JP2003245844A - Simple method of correcting heat displacement in machine tool - Google Patents

Simple method of correcting heat displacement in machine tool

Info

Publication number
JP2003245844A
JP2003245844A JP2002047535A JP2002047535A JP2003245844A JP 2003245844 A JP2003245844 A JP 2003245844A JP 2002047535 A JP2002047535 A JP 2002047535A JP 2002047535 A JP2002047535 A JP 2002047535A JP 2003245844 A JP2003245844 A JP 2003245844A
Authority
JP
Japan
Prior art keywords
displacement
correction
axis
amount
machine tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002047535A
Other languages
Japanese (ja)
Other versions
JP3517738B2 (en
Inventor
Toshihiko Amako
敏彦 尼子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horkos Corp
Original Assignee
Horkos Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horkos Corp filed Critical Horkos Corp
Priority to JP2002047535A priority Critical patent/JP3517738B2/en
Publication of JP2003245844A publication Critical patent/JP2003245844A/en
Application granted granted Critical
Publication of JP3517738B2 publication Critical patent/JP3517738B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Numerical Control (AREA)
  • Automatic Control Of Machine Tools (AREA)
  • Machine Tool Sensing Apparatuses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a simple method of correcting heat displacement in a machine tool by representing heat displacement occurring in the machine tool by a simple exothermic function and a cooling function and measuring the heat displacement beforehand to make a positional correction. <P>SOLUTION: This simple method of correcting heat displacement in a machine tool performs a main position correcting process and a cut processing process by a control means (5). The main position correcting process constantly corrects an average rotational speed (Vs) of a main spindle body (1a), respective average feed speeds (Vx, Vy and Vz) of moving members (2c, 3c and 4c) moving on feeding members (2b, 3b and 4b) in respective three-dimensional axial directions and the operating time thereof (t), and the position of the main spindle of the front end face (1b) thereof due to exothermic and heat-cooling displacement caused by the environmental condition exposed to such operating heat. The method is characterized by performing a pre- treatment process for the correction of heat displacement by the use of a heat- displacement measuring means in order to predetermine an exothermic function (t) and a cooling function g (t) beforehand which represent a displacement quantity δ, respectively, to be used for the main position correcting process. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は,工作機械の熱変位
を,簡単な発熱関数及び冷却関数で表し, 予め該熱変位
を測定し, 位置補正を行う工作機械の簡易熱変位補正方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a simple thermal displacement correction method for a machine tool, in which the thermal displacement of a machine tool is represented by a simple heat generation function and a cooling function, the thermal displacement is measured in advance and the position is corrected.

【0002】[0002]

【従来の技術】従来技術の工作機械の熱変位補正方法
は,各種あるが, 例えば, 特許第3154946 号「工作機械
の熱変位補正方法」があり,ここには「数値制御装置を
用いて制御される工作機械において,送り軸の平均移動
速度, 移動頻度及び移動位置から,熱変位に対する補正
量を求める近似式, 及び該近似式によって求められた補
正量より指令位置に対する位置補正量を求める近似式を
予め数値制御装置に記憶させておき, 送り軸の位置をモ
ニタリングし,モニタリングされた送り軸の位置より送
り軸のの平均移動速度及び移動頻度を求めて上記近似式
より送り軸に対する指令位置に対する位置補正量を求め
て,指令位置を該位置補正量で補正して出力するように
した熱変位補正方法」があった。
2. Description of the Related Art There are various conventional thermal displacement compensation methods for machine tools. For example, there is Japanese Patent No. 3154946 entitled "Compensation Method for Thermal Displacement of Machine Tools". In a machine tool to be used, an approximation formula for obtaining the correction amount for thermal displacement from the average movement speed, movement frequency, and movement position of the feed axis, and an approximation for obtaining the position correction amount for the command position from the correction amount obtained by the approximation formula The equation is stored in advance in the numerical controller, the position of the feed axis is monitored, the average movement speed and movement frequency of the feed axis are obtained from the monitored feed axis position, and the command position for the feed axis is calculated from the above approximate equation. There is a thermal displacement correction method in which the position correction amount is calculated and the commanded position is corrected by the position correction amount and output.

【0003】[0003]

【発明が解決しようとする課題】従来技術の上記工作機
械の熱変位補正方法において,近似式として,例えば
「段落0026」に示す様に, 単位時間当たりの発熱変位量
Qnは,Qn=A・[f(Bn)] a・Cnb と,べき乗の係数:a,bで
表しており,該近似式を測定値で近似するのが,複雑で
容易に算出するのが困難で時間を要する,問題点があっ
た。
In the thermal displacement correction method for a machine tool of the prior art, as an approximate expression, for example, as shown in "paragraph 0026", the amount of heat generation displacement per unit time is
Qn is represented by Qn = A ・ [f (Bn)] a・ Cn b and exponentiation coefficients: a, b. It is complicated and easy to approximate the approximate expression with measured values. It was difficult and time-consuming.

【0004】従来技術の上記工作機械の熱変位補正方法
において,熱変位の補正方法は,例えば移動軸の補正量
の場合,「段落0026」に示す様に, 単位時間の補正量δ
n は, δn=δn-1 + Qn -qn と微分形式の加算で補正し
ており,この様な微分形式の加算では,誤差が加算さ
れ, 位置の算出において, 補正量の誤差が大きくなる恐
れがある,問題点があった。
In the conventional thermal displacement correction method for machine tools, the thermal displacement correction method is, for example, in the case of the movement axis correction amount, as shown in "paragraph 0026".
n is corrected by adding δn = δn-1 + Qn -qn and the differential form. In such differential form addition, an error is added and the error in the correction amount may be large in the position calculation. There was a problem.

【0005】従来技術の上記工作機械の熱変位補正方法
において,熱変位の測定方法は,例えばZ軸の熱変位の
測定の場合,「段落0019」に示す様に, Z軸の-50mm,-1
50mm,-300mm 位置の変位を測定する変位測定器S1,S2,S3
を用い,3箇所測定しており,Z軸のストロークの変位を
固定した一端部の変位固定端(Fz)と,他端部の変位自在
な変位自由端(Ez)を考慮せずに,測定を行っており,測
定箇所が多く, 測定に時間がかかり,それだけ解析に時
間を要する,問題点があった。
In the above-mentioned conventional thermal displacement correction method for machine tools, the thermal displacement measuring method is, for example, in the case of measuring the thermal displacement of the Z-axis, as shown in "paragraph 0019", the Z-axis is -50 mm,- 1
Displacement measuring instruments S1, S2, S3 that measure displacement at 50 mm and -300 mm positions
Is measured at three points using the displacement of the Z-axis stroke (Fz) at one end and the freely displaceable free end (Ez) at the other end. However, there are problems in that there are many measurement points, the measurement takes time, and the analysis takes time accordingly.

【0006】[0006]

【課題を解決するための手段】上記の問題点を解決する
ために,本発明の工作機械の簡易熱変位補正方法は,各
変位量δを表す発熱関数f(t)として.到達変位量δm
が,発熱時定数τh で時間t と共に飽和に達する, 一次
遅れの式とし,該到達変位量δm は, 対応する比例係数
である特性係数K を有し, 移動頻度を含む平均速度V に
比例することとし,一方, 各冷却関数g(t)は,対応する
作動を停止した時点で, 初期変位量δm から指数関数的
に冷却時定数τc で時間t と共に減衰する, 指数減衰式
とする事を特徴とする。
In order to solve the above problems, a simple thermal displacement correction method for a machine tool of the present invention uses a heat generation function f (t) representing each displacement amount δ. Ultimate displacement δm
Is a first-order lag equation that reaches saturation with time t at a heat generation time constant τh, and the amount of displacement δm reached is proportional to the average velocity V including the movement frequency, which has a corresponding proportionality coefficient K On the other hand, each cooling function g (t) is defined as an exponential decay formula that decays exponentially from the initial displacement δm with a cooling time constant τc at time t when the corresponding operation is stopped. Characterize.

