JP2003246792A - Anti-influenza-viral compound - Google Patents

Anti-influenza-viral compound

Info

Publication number
JP2003246792A
JP2003246792A JP2002046170A JP2002046170A JP2003246792A JP 2003246792 A JP2003246792 A JP 2003246792A JP 2002046170 A JP2002046170 A JP 2002046170A JP 2002046170 A JP2002046170 A JP 2002046170A JP 2003246792 A JP2003246792 A JP 2003246792A
Authority
JP
Japan
Prior art keywords
group
independently
influenza
acetyl
virus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002046170A
Other languages
Japanese (ja)
Inventor
Haruki Yamada
陽城 山田
Takayuki Nagai
隆之 永井
Kimio Furuhata
公夫 古畑
Katsumi Ajisaka
勝美 鰺坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kitasato Institute
Meiji Dairies Corp
Original Assignee
Meiji Milk Products Co Ltd
Kitasato Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meiji Milk Products Co Ltd, Kitasato Institute filed Critical Meiji Milk Products Co Ltd
Priority to JP2002046170A priority Critical patent/JP2003246792A/en
Publication of JP2003246792A publication Critical patent/JP2003246792A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Saccharide Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compound which is formed by bonding a sialic acid derivative or a KDN derivative to a flavone derivative, decreases the amount of the influenza virus, improves the viability of cells infected by the influenza virus, and is useful as a medicine for preventing or curing influenza and also as a food for preventing or curing influenza. <P>SOLUTION: This compound is represented by formula (1) (wherein R<SP>1</SP>and R<SP>7</SP>are each independently H, Na or K; R<SP>2</SP>, R<SP>3</SP>, R<SP>4</SP>, R<SP>5</SP>, R<SP>8</SP>, R<SP>9</SP>, R<SP>10</SP>, and R<SP>11</SP>are each independently H, a sulfuric acid group or an acetyl group; R<SP>6</SP>and R<SP>12</SP>are each independently H or an acetyl, methyl, ethyl, n-propyl, n-butyl, n-octyl, benzyl or allyl group; X and Y are each independently an acetoamino, glycolylamino, hydroxyl or acetyloxy group; and A and B are each independently O or S). <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明が属する技術分野】本発明は、インフルエンザ等
のウイルス疾患の予防・治療に有用な抗ウイルス化合物
に関する。
TECHNICAL FIELD The present invention relates to an antiviral compound useful for the prevention / treatment of viral diseases such as influenza.

【0002】[0002]

【従来の技術】インフルエンザは、基礎疾患を有する患
者や高齢者にとって、生命に係わる危険な感染症であ
る。実際、インフルエンザの流行した年には、超過死亡
率の上昇が認められる。また、高齢者においては、肺
炎、乳幼児においては、脳炎を併発し、死亡又は重症化
した例が数多く報告されている(松本慶蔵、日本臨牀、
55(10)、2536-2541(1997))。さ
らに、近年、インフルエンザA型ウイルスの新しい亜型
の出現が危具されており、我が国において流行した場
合、数万〜数十万の死亡者がでることが予測されてい
る。これらのことから、インフルエンザ対策は、社会的
に重要な課題となっている。インフルエンザ対策とし
て、ワクチンの予防接種が最も有効な手段であることに
議論の余地はない(田村慎一、倉田毅、Bio Clinica、
11(9)、665-669(1996))。しかし、
ワクチンの製造及び充分量のワクチンの供給には、ある
程度の時間を要することから、新型ウイルスの流行が差
し迫っている場合には、症状の軽減のために、抗インフ
ルエンザウイルス剤の投与が必要となる。
BACKGROUND OF THE INVENTION Influenza is a life-threatening infectious disease for patients with underlying diseases and the elderly. In fact, there is an increase in excess mortality during the flu season. In addition, there are many cases of pneumonia in the elderly and encephalitis in the infant, with death or severe illness (Keizo Matsumoto, Nihon Rinji,
55 (10), 2536-2541 (1997)). Furthermore, in recent years, the emergence of a new subtype of influenza A virus is at stake, and it is predicted that tens of thousands to hundreds of thousands of deaths will occur if an outbreak occurs in Japan. For these reasons, measures against influenza have become an important social issue. It is arguable that vaccination is the most effective measure against influenza (Shinichi Tamura, Tsuyoshi Kurata, Bio Clinica,
11 (9), 665-669 (1996)). But,
Since it takes a certain amount of time to manufacture a vaccine and supply a sufficient amount of it, it is necessary to administer an anti-influenza virus agent to alleviate the symptoms when a new virus outbreak is imminent. .

【0003】現在、日本で市販されている抗インフルエ
ンザウイルス薬にはアマンタジンがあり、まもなくザナ
ミビル、オセルタミビルが発売される予定である。アマ
ンタジンはすでにA型インフルエンザウイルス感染症に
保険適用が認められている。アマンタジンはインフルエ
ンザウイルスのM2蛋白に作用する。M2蛋白はA型インフ
ルエンザウイルスの膜上に存在するイオンチャンネル
で、ウイルス粒子内を酸性化することで、RNA遺伝子や
核蛋白質、RNAポリメラーゼの複合体であるリボ核蛋白
質複合体(RNP)の細胞質への放出に大きな役割を果た
す。アマンタジンはこのM2蛋白の機能を阻害し、RNP放
出を抑制して、ウイルスの増殖を防ぐ。
At present, there is amantadine as an anti-influenza virus drug marketed in Japan, and zanamivir and oseltamivir will be released soon. Amantadine is already approved for insurance against influenza A virus infections. Amantadine acts on the M2 protein of influenza virus. M2 protein is an ion channel existing on the membrane of influenza A virus, and by acidifying the inside of virus particles, it is the cytoplasm of ribonucleoprotein complex (RNP), which is a complex of RNA gene, nucleoprotein, and RNA polymerase. Plays a major role in the release. Amantadine inhibits the function of this M2 protein, suppresses RNP release, and prevents virus growth.

【0004】ザナミビル、オセルタミビルはA、B両型の
インフルエンザウイルスに有効である。これらの薬剤の
作用磯序はアマンタジンとは異なり、シアリダーゼ(ノ
イラミニダーゼともいう)阻害作用により効果を発揮す
る。シアリダーゼはA、B型ウイルスの表面に存在する糖
蛋白で、増殖したウイルスが宿主細胞から遊離するとき
に、ヘマグルチニンーレセプター(レセプター中のシア
ル酸)の結合を切り離して、出芽を促す作用がある。ザ
ナミビル、オセルタミビルはこの活性部位に結合してそ
の働きを抑え、ウイルスの遊離を阻止する作用がある。
感染細胞につなぎ止められたウイルスは、他のウイルス
と相互に結合するため、それ以上の感染の拡大をくい止
め、やがて終息に向かわせることになる。
Zanamivir and oseltamivir are effective against both A and B influenza viruses. The action mechanism of these drugs is different from that of amantadine, and exerts its effect by the sialidase (also called neuraminidase) inhibitory action. Sialidase is a glycoprotein present on the surface of viruses A and B, and acts to promote budding by releasing the hemagglutinin-receptor (sialic acid in the receptor) bond when the propagated virus is released from the host cell. . Zanamivir and oseltamivir bind to this active site and suppress its action, thus blocking the release of virus.
The virus that is sequestered in the infected cells binds to other viruses, thus stopping the spread of further infection and eventually ending it.

【0005】ザナミビルはコンピュータグラフィックス
で理論的に開発された薬剤の1つとしても有名である。
基礎研究の進歩により、シアリダーゼの構造や活性部位
の立体構造が明らかにされたために登場した薬である。
オセルタミビルもシアル酸に結合するシアリダーゼの活
性部位により強く結合することでシアリダーゼの機能を
阻害する作用がある。ザナミビルは経口投与では生体利
用率が低いため粉末剤を吸入器などで鼻から吸入する必
要がある。その点、オセルタミビルは経口投与可能で、
体内に吸収されたのち活性体に変換するプロドラッグで
ある。
Zanamivir is also famous as one of the drugs theoretically developed in computer graphics.
It is a drug that emerged because the structure of sialidase and the three-dimensional structure of the active site were clarified by the progress of basic research.
Oseltamivir also acts to inhibit the function of sialidase by binding more strongly to the active site of sialidase that binds to sialic acid. Zanamivir has a low bioavailability when administered orally, so it is necessary to inhale the powder formulation through the nose with an inhaler or the like. In that respect, oseltamivir can be administered orally,
It is a prodrug that is absorbed into the body and then converted into the active form.

【0006】これらの抗インフルエンザ薬はいずれも発
症後48時間以内に投与する必要がある。これを過ぎると
自然経過と変わらず、効果はほとんど認められない等、
臨床での有効性が充分とはいえなかった。また、シアリ
ダーゼ阻害剤には耐性ウイルスの出現の可能性もあり、
新規の抗インフルエンザ薬が求められている。
[0006] All of these anti-influenza drugs must be administered within 48 hours after the onset. After this, the effect is almost the same as the natural process and almost no effect is observed.
The clinical efficacy was not sufficient. In addition, there is a possibility that resistant viruses will appear in sialidase inhibitors,
There is a need for new anti-influenza drugs.

【0007】本発明者らも、硫酸化KDN誘導体がin vivo
で抗インフルエンザウイルス活性を示すことを見い出し
ている。さらに、フラボン誘導体の1種であるF36(5,
7, 4’-trihydroxy-8-methoxyflavone)がin vitroおよ
in vivoで抗インフルエンザウイルス活性を有するこ
とを報告している(T. Nagai, Y. Miyaichi, T. Tomimo
ri, Y. Suzuki, and H. Yamada, Chem. Pharm. Bull.,
38, 1329-1332(1990),T. Nagai, Y. Miyaichi, T. Tomi
mori, Y. Suzuki, and H. Yamada, AntiviralRes., 19,
207-217(1992))が、さらに強力な抗インフルエンザウ
イルス化合物の開発が望まれていた。
The inventors of the present invention also confirmed that a sulfated KDN derivative was used in vivo.
Have been found to exhibit anti-influenza virus activity. Furthermore, one of the flavone derivatives, F36 (5,
7, 4'-trihydroxy-8-methoxyflavone) has been reported to have anti-influenza virus activity in vitro and in vivo (T. Nagai, Y. Miyaichi, T. Tomimo).
ri, Y. Suzuki, and H. Yamada, Chem. Pharm. Bull.,
38, 1329-1332 (1990), T. Nagai, Y. Miyaichi, T. Tomi
mori, Y. Suzuki, and H. Yamada, AntiviralRes., 19,
207-217 (1992)), the development of more potent anti-influenza virus compounds has been desired.

