳酸とε−カプロラクトンの共重合
体(分子量10,000。L−乳酸とε−カプロラクト
ンの仕込モル比50:50、触媒:2−エチルヘキサン
酸スズ、90℃で重合)をペンタエリトリトールと40
℃で反応させてペンタエリトリトールの先端に共有結合
させた。ポリ(L−乳酸)ブロックとポリ(ε−カプロ
ラクトン)ブロックからなる共重合体鎖が4個結合した
星型のポリマーが得られた。L−乳酸/カプロラクトン
共重合体鎖の先端に光重合性のアクリレート基をつけ、
光重合性のポリマーを完成させた。その分子量はゲルク
ロマトグラフィーによると10,000であった。
Example 1 Copolymer of L-lactic acid and ε-caprolactone having different crystallinities (molecular weight: 10,000; molar ratio of L-lactic acid and ε-caprolactone charged: 50:50, catalyst: tin 2-ethylhexanoate) Polymerized at 90 ° C) with pentaerythritol 40
The reaction was carried out at 0 ° C to covalently bond to the tip of pentaerythritol. A star-shaped polymer having four copolymer chains composed of a poly (L-lactic acid) block and a poly (ε-caprolactone) block was obtained. Attaching a photopolymerizable acrylate group to the tip of the L-lactic acid / caprolactone copolymer chain,
A photopolymerizable polymer was completed. Its molecular weight was 10,000 according to gel chromatography.

【0018】その後、板状の鋳型に液体状の材料を入
れ、UV光を10分間照射することによって最終的に板
状の材料を成形した(50mm×50mm×1.0m
m)。この板状の材料を短冊状に切断し(1.0mm×
20mm×1.0mm)、20%に相当する引っ張りを
加えた後に、テンションを除いたところほぼ完全に元の
長さに戻ることがわかった。
Then, the liquid material was put into a plate-shaped mold, and UV light was irradiated for 10 minutes to finally form the plate-shaped material (50 mm × 50 mm × 1.0 m).
m). This plate-shaped material is cut into strips (1.0 mm x
(20 mm × 1.0 mm), after adding tension corresponding to 20%, it was found that when the tension was removed, the length returned almost completely to the original length.

【0019】実施例2 実施例1と同様にして液状のポリマーを得た。その後、
炭酸水素アンモニウムを完全に均一に混合した後に、筒
状の鋳型に液体状の材料を入れ、UV光を10分間照射
することによって最終的に筒状の人工血管を成形した。
その後、90℃のお湯で10分間に亘り炭酸水素アンモ
ニウムを溶出させた。乾燥後、SEM写真によって、こ
の人工血管はエラスティックであるポーラスな3次元担
体であることが確認された。
Example 2 A liquid polymer was obtained in the same manner as in Example 1. afterwards,
After mixing ammonium hydrogen carbonate completely and uniformly, a liquid material was put into a cylindrical mold, and UV light was irradiated for 10 minutes to finally form a cylindrical artificial blood vessel.
Then, ammonium hydrogencarbonate was eluted with hot water at 90 ° C. for 10 minutes. After drying, the SEM photograph confirmed that the artificial blood vessel was an elastic porous three-dimensional carrier.

【0020】[0020]