【0007】本発明の工作機械の簡易熱変位補正方法
は,発熱関数及び冷却関数が,それぞれ簡単な二定数で
定まる一次遅れの式及び指数減衰式で容易に表されるの
で,変位量演算手段において,該関数の解析的解法で,
各変位量δの演算が行われる事を特徴とする。
According to the simple thermal displacement correction method for a machine tool of the present invention, the heat generation function and the cooling function are easily expressed by a first-order lag equation and an exponential decay equation which are respectively defined by simple two constants, and therefore the displacement amount calculating means In the analytical solution of the function,
It is characterized in that each displacement amount δ is calculated.

【0008】本発明の工作機械の簡易熱変位補正方法
は,熱変位補正前処理工程において,各軸の熱変位測定
手段は,ストローク(ST)一端部の変位自在な変位自由端
(E) に対応する最大変位を表す変位量δを測定する事を
特徴とする。
According to the simple thermal displacement correction method for a machine tool of the present invention, in the thermal displacement correction pretreatment step, the thermal displacement measuring means of each axis has a freely movable displacement end at one end of the stroke (ST).
The feature is that the displacement amount δ representing the maximum displacement corresponding to (E) is measured.

【0009】[0009]

【発明の実施の形態】本発明の請求項1に対応する工作
機械の簡易熱変位補正方法は,主軸本体(1a)の回転平均
速度(Vs),3次元(x,y,z軸) 各軸方向のボールネジ等から
成る送り部材(2b,3b,4b)上を動く移動部材(2c,3c,4c)の
送り平均速度(Vx,Vy,Vz)とその稼働時間(t),更にこれら
の作動熱環境条件に起因する, 発熱及び冷却熱変位によ
る主軸前端面(1b)の主軸位置を常時補正する為の位置補
正主工程を, 切削加工工程と共に, 制御手段(5) により
行う工作機械の簡易熱変位補正方法であって,該位置補
正主工程に用いる各変位量δ( δx,δy,δz,δs)をそれ
ぞれ表す発熱関数f(t)及び冷却関数g(t)を予め定めるた
めに, 熱変位補正前処理工程を,熱変位測定手段を用い
て行うこととし,該工作機械において, 主軸(s) 軸心を
z 軸とし,各該発熱関数f(t)は,到達変位量δm が,発
熱時定数τh で時間t と共に飽和に達する, 一次遅れの
式とし,該到達変位量δm は, 対応する比例係数である
特性係数K(kx,ky,kz,ks) を有し, 移動頻度を含む平均
速度V(Vx,Vy,Vz,Vs)に比例することとし,一方, 各該冷
却関数g(t)は,対応する作動を停止した時点で, 初期変
位量δm から指数関数的に冷却時定数τc で時間t と共
に減衰する, 指数減衰式とし,そして該主軸の熱変位測
定手段は,該主軸前端面のz 軸方向の変位量δs を,ピ
ックテスタ等の位置測定手段(10)により測定し, 一方,z
軸の熱変位測定手段は,回転自在な該送り部材のストロ
ーク(STz) を定める, z 軸方向の変位を固定した一端部
の変位固定端(Fz)と,他端部の変位自在な変位自由端(E
z)において,該変位自由端(Ez)に対応するz 軸移動台(4
a)端部で, 変位量δz を該位置測定手段により測定し,
そしてx 及びy 軸の熱変位測定手段は,該主軸前端面の
対応する側周角部近傍を, 各ストローク(STx,STy) の変
位自由端(Ex,Ey) で, 変位量(δx,δy)をそれぞれ該位
置測定手段により測定し,該位置補正主工程において,
各変位量δ( δx,δy,δz,δs)による,該主軸前端面の
主軸位置の補正量C は,勾配補正工程(S51) を用い,z軸
の補正量Czは,該変位量δz を該ストローク(STz) 間に
直線勾配を用いて比例配分し,かつ該変位量δs を一様
に加算して補正確保し, 他方,x及びy 軸の補正量Cx,Cy
は,それぞれ各該変位量( δx,δy)を, 対応する各該ス
トローク(STx,STy) 間に直線勾配を用いて比例配分して
補正確保し,特に該熱変位補正前処理工程を行う作動熱
環境条件が,周囲雰囲気温度中で該主軸が無負荷である
事を特徴とする。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A simple thermal displacement correction method for a machine tool according to claim 1 of the present invention is a rotary average speed (Vs) of a main spindle body (1a), three-dimensional (x, y, z axes). The feed average speed (Vx, Vy, Vz) of the moving member (2c, 3c, 4c) that moves on the feeding member (2b, 3b, 4b) consisting of axial ball screws, etc., and its operating time (t), A position correction main process for constantly correcting the spindle position of the spindle front end face (1b) due to heat and cooling heat displacement caused by operating thermal environment conditions is performed by the control means (5) along with the cutting process. A simple thermal displacement correction method for predetermining a heat generation function f (t) and a cooling function g (t) respectively representing displacement amounts δ (δx, δy, δz, δs) used in the position correction main process. Therefore, the thermal displacement correction pretreatment process is performed by using the thermal displacement measuring means, and the main axis (s) of the machine tool
The z-axis is used, and each exothermic function f (t) is a first-order lag equation in which the ultimate displacement δm reaches saturation with time t at the exothermic time constant τh, and the ultimate displacement δm is the corresponding proportional coefficient. It has a certain characteristic coefficient K (kx, ky, kz, ks) and is proportional to the average velocity V (Vx, Vy, Vz, Vs) including the moving frequency, while each cooling function g (t) is , When the corresponding operation is stopped, the initial displacement amount δm exponentially decays with cooling time constant τc with time t, and the exponential decay formula is used, and the thermal displacement measuring means of the spindle is The displacement δs in the z-axis direction is measured by a position measuring means (10) such as a pick tester, while z
The thermal displacement measuring means of the shaft determines the stroke (STz) of the rotatable feed member, and the displacement fixed end (Fz) at one end that fixes the displacement in the z-axis direction and the freely displaceable displacement at the other end. Edge (E
z), the z-axis carriage (4
a) At the end, measure the displacement amount δz by the position measuring means,
Then, the thermal displacement measuring means for the x and y axes measure the amount of displacement (δx, δy) at the displacement free end (Ex, Ey) of each stroke (STx, STy) in the vicinity of the corresponding side circumferential corner of the spindle front end face. ) Are respectively measured by the position measuring means, and in the position correction main process,
The correction amount C of the spindle position of the spindle front end face by each displacement δ (δx, δy, δz, δs) uses the gradient correction process (S51), and the z-axis correction amount Cz is the displacement amount δz. The stroke (STz) is proportionally distributed using a linear gradient, and the displacement amount δs is uniformly added to secure the correction, while the x and y axis correction amounts Cx, Cy
Is an operation for proportionally securing each displacement amount (δx, δy) between the corresponding strokes (STx, STy) by using a linear gradient, and in particular performing the thermal displacement correction pretreatment step. The thermal environment is characterized in that the spindle is unloaded in the ambient atmosphere temperature.

【0010】本発明の請求項2に対応する工作機械の簡
易熱変位補正方法は,熱変位補正前処理工程を行う作動
熱環境条件が,主軸本体(1a)・切削工具(1c)・加工物
(7) 等から成る加工部近傍を冷却する所定の量のクーラ
ント液を循環使用し,クーラント装置を装備する,請求
項1記載の工作機械の簡易熱変位補正方法である事を特
徴とする。
In a simple thermal displacement correction method for a machine tool according to claim 2 of the present invention, the operating thermal environmental conditions for performing the thermal displacement correction pretreatment step are the main spindle body (1a), cutting tool (1c), and workpiece.
(7) A simple thermal displacement correction method for a machine tool according to claim 1, characterized in that a predetermined amount of coolant liquid for cooling the vicinity of the machined part, including (7), is circulated and equipped with a coolant device.