【0008】[0008]

【発明が解決しようとする課題】したがって、本発明
は、ウイルス疾患、とりわけインフルエンザ等のウイル
ス疾患の予防・治療に有用な、新規な抗ウイルス化合物
を提供することを課題とする。
Therefore, it is an object of the present invention to provide a novel antiviral compound useful for the prevention / treatment of viral diseases, particularly viral diseases such as influenza.

【0009】[0009]

【課題を解決するための手段】本発明者らは、抗インフ
ルエンザウイルス化合物の開発をすべく鋭意検討を行
い、様々なシアル酸誘導体あるいはシアル酸の一種であ
るKDN(2-keto-3-deoxy-D-glycero-D-galacto-2-nonulo
sonic acid)誘導体とフラボン誘導体との新規な結合体
が抗インフルエンザウイルス活性を示すことを見い出
し、本発明を完成させた。
[Means for Solving the Problems] The inventors of the present invention conducted extensive studies to develop anti-influenza virus compounds, and conducted various sialic acid derivatives or KDN (2-keto-3-deoxy) which is one of sialic acids. -D-glycero-D-galacto-2-nonulo
The present invention was completed by discovering that a novel conjugate of a sonic acid) derivative and a flavone derivative exhibits anti-influenza virus activity.

【0010】[0010]

【発明の実施の形態】すなわち、本発明は、(1) 次
の一般式(I)
BEST MODE FOR CARRYING OUT THE INVENTION That is, the present invention includes (1) the following general formula (I)

【化2】 (式中、R1,R7はそれぞれ独立して水素原子、ナトリウ
ム、カリウム、R2,R3,R4,R5,R8,R9,R10,R11はそれぞれ
独立して水素原子、硫酸基、アセチル基、R6,R12はそれ
ぞれ独立して水素原子、アセチル基、メチル基、エチル
基、n-プロピル基、n-ブチル基、n-オクチル基、ベンジ
ル基、アリル基、X,Yはそれぞれ独立してアセトアミノ
基、グリコリルアミノ基、水酸基、アセチルオキシ基、
A,Bはそれぞれ独立して酸素原子、硫黄原子を示す)で
表される化合物、(2) (1)の化合物を有効成分と
する食品または医薬、(3) (1)の化合物を有効成
分とするインフルエンザウイルス予防又は治療用食品又
は医薬、からなる。
[Chemical 2] (In the formula, R 1 and R 7 are each independently a hydrogen atom, sodium, potassium, R 2 , R 3 , R 4 , R 5 , R 8 , R 9 , R 10 and R 11 are independently hydrogen. Atom, sulfate group, acetyl group, R 6 and R 12 are each independently a hydrogen atom, acetyl group, methyl group, ethyl group, n-propyl group, n-butyl group, n-octyl group, benzyl group, allyl group , X, Y are each independently an acetamino group, a glycolylamino group, a hydroxyl group, an acetyloxy group,
A and B each independently represent an oxygen atom or a sulfur atom), a food or drug containing the compound of (2) (1) as an active ingredient, and a compound of (3) (1) as an active ingredient And a food or medicine for preventing or treating influenza virus.

【0011】一般式(I)で表される化合物は、後記す
る実施例からも明らかなように、優れた抗インフルエン
ザウイルス作用を有するので、この作用を利用した食
品、特定保健用食品、健康飲料、健康食品、栄養食品そ
の他各種タイプの食品(なお、本発明において、食品に
は飲料も包含される)として用いることができるほか、
抗インフルエンザウイルス剤等医薬品としても用いるこ
とができる。食品として使用する場合には、本有効成分
である化合物をそのまま使用したり、他の食品ないし食
品成分と併用したりして適宜常法に従って使用できる。
本有効成分を用いる本発明に係る食品は、固体状(粉
末、顆粒状その他)、ペースト状、液状ないし懸濁状の
いずれでも良いが、甘味料、酸味料、ビタミン剤その他
ドリンク剤製造に常用される各種成分を用いて健康ドリ
ンクに製造化することも可能である。
Since the compound represented by the general formula (I) has an excellent anti-influenza virus action, as will be apparent from the examples described below, foods, foods for specified health uses, and health drinks utilizing this action. , Healthy foods, nutritional foods, and other various types of foods (in the present invention, foods include beverages),
It can also be used as a medicine such as an anti-influenza virus agent. When used as a food, the compound of the present active ingredient may be used as it is, or may be used in combination with other foods or food ingredients in accordance with an ordinary method.
The food according to the present invention using the present active ingredient may be in a solid form (powder, granular form or the like), a paste form, a liquid form or a suspension form, but is commonly used in the production of sweeteners, acidulants, vitamins and other drinks. It is also possible to manufacture into a health drink using the various ingredients mentioned above.

【0012】医薬品として使用する場合、本発明の化合
物は、そのまま、或いは慣用の製剤担体と共に、動物及
び人に対し、経口、非経口いずれの方法によっても投与
することができる。また、本発明の化合物は、各種の剤
型、例えば散剤、顆粒剤、錠剤、糖衣錠、カプセル剤、
アンプル剤等の経口投与剤、皮下、筋肉若しくは静脈注
射剤、坐剤等とすることができる。これらの製剤は、化
合物単独又は該誘導体賦形剤、増量剤、結合剤、湿潤化
剤、崩壊剤、界面活性剤、滑沢剤、分散剤、緩衝剤、保
存剤、矯味剤、香料、被覆剤等と適宜組み合わせて処方
することにより製造することができる。このようにして
えられた本発明の抗インフルエンザウイルス剤は、患者
の年令、体重、症状、投与経路によって異なるが、一般
的に成人において、化合物として、0.6〜300mg/日、好
ましくは5〜200mg/日であり、これを通常1日3〜4回
に分けて投与するのが好適である。
When used as a pharmaceutical, the compound of the present invention can be administered to animals and humans as it is or together with a conventional pharmaceutical carrier by either oral or parenteral administration. Further, the compound of the present invention can be used in various dosage forms such as powders, granules, tablets, dragees, capsules,
It may be an oral administration agent such as ampoule, subcutaneous, intramuscular or intravenous injection, suppository and the like. These formulations include compounds alone or their derivative excipients, fillers, binders, wetting agents, disintegrants, surfactants, lubricants, dispersants, buffers, preservatives, flavoring agents, flavors, coatings. It can be produced by appropriately combining with agents and the like and prescribing. The anti-influenza virus agent of the present invention thus obtained varies depending on the patient's age, body weight, symptom and administration route, but generally, in adults, the compound is 0.6 to 300 mg / day, preferably 5 to The dose is 200 mg / day, and it is usually preferable to administer this in 3 to 4 divided doses per day.

【0013】[0013]

【実施例】以下、本発明を実施例によって具体的に説明
するが、本発明は、これらの実施例に限定されるもので
はない。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

【0014】[0014]

【実施例】以下、本発明を実施例を挙げてさらに詳細に
説明するが、本発明はこれらの実施例に何ら限定される
ものでない。
The present invention will be described in more detail below with reference to examples, but the present invention is not limited to these examples.

【0015】[実施例1]4', 5, 7-Trihydroxy-8-meth
oxyflavone(2)の合成 飯沼らの方法(Munekazu Iinuma, Toshiyuki Tanaka, Ki
yoshi Iwashima, Yakugaku Zasshi (薬学雑誌), 104
(6), 691-694 (1984))を参考に図1に示す方法で合成し
た。
[Example 1] 4 ', 5, 7-Trihydroxy-8-meth
Synthesis of oxyflavone (2) Method by Iinuma et al. (Munekazu Iinuma, Toshiyuki Tanaka, Ki
yoshi Iwashima, Yakugaku Zasshi (Pharmaceutical magazine), 104
(6), 691-694 (1984)) and synthesized by the method shown in FIG.

【0016】融点(mp)は、Yazawa By-10融点測定装置を
用いて測定し、補正はおこなわなかった。質量スペクト
ル(MS)は、高速原子衝撃法(FAB, マトリックスとしてm-
NBAを用いた)により、JEOL JMS-DX300及びJMS-AX505HA
装置を用いて測定した。赤外線吸収(IR)スペクトルは、
JASCO FT/IR-400Plus装置を用いて、KBr錠剤法で測定し
た。比旋光度([α] D)は、JASCO DIP-370装置を用い20
℃で測定した。核磁気共鳴(NMR)スペクトルは、Varian
VXR-300装置を用い、測定溶媒の内部標準としてTetrame
thylsilane (TMS) 及びSodium 3-(Trimethylsilyl)-1-p
ropanesulfonate (DSS)を用いて測定した。シリカゲル
カラムクロマトグラフィーは、Silica gel 60 (メルク
社製、70-230 mesh)を用いた。
The melting point (mp) was measured using a Yazawa By-10 melting point measuring device and was not corrected. Mass spectrum (MS) is based on fast atom bombardment (FAB, m-
JEOL JMS-DX300 and JMS-AX505HA
It measured using the apparatus. The infrared absorption (IR) spectrum is
It was measured by the KBr tablet method using a JASCO FT / IR-400 Plus device. Specific rotation ([α] D ) was measured using JASCO DIP-370 device.
It was measured at ° C. Nuclear Magnetic Resonance (NMR) spectrum is Varian
Using the VXR-300 device, Tetrame
thylsilane (TMS) and Sodium 3- (Trimethylsilyl) -1-p
It was measured using ropanesulfonate (DSS). Silica gel 60 (manufactured by Merck, 70-230 mesh) was used for silica gel column chromatography.