【発明の効果】以上、説明したように、本発明によっ
て、引っ張りまたは圧縮に対してもとに戻る性質を有す
る生分解性材料が得られる。この材料を用いると、ゴム
のような性質を有する一般的な造形物、スポンジ状の生
分解性成型物、生分解性の糸、さらには生体内埋入型の
人工臓器、たとえば人工血管の開発が可能となる。
As described above, according to the present invention, a biodegradable material having a property of returning to a tensile or compressive state can be obtained. Using this material, the development of general shaped objects with rubber-like properties, sponge-like biodegradable moldings, biodegradable threads, and even implantable artificial organs such as artificial blood vessels. Is possible.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 宮田 房江 東京都文京区本郷7丁目3号1番地 東京 大学大学院工学系研究科化学システム工学 専攻内 (72)発明者 牛田 多加志 茨城県つくば市東1−1−1 独立行政法 人産業技術総合研究所 つくばセンター内 (72)発明者 立石 哲也 茨城県つくば市東1−1−1 独立行政法 人産業技術総合研究所 つくばセンター内 Fターム(参考) 4C081 AB13 CA171 CC02 CC08 4C097 AA15 BB01 DD01 EE08 FF02 4J027 AB10 AB19 AB28 AJ01 AJ06 CB10 CC05 CD01 CD07 4J029 AA02 AB01 AB02 AB07 AC03 AD01 AE06 EA03 EA05 EG09 FC08 GA42 GA43 HA01 HB01 HE02 JB171 JF371    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Fusae Miyata             7-3 Hongo 7-3 Hongo, Bunkyo-ku, Tokyo             Graduate School of Engineering, Chemical System Engineering             Within the major (72) Inventor Takashi Ushida             1-1-1 Higashi 1-1-1 Tsukuba City, Ibaraki Prefecture             National Institute of Advanced Industrial Science and Technology Tsukuba Center (72) Inventor Tetsuya Tateishi             1-1-1 Higashi 1-1-1 Tsukuba City, Ibaraki Prefecture             National Institute of Advanced Industrial Science and Technology Tsukuba Center F-term (reference) 4C081 AB13 CA171 CC02 CC08                 4C097 AA15 BB01 DD01 EE08 FF02                 4J027 AB10 AB19 AB28 AJ01 AJ06                       CB10 CC05 CD01 CD07                 4J029 AA02 AB01 AB02 AB07 AC03                       AD01 AE06 EA03 EA05 EG09                       FC08 GA42 GA43 HA01 HB01                       HE02 JB171 JF371

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 ポリエステル系生分解性材料からなる伸
縮性の素材。
1. A stretchable material made of a polyester biodegradable material.
【請求項2】 生分解性材料がカプロラクトンと乳酸お
よび/またはグリコール酸との共重合体からなる、請求
項1記載の素材。
2. The material according to claim 1, wherein the biodegradable material is a copolymer of caprolactone and lactic acid and / or glycolic acid.
【請求項3】 前記共重合体が星型ブロックコポリマー
である、請求項2記載の素材。
3. The material according to claim 2, wherein the copolymer is a star block copolymer.
【請求項4】 生分解性材料がアクリレート基および/
またはメタクリレート基を含む、請求項1〜3のいずれ
かに記載の素材。
4. The biodegradable material is an acrylate group and / or
Alternatively, the material according to claim 1, which contains a methacrylate group.
【請求項5】 前記共重合体の分子量が500〜10
0,000である、請求項2〜4のいずれかに記載の素
材。
5. The copolymer has a molecular weight of 500 to 10
The material according to any one of claims 2 to 4, which is 50,000.
【請求項6】 アクリレート末端基を有する分子量1
0,000のカプロラクトン/乳酸星型ブロックコポリ
マーからなる伸縮性を有する生分解性の素材。
6. A molecular weight 1 having an acrylate end group.
A stretchable, biodegradable material consisting of 10,000 caprolactone / lactic acid star block copolymers.
【請求項7】 請求項1〜6のいずれかに記載の素材を
硬化させてなる物品。
7. An article obtained by curing the material according to claim 1.
【請求項8】 人工血管である、請求項7記載の物品。8. The article according to claim 7, which is an artificial blood vessel. 【請求項9】 ポーラスな構造を有する、請求項8記載
の人工血管。
9. The artificial blood vessel according to claim 8, which has a porous structure.
【請求項10】 アクリレート末端基を有する分子量1
0,000のカプロラクトン/乳酸星型ブロックコポリ
マーを硬化させてなる、ポーラスな人工血管。
10. Molecular weight 1 having acrylate end groups
A porous artificial blood vessel made by curing 50,000 caprolactone / lactic acid star block copolymers.
JP2002049776A 2002-02-26 2002-02-26 Biodegradable material with stretchable (elastic) properties and artificial blood vessels formed from this material Expired - Lifetime JP3680132B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002049776A JP3680132B2 (en) 2002-02-26 2002-02-26 Biodegradable material with stretchable (elastic) properties and artificial blood vessels formed from this material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002049776A JP3680132B2 (en) 2002-02-26 2002-02-26 Biodegradable material with stretchable (elastic) properties and artificial blood vessels formed from this material

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005090848A Division JP2005211681A (en) 2005-03-28 2005-03-28 Biodegradable material having expandable (elastic) property and artificial blood vessel formed of this material

Publications (2)

Publication Number Publication Date
JP2003246851A true JP2003246851A (en) 2003-09-05
JP3680132B2 JP3680132B2 (en) 2005-08-10

Family

ID=28662199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002049776A Expired - Lifetime JP3680132B2 (en) 2002-02-26 2002-02-26 Biodegradable material with stretchable (elastic) properties and artificial blood vessels formed from this material