【0011】本発明の請求項3に対応する工作機械の簡
易熱変位補正方法は,熱変位補正前処理工程を行う作動
熱環境条件が,主軸本体(1a)・切削工具(1c)が所定量の
負荷状態であり,該負荷の大きさを,主軸モータ(1d)等
の負荷で計測可能である, 請求項1及び2記載の工作機
械の簡易熱変位補正方法である事を特徴とする。
In the simple thermal displacement correction method for a machine tool according to claim 3 of the present invention, the operating thermal environment condition for performing the thermal displacement correction pretreatment process is such that the spindle body (1a) and the cutting tool (1c) have a predetermined amount. The load condition of the machine tool, and the magnitude of the load can be measured by the load of the spindle motor (1d) or the like.

【0012】本発明の工作機械の簡易熱変位補正方法の
熱変位補正前処理工程において,各軸の熱変位測定手段
に用いる, ストローク(ST)を定める, 回転自在に各軸方
向の変位を固定した一端部の変位固定端(F) は,送り部
材にリング部材を固定し, 該リング部材を軸受け部材で
挟持して確保する事も出来る。
In the thermal displacement correction pretreatment step of the simple thermal displacement correction method for machine tools of the present invention, the stroke (ST) used for the thermal displacement measuring means of each axis is determined, and the displacement in each axial direction is rotatably fixed. The fixed displacement end (F) at one end can be secured by fixing the ring member to the feed member and sandwiching the ring member with the bearing member.

【0013】本発明の工作機械の簡易熱変位補正方法の
熱変位補正前処理工程において,発熱関数は,一次遅れ
の式である,f(t)= δm ・[1- exp(-t/ τh)] とし,こ
こで, 時定数τh 及び到達変位量δm の二つの定数で容
易に定まり, 該到達変位量δm は, 平均速度(V) にほぼ
比例する事が実証され,故に, 該発熱関数f(t)は,一般
的に二つの定数,特性係数K と時定数τh とを用い, f(t)=K・V ・[1- exp(-t/ τh)] と容易に表す事を特徴とする。
In the thermal displacement correction preprocessing step of the simple thermal displacement correction method for machine tools of the present invention, the heat generation function is a first-order lag equation, f (t) = δm [1-exp (-t / τh )], Where it is easily determined by two constants, the time constant τh and the ultimate displacement δm, and it is demonstrated that the ultimate displacement δm is almost proportional to the average velocity (V). f (t) is generally expressed as f (t) = K ・ V ・ [1-exp (-t / τh)] using two constants, characteristic coefficient K and time constant τh. Characterize.

【0014】本発明の工作機械の簡易熱変位補正方法の
熱変位補正前処理工程において,冷却関数は,指数減衰
式である,g(t)= δm ・exp(-t/ τc)とし,ここで, 時
定数τc 及び初期変位量δm の二つの定数で容易に表す
事を特徴とする。
In the thermal displacement correction pretreatment step of the simple thermal displacement correction method for machine tools of the present invention, the cooling function is an exponential damping formula, g (t) = δm · exp (-t / τc), where And is easily represented by two constants, a time constant τc and an initial displacement δm.

【0015】本発明の工作機械の簡易熱変位補正方法に
おいて,位置補正主工程は,工作機械の電源投入(S0)と
共にプログラムとして開始し, 先ず初期設定工程(S1)に
おいて,各変位量δを, 所定のサンプリング時間(Tm)間
隔で, 演算して制御手段の制御メモリ(M31) に格納し表
示する該サンプリング時間(Tm)の選択設定, 及び各軸の
位置補正を行う, 変位量補正工程(S5)を実行する時間間
隔としての補正時間(Tc>Tm) の選択設定を行い, 次に変
位量サンプリング時間到達工程(S2)において,Δt=Tmに
到達すると, 変位量サンプリング工程(S2)において,変
位量演算手段を用い,前回のサンプリング時刻:ti-1
おける, 各変位量δi-1 から,制御メモリ(M31) から読
み出した時間間隔Tm=ti -ti-1 間に変化した移動頻度を
含む平均速度データセットDS(Vi ) 値を用い, 発熱状態
移行か冷却状態移行かを判定し, 現行のサンプリング時
刻:ti の各変位量δi を演算確保し,そして該変位量δ
i をデータセットDS( δ) として, 該制御メモリ(M31)
に格納し, 操作部に有する表示手段で表示可能とし,次
に変位量補正時間到達工程(S4)において,Δt=Tcに到達
すると, 変位量補正工程(S5)において,現行時間に最も
近い該データセットDS( δ) を該制御メモリ(M31) から
読み出し, 勾配補正工程(S51) において,補正量演算手
段を用い, 各軸の補正量C を演算確保し,該制御手段の
補正メモリ(M51) に格納し, 加工制御工程(W1)からの移
動指令に従い, 該補正メモリ(M51) の補正量C を読み出
し, インターフェイス(W2)を介して, 各軸移動装置の位
置を補正する事も出来る。
In the simple thermal displacement correction method for a machine tool according to the present invention, the position correction main process starts as a program when the power of the machine tool is turned on (S0). First, in the initial setting process (S1), each displacement amount δ is calculated. Displacement correction process for selecting and setting the sampling time (Tm) that is calculated and stored in the control memory (M31) of the control means and displayed at a predetermined sampling time (Tm) interval, and position correction of each axis. The correction time (Tc> Tm) as the time interval for executing (S5) is selected and set. Next, when Δt = Tm is reached in the displacement amount sampling time reaching process (S2), the displacement amount sampling process (S2) In the previous sampling time: t i-1 , each displacement amount δ i-1 was read from the control memory (M31) between the time intervals Tm = t i -t i-1 using the displacement calculation means. average speed using the data set DS (V i) value containing the altered movement frequency, heat generation state It determines whether line or cooled state transition, current sampling time: each displacement amount [delta] i of t i is calculated secured, and the displacement amount [delta]
i is the data set DS (δ), and the control memory (M31)
When it reaches Δt = Tc in the displacement amount correction time reaching step (S4), it is displayed in the displacement amount correction time reaching step (S4). The data set DS (δ) is read from the control memory (M31), and in the gradient correction step (S51), the correction amount calculation means is used to calculate and secure the correction amount C for each axis, and the correction memory (M51 It is also possible to read the correction amount C of the correction memory (M51) according to the movement command from the machining control process (W1) and correct the position of each axis moving device via the interface (W2). .

【0016】本発明の工作機械の簡易熱変位補正方法に
おいて,位置補正主工程の初期設定工程(S1)は,電源投
入(S0)以前の工作機械の停止時間を計測し,前回の最終
サンプリング時刻より今回の電源投入までの経過時間を
算出する工程を含む事も出来る。
In the simple thermal displacement correction method for a machine tool of the present invention, the initial setting step (S1) of the main position correction step measures the stop time of the machine tool before the power is turned on (S0), and the last final sampling time is measured. It is also possible to include a step of calculating the elapsed time until the power is turned on this time.

【0017】本発明の工作機械の簡易熱変位補正方法
は,熱変位補正前処理工程における発熱関数及び冷却関
数として,それぞれ簡単な二定数で定まる一次遅れの式
及び指数減衰式を用いたにも係わらず,驚くべきこと
に,位置補正主工程において,各軸ストローク間にわた
って,最大変位量を約10μm 以下に抑える作用を有す
る。
The simple thermal displacement correction method for a machine tool according to the present invention uses a first-order lag equation and an exponential damping equation which are respectively determined by simple two constants as the heat generation function and the cooling function in the thermal displacement correction pretreatment process. However, surprisingly, in the main position correction process, the maximum displacement amount is suppressed to about 10 μm or less during each axis stroke.