【0017】[実施例2]Neu5Ac-フラボン誘導体の合
成 Methyl N-acetyl-4,7,8,9-tetra-O-acetyl-2-chloro-2,
3-dideoxy-D-glycero-β-D-galacto-2-nonulopyranosyl
onate(4)と4',5,7-trihydroxy-8-methoxyflavonedi-Na
塩(3)の反応(図2) 5-Hydroxy-4',7-di-(methyl N-acetyl-4,7,8,9-tetra-O
-acetyl-3,5-dideoxyl-D-glycero-α-D-galacto-2-nonu
lopyranosylonate)-8-methoxyflavone(5)と5,7-dihydro
xy-4'-(methyl N-acetyl-4,7,8,9-tetra-O-acetyl-3,5-
dideoxyl-D-glycero-α-D-galacto-2-nonulopyranosylo
nate)-8-methoxyflavone(6)の合成 2 (80 mg, 0.26 mmol)をMeOH (5 ml)に溶かし、これに2
8% NaOMe-MeOH (120 mg)を加えた後、溶媒を留去、減圧
下(0.8 mmHg)で室温、3時間の条件で乾固した。2のNa塩
(3)をN, N-ジメチルホルムアミド(5 ml)に溶かし、これ
にMethyl N-acetyl-4,7,8,9-tetra-O-acetyl-2-chloro-
2,3-dideoxy-D-glycero-β-D-galacto-2-nonulopyranos
ylonate (4, 0.75 g, 1.47 mmol)をアルゴン気流下で加
え、室温で2時間攪拌後、反応液を直接シリカゲルカラ
ムクロマトグラフィー(CHCl3-MeOH, 10:1)を用いてデオ
キシ誘導体を分離した後、再シリカゲルカラムクロマト
グラフィー(AcOEt)を用いて分離精製を行い、5(65 mg,
20%)、6(50 mg, 24%)をそれぞれ粉末として得た。 5: [α] D +18.0° (c = 0.5, CHCl3), Anal. Calcd for C56H66NO30: C, 53.93; H, 5.33; N,
2.25. Found : C, 55.58; H, 5.32; N, 2.20. FAB-MS m/z: 1248 (M++1) IR νmax (cm-1): 3380 , 1750, 1655, 1610, 1545, 15
00.1 H-NMR (CDCl3) δ: Neu5Ac moiety; 2.24 (dd, 1H, J
= 11.5, 13.0 Hz, 3-Hax), 2.74 (dd, 1H, J = 4.5, 1
3.0 Hz, 3-Heq), 4.06 (dt, 1H, J = 10.5, 10.0Hz, 5-
H), 4.18 (dd, 1H, J = 6.0, 12.5 Hz, 9-H), 4.33 (d
d, 1H, J = 2.5, 12.5 Hz, 9'-H), 4.47 (dd, 1H, J =
1.5, 11.0 Hz, 6-H), 5.03 (ddd, 1H, J =4.5, 10.5, 1
1.5 Hz, 4-H), 5.34 (dd, 1H, J = 6.5, 1.5 Hz, 7-H),
5,39 (ddd, 1H, J = 6.5, 6.0, 2.0 Hz, 8-H), 5.56
(d, 1H, J = 10.0 Hz, NH), 1.91 (s, 3H, NAc), 2.02
(s, 3H, OAc), 2.04 (s, 3H, OAc), 2.12 (s, 3H,OAc),
2.16(s, 3H,OAc), 3.66 (s, 3H, CO2Me), Neu5Ac' m
oiety; 2.28 (dd, 1H, J = 12.0, 13.0 Hz, 3-Hax), 2.
73 (dd, 1H, J = 4.5, 13.0 Hz, 3-Heq), 4.12 (ddd,1
H, J = 11.15, 10.5, 10.0 Hz, 5-H), 4.10 (dd, 1H, J
= 6.0, 12.5 Hz, 9-H), 4.26 (dd, 1H, J = 2.0, 12.5
Hz, 9'-H), 4.56 (dd, 1H, J = 1.0, 11.0 Hz, 6-H),
4.96 (ddd, 1H, J = 4.5, 10.5, 12.0 Hz, 4-H), 5.36
(dd, 1H, J = 8.5, 1.0 Hz, 7-H), 5,39 (ddd, 1H, J =
8.5, 6.0, 2.0 Hz, 8-H), 5.45 (d, 1H, J = 10.0 Hz,
NH), 1.90 (s, 3H, NAc), 2.01 (s, 3H, OAc), 2.03
(s, 3H, OAc), 2.11 (s, 3H,OAc), 2.14 (s, 3H,OAc),
3.66 (s, 3H, CO2Me), Flavone moiety; 6.66 (1H, br.
s, 3-H), 6.73 (1H, s, 6-H), 3.93 (3H, s, 8-OMe),
7.18(2H, d, J =9.0 Hz, 2'-H, 6'-H), 7.86 (2H, d,
J =9.0 Hz, 3'-H, 5'-H) 6: [α] D +8.5° (c = 0.45, CHCl3), Anal. Calcd for C36H39NO19: C, 55.89; H, 5.08; N,
1.81. Found : C, 55.91; H, 4.99; N, 1.75. FAB-MS m/z: 774 (M++1) IR νmax (cm-1): 3390 , 1750, 1655, 1605, 1580, 15
10.1 H-NMR (CDCl3) δ: Neu5Ac moiety; 2.26 (dd, 1H, J
= 11.5, 13.0 Hz, 3-Hax), 2.76 (dd, 1H, J = 4.5, 1
3.0 Hz, 3-Heq), 4.10 (dt, 1H, J = 10.5, 10.0Hz, 5-
H), 4.18 (dd, 1H, J = 6.0, 12.5 Hz, 9-H), 4.40 (d
d, 1H, J = 2.5, 12.5 Hz, 9'-H), 4.48 (dd, 1H, J =
1.0, 10.5 Hz, 6-H), 5.06 (ddd, 1H, J =4.5, 10.5, 1
1.5 Hz, 4-H), 5.38 (dd, 1H, J = 6.5, 1.5 Hz, 7-H),
5,43 (ddd, 1H, J = 6.5, 6.0, 2.5 Hz, 8-H), 5.43
(d, 1H, J = 10.0 Hz, NH), 1.95 (s, 3H, NAc), 2.03
(s, 3H, OAc), 2.07 (s, 3H, OAc), 2.16 (s, 3H,OAc),
2.19(s, 3H,OAc), 3.81 (s, 3H, CO2Me), Flavone moi
ety; 6.52 (1H, s, 3-H), 6.72 (1H, s, 6-H), 3.91 (3
H, s, 8-OMe), 7.23(2H, d, J =9.0 Hz, 2'-H, 6'-H),
6.91(2H, d, J =9.0 Hz, 3'-H, 5'-H), 12.2 (1H, br.
s, 5-OH) 脱保護基反応 5 (35 mg)をMeOH(5 ml)に溶かし、これに28% NaOMe-MeO
H(0.1 ml)を加えて室温で2時間放置した。反応液を留
去、乾固後, 水(1 ml)を加え室温で3時間放置した。反
応液はこのままゲルろ過(Sephadex G-10)を行い、ロ液
を凍結乾燥して5-hydroxy-4',7-di-(sodium N-acetyl-
3,5-dideoxyl-D-glycero-α-D-galacto-2-nonulopyrano
sylonate)-8-methoxyflavone (7, 22 mg, 85%)を淡黄
色の粉末として得た。 7: [α] D +77.3° (c = 0.5, H2O) Anal. Calcd for C38H44N2Na2O22: C, 49.25; H, 4.79;
N, 3.02. Found : C, 50.02; H, 4.99; N, 3.11. IR νmax (cm-1): 3400, 1655, 1610, 1580, 1500.1 H-NMR (CDCl3) δ: Neu5Ac moiety; 1.97 (dd, 1H, J
= 12.5, 12.0 Hz, 3-Hax), 2.87 (dd, 1H, J = 5.0, 1
2.5 Hz, 3-Heq), 3.59 (dd, 1H, J = 9.5, 1.5 Hz, 7-
H), 3.63 (dd, 1H, J = 5.0, 12.5 Hz, 9-H), 3.81 (dd
d, 1H, J = 5.0, 10.0, 12.0 Hz, 4-H), 3.86 (dd, 1H,
J = 3.0, 12.5 Hz, 9'-H), 3.89 (ddd, 1H,J = 9.5,
5.0, 3.0 Hz, 8-H), 3.96 (q, 1H, J = 10.0 Hz, 5-H),
4.10 (dd, 1H, J = 1.5, 10.0 Hz, 6-H), Neu5Ac' moi
ety; 1.97 (dd, 1H, J = 12.5, 12.0Hz, 3-Hax), 2.85
(dd, 1H, J = 5.0, 12.5 Hz, 3-Heq), 3.59 (dd, 1H, J
= 9.5, 1.5 Hz, 7-H), 3.63 (dd, 1H, J = 5.0, 12.5
Hz, 9-H), 3.86 (dd, 1H, J =3.0, 12.5 Hz, 9'-H), 3.
89 (ddd, 1H, J = 9.5, 5.0, 3.0 Hz, 8-H), 3.93 (q,
1H, J = 10.0 Hz, 5-H), 3.77 (ddd, 1H, J = 5.0, 1
0.0, 12.0 Hz, 4-H), 4.04 (dd, 1H, J = 1.5, 10.0 H
z, 6-H), Flavone moiety; 6.77 (1H, br.s, 3-H), 6.
81 (1H, s, 6-H), 3.94 (3H, s, 8-OMe), 7.94 (2H, d,
J = 8.5 Hz, 2'-H, 6'-H), 6.91(2H, d, J = 8.5 Hz,
3'-H, 5'-H), 6(20 mg)の脱保護基反応は上記の5の場合と同様にして
行い5,7-dihydroxy-4'-(sodium N-acetyl-3,5-dideoxyl
-D-glycero-α-D-galacto-2-nonulopyranosylonate)-8-
methoxyflavone(8, 14 mg, 86%)を淡黄色の粉末として
得た。 8: [α] D +52.7° (c = 0.33, H2O), Anal. Calcd for C27H27N2Na2O14: C, 51.03; H, 4.28;
N, 2.20. Found : C,50.93; H, 4.33; N, 2.14. IR νmax (cm-1): 3400, 1650, 1605, 1575, 1500.1 H-NMR (CDCl3) δ: Neu5Ac moiety; 1.99 (dd, 1H, J
= 12.5, 12.0 Hz, 3-Hax), 2.87 (dd, 1H, J = 5.0, 1
2.5 Hz, 3-Heq), 3.59 (dd, 1H, J = 9.5, 1.5 Hz, 7-
H), 3.65 (dd, 1H, J = 5.0, 12.5 Hz, 9-H), 3.81 (dd
d, 1H, J = 5.0, 10.0, 12.0 Hz, 4-H), 3.88 (dd, 1H,
J = 3.0, 12.5 Hz, 9'-H), 3.89 (ddd, 1H,J = 9.5,
5.0, 3.0 Hz, 8-H), 3.95 (q, 1H, J = 10.0 Hz, 5-H),
4.09 (dd, 1H, J = 1.5, 10.0 Hz, 6-H), Flavone moi
ety; 6.52 (1H, s, 3-H), 6.72 (1H,s, 6-H), 3.91 (3
H, s, 8-OMe), 7.23(2H, br.s, 2'-H, 6'-H), 6.91(2
H, br.s, 3'-H, 5'-H),
[Example 2] Synthesis of Neu5Ac-flavone derivative Methyl N-acetyl-4,7,8,9-tetra-O-acetyl-2-chloro-2,
3-dideoxy-D-glycero-β-D-galacto-2-nonulopyranosyl
onate (4) and 4 ', 5,7-trihydroxy-8-methoxyflavonedi-Na
Reaction of salt (3) (Fig. 2) 5-Hydroxy-4 ', 7-di- (methyl N-acetyl-4,7,8,9-tetra-O
-acetyl-3,5-dideoxyl-D-glycero-α-D-galacto-2-nonu
lopyranosylonate) -8-methoxyflavone (5) and 5,7-dihydro
xy-4 '-(methyl N-acetyl-4,7,8,9-tetra-O-acetyl-3,5-
dideoxyl-D-glycero-α-D-galacto-2-nonulopyranosylo
Synthesis of nate) -8-methoxyflavone (6) 2 (80 mg, 0.26 mmol) was dissolved in MeOH (5 ml), and
After 8% NaOMe-MeOH (120 mg) was added, the solvent was evaporated, and the residue was dried under reduced pressure (0.8 mmHg) at room temperature for 3 hours. Na salt of 2
Dissolve (3) in N, N-dimethylformamide (5 ml), and add Methyl N-acetyl-4,7,8,9-tetra-O-acetyl-2-chloro-
2,3-dideoxy-D-glycero-β-D-galacto-2-nonulopyranos
Yylonate (4, 0.75 g, 1.47 mmol) was added under an argon stream and stirred at room temperature for 2 hours, and then the reaction solution was directly subjected to silica gel column chromatography (CHCl 3 -MeOH, 10: 1) to separate the deoxy derivative. After that, it was separated and purified using re-silica gel column chromatography (AcOEt), and 5 (65 mg,
20%) and 6 (50 mg, 24%) were obtained as powders. 5: [α] D + 18.0 ° (c = 0.5, CHCl 3 ), Anal. Calcd for C 56 H 66 NO 30 : C, 53.93; H, 5.33; N,
2.25. Found: C, 55.58; H, 5.32; N, 2.20. FAB-MS m / z: 1248 (M + +1) IR ν max (cm -1 ): 3380, 1750, 1655, 1610, 1545, 15
00. 1 H-NMR (CDCl 3 ) δ: Neu5Ac moiety; 2.24 (dd, 1H, J
= 11.5, 13.0 Hz, 3-Hax), 2.74 (dd, 1H, J = 4.5, 1
3.0 Hz, 3-Heq), 4.06 (dt, 1H, J = 10.5, 10.0Hz, 5-
H), 4.18 (dd, 1H, J = 6.0, 12.5 Hz, 9-H), 4.33 (d
d, 1H, J = 2.5, 12.5 Hz, 9'-H), 4.47 (dd, 1H, J =
1.5, 11.0 Hz, 6-H), 5.03 (ddd, 1H, J = 4.5, 10.5, 1
1.5 Hz, 4-H), 5.34 (dd, 1H, J = 6.5, 1.5 Hz, 7-H),
5,39 (ddd, 1H, J = 6.5, 6.0, 2.0 Hz, 8-H), 5.56
(d, 1H, J = 10.0 Hz, NH), 1.91 (s, 3H, NAc), 2.02
(s, 3H, OAc), 2.04 (s, 3H, OAc), 2.12 (s, 3H, OAc),
2.16 (s, 3H, OAc), 3.66 (s, 3H, CO 2 Me), Neu5Ac 'm
oiety; 2.28 (dd, 1H, J = 12.0, 13.0 Hz, 3-Hax), 2.
73 (dd, 1H, J = 4.5, 13.0 Hz, 3-Heq), 4.12 (ddd, 1
H, J = 11.15, 10.5, 10.0 Hz, 5-H), 4.10 (dd, 1H, J
= 6.0, 12.5 Hz, 9-H), 4.26 (dd, 1H, J = 2.0, 12.5
Hz, 9'-H), 4.56 (dd, 1H, J = 1.0, 11.0 Hz, 6-H),
4.96 (ddd, 1H, J = 4.5, 10.5, 12.0 Hz, 4-H), 5.36
(dd, 1H, J = 8.5, 1.0 Hz, 7-H), 5,39 (ddd, 1H, J =
8.5, 6.0, 2.0 Hz, 8-H), 5.45 (d, 1H, J = 10.0 Hz,
NH), 1.90 (s, 3H, NAc), 2.01 (s, 3H, OAc), 2.03
(s, 3H, OAc), 2.11 (s, 3H, OAc), 2.14 (s, 3H, OAc),
3.66 (s, 3H, CO 2 Me), Flavone moiety; 6.66 (1H, br.
s, 3-H), 6.73 (1H, s, 6-H), 3.93 (3H, s, 8-OMe),
7.18 (2H, d, J = 9.0 Hz, 2'-H, 6'-H), 7.86 (2H, d,
J = 9.0 Hz, 3'-H, 5'-H) 6: [α] D + 8.5 ° (c = 0.45, CHCl 3 ), Anal.Calcd for C 36 H 39 NO 19 : C, 55.89; H, 5.08; N,
1.81. Found: C, 55.91; H, 4.99; N, 1.75. FAB-MS m / z: 774 (M + +1) IR ν max (cm -1 ): 3390, 1750, 1655, 1605, 1580, 15
10. 1 H-NMR (CDCl 3 ) δ: Neu5Ac moiety; 2.26 (dd, 1H, J
= 11.5, 13.0 Hz, 3-Hax), 2.76 (dd, 1H, J = 4.5, 1
3.0 Hz, 3-Heq), 4.10 (dt, 1H, J = 10.5, 10.0Hz, 5-
H), 4.18 (dd, 1H, J = 6.0, 12.5 Hz, 9-H), 4.40 (d
d, 1H, J = 2.5, 12.5 Hz, 9'-H), 4.48 (dd, 1H, J =
1.0, 10.5 Hz, 6-H), 5.06 (ddd, 1H, J = 4.5, 10.5, 1
1.5 Hz, 4-H), 5.38 (dd, 1H, J = 6.5, 1.5 Hz, 7-H),
5,43 (ddd, 1H, J = 6.5, 6.0, 2.5 Hz, 8-H), 5.43
(d, 1H, J = 10.0 Hz, NH), 1.95 (s, 3H, NAc), 2.03
(s, 3H, OAc), 2.07 (s, 3H, OAc), 2.16 (s, 3H, OAc),
2.19 (s, 3H, OAc), 3.81 (s, 3H, CO 2 Me), Flavone moi
ety; 6.52 (1H, s, 3-H), 6.72 (1H, s, 6-H), 3.91 (3
H, s, 8-OMe), 7.23 (2H, d, J = 9.0 Hz, 2'-H, 6'-H),
6.91 (2H, d, J = 9.0 Hz, 3'-H, 5'-H), 12.2 (1H, br.
s, 5-OH) Deprotection group reaction 5 (35 mg) was dissolved in MeOH (5 ml), and 28% NaOMe-MeO was added to it.
H (0.1 ml) was added and the mixture was left at room temperature for 2 hours. The reaction solution was evaporated and dried to dryness, water (1 ml) was added and the mixture was left at room temperature for 3 hours. The reaction solution is subjected to gel filtration (Sephadex G-10) as it is, and the filtrate is lyophilized to give 5-hydroxy-4 ', 7-di- (sodium N-acetyl-
3,5-dideoxyl-D-glycero-α-D-galacto-2-nonulopyrano
Sylonate) -8-methoxyflavone (7, 22 mg, 85%) was obtained as a pale yellow powder. 7: [α] D + 77.3 ° (c = 0.5, H 2 O) Anal. Calcd for C 38 H 44 N 2 Na 2 O 22 : C, 49.25; H, 4.79;
N, 3.02. Found: C, 50.02; H, 4.99; N, 3.11.IR ν max (cm -1 ): 3400, 1655, 1610, 1580, 1500. 1 H-NMR (CDCl 3 ) δ: Neu5Ac moiety; 1.97 (dd, 1H, J
= 12.5, 12.0 Hz, 3-Hax), 2.87 (dd, 1H, J = 5.0, 1
2.5 Hz, 3-Heq), 3.59 (dd, 1H, J = 9.5, 1.5 Hz, 7-
H), 3.63 (dd, 1H, J = 5.0, 12.5 Hz, 9-H), 3.81 (dd
d, 1H, J = 5.0, 10.0, 12.0 Hz, 4-H), 3.86 (dd, 1H,
J = 3.0, 12.5 Hz, 9'-H), 3.89 (ddd, 1H, J = 9.5,
5.0, 3.0 Hz, 8-H), 3.96 (q, 1H, J = 10.0 Hz, 5-H),
4.10 (dd, 1H, J = 1.5, 10.0 Hz, 6-H), Neu5Ac 'moi
ety; 1.97 (dd, 1H, J = 12.5, 12.0Hz, 3-Hax), 2.85
(dd, 1H, J = 5.0, 12.5 Hz, 3-Heq), 3.59 (dd, 1H, J
= 9.5, 1.5 Hz, 7-H), 3.63 (dd, 1H, J = 5.0, 12.5
Hz, 9-H), 3.86 (dd, 1H, J = 3.0, 12.5 Hz, 9'-H), 3.
89 (ddd, 1H, J = 9.5, 5.0, 3.0 Hz, 8-H), 3.93 (q,
1H, J = 10.0 Hz, 5-H), 3.77 (ddd, 1H, J = 5.0, 1
0.0, 12.0 Hz, 4-H), 4.04 (dd, 1H, J = 1.5, 10.0 H
z, 6-H), Flavone moiety; 6.77 (1H, br.s, 3-H), 6.
81 (1H, s, 6-H), 3.94 (3H, s, 8-OMe), 7.94 (2H, d,
J = 8.5 Hz, 2'-H, 6'-H), 6.91 (2H, d, J = 8.5 Hz,
Deprotection reaction of 3'-H, 5'-H), 6 (20 mg) was performed in the same manner as in the case of 5 above, 5,7-dihydroxy-4 '-(sodium N-acetyl-3,5 -dideoxyl
-D-glycero-α-D-galacto-2-nonulopyranosylonate) -8-
Methoxyflavone (8, 14 mg, 86%) was obtained as a pale yellow powder. 8: [α] D + 52.7 ° (c = 0.33, H 2 O), Anal. Calcd for C 27 H 27 N 2 Na 2 O 14 : C, 51.03; H, 4.28;
N, 2.20. Found: C, 50.93; H, 4.33; N, 2.14. IR ν max (cm -1 ): 3400, 1650, 1605, 1575, 1500. 1 H-NMR (CDCl 3 ) δ: Neu5Ac moiety; 1.99 (dd, 1H, J
= 12.5, 12.0 Hz, 3-Hax), 2.87 (dd, 1H, J = 5.0, 1
2.5 Hz, 3-Heq), 3.59 (dd, 1H, J = 9.5, 1.5 Hz, 7-
H), 3.65 (dd, 1H, J = 5.0, 12.5 Hz, 9-H), 3.81 (dd
d, 1H, J = 5.0, 10.0, 12.0 Hz, 4-H), 3.88 (dd, 1H,
J = 3.0, 12.5 Hz, 9'-H), 3.89 (ddd, 1H, J = 9.5,
5.0, 3.0 Hz, 8-H), 3.95 (q, 1H, J = 10.0 Hz, 5-H),
4.09 (dd, 1H, J = 1.5, 10.0 Hz, 6-H), Flavone moi
ety; 6.52 (1H, s, 3-H), 6.72 (1H, s, 6-H), 3.91 (3
H, s, 8-OMe), 7.23 (2H, br.s, 2'-H, 6'-H), 6.91 (2
H, br.s, 3'-H, 5'-H),