Country Status (1)

Country Link
JP (1) JP3680132B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007520575A (en) * 2003-06-25 2007-07-26 ポステック・ファウンデーション Novel polymer and method for producing nanoporous low dielectric polymer composite using the same
US20120142884A1 (en) * 2009-05-20 2012-06-07 Arsenal Medical Bioresorbable Thermoset Polyester/Urethane Elastomers
US10568994B2 (en) 2009-05-20 2020-02-25 480 Biomedical Inc. Drug-eluting medical implants
JP2021522362A (en) * 2018-04-19 2021-08-30 ポリ−メッド インコーポレイテッド Macromers and compositions for the photocuring process

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020230807A1 (en) 2019-05-13 2020-11-19 三菱瓦斯化学株式会社 Aliphatic polyester copolymer

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007520575A (en) * 2003-06-25 2007-07-26 ポステック・ファウンデーション Novel polymer and method for producing nanoporous low dielectric polymer composite using the same
US20120142884A1 (en) * 2009-05-20 2012-06-07 Arsenal Medical Bioresorbable Thermoset Polyester/Urethane Elastomers
US9309347B2 (en) * 2009-05-20 2016-04-12 Biomedical, Inc. Bioresorbable thermoset polyester/urethane elastomers
US10568994B2 (en) 2009-05-20 2020-02-25 480 Biomedical Inc. Drug-eluting medical implants
US10617796B2 (en) 2009-05-20 2020-04-14 Lyra Therapeutics, Inc. Drug eluting medical implant
JP2021522362A (en) * 2018-04-19 2021-08-30 ポリ−メッド インコーポレイテッド Macromers and compositions for the photocuring process
US11639416B2 (en) 2018-04-19 2023-05-02 Poly-Med, Inc. Macromers and compositions for photocuring processes
JP7438129B2 (en) 2018-04-19 2024-02-26 ポリ-メッド インコーポレイテッド Macromers and compositions for photocuring processes

Also Published As

Publication number Publication date
JP3680132B2 (en) 2005-08-10

Similar Documents

Publication Publication Date Title
Zhao et al. Soft materials by design: unconventional polymer networks give extreme properties
CA2410637C (en) Shape memory polymers seeded with dissociated cells for tissue engineering
CA2419673C (en) Polymeric networks
Zuber et al. Collagen based polyurethanes—A review of recent advances and perspective
Ebewele Polymer science and technology
JP3732404B2 (en)   Shape memory polymer composition, method of forming a shape memory product, and method of forming a composition that stores a shape
DE68928938D1 (en) Process for the softening of lactide polymers
EP0960146B1 (en) Polyesteramides from cyclic monomers and surgical articles made thereform
ATE229989T1 (en) MOLDED BODY MADE OF POLYURETHANE MATERIAL, AND PRODUCTION AND USE OF THE SAME
JP2003246851A (en) Biodegradable material having elastic property and artificial blood vessel formed therefrom
Parisi et al. Polymer chemistry and synthetic polymers
Zhao et al. Mussel-inspired, injectable polyurethane tissue adhesives demonstrate in situ gel formation under mild conditions
Tan et al. Covalently crosslinked chitosan-poly (ethylene glycol) hybrid hydrogels to deliver insulin for adipose-derived stem cells encapsulation
Petisco-Ferrero et al. The relevance of molecular weight in the design of amorphous biodegradable polymers with optimized shape memory effect
JPH0572405B2 (en)
JP2005211681A (en) Biodegradable material having expandable (elastic) property and artificial blood vessel formed of this material
Zhang et al. Degradation behavior of porous poly ( alpha-hydroxy acids)/hydroxyapatite composite scaffolds
JPH05279416A (en) Hydrophilic biodegradable polymer
Byrom Miscellaneous biomaterials
JP2003313214A (en) Process for manufacturing crosslinked biodegradable material
JPS6028433A (en) Shape memory molded article and its use
CN100513456C (en) Alternative polyesteramide capable of biological degradating and its preparing method
Strandman et al. Biodegradable shape-memory polymers for biomedical applications
NL9101082A (en) THERMOPLASTIC MATERIAL FOR ORTHOPEDIC AND SURGICAL APPLICATIONS.
Liu Structure-Property-Morphology Relationships of Crosslinked Acrylates: from Supramolecular Polymers to Photo-Reactive Networks

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050419

R150 Certificate of patent or registration of utility model

Ref document number: 3680132

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term