【0018】本発明の工作機械の簡易熱変位補正方法の
熱変位補正前処理工程において,発熱関数は,時定数τ
h 及び到達変位量δm の二つの定数で表されるので,平
衡に達する到達変位量δm は, 容易に定まり,更に該時
定数τh は,該到達変位量δm の1/2 をδ1=δm/2 と
し,δ1 に対応する時間t1を確保し, τh=t1/In2=t1/0.
693 により,容易に該時定数τh を求める事も出来る。
In the thermal displacement correction pretreatment step of the simple thermal displacement correction method for machine tools of the present invention, the heat generation function is the time constant τ
Since it is expressed by two constants, h and ultimate displacement δm, the ultimate displacement δm that reaches equilibrium is easily determined, and the time constant τh is ½ of the ultimate displacement δm δ1 = δm / 2 and secure the time t1 corresponding to δ1, τh = t1 / In2 = t1 / 0.
By using 693, the time constant τh can be easily obtained.

【0019】本発明の工作機械の簡易熱変位補正方法の
熱変位補正前処理工程において,冷却関数は,時定数τ
c 及び初期変位量δm の二つの定数で表されるので,該
時定数τc は,該初期変位量δm の1/2 をδ1=δm/2 と
し,δ1 に対応する時間t1を確保し, τc=t1/In2=t1/0.
693 により,容易に該時定数τc を求める事も出来る。
In the thermal displacement correction pretreatment step of the simple thermal displacement correction method for machine tools of the present invention, the cooling function has a time constant τ.
Since it is expressed by two constants, c and initial displacement δm, the time constant τc is such that 1/2 of the initial displacement δm is δ1 = δm / 2, and the time t1 corresponding to δ1 is secured. = t1 / In2 = t1 / 0.
By using 693, the time constant τc can be easily obtained.

【0020】本発明の工作機械の簡易熱変位補正方法の
熱変位補正前処理工程において,各軸(x,y,z) の熱変位
測定手段は,ストローク(ST)一端部の変位自在な変位自
由端(E) に対応する最大変位を表す変位量δを測定する
ので,変位量の値が大きく,相対誤差を小さくして容易
に測定でき,且つ測定・解析に時間を要しない作用を有
する。
In the thermal displacement correction pretreatment process of the simple thermal displacement correction method for machine tools of the present invention, the thermal displacement measuring means of each axis (x, y, z) is a displacement capable of displacing one end of the stroke (ST). Since the displacement amount δ that represents the maximum displacement corresponding to the free end (E) is measured, the displacement amount is large, the relative error is small, and the measurement is easy, and the measurement and analysis do not take time. .

【0021】本発明の工作機械の簡易熱変位補正方法の
位置補正主工程において,勾配補正工程(S51) を用い,z
軸の補正量Czは,変位量δz をストローク(STz) 間に直
線勾配を用いて比例配分し,かつ変位量δs を一様に加
算して補正確保し, 他方,x及びy 軸の補正量Cx,Cy は,
それぞれ各変位量( δx,δy)を, 対応する各ストローク
(STx,STy) 間に直線勾配を用いて比例配分して補正確保
するので,該各ストローク間の補正が可能となり, 補正
量C の算出が線型補正になり,算出方法が簡単で, 且つ
補正量C を補正メモリ(M51) に格納する値は,各軸スト
ローク間の両端補正値を格納するだけで良い作用を有す
る。
In the position correction main process of the simple thermal displacement correction method for machine tools of the present invention, the gradient correction process (S51) is used, z
The correction amount Cz of the axis is proportional to the displacement amount δz by using the linear gradient between the strokes (STz), and the displacement amount δs is uniformly added to secure the correction amount. On the other hand, the correction amount of the x and y axes is corrected. Cx and Cy are
Each displacement amount (δx, δy) is calculated by the corresponding stroke.
Since a linear gradient is proportionally distributed between (STx, STy) to secure the correction, it is possible to correct between each stroke, and the correction amount C is calculated linearly. The value that stores the quantity C in the correction memory (M51) has only the effect of storing the correction values at both ends of each axis stroke.

【0022】本発明の工作機械の簡易熱変位補正方法の
位置補正主工程において,発熱関数及び冷却関数が,そ
れぞれ簡単な二定数で定まる一次遅れの式及び指数減衰
式で容易に表されるので,変位量サンプリング工程(S2)
の変位量演算手段により,該関数の解析的解法で, 現行
のサンプリング時刻:ti の各変位量δi の演算が容易に
行われ, 微分的加算を行わないので, 加算誤差を小さく
する作用を有する。
In the position correction main process of the simple thermal displacement correction method for a machine tool of the present invention, the heat generation function and the cooling function are easily expressed by the first-order lag equation and exponential decay equation which are determined by simple two constants, respectively. , Displacement sampling process (S2)
The displacement amount calculation means easily calculates the displacement amount δ i at the current sampling time: t i by the analytical solution method of the function, and differential addition is not performed. Have.

【0023】本発明の工作機械の簡易熱変位補正方法
は,クーラント装置を装備する工作機械,そして主軸・
切削工具が所定量の負荷状態である工作機械等,各種の
作動熱環境条件に対応して用いる事が出来る。
A simple thermal displacement correction method for a machine tool of the present invention is a machine tool equipped with a coolant device, and
It can be used in response to various operating thermal environment conditions such as machine tools where the cutting tool is under a certain amount of load.

【0024】本発明の工作機械の簡易熱変位補正方法
は,一次元或いは二次元各軸に移動装置を装備する工作
機械にも,対応する装備各軸に対し,該簡易熱変位補正
方法を適用できるものとする。
The simple thermal displacement correction method for a machine tool according to the present invention is applied to a machine tool having a moving device on each one-dimensional or two-dimensional axis, and the simple thermal displacement correction method is applied to each corresponding equipment axis. It should be possible.

【0025】[0025]

【実施例】この発明の実施例の図面において,図1は,
本発明の実施例を示す,工作機械の簡易熱変位補正方法
における,(A)は熱変位補正前処理工程に用いる,熱
変位測定手段を示す概略説明ブロック図,そして(B)
は該概略説明図の座標軸における,変位量δ,変位固定
端F,そして変位自由端E との関係を示す。図2は,工作
機械の簡易熱変位補正方法における,Z軸発熱変位量測
定, そして図3は,Z軸冷却変位量測定結果である。図
4は,工作機械の簡易熱変位補正方法における,(A)
はX軸発熱変位測定量,及び(B)はZ軸発熱変位測定
量, そして図5において, (A)は主軸発熱変位測定
量,及び(B)は冷却変位測定量である。図6は,工作
機械の簡易熱変位補正方法における,位置補正主工程で
ある。図7は,位置補正主工程の変位量サンプリング工
程に用いる概略変位量演算手段説明図, そして図8にお
いて,位置補正主工程の勾配補正工程を示す,(A)は
X軸補正量:Cx ,(B)はY軸補正量:Cy ,そして
(C)はZ軸補正量:Cz の概略補正量演算手段説明図で
ある。図9は,工作機械の簡易熱変位補正方法におけ
る,補正無しと補正有りの比較変位量測定結果の,
(A)はY軸測定値,そして(B)はZ軸測定値であ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the drawings of the embodiment of the present invention, FIG.
(A) is a schematic explanatory block diagram showing a thermal displacement measuring means used in a thermal displacement correction pretreatment step in a simple thermal displacement correcting method for a machine tool showing an embodiment of the present invention, and (B).
Shows the relationship between the displacement amount δ, the displacement fixed end F, and the displacement free end E on the coordinate axes of the schematic explanatory diagram. FIG. 2 shows the Z-axis heat displacement measurement in the simple thermal displacement correction method for a machine tool, and FIG. 3 shows the Z-axis cooling displacement measurement result. Fig. 4 shows (A) in a simple thermal displacement correction method for machine tools.
Is the X-axis heat displacement measurement amount, and (B) is the Z-axis heat displacement measurement amount, and in FIG. 5, (A) is the main spindle heat displacement measurement amount, and (B) is the cooling displacement measurement amount. FIG. 6 shows a position correction main process in a simple thermal displacement correction method for a machine tool. FIG. 7 is an explanatory view of a schematic displacement amount calculating means used in the displacement amount sampling process of the position correction main process, and FIG. 8 shows a gradient correction process of the position correction main process. (A) shows an X-axis correction amount: Cx, (B) is a schematic correction amount calculation means explanatory diagram of Y-axis correction amount: Cy, and (C) is Z-axis correction amount: Cz. Figure 9 shows the results of comparative displacement measurement with and without compensation in the simple thermal displacement compensation method for machine tools.
(A) is a Y-axis measurement value, and (B) is a Z-axis measurement value.