【0018】[実施例3]KDN-フラボン誘導体の合成 Methyl 4,5,7,8,9-penta-O-acetyl-2-chloro-2,3-dideo
xy-D-glycero-β-D-galacto-2-nonulopyranosylonate
(9)と4',5,7-trihydroxy-8-methoxyflavone di-Na塩(3)
の反応(図3) 5-Hydroxy-4',7-di-(methyl 4,5,7,8,9-penta-O-acetyl
-3-deoxyl-D-glycero-α-D-galacto-2-nonulopyranosyl
onate)-8-methoxyflavone(10) と 4',5-dihydroxy-7-(m
ethyl 4,5,7,8,9-penta-O-acetyl-3-deoxyl-D-glycero-
α-D-galacto-2-nonulopyranosylonate)-8-methoxyflav
one(11) と 5,7-dihydroxy-4'-(methyl 4,5,7,8,9-pent
a-O-acetyl-3-deoxyl-D-glycero-α-D-galacto-2-nonul
opyranosylonate)-8-methoxyflavone(12)の合成 2 (172 mg, 0.5 mmol)をMeOH (5 ml)に溶かし、これに
28% NaOMe-MeOH (240mg)を加えた後、溶媒を留去、減圧
下(0.8 mmHg)で室温、3時間の条件で乾固した。2のNa塩
(3)をN, N-ジメチルホルムアミド(15 ml)に溶かし、こ
れにMethyl N-acetyl-4,5,7,8,9-penta-O-acetyl-2-chl
oro-2,3-dideoxy-D-glycero-β-D-galacto-2-nonulopyr
anosylonate (9, 0.75 g, 1.5 mmol)をアルゴン気流下
で加え、室温で2時間攪拌後、反応液を直接シリカゲル
カラムクロマトグラフィー(AcOEt-ヘキサン, 1:1)を用
いて分離精製を行い、10(115 mg, 18%)、11(30 mg, 7
%)、12(75 mg, 19%), それにデオキシ誘導体 (methyl
4,5,7,8,9-penta-O-acetyl-2,6-anhydro-3-deoxy-D-gly
cero-D-galacto-non-2-enonate, 301 mg, 41%)粉末とし
て得た。 10: [α] D +19.7° (c = 0.67, CHCl3), Anal. Calcd for C56H64O32: C, 53.85; H, 5.16. Foun
d : C, 53.58; H, 5.32. FAB-MS m/z: 1249 (M++1) IR νmax (cm-1): 3380 , 1755, 1610, 1610, 1500.1 H-NMR (CDCl3) δ: KDN moiety; 2.26 (dd, 1H, J = 1
1.5, 13.0 Hz, 3-Hax),2.74 (dd, 1H, J = 4.5, 13.0 H
z, 3-Heq), 4.21 (dd, 1H, J = 5.5, 12.5 Hz,9-H), 4.
32 (dd, 1H, J = 2.5, 12.5 Hz, 9'-H), 4.94 (t, 1H,
J = 10.0 Hz, 5-H), 4.46 (dd, 1H, J = 1.5, 10.0 Hz,
6-H), 5.04 (ddd, 1H, J = 4.5, 10.0,11.5 Hz, 4-H),
5.37 (dd, 1H, J = 8.0, 1.5 Hz, 7-H), 5,45 (ddd, 1
H, J =8.0, 5.5, 4.5 Hz, 8-H), 2.00 (s, 3H, OAc),
2.04 (s, 3H, OAc), 2.04 (s, 3H, OAc), 2.05 (s, 3H,
OAc), 2.08 (s, 3H,OAc), 2.20 (s, 3H,OAc), 3.67
(s,3H, CO2Me), KDN' moiety; 2.26 (dd, 1H, J = 1
2.0, 13.0 Hz, 3-Hax), 2.83 (dd, 1H, J = 4.5, 13.0
Hz, 3-Heq), 4.16 (dd, 1H, J = 3.5, 12.5 Hz, 9-H),
4.32 (dd, 1H, J = 2.5, 12.5 Hz, 9'-H), 4.63 (dd,
1H, J = 1.0, 10.0 Hz, 6-H),4.90 (t, 1H, J = 10.0 H
z, 5-H), 5.04 (ddd, 1H, J = 4.5, 10.0, 12.0 Hz, 4-
H), 5.39 (dd, 1H, J = 9.0, 1.0 Hz, 7-H), 5,45 (dd
d, 1H, J = 9.0, 3.5, 2.5 Hz, 8-H), 2.03 (s, 3H, O
Ac), 2.04 (s, 3H, OAc), 2.05 (s, 3H,OAc), 2.12 (s,
3H,OAc), 2.17 (s, 3H,OAc), 3.80 (s, 3H, CO2Me), F
lavonemoiety; 3.94 (3H, s, 8-OMe), 6.66 (1H, s, 3-
H), 6.77 (1H, s, 6-H), 7.19(2H, d, J =9.0 Hz, 2'-
H, 6'-H), 7.87 (2H, d, J =9.0 Hz, 3'-H, 5'-H), 1
2.37 (1H, s, 5-OH). 11: [α] D +19.7° (c = 0.36, CHCl3), Anal. Calcd for C36H38O19: C, 55.82; H, 4.94. Foun
d : C, 55.95; H, 4.99. FAB-MS m/z: 775 (M++1) IR νmax (cm-1): 3390 , 1755, 1655, 1605, 1510.1 H-NMR (CDCl3) δ: KDN moiety; 2.26 (dd, 1H, J = 1
1.5, 13.5 Hz, 3-Hax),2.83 (dd, 1H, J = 4.5, 13.5 H
z, 3-Heq), 4.22 (dd, 1H, J = 5.5, 12.5 Hz,9-H), 4.
38 (dd, 1H, J = 2.5, 12.5 Hz, 9'-H), 4.46 (dd, 1H,
J = 1.5, 10.5Hz, 6-H), 4.94 (t, 1H, J = 10.0 Hz,
5-H), 5.05 (ddd, 1H, J = 4.5, 10.5,11.5 Hz, 4-H),
5.39 (dd, 1H, J = 8.0, 1.5 Hz, 7-H), 5,48 (ddd, 1
H, J =8.0, 5.5, 2.5 Hz, 8-H), 2.02 (s, 3H, OAc),
2.05 (s, 3H, OAc), 2.07 (s, 3H, OAc), 2.14 (s, 3H,
OAc), 2.16 (s, 3H,OAc), 3.82 (s, 3H, CO2Me), Flav
one moiety; 3.91 (3H, s, 8-OMe), 6.50 (1H, br.s, 3
-H), 6.73 (1H, s, 6-H),6.76 (2H, d, J =9.0 Hz, 2'
-H, 6'-H), 7.72(2H, d, J =9.0 Hz, 3'-H, 5'-H), 12.
40 (1H, s, 5-OH) 12: [α]D +20.5°(c = 0.3.7, CHCl3), Anal. Calcd
for C36H38O19: C, 55.82; H, 4.94. Found : C, 55.9
7; H, 4.56. FAB-MS m/z: 775 (M++1) IR νmax (cm-1): 3390 , 1755, 1655, 1610, 1510.1 H-NMR (CDCl3) δ: KDN moiety; 2.23(dd, 1H, J = 1
1.5, 13.0 Hz, 3-Hax), 2.81 (dd, 1H, J = 4.5, 13.0
Hz, 3-Heq), 4.22 (dd, 1H, J = 5.0, 12.5 Hz, 9-H),
4.32 (dd, 1H, J = 2.5, 12.5 Hz, 9'-H), 4.48 (dd, 1
H, J = 2.0, 10.0Hz, 6-H), 4.90 (t, 1H, J = 10.0 H
z, 5-H), 5.05 (ddd, 1H, J = 5.0, 10.0,11.5 Hz, 4-
H), 5.37 (dd, 1H, J = 8.0, 2.0 Hz, 7-H), 5,44 (dd
d, 1H, J = 8.0, 5.0, 2.5 Hz, 8-H), 2.00 (s, 3H, OA
c), 2.04 (s, 3H, OAc), 2.12 (s, 3H, OAc), 2.17 (s,
3H, OAc), 2.35 (s, 3H,OAc), 3.81 (s, 3H, CO2Me),
Flavone moiety; 3.91 (3H, s, 8-OMe), 6.67 (1H, s,
3-H), 6.88 (1H, s, 6-H), 7.28 (2H, d, J =9.0 Hz,
2'-H, 6'-H), 7.85 (2H, d, J =9.0 Hz, 3'-H, 5'-H),
12.31 (1H, s, 5-OH) 脱保護基反応 10 (50 mg)をMeOH(5 ml)に溶かし、これに28% NaOMe-Me
OH(0.1 ml)を加えて室温で2時間放置した。反応液を留
去、乾固後, 水(1 ml)を加え室温で3時間放置した。反
応液はこのままゲルろ過(Sephadex G-10)を行い、ロ液
を凍結乾燥して5-Hydroxy-4',7-di-(sodium 3,5-dideox
yl-D-glycero-α-D-galacto-2-nonulopyranosylonate)-
8-methoxyflavone (13, 29 mg, 86%)を淡黄色の粉末と
して得た。 13: [α]D +52.6° (c = 0.35, H2O) Anal. Calcd for C34H38Na2O22: C, 48.35; H, 4.53. F
ound : C, 49.11; H, 4.86. IR νmax (cm-1): 3400, 1655, 1605, 1500.1 H-NMR (CDCl3) δ: KDN moiety; 1.94 (dd, 1H, J = 1
2.5, 12.0 Hz, 3-Hax),2.81 (dd, 1H, J = 5.0, 12.5 H
z, 3-Heq), 3.63 (t, 1H, J = 9.5 Hz, 5-H), 3.99 (d
d, 1H, J = 1.5, 10.0 Hz, 6-H). KDN moiety; 1.97 (d
d, 1H, J = 12.5,12.0 Hz, 3-Hax), 2.78 (dd, 1H, J =
5.0, 12.5 Hz, 3-Heq), 3.64 (t, 1H, J= 9.5 Hz, 5-
H), 4.04 (dd, 1H, J = 1.5, 10.0 Hz, 6-H), Flavon
e moiety;6.70 (1H, br.s, 3-H), 6.80 (1H, s, 6-H),
3.93 (3H, s, 8-OMe), 7.24 (2H,d, J = 8.5 Hz, 2'-
H, 6'-H), 7.90 (2H, d, J = 8.5 Hz, 3'-H, 5'-H). 11 (20 mg)の脱保護基反応は上記の10の場合と同様にし
て行い4',7-dihydroxy-5-(sodium 3-deoxyl-D-glycero-
α-D-galacto-2-nonulopyranosylonate)-8-methoxyflav
one(14, 14 mg, 91%)を淡黄色の粉末として得た。 14: [α]D +57.2° (c = 0.28, H2O), Anal. Calcd for C25H24Na2O14: C, 50.51; H, 4.07. F
ound : C, 49.96; H, 4.68. IR νmax (cm-1): 3400, 1605, 1575, 1500.1 H-NMR (CDCl3) δ: KDN moiety; 1.99 (dd, 1H, J = 1
2.5, 12.0 Hz, 3-Hax),2.87 (dd, 1H, J = 4.5, 12.5 H
z, 3-Heq), 3.67 (t, 1H, J = 9.5 Hz, 5-H), 4.09 (b
r.d, 1H, J = 9.5 Hz, 6-H), Flavone moiety; 6.19 (1
H, s, 3-H), 6.61(1H, s, 6-H), 3.92 (3H, s, 8-OMe),
7.23(2H, d, 2'-H, 6'-H), 6.91(2H, br.s, 3'-H,
5'-H). 12 (15 mg)の脱保護基反応は上記の10の場合と同様にし
て行い5,7-dihydroxy-4'-(sodium 3,5-dideoxyl-D-glyc
ero-α-D-galacto-2-nonulopyranosylonate)-8-methoxy
flavone(15, 10 mg, 86%)を淡黄色の粉末として得た。 15: [α]D +38.37° (c = 0.23, H2O), Anal. Calcd for C25H24Na2O14: C, 50.51; H, 4.07. F
ound : C, 49.88; H, 4.57. IR νmax (cm-1): 3400, 1650, 1605, 1575, 1500.1 H-NMR (CDCl3) δ: KDN moiety; 2.00 (br.t, 1H, J =
12.5 Hz, 3-Hax), 2.82(dd, 1H, J = 5.0, 12.5 Hz, 3
-Heq), 3.66 (t, 1H, J = 9.5 Hz, 5-H), 4.00(dd, 1H,
J = 1.5, 9.5 Hz, 6-H), Flavone moiety; 6.35 (1H,
s, 3-H), 6.68(1H, s, 6-H), 3.90 (3H, s, 8-OMe), 6.
40 (2H, br.s, 2'-H, 6'-H), 7.35 (2H, br.s, 3'-H,
5'-H).
[Example 3] Synthesis of KDN-flavone derivative Methyl 4,5,7,8,9-penta-O-acetyl-2-chloro-2,3-dideo
xy-D-glycero-β-D-galacto-2-nonulopyranosylonate
(9) and 4 ', 5,7-trihydroxy-8-methoxyflavone di-Na salt (3)
Reaction (Fig. 3) 5-Hydroxy-4 ', 7-di- (methyl 4,5,7,8,9-penta-O-acetyl
-3-deoxyl-D-glycero-α-D-galacto-2-nonulopyranosyl
onate) -8-methoxyflavone (10) and 4 ', 5-dihydroxy-7- (m
ethyl 4,5,7,8,9-penta-O-acetyl-3-deoxyl-D-glycero-
α-D-galacto-2-nonulopyranosylonate) -8-methoxyflav
one (11) and 5,7-dihydroxy-4 '-(methyl 4,5,7,8,9-pent
aO-acetyl-3-deoxyl-D-glycero-α-D-galacto-2-nonul
Synthesis of opyranosylonate) -8-methoxyflavone (12) 2 (172 mg, 0.5 mmol) was dissolved in MeOH (5 ml),
After 28% NaOMe-MeOH (240 mg) was added, the solvent was evaporated, and the mixture was dried under reduced pressure (0.8 mmHg) at room temperature for 3 hours. Na salt of 2
Dissolve (3) in N, N-dimethylformamide (15 ml) and add Methyl N-acetyl-4,5,7,8,9-penta-O-acetyl-2-chl.
oro-2,3-dideoxy-D-glycero-β-D-galacto-2-nonulopyr
Anosylonate (9, 0.75 g, 1.5 mmol) was added under an argon stream, and the mixture was stirred at room temperature for 2 hours, and the reaction mixture was directly purified by silica gel column chromatography (AcOEt-hexane, 1: 1). (115 mg, 18%), 11 (30 mg, 7
%), 12 (75 mg, 19%), and deoxy derivatives (methyl
4,5,7,8,9-penta-O-acetyl-2,6-anhydro-3-deoxy-D-gly
cero-D-galacto-non-2-enonate, 301 mg, 41%) was obtained as a powder. 10: [α] D + 19.7 ° (c = 0.67, CHCl 3 ), Anal. Calcd for C 56 H 64 O 32 : C, 53.85; H, 5.16. Foun
d: C, 53.58; H, 5.32. FAB-MS m / z: 1249 (M + +1) IR ν max (cm -1 ): 3380, 1755, 1610, 1610, 1500. 1 H-NMR (CDCl 3 ) δ: KDN moiety; 2.26 (dd, 1H, J = 1
1.5, 13.0 Hz, 3-Hax), 2.74 (dd, 1H, J = 4.5, 13.0 H
z, 3-Heq), 4.21 (dd, 1H, J = 5.5, 12.5 Hz, 9-H), 4.
32 (dd, 1H, J = 2.5, 12.5 Hz, 9'-H), 4.94 (t, 1H,
J = 10.0 Hz, 5-H), 4.46 (dd, 1H, J = 1.5, 10.0 Hz,
6-H), 5.04 (ddd, 1H, J = 4.5, 10.0,11.5 Hz, 4-H),
5.37 (dd, 1H, J = 8.0, 1.5 Hz, 7-H), 5,45 (ddd, 1
H, J = 8.0, 5.5, 4.5 Hz, 8-H), 2.00 (s, 3H, OAc),
2.04 (s, 3H, OAc), 2.04 (s, 3H, OAc), 2.05 (s, 3H,
OAc), 2.08 (s, 3H, OAc), 2.20 (s, 3H, OAc), 3.67
(s, 3H, CO 2 Me), KDN 'moiety; 2.26 (dd, 1H, J = 1
2.0, 13.0 Hz, 3-Hax), 2.83 (dd, 1H, J = 4.5, 13.0
Hz, 3-Heq), 4.16 (dd, 1H, J = 3.5, 12.5 Hz, 9-H),
4.32 (dd, 1H, J = 2.5, 12.5 Hz, 9'-H), 4.63 (dd,
1H, J = 1.0, 10.0 Hz, 6-H), 4.90 (t, 1H, J = 10.0 H
z, 5-H), 5.04 (ddd, 1H, J = 4.5, 10.0, 12.0 Hz, 4-
H), 5.39 (dd, 1H, J = 9.0, 1.0 Hz, 7-H), 5,45 (dd
d, 1H, J = 9.0, 3.5, 2.5 Hz, 8-H), 2.03 (s, 3H, O
Ac), 2.04 (s, 3H, OAc), 2.05 (s, 3H, OAc), 2.12 (s,
3H, OAc), 2.17 (s, 3H, OAc), 3.80 (s, 3H, CO 2 Me), F
lavonemoiety; 3.94 (3H, s, 8-OMe), 6.66 (1H, s, 3-
H), 6.77 (1H, s, 6-H), 7.19 (2H, d, J = 9.0 Hz, 2'-
H, 6'-H), 7.87 (2H, d, J = 9.0 Hz, 3'-H, 5'-H), 1
2.37 (1H, s, 5-OH). 11: [α] D + 19.7 ° (c = 0.36, CHCl 3 ), Anal. Calcd for C 36 H 38 O 19 : C, 55.82; H, 4.94. Foun
d:. C, 55.95; H , 4.99 FAB-MS m / z: 775 (M + +1) IR ν max (cm -1): 3390, 1755, 1655, 1605, 1510. 1 H-NMR (CDCl 3 ) δ: KDN moiety; 2.26 (dd, 1H, J = 1
1.5, 13.5 Hz, 3-Hax), 2.83 (dd, 1H, J = 4.5, 13.5 H
z, 3-Heq), 4.22 (dd, 1H, J = 5.5, 12.5 Hz, 9-H), 4.
38 (dd, 1H, J = 2.5, 12.5 Hz, 9'-H), 4.46 (dd, 1H,
J = 1.5, 10.5Hz, 6-H), 4.94 (t, 1H, J = 10.0 Hz,
5-H), 5.05 (ddd, 1H, J = 4.5, 10.5, 11.5 Hz, 4-H),
5.39 (dd, 1H, J = 8.0, 1.5 Hz, 7-H), 5,48 (ddd, 1
H, J = 8.0, 5.5, 2.5 Hz, 8-H), 2.02 (s, 3H, OAc),
2.05 (s, 3H, OAc), 2.07 (s, 3H, OAc), 2.14 (s, 3H,
OAc), 2.16 (s, 3H, OAc), 3.82 (s, 3H, CO 2 Me), Flav
one moiety; 3.91 (3H, s, 8-OMe), 6.50 (1H, br.s, 3
-H), 6.73 (1H, s, 6-H), 6.76 (2H, d, J = 9.0 Hz, 2 '
-H, 6'-H), 7.72 (2H, d, J = 9.0 Hz, 3'-H, 5'-H), 12.
40 (1H, s, 5-OH) 12: [α] D + 20.5 ° (c = 0.3.7, CHCl 3 ), Anal. Calcd
for C 36 H 38 O 19 : C, 55.82; H, 4.94. Found: C, 55.9
. 7; H, 4.56 FAB- MS m / z: 775 (M + +1) IR ν max (cm -1): 3390, 1755, 1655, 1610, 1510. 1 H-NMR (CDCl 3) δ: KDN moiety; 2.23 (dd, 1H, J = 1
1.5, 13.0 Hz, 3-Hax), 2.81 (dd, 1H, J = 4.5, 13.0
Hz, 3-Heq), 4.22 (dd, 1H, J = 5.0, 12.5 Hz, 9-H),
4.32 (dd, 1H, J = 2.5, 12.5 Hz, 9'-H), 4.48 (dd, 1
H, J = 2.0, 10.0Hz, 6-H), 4.90 (t, 1H, J = 10.0 H
z, 5-H), 5.05 (ddd, 1H, J = 5.0, 10.0,11.5 Hz, 4-
H), 5.37 (dd, 1H, J = 8.0, 2.0 Hz, 7-H), 5,44 (dd
d, 1H, J = 8.0, 5.0, 2.5 Hz, 8-H), 2.00 (s, 3H, OA
c), 2.04 (s, 3H, OAc), 2.12 (s, 3H, OAc), 2.17 (s,
3H, OAc), 2.35 (s, 3H, OAc), 3.81 (s, 3H, CO 2 Me),
Flavone moiety; 3.91 (3H, s, 8-OMe), 6.67 (1H, s,
3-H), 6.88 (1H, s, 6-H), 7.28 (2H, d, J = 9.0 Hz,
2'-H, 6'-H), 7.85 (2H, d, J = 9.0 Hz, 3'-H, 5'-H),
12.31 (1H, s, 5-OH) deprotection reaction 10 (50 mg) was dissolved in MeOH (5 ml), and 28% NaOMe-Me was added to it.
OH (0.1 ml) was added and the mixture was left at room temperature for 2 hours. The reaction solution was evaporated and dried to dryness, water (1 ml) was added and the mixture was left at room temperature for 3 hours. The reaction solution is subjected to gel filtration (Sephadex G-10) as it is, and the solution is freeze-dried to give 5-Hydroxy-4 ', 7-di- (sodium 3,5-dideox).
yl-D-glycero-α-D-galacto-2-nonulopyranosylonate)-
8-Methoxyflavone (13, 29 mg, 86%) was obtained as a pale yellow powder. 13: [α] D + 52.6 ° (c = 0.35, H 2 O) Anal. Calcd for C 34 H 38 Na 2 O 22 : C, 48.35; H, 4.53. F
ound: C, 49.11; H, 4.86. IR ν max (cm -1 ): 3400, 1655, 1605, 1500. 1 H-NMR (CDCl 3 ) δ: KDN moiety; 1.94 (dd, 1H, J = 1
2.5, 12.0 Hz, 3-Hax), 2.81 (dd, 1H, J = 5.0, 12.5 H
z, 3-Heq), 3.63 (t, 1H, J = 9.5 Hz, 5-H), 3.99 (d
d, 1H, J = 1.5, 10.0 Hz, 6-H). KDN moiety; 1.97 (d
d, 1H, J = 12.5,12.0 Hz, 3-Hax), 2.78 (dd, 1H, J =
5.0, 12.5 Hz, 3-Heq), 3.64 (t, 1H, J = 9.5 Hz, 5-
H), 4.04 (dd, 1H, J = 1.5, 10.0 Hz, 6-H), Flavon
e moiety; 6.70 (1H, br.s, 3-H), 6.80 (1H, s, 6-H),
3.93 (3H, s, 8-OMe), 7.24 (2H, d, J = 8.5 Hz, 2'-
H, 6'-H), 7.90 (2H, d, J = 8.5 Hz, 3'-H, 5'-H). The deprotection reaction of 11 (20 mg) was carried out in the same manner as in 10 above. Done 4 ', 7-dihydroxy-5- (sodium 3-deoxyl-D-glycero-
α-D-galacto-2-nonulopyranosylonate) -8-methoxyflav
One (14, 14 mg, 91%) was obtained as a pale yellow powder. 14: [α] D + 57.2 ° (c = 0.28, H 2 O), Anal. Calcd for C 25 H 24 Na 2 O 14 : C, 50.51; H, 4.07. F
ound:. C, 49.96; H , 4.68 IR ν max (cm -1): 3400, 1605, 1575, 1500. 1 H-NMR (CDCl 3) δ: KDN moiety; 1.99 (dd, 1H, J = 1
2.5, 12.0 Hz, 3-Hax), 2.87 (dd, 1H, J = 4.5, 12.5 H
z, 3-Heq), 3.67 (t, 1H, J = 9.5 Hz, 5-H), 4.09 (b
rd, 1H, J = 9.5 Hz, 6-H), Flavone moiety; 6.19 (1
H, s, 3-H), 6.61 (1H, s, 6-H), 3.92 (3H, s, 8-OMe),
7.23 (2H, d, 2'-H, 6'-H), 6.91 (2H, br.s, 3'-H,
The deprotection group reaction of 5'-H). 12 (15 mg) was performed in the same manner as in the case of the above 10, 5,7-dihydroxy-4 '-(sodium 3,5-dideoxyl-D-glycol.
ero-α-D-galacto-2-nonulopyranosylonate) -8-methoxy
Flavone (15, 10 mg, 86%) was obtained as a pale yellow powder. 15: [α] D + 38.37 ° (c = 0.23, H 2 O), Anal. Calcd for C 25 H 24 Na 2 O 14 : C, 50.51; H, 4.07. F
ound: C, 49.88; H, 4.57. IR ν max (cm -1 ): 3400, 1650, 1605, 1575, 1500. 1 H-NMR (CDCl 3 ) δ: KDN moiety; 2.00 (br.t, 1H, J =
12.5 Hz, 3-Hax), 2.82 (dd, 1H, J = 5.0, 12.5 Hz, 3
-Heq), 3.66 (t, 1H, J = 9.5 Hz, 5-H), 4.00 (dd, 1H,
J = 1.5, 9.5 Hz, 6-H), Flavone moiety; 6.35 (1H,
s, 3-H), 6.68 (1H, s, 6-H), 3.90 (3H, s, 8-OMe), 6.
40 (2H, br.s, 2'-H, 6'-H), 7.35 (2H, br.s, 3'-H,
5'-H).