【0026】この発明の実施例を以下説明すると,請求
項1に対応する工作機械の簡易熱変位補正方法は,図1
に示すように,主軸本体(1a)の回転平均速度(Vs),3次元
(x,y,z軸) 各軸方向のボールネジ等から成る送り部材(2
b,3b,4b)上を動く移動部材(2c,3c,4c)の送り平均速度(V
x,Vy,Vz)とその稼働時間(t),更にこれらの作動熱環境条
件に起因する, 発熱及び冷却熱変位による主軸前端面(1
b)の主軸位置を常時補正する為の位置補正主工程を, 切
削加工工程と共に, 制御手段(5) により行う工作機械の
簡易熱変位補正方法であって,該位置補正主工程に用い
る各変位量δ( δx,δy,δz,δs)をそれぞれ表す発熱関
数f(t)及び冷却関数g(t)を予め定めるために, 熱変位補
正前処理工程を,熱変位測定手段を用いて行うことと
し,該工作機械において, 主軸(s) 軸心をz 軸とし,各
該発熱関数f(t)は,到達変位量δm が,発熱時定数τh
で時間t と共に飽和に達する, 一次遅れの式とし,該到
達変位量δm は, 対応する比例係数である特性係数K(k
x,ky,kz,ks)を有し, 移動頻度を含む平均速度V(Vx,Vy,V
z,Vs)に比例することとし,一方, 各該冷却関数g(t)
は,対応する作動を停止した時点で, 初期変位量δm か
ら指数関数的に冷却時定数τc で時間t と共に減衰す
る, 指数減衰式とし,そして該主軸の熱変位測定手段
は,該主軸前端面のz 軸方向の変位量δs を,ピックテ
スタ等の位置測定手段(10)により測定し, 一方,z軸の熱
変位測定手段は,回転自在な該送り部材(4b)のストロー
ク(STz) を定める, z 軸方向の変位を固定した一端部の
変位固定端(Fz)と,他端部の変位自在な変位自由端(Ez)
において,該変位自由端(Ez)に対応するz 軸移動台(4a)
端部で, 変位量δz を該位置測定手段により測定し, そ
してx 及びy 軸の熱変位測定手段は,該主軸前端面の対
応する側周角部近傍を, 各ストローク(STx,STy) の変位
自由端(Ex,Ey) で, 変位量( δx,δy)をそれぞれ該位置
測定手段により測定し,該位置補正主工程において,各
変位量δ( δx,δy,δz,δs)による,該主軸前端面の主
軸位置の補正量C は,図8に示す様に,勾配補正工程(S
51) を用い,z軸の補正量Czは,該変位量δz を該ストロ
ーク(STz) 間に直線勾配を用いて比例配分し,かつ該変
位量δs を一様に加算して補正確保し, 他方,x及びy 軸
の補正量Cx,Cy は,それぞれ各該変位量( δx,δy)を,
対応する各該ストローク(STx,STy) 間に直線勾配を用い
て比例配分して補正確保し,特に該熱変位補正前処理工
程を行う作動熱環境条件が,周囲雰囲気温度中で該主軸
が無負荷である事を特徴とする。
An embodiment of the present invention will be described below. A simple thermal displacement correction method for a machine tool according to claim 1 is as follows.
As shown in Fig. 3, the rotation average speed (Vs) of the spindle body (1a), 3D
(x, y, z axes) Feeding member (2
(b, 3b, 4b) Moving average speed (V) of moving member (2c, 3c, 4c)
x, Vy, Vz) and its operating time (t), and the spindle front end face (1
This is a simple thermal displacement correction method for a machine tool that performs the position correction main process for constantly correcting the spindle position in b) by the control means (5) together with the cutting process. To predetermine the heat generation function f (t) and the cooling function g (t) that represent the quantities δ (δx, δy, δz, δs), perform the thermal displacement correction pretreatment step using the thermal displacement measuring means. In the machine tool, the main axis (s) is the z-axis, and each heat generation function f (t) has an ultimate displacement δm of a heat generation time constant τh
Is a first-order lag equation that reaches saturation with time t, and the ultimate displacement δm is the characteristic coefficient K (k
x, ky, kz, ks) and average velocity V (Vx, Vy, V
z, Vs), while each cooling function g (t)
Is an exponential damping formula that decays exponentially from the initial displacement δm with a cooling time constant τc at time t when the corresponding operation is stopped, and the thermal displacement measuring means of the spindle is the front end face of the spindle. The displacement amount δs in the z-axis direction is measured by the position measuring means (10) such as a pick tester, while the z-axis thermal displacement measuring means determines the stroke (STz) of the rotatable feed member (4b). , the displacement fixed end (Fz) at one end where the displacement in the z-axis direction is fixed, and the free displacement end (Ez) at the other end
, The z-axis movable table (4a) corresponding to the free end of displacement (Ez)
At the end, the displacement amount δz is measured by the position measuring means, and the x and y axis thermal displacement measuring means measure the stroke displacement (STx, STy) in the vicinity of the corresponding side circumferential corner of the spindle front end face. At the displacement free end (Ex, Ey), the displacement amount (δx, δy) is measured by the position measuring means, and in the position correction main process, the displacement amount δ (δx, δy, δz, δs) As shown in Fig. 8, the correction amount C of the spindle position on the front end face of the spindle is
51), the correction amount Cz of the z-axis is proportionally distributed by using the linear gradient between the strokes (STz) and the displacement amount δz is uniformly added to secure the correction amount. On the other hand, the correction amounts Cx and Cy on the x and y axes are respectively the displacement amounts (δx, δy)
The linear gradient is proportionally distributed between the corresponding strokes (STx, STy) to ensure the correction, and especially the operating thermal environment condition for performing the thermal displacement correction pretreatment step is It is characterized by being a load.