【0019】[実施例4]水溶性試料の活性測定 96Well培養プレートで培養したMDCK(Madin-Darby cani
ne kidney)細胞にトリプシン存在下インフルエンザウ
イルスA/PR/8/34を0.001MOI(multiplicity ofinfectio
n;感染多重度)で感染させ、同時に試料(最終濃度100
μg/mL)またはRibavirin溶液(最終濃度12又は24μg/mL)
を添加した。これを5%CO2条件下、37℃で3日間培養
した。抗インフルエンザウイルス活性の指標として、培
養上清のウイルス量をウイルスの持つシアリダーゼ活性
で測定し、細胞の生存率をMTT法で測定した。細胞毒性
に関しては、抗インフルエンザウイルス活性測定の場合
と同様に、96Wellプレートで培養したインフルエンザウ
イルス非感染のMDCK細胞に、上記と同様にして溶解した
サンプルまたはRibavirinを添加した。これらを5%CO2
条件下、37℃で3日間培養し、細胞の生存率をMTT法で
測定した。結果を図5および図6に示す。測定を行った
化合物の中では、化合物8、7、15、および14が培養上清
中のウイルス量を著しく減少させた(図5)。しかし、
これらのうち明らかな細胞生存率の改善が見られたのは
化合物7のみであった(図6)。化合物8には顕著な細胞
生存率の改善は見られず、化合物15と14には細胞毒性が
認められた。化合物7には培養上清中のウイルス量の低
下並びにウイルスに感染した細胞の生存率の改善作用が
認められたこと、並びに細胞毒性が認められなかったこ
とから、培養細胞を用いた系で抗インフルエンザウイル
ス活性を示すことが明らかとなった。化合物7をMDCK細
胞に添加し、3日間培養した後、細胞を顕微鏡で観察し
たところ、細胞内に多くの顆粒が認められた。これは恐
らく化合物7が細胞内に取り込まれたものと考えられ
た。このことより、化合物7をin vivoの抗インフルエン
ザウイルス活性の実験でマウスに経鼻投与した場合、鼻
腔粘膜細胞に取り込まれて鼻腔内に保持され、抗インフ
ルエンザウイルス活性を示すことが期待される。
Example 4 Activity Measurement of Water-Soluble Sample MDCK (Madin-Darby cani) cultured in 96-well culture plate
0.001 MOI (multiplicity of infectio) of influenza virus A / PR / 8/34 in the presence of trypsin
n; multiplicity of infection), and samples (final concentration 100
μg / mL) or Ribavirin solution (final concentration 12 or 24 μg / mL)
Was added. This was cultured at 37 ° C. for 3 days under 5% CO 2 . As an index of anti-influenza virus activity, the virus amount in the culture supernatant was measured by the sialidase activity of the virus, and the cell survival rate was measured by the MTT method. Regarding cytotoxicity, as in the case of the anti-influenza virus activity measurement, the sample or Ribavirin lysed in the same manner as described above was added to influenza virus-uninfected MDCK cells cultured on a 96-Well plate. These are 5% CO 2
Under the conditions, the cells were cultured at 37 ° C. for 3 days, and the cell viability was measured by the MTT method. The results are shown in FIGS. 5 and 6. Among the measured compounds, compounds 8, 7, 15, and 14 significantly reduced the amount of virus in the culture supernatant (Fig. 5). But,
Of these, only Compound 7 showed a clear improvement in cell viability (FIG. 6). Compound 8 did not show a significant improvement in cell viability and Compounds 15 and 14 were cytotoxic. Since compound 7 was found to have a reduced amount of virus in the culture supernatant, an effect of improving the survival rate of virus-infected cells, and no cytotoxicity, it was confirmed that the compound 7 was used in the system using cultured cells. It became clear that it exhibits influenza virus activity. After adding compound 7 to MDCK cells and culturing for 3 days, the cells were observed under a microscope and as a result, many granules were observed in the cells. It was considered that Compound 7 was probably taken up into the cell. From this, it is expected that, when compound 7 is intranasally administered to mice in an in vivo anti-influenza virus activity experiment, it is taken up by nasal mucosal cells and retained in the nasal cavity to exhibit anti-influenza virus activity.

【0020】[実施例5]水に不溶な試料の活性測定 抗インフルエンザウイルス活性は以下のようにして測定
した。すなわち、試料またはF36のメタノール溶液(1mg/
mL)をペーパーディスク(直径8mm)に25μL染み込ま
せ、風乾して溶媒を除去した。48穴の培養プレートで培
養した MDCK 細胞にインフルエンザウイルスA/PR/8/34
を感染させ、試料を染み込ませ風乾したぺーパーディス
クを投入した。また、溶媒であるメタノールのみを染み
込ませて風乾したディスクを投入したものをネガティブ
コントロールとした。これを37℃で5% CO2 条件下3
日間培養後、培養上清のウイルス量をウイルスの持つシ
アリダーゼ活性で、細胞の生存率を MTT 法により測定
した。さらに、細胞にウイルスを感染させないで試料を
染み込ませ風乾したぺーパーディスクを投入し、細胞毒
性を測定した。5試料の水不溶性のシアル酸誘導体ある
いはKDN誘導体とフラボン誘導体(F36)のコンジュゲー
ト中、6、5及び11にコントロールと比べて細胞生存率の
改善が認められた(図7)。これらのうち6と11が若干
の細胞毒性を示したのに対し、5には細胞毒性が認めら
れず(図7)、顕著な細胞生存率の改善作用を示した
(図7)。一方、5 試料の水不溶性のサンプル中、5の
みがコントロールと比べ、培養上清中のウイルス量を著
しく減少させ、ほぼ完全にウイルスの増殖を抑制した
(図8)。化合物5のin vitro抗インフルエンザウイル
ス活性は陽性対照として用いたフラボンであるF36より
も強いものであった。新たに合成したシアル酸誘導体あ
るいはKDN誘導体とF36のコンジュゲートのうち、水不溶
性の5試料について、ペーパーディスク法を用いてin v
itro抗インフルエンザウイルス活性を測定した。その結
果、化合物5に培養上清のウイルス量の顕著な低下並び
にウイルスに感染した細胞の生存率の改善作用が認めら
れたこと、および細胞毒性が認められなかったことか
ら、培養細胞を用いた系で抗インフルエンザウイルス活
性を示すことが明らかとなった。
Example 5 Activity Measurement of Water-Insoluble Sample The anti-influenza virus activity was measured as follows. That is, a sample or a methanol solution of F36 (1 mg /
(25 mL) was soaked in a paper disk (8 mm in diameter) and air-dried to remove the solvent. Influenza virus A / PR / 8/34 was added to MDCK cells cultured in a 48-well culture plate.
Was infected, the sample was soaked, and an air-dried paper disk was put thereinto. In addition, a negative control was prepared by injecting an air-dried disc soaked only with the solvent methanol. This is 37 ° C and 5% CO 2 condition 3
After culturing for a day, the viability of the cells was measured by the MTT method using the virus amount of the culture supernatant as the sialidase activity of the virus. Further, a cell disk was soaked with the sample without being infected with the virus, and an air-dried paper disk was put thereinto to measure cytotoxicity. In the conjugates of the water-insoluble sialic acid derivative or KDN derivative and the flavone derivative (F36) of 5 samples, the cell viability was improved in 6, 5, and 11 as compared with the control (FIG. 7). Of these, 6 and 11 showed some cytotoxicity, whereas 5 did not show cytotoxicity (Fig. 7) and showed a remarkable improving effect on cell viability (Fig. 7). On the other hand, among the 5 water-insoluble samples, only 5 significantly reduced the amount of virus in the culture supernatant as compared with the control, and almost completely suppressed the virus growth (FIG. 8). The in vitro anti-influenza virus activity of compound 5 was stronger than that of the flavone F36 used as a positive control. Of the newly synthesized sialic acid derivative or KDN derivative and F36 conjugate, 5 water-insoluble samples were analyzed by in v
The itro anti-influenza virus activity was measured. As a result, compound 5 was found to have a marked decrease in the amount of virus in the culture supernatant, an effect of improving the survival rate of virus-infected cells, and no cytotoxicity. Therefore, cultured cells were used. It was revealed that the system exhibits anti-influenza virus activity.