【0027】本発明の実施例の請求項1に対応する工作
機械の簡易熱変位補正方法において,Z軸発熱変位量測
定の結果は,図2に示すように,測定条件として,移動
部材(4c)の送り平均速度:Vz=10m/min とし,ストローク
長:STz=500mmの往復移動を行いながら,変位自由端(Ez)
に対応するz 軸移動台(4a)端部で, 変位量δz の増加を
経過時間(t)の関数として,位置測定手段(10)により
測定した。δz=fz(t)の発熱関数は,fz(t)=δmz・[1- e
xp(-t/ τh z )]とし,該発熱関数の時定数τh は,測
定点を滑らかな曲線で結び, 到達変位量δm の1/2 をδ
1=δm/2 とし,δ1 に対応する時間t1を確保し, τh=t1
/In2=t1/0.693により,容易に該時定数τh を求める事
が出来る。該位置測定手段として,ピックテスタを用
い,接触子(ピック)により該変位量δz を精度:10μ
m/目盛で測定した。更に, 該到達変位量δm に対応する
送り部材(4b)の温度を,接触式サーモメータ(11)( 熱伝
対式ディジタル温度計:0.1℃分解表示温度) で,変位自
由端(Ez)の内側: 約100mm でモニター測定し, 温度変化
量は約14℃であった。
In the simple thermal displacement correction method for machine tools according to claim 1 of the embodiment of the present invention, the result of the Z-axis heat displacement measurement is shown in FIG. ) Feed average speed: Vz = 10m / min, Stroke length: STz = 500mm While performing reciprocal movement, the displacement free end (Ez)
At the end of the z-axis moving table (4a) corresponding to, the increase of the displacement amount δz was measured by the position measuring means (10) as a function of the elapsed time (t). The exothermic function of δz = fz (t) is fz (t) = δmz ・ [1- e
xp (-t / τh z )], the time constant τh of the exothermic function is such that the measurement points are connected by a smooth curve and 1/2 of the displacement δm reached is δ
Set 1 = δm / 2, secure time t1 corresponding to δ1, and set τh = t1
The time constant τh can be easily obtained by /In2=t1/0.693. A pick tester is used as the position measuring means, and the displacement amount δz is accurately measured by a contact (pick): 10 μ
Measured in m / scale. Further, the temperature of the feed member (4b) corresponding to the reached displacement amount δm is measured by the contact type thermometer (11) (thermocouple digital thermometer: 0.1 ° C decomposition display temperature) and the free end of displacement (Ez) is measured. Inside: Monitored at about 100 mm, temperature change was about 14 ℃.

【0028】本発明の実施例の請求項1に対応する工作
機械の簡易熱変位補正方法において,Z軸冷却変位量測
定の結果は,図3に示すように,測定条件として,上
記,到達変位量δm に到達した後,移動部材(4c)の往復
送り作動を停止し,変位自由端(Ez)に対応するz 軸移動
台(4a)端部で, 該変位量δm を初期変位量とし,変位量
δz の減衰を経過時間(t)の関数として,位置測定手
段(10)により測定した。δz=gz(t) の冷却関数は,gz
(t)=δmz・exp(-t/ τc z ) とし,該冷却関数の時定数
τc は,測定点を滑らかな曲線で結び, 該初期変位量δ
m の1/2 をδ1=δm/2 とし,δ1 に対応する時間t1を確
保し, τc=t1/In2=t1/0.693により,容易に該時定数τc
を求める事が出来る。
In the simple thermal displacement correction method for machine tools according to claim 1 of the embodiment of the present invention, the result of the Z-axis cooling displacement amount measurement is, as shown in FIG. After reaching the amount δm, the reciprocating feed operation of the moving member (4c) is stopped, and the displacement amount δm is set as the initial displacement amount at the end of the z-axis moving base (4a) corresponding to the free end (Ez) of displacement. The damping of the displacement amount δz was measured by the position measuring means (10) as a function of the elapsed time (t). The cooling function of δz = gz (t) is gz
(t) = δmz · exp (-t / τc z ), and the time constant τc of the cooling function is such that the measurement points are connected by a smooth curve and the initial displacement δ
One half of m is δ1 = δm / 2, and the time t1 corresponding to δ1 is secured, and τc = t1 / In2 = t1 / 0.693 makes it easy to obtain the time constant τc.
Can be asked.

【0029】本発明の実施例の請求項1に対応する工作
機械の簡易熱変位補正方法において,この様にして求め
た,各種の測定条件としての平均速度V(=Vx,Vy,Vz,Vs)
に対する, 各発熱関数f(t)及び及び冷却関数g(t)を定め
る, それぞれの特性係数K(=kx,ky,kz,ks)及び時定数τ
(=τh,τc)の測定結果の例を, 図4及び図5に示す。こ
れらの該測定結果から分かる様に,特に該発熱関数f(t)
においては,特定の軸に対して,対応する該平均速度
(V) を変えても, 時定数τは,誤差e=10% 以内で一致
し, 更にその特性係数(k) も, 誤差e=14% 以内で一致
し,従って到達変位量δm は, 該平均速度(V) にほぼ比
例する事を実証した。故に, 該発熱関数f(t)は,一般的
に, f(t)=K ・V ・[1- exp(-t/ τh)] と表す事が出来る。
In the simple thermal displacement correction method for a machine tool according to claim 1 of the embodiment of the present invention, the average velocity V (= Vx, Vy, Vz, Vs as various measurement conditions obtained in this way is obtained. )
For each exothermic function f (t) and cooling function g (t), the respective characteristic coefficient K (= kx, ky, kz, ks) and time constant τ
Examples of measurement results of (= τh, τc) are shown in Figs. 4 and 5. As can be seen from these measurement results, especially the exothermic function f (t)
, The corresponding average velocity for a particular axis
Even if (V) is changed, the time constant τ agrees within the error e = 10%, and the characteristic coefficient (k) also agrees within the error e = 14%. Therefore, the ultimate displacement δm is It was proved that it is almost proportional to the average speed (V). Therefore, the exothermic function f (t) can be generally expressed as f (t) = K.V. [1-exp (-t / .tau.h)].

【0030】本発明の実施例の請求項1に対応する工作
機械の簡易熱変位補正方法において,位置補正主工程
は,図6に示すように,工作機械の電源投入(S0)と共に
プログラムとして開始し, 先ず初期設定工程(S1)におい
て,各変位量δ( δx,δy,δz,δs)を, 所定のサンプリ
ング時間(Tm)間隔で, 演算して制御手段(5) の制御メモ
リ(M31) に格納し表示する該サンプリング時間(Tm)の選
択設定, 及び各軸の位置補正を行う, 変位量補正工程(S
5)を実行する時間間隔としての補正時間(Tc)の選択設定
を行い, 次に変位量サンプリング時間到達工程(S2)にお
いて,Δt=Tm( 例えば,30 秒毎) に到達すると, 変位量
サンプリング工程(S2)において,変位量演算手段を用
い,前回のサンプリング時刻:ti-1 における, 各変位量
δi-1(δx,δy,δz,δs)から,制御メモリ(M31) から読
み出した時間間隔Tm=ti -ti-1 間に変化した移動頻度を
含む平均速度データセットDS(Vi ) 値を用い, 発熱状態
移行(CASE I)か冷却状態移行(CASE II) かを判定し, 現
行のサンプリング時刻:ti の各変位量δi を演算確保
し,そして該変位量δi をデータセットDS( δ) とし
て, 該制御メモリ(M31) に格納し, 操作部(5a)に有する
表示手段で表示可能とし,次に変位量補正時間到達工程
(S4)において,Δt=Tc( 例えば,3分毎) に到達すると,
変位量補正工程(S5)において,現行時間に最も近い該デ
ータセットDS( δ)を該制御メモリ(M31) から読み出し,
勾配補正工程(S51) において,補正量演算手段を用い,
各軸の補正量Cx,Cy,Czを演算確保し,該制御手段の補
正メモリ(M51) に格納し, 加工制御工程(W1)からの移動
指令に従い, 該補正メモリ(M51) の補正量Cx,Cy,Czを読
み出し, インターフェイス(W2)を介して, 各軸移動装置
(2,3,4)の位置を補正する事を特徴とする。
In the simple thermal displacement correction method for a machine tool according to claim 1 of the embodiment of the present invention, the position correction main process starts as a program when the machine tool is turned on (S0) as shown in FIG. First, in the initial setting step (S1), each displacement amount δ (δx, δy, δz, δs) is calculated at a predetermined sampling time (Tm) interval and the control memory (M31) of the control means (5) is calculated. Selective setting of the sampling time (Tm) to be stored and displayed in and the position correction of each axis, displacement amount correction process (S
5) The correction time (Tc) is selected and set as the time interval to execute, and when Δt = Tm (for example, every 30 seconds) is reached in the displacement sampling time reaching step (S2), the displacement sampling is performed. in step (S2), using the displacement amount calculation means, the last sample time: at t i-1, the displacement amount δ i-1 (δx, δy , δz, δs) from read out from the control memory (M31) Determine the heating state transition (CASE I) or cooling state transition (CASE II) by using the average velocity data set DS (V i ) value including the movement frequency that changed during the time interval Tm = t i -t i-1. and the current sampling time: each displacement amount [delta] i of t i is calculated secured, and the displacement amount [delta] i as a data set DS ([delta]), and stores該制in control memory (M31), the operation unit (5a) It can be displayed by the display means provided in the next step
At (S4), when Δt = Tc (eg, every 3 minutes) is reached,
In the displacement amount correction step (S5), the data set DS (δ) closest to the current time is read from the control memory (M31),
In the gradient correction step (S51), using the correction amount calculation means,
The correction amounts Cx, Cy, Cz for each axis are calculated and stored in the correction memory (M51) of the control means, and the correction amount Cx of the correction memory (M51) is stored according to the movement command from the machining control process (W1). , Cy, Cz are read out, and each axis moving device is read through the interface (W2).
It is characterized by correcting the position of (2,3,4).

【0031】本発明の実施例の請求項1に対応する工作
機械の簡易熱変位補正方法において,位置補正主工程に
おける,変位量サンプリング工程(S2)に用いる変位量演
算手段は,図7に示すように,各変位量δ( δx,δy,δ
z,δs)に対応する,t- δ平面上の現行点:Pi の現行のサ
ンプリング時刻:ti の各変位量δi を演算確保するため
に,前回のサンプリング時刻:ti-1 における点:Pi-1
おいて,制御メモリ(M31) から読み出した時間間隔Tm=t
i -ti-1 間に変化した移動頻度を含む平均速度データセ
ットDS(Vi ) 値を用い, 前回の変位量: δi-1 と,今回
の平均速度データ:Vi とを比較し, 次の場合を判定す
る。CASE I:Vi > δi-1/K の場合は発熱状態移行とな
る。従って, 該点:Pi-1 と現行点:Pi を通る, 発熱関数
は,f(t)=K ・V i ・[1- exp(-t/ τh)] となり,この時
間軸:tの原点とt i-1 時刻との時間間隔:Mi-1 は,Mi-1
= -τh ・In[1- δi-1/(K・V i )] により,与えられT
i =Mi-1+Tmなので, 従って現行点:Pi において, δi =f(T i)=f(M i-1+Tm) に移行する。CASE II:V i ≦δi-1/K の場合は冷却状態
移行となる。従って, 該点:Pi-1 のδi-1 から,対応す
る冷却時定数τc で減衰する, 冷却関数は,g(t)= δ
i-1 ・exp(-t/ τc)となり,従って現行点:Pi ′におい
て, δi =g(Tm) =δi-1 ・exp(-Tm/τc) に移行する。この様にして, 現行のサンプリング時刻:t
i の各変位量δi を演算確保し,そして該変位量δi
データセットDS( δ) として, 該制御メモリ(M31) に格
納し,操作部(5a)に有する表示手段で表示可能とする。
In the simple thermal displacement correction method for a machine tool according to claim 1 of the embodiment of the present invention, the displacement amount calculation means used in the displacement amount sampling step (S2) in the position correction main step is shown in FIG. Thus, each displacement δ (δx, δy, δ
z, corresponding to .delta.s), t-[delta] current point on the plane: The current sampling time P i: each displacement amount [delta] i of t i in order to calculate secured, the last sample time: at t i-1 Point: At P i-1 , the time interval Tm = t read from the control memory (M31)
Using the average velocity data set DS (V i ) value including the movement frequency changed between i -t i-1 , the previous displacement amount: δ i-1 and this average velocity data: V i are compared. The following cases are judged. When CASE I: V i > δ i-1 / K, the heat generation state shifts. Therefore, the exothermic function passing through the point: P i-1 and the current point: P i is f (t) = K ・ V i・ [1- exp (-t / τh)], and this time axis: t The time interval between the origin and the time t i-1 : M i-1 is M i-1
= -τh ・ In [1- δ i-1 / (K ・ V i )] given by T
Since i = M i-1 + Tm, therefore, at the current point: P i , we move to δ i = f (T i ) = f (M i-1 + Tm). When CASE II: V i ≤ δ i-1 / K, the cooling state is entered. Therefore, the point: the [delta] i-1 of the P i-1, attenuated by a corresponding cooling time constant .tau.c, cooling function, g (t) = δ
i-1 · exp (-t / τc), so at the current point: P i ′, we move to δ i = g (Tm) = δ i-1 · exp (-Tm / τc). In this way, the current sampling time: t
Each displacement of [delta] i of i is calculated secured, and the displacement amount [delta] i as a data set DS ([delta]),該制stored in your memory (M31), and can be displayed on the display means having the operating portion (5a) To do.

【0032】本発明の実施例の請求項1に対応する工作
機械の簡易熱変位補正方法において,位置補正主工程の
勾配補正工程(S51) に用いる補正量演算手段は,図8に
示すように, (A)X軸の補正量Cxの場合,X軸ストローク長:STxの
中間を, 原点とし,該STx の両端を,それぞれ変位固定
端(Fx)及び変位自由端(Ex)とし,該変位自由端(Ex)にお
いて,変位量δx が発生するので,X軸の補正量Cx(x)
は,該STx の両端において,Cx(-STx/2)=0, そしてCx(S
Tx/2)=- δx を与え, 該ストローク長(STx) 間に直線勾
配を用いて比例配分して補正を確保する。 (B)Y軸の補正量Cyの場合,Y軸ストローク長:STyの
一端部である変位自由端(Ey)を原点とし,他端部を変位
固定端(Fy)とし,該変位自由端(Ey)において,変位量-
δy が発生するので,Y軸の補正量Cy(y) は,該STy の
両端において,Cy(STy)=0,そしてCy(0)=δy を与え, 該
ストローク長(STy) 間に直線勾配を用いて比例配分して
補正を確保する。 (C)Z軸の補正量Czの場合,Z軸ストローク長:STzの
一端部である変位固定端(Fz)を原点とし,他端部を変位
自由端(Ez)とし,該変位自由端(Ez)において, 変位量δ
z が発生すると共に,主軸前端面(1b)の変位量- δs が,
原点において発生するので,z 軸方向の補正量Cz(z)
は, 該変位量δz を該ストローク(STz) 間に直線勾配を
用いて比例配分し,かつ該変位量δs を一様に加算して
補正確保するので,Cz(0)=δs,そしてCz(STz)=δs-δz
となり, 該ストローク(STz) 間に直線勾配を用いて補正
確保する事が出来る。これらの補正量Cx,Cy,Czを補正メ
モリ(M51) に格納する値は,各軸ストローク間は両端補
正値を結ぶ直線勾配補正なので,それぞれ両端補正値を
格納するだけで良い事を特徴とする。
In the simple thermal displacement correction method for machine tools according to claim 1 of the embodiment of the present invention, the correction amount calculation means used in the gradient correction step (S51) of the main position correction step is as shown in FIG. , (A) In the case of the correction amount Cx of the X axis, the middle of the X axis stroke length: STx is the origin, and both ends of the STx are the displacement fixed end (Fx) and the displacement free end (Ex). A displacement amount δx is generated at the free end (Ex), so the correction amount Cx (x) on the X-axis
Is Cx (-STx / 2) = 0, and Cx (S
Tx / 2) =-δx is given, and correction is ensured by proportional distribution using a linear gradient between the stroke lengths (STx). (B) In the case of the Y-axis correction amount Cy, the origin is the displacement free end (Ey), which is one end of the Y-axis stroke length: STy, and the other end is the displacement fixed end (Fy). Ey), displacement-
Since δy is generated, the Y-axis correction amount Cy (y) gives Cy (STy) = 0 and Cy (0) = δy at both ends of the STy, and the linear gradient between the stroke lengths (STy). Proportional distribution is used to secure the correction. (C) In the case of the Z-axis correction amount Cz, the displacement fixed end (Fz), which is one end of the Z-axis stroke length: STz, is the origin, and the other end is the displacement free end (Ez). Ez), the amount of displacement δ
When z occurs, the displacement amount of the spindle front end face (1b) -δs becomes
Since it occurs at the origin, the correction amount Cz (z) in the z-axis direction
Since the displacement amount δz is proportionally distributed between the strokes (STz) using a linear gradient, and the displacement amount δs is uniformly added to secure the correction, Cz (0) = δs, and Cz ( STz) = δs-δz
Therefore, the correction can be secured by using the linear gradient during the stroke (STz). The values stored in the correction memory (M51) for these correction amounts Cx, Cy, Cz are linear gradient corrections that connect the correction values at both ends between each axis stroke, so it is only necessary to store the correction values at both ends. To do.