【0021】[0021]

【発明の効果】本発明によれば、シアル酸誘導体または
KDN誘導体とフラボン誘導体の結合化合物は、インフル
エンザウイルスに感染した細胞の生存率を改善すること
ができ、しかも天然物化合物から誘導される化合物であ
り安全性も高く、インフルエンザの予防ないし治療剤と
して有用であるばかりでなく、インフルエンザの予防な
いし治療用食品としても利用することができる。
According to the present invention, a sialic acid derivative or
The compound combining the KDN derivative and the flavone derivative can improve the survival rate of cells infected with influenza virus, is a compound derived from a natural product compound, and has high safety, and is useful as an agent for preventing or treating influenza. In addition, it can be used as a food for preventing or treating influenza.

【図面の簡単な説明】[Brief description of drawings]

【図1】 フラボン誘導体の合成法を示す図である。FIG. 1 is a diagram showing a method for synthesizing a flavone derivative.

【図2】 シアル酸とフラボン誘導体の結合体の合成法
を示す図である。
FIG. 2 is a diagram showing a method for synthesizing a conjugate of sialic acid and a flavone derivative.

【図3】 KDNとフラボン誘導体の結合体の合成法を示
す図である。
FIG. 3 is a diagram showing a method for synthesizing a conjugate of KDN and a flavone derivative.

【図4】 抗ウイルス活性を測定した化合物の構造を示
す図である。
FIG. 4 is a diagram showing structures of compounds whose antiviral activity was measured.

【図5】 インフルエンザウイルスを感染させたMDCK細
胞の生存率に対する水溶性化合物の効果を示す図であ
る。黒棒はウイルス添加、斜線棒はウイルス非添加での
生存率を示す。
FIG. 5 shows the effect of water-soluble compounds on the survival rate of MDCK cells infected with influenza virus. The black bar shows the survival rate with virus addition, and the shaded bar shows the survival rate without virus addition.

【図6】 MDCK細胞におけるインフルエンザウイルス増
殖に対する水溶性化合物の影響を示す図である。
FIG. 6 is a graph showing the influence of water-soluble compounds on influenza virus growth in MDCK cells.

【図7】 インフルエンザウイルスを感染させたMDCK細
胞の生存率に対する水不溶性化合物の効果を示す図であ
る。黒棒はウイルス添加、斜線棒はウイルス非添加での
生存率を示す。
FIG. 7 shows the effect of water-insoluble compounds on the viability of MDCK cells infected with influenza virus. The black bar shows the survival rate with virus addition, and the shaded bar shows the survival rate without virus addition.

【図8】 MDCK細胞におけるインフルエンザウイルス増
殖に対する水不溶性化合物の影響を示す図である。
FIG. 8 shows the effect of water-insoluble compounds on influenza virus growth in MDCK cells.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鰺坂 勝美 神奈川県小田原市成田540番地 明治乳業 株式会社栄養科学研究所内 Fターム(参考) 4B018 LB10 LE01 LE05 MD42 ME09 MF10 4C057 BB05 CC03 DD01 DD02 JJ55 KK08 4C086 AA01 AA02 AA03 EA04 EA11 MA01 MA04 NA14 ZB33    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Katsumi Ajisaka             540 Narita, Odawara City, Kanagawa Prefecture, Meiji Dairy Industry             Nutritional Science Institute Co., Ltd. F term (reference) 4B018 LB10 LE01 LE05 MD42 ME09                       MF10                 4C057 BB05 CC03 DD01 DD02 JJ55                       KK08                 4C086 AA01 AA02 AA03 EA04 EA11                       MA01 MA04 NA14 ZB33

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】次の一般式(I) 【化1】 (式中、R1,R7はそれぞれ独立して水素原子、ナトリウ
ム、カリウム、R2,R3,R4,R5,R8,R9,R10,R11はそれぞれ
独立して水素原子、硫酸基、アセチル基、R6,R12はそれ
ぞれ独立して水素原子、アセチル基、メチル基、エチル
基、n-プロピル基、n-ブチル基、n-オクチル基、ベンジ
ル基、アリル基、X,Yはそれぞれ独立してアセトアミノ
基、グリコリルアミノ基、水酸基、アセチルオキシ基、
A,Bはそれぞれ独立して酸素原子、硫黄原子を示す)で
表される化合物。
1. The following general formula (I): (In the formula, R 1 and R 7 are each independently a hydrogen atom, sodium, potassium, R 2 , R 3 , R 4 , R 5 , R 8 , R 9 , R 10 and R 11 are independently hydrogen. Atom, sulfate group, acetyl group, R 6 and R 12 are each independently a hydrogen atom, acetyl group, methyl group, ethyl group, n-propyl group, n-butyl group, n-octyl group, benzyl group, allyl group , X, Y are each independently an acetamino group, a glycolylamino group, a hydroxyl group, an acetyloxy group,
A and B each independently represent an oxygen atom or a sulfur atom).
【請求項2】 請求項1記載の化合物を有効成分とする
食品または医薬。
2. A food or medicine containing the compound according to claim 1 as an active ingredient.
【請求項3】 請求項1記載の化合物を有効成分とする
インフルエンザウイルス予防又は治療用食品又は医薬。
3. A food or medicine for preventing or treating influenza virus, which comprises the compound according to claim 1 as an active ingredient.
JP2002046170A 2002-02-22 2002-02-22 Anti-influenza-viral compound Pending JP2003246792A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002046170A JP2003246792A (en) 2002-02-22 2002-02-22 Anti-influenza-viral compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002046170A JP2003246792A (en) 2002-02-22 2002-02-22 Anti-influenza-viral compound

Publications (1)

Publication Number Publication Date
JP2003246792A true JP2003246792A (en) 2003-09-02

Family

ID=28659671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002046170A Pending JP2003246792A (en) 2002-02-22 2002-02-22 Anti-influenza-viral compound

Country Status (1)

Country Link
JP (1) JP2003246792A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004076471A1 (en) * 2003-02-25 2004-09-10 The Kitasato Institute Anti-influenza virus compound comprising biflavonoid-sialic acid glycoside
JP2005281227A (en) * 2004-03-30 2005-10-13 Masanobu Ouchi Agent for treatment and prevention of influenza virus infection disease
CN100438867C (en) * 2004-03-05 2008-12-03 惠汝太 Application of flavone monomer in antivirus drug preparing process

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004076471A1 (en) * 2003-02-25 2004-09-10 The Kitasato Institute Anti-influenza virus compound comprising biflavonoid-sialic acid glycoside
CN100438867C (en) * 2004-03-05 2008-12-03 惠汝太 Application of flavone monomer in antivirus drug preparing process
JP2005281227A (en) * 2004-03-30 2005-10-13 Masanobu Ouchi Agent for treatment and prevention of influenza virus infection disease

Similar Documents

Publication Publication Date Title
Shie et al. Development of effective anti-influenza drugs: congeners and conjugates–a review
US9771361B2 (en) Inhibitors of influenza viruses replication
US20210060042A1 (en) Patentiflorin A Analogs as Antiviral Agents
CN108473477A (en) The pyrimidine of aryl substitution for being used in influenza infection
CN112062800B (en) Phosphoramidate derivatives of nucleoside compounds and uses thereof
JP2018521969A (en) Pharmaceutical co-crystals and their uses
CN114732822B (en) Application of glucosamine and derivatives thereof as antiviral drugs
CN112010916A (en) Phosphoramidate derivatives of nucleoside compounds and uses thereof
US9284292B2 (en) Sialochimeric compounds
TWI621438B (en) Use of an isoquinoline alkaloid derivative in manufacturing a medication effective in ampk activation
TWI580670B (en) Stilbenoid compounds as inhibitors for squamous carcinoma and hepatoma and uses thereof
JP2003246792A (en) Anti-influenza-viral compound
CN114805141A (en) 4-guanidinobenzoic acid aryl ester compound and application thereof in resisting SARS-CoV-2 virus
WO2015027669A2 (en) Phenyl-substituted compound, pharmaceutical composition and uses thereof
US20070004649A1 (en) Anti-influenza virus compound comprising biflavonoid-sialic acid glycoside
US20240076299A1 (en) Tuberculatin analogs as antiviral agents
CN114805458A (en) Fatty acid prodrug of nucleoside-like broad-spectrum antiviral drug, preparation method and application thereof
KR102049140B1 (en) Isoquinolinone derivatives, preparation method thereof and pharmaceutical composition for treating influenza virus containing the same
JPH05213756A (en) Antiinfluenzal agent
CN116003258A (en) 12-O-octanoyl-phorbol ester derivative and preparation method and application thereof
JP2004292443A (en) Anti-hepatitis c agent and anti-hiv agent
JPH05506211A (en) 6-halo- and 2-amino-6-halo-purines 2&#39;,3&#39;-dideoxynucleosides and their use as antiviral agents