【0033】本発明の実施例の請求項1に対応する工作
機械の簡易熱変位補正方法において,変位量測定結果
は,図9(A)に示すように,補正無しと補正有りの比
較変位量Y軸測定結果において,補正無しの場合の最大
変位量は,16μm であったが,補正有りにより,最大変
位量を2 μm 以下に抑えることができ,そして図9
(B)に示すように,補正無しと補正有りの比較変位量
Z軸測定結果において,補正無しの場合の最大変位量
は,32μm であったが,補正有りにより,最大変位量を
10μm 以下に抑えることができ, この様に該簡易熱変位
補正方法を用いることにより,最大変位量を10μm 程度
以下に抑える事が出来る。
In the simple thermal displacement correction method for a machine tool according to claim 1 of the embodiment of the present invention, the displacement amount measurement results are as shown in FIG. In the Y-axis measurement result, the maximum displacement without correction was 16 μm, but with correction, the maximum displacement could be suppressed to 2 μm or less, and Fig. 9
As shown in (B), in the comparison displacement amount Z-axis measurement result with and without correction, the maximum displacement amount without correction was 32 μm.
It can be suppressed to 10 μm or less, and by using this simple thermal displacement correction method, the maximum displacement can be suppressed to about 10 μm or less.

【0034】[0034]

【発明の効果】本発明は,以上説明した様な形態で実施
され,以下に記載される様な効果を有する。
The present invention is carried out in the form as described above and has the effects as described below.

【0035】本発明の工作機械の簡易熱変位補正方法
は,発熱関数及び冷却関数として,それぞれ簡単な二定
数で定まる一次遅れの式及び指数減衰式を用いたにも係
わらず,驚くべきことに,位置補正主工程において,各
軸ストローク間にわたって,最大変位量を約10μm 以
下に抑える効果を有する。
The method for correcting thermal displacement of a machine tool according to the present invention is surprising in spite of using a first-order lag equation and an exponential damping equation that are determined by simple two constants as a heat generation function and a cooling function, respectively. In the position correction main process, it has the effect of suppressing the maximum displacement amount to about 10 μm or less over each axis stroke.

【0036】本発明の工作機械の簡易熱変位補正方法
は,熱変位測定手段において,各軸の変位量は,ストロ
ーク一端部の変位自在な変位自由端に対応する最大変位
を表す変位量δを測定するので,変位量の値が大きく,
相対誤差を小さして容易に測定でき,且つ測定・解析に
時間を要しない効果を有する。
In the simple thermal displacement correction method for a machine tool of the present invention, in the thermal displacement measuring means, the displacement amount of each axis is the displacement amount δ representing the maximum displacement corresponding to the freely displaceable free end of one end of the stroke. Since it is measured, the displacement value is large,
It has the effect of making relative error small and making it easy to measure, and not requiring time for measurement and analysis.

【0037】本発明の工作機械の簡易熱変位補正方法
は,勾配補正工程において,z軸の補正量Czが,変位量δ
z をストローク(STz) 間に直線勾配を用いて比例配分
し,かつ変位量δs を一様に加算して補正確保し, 他
方,x及びy 軸の補正量Cx,Cy は,それぞれ各変位量( δ
x,δy)を, 対応する各ストローク(STx,STy) 間に直線勾
配を用いて比例配分して補正確保するので,該各ストロ
ーク間の補正が可能となり,補正量C の算出が線型補正
になり,算出方法が簡単で, 且つ補正量C を補正メモリ
に格納する値は,各軸ストローク間の両端補正値を格納
するだけで良い効果を有する。
In the simple thermal displacement correction method for the machine tool of the present invention, the correction amount Cz of the z axis is the displacement amount δ in the gradient correction step.
z is proportionally distributed between strokes (STz) by using a linear gradient, and the displacement amount δs is uniformly added to secure the correction, while the correction amounts Cx and Cy for the x and y axes are the respective displacement amounts. (δ
x, δy) is proportionally distributed between the corresponding strokes (STx, STy) using a linear gradient to ensure the correction, so that the correction between the strokes is possible and the correction amount C can be calculated by linear correction. Therefore, the calculation method is simple, and the value to store the correction amount C in the correction memory has only the effect of storing the correction values at both ends of each axis stroke.

【0038】本発明の工作機械の簡易熱変位補正方法
は,発熱関数及び冷却関数が,それぞれ簡単な二定数で
定まる一次遅れの式及び指数減衰式で容易に表されるの
で,変位量サンプリング工程の変位量演算手段により,
該関数の解析的解法で, 現行のサンプリング時刻の各変
位量の演算が容易に行われ, 微分的加算を行わないの
で, 加算誤差を小さくする効果を有する。
In the simple thermal displacement correction method for a machine tool of the present invention, the heat generation function and the cooling function are easily expressed by the first-order lag equation and the exponential decay equation which are determined by simple two constants, respectively. Displacement amount calculation means of
By the analytical solution of the function, each displacement amount at the current sampling time is easily calculated, and since differential addition is not performed, it has the effect of reducing the addition error.

【0039】本発明の工作機械の簡易熱変位補正方法
は,クーラント装置を装備する工作機械,そして主軸・
切削工具が所定量の負荷状態である工作機械等,各種の
作動熱環境条件に対応して用いる事が出来る。
A simple thermal displacement correction method for a machine tool according to the present invention is a machine tool equipped with a coolant device, and
It can be used in response to various operating thermal environment conditions such as machine tools where the cutting tool is under a certain amount of load.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示す,工作機械の簡易熱変位
補正方法における,(A)は熱変位補正前処理工程に用
いる,熱変位測定手段を示す概略説明ブロック図,そし
て(B)は該概略説明図の座標軸における,変位量δ,
変位固定端F,そして変位自由端E との関係。
FIG. 1 is a schematic explanatory block diagram showing a thermal displacement measuring means used in a thermal displacement correction pretreatment step in a simple thermal displacement correction method for a machine tool showing an embodiment of the present invention; and (B). Is the displacement amount δ on the coordinate axes of the schematic explanatory diagram,
The relationship between the displacement fixed end F and the displacement free end E.

【図2】本発明の実施例を示す,工作機械の簡易熱変位
補正方法における,Z軸発熱変位量測定。
FIG. 2 shows Z-axis heat displacement measurement in a simple thermal displacement correction method for a machine tool showing an embodiment of the present invention.

【図3】本発明の実施例を示す,工作機械の簡易熱変位
補正方法における,Z軸冷却変位量測定。
FIG. 3 shows Z-axis cooling displacement measurement in a simple thermal displacement correction method for machine tools, showing an embodiment of the present invention.

【図4】本発明の実施例を示す,工作機械の簡易熱変位
補正方法における,(A)はX軸発熱変位測定量,そし
て(B)はZ軸発熱変位測定量。
FIG. 4 is a simplified thermal displacement correction method for a machine tool showing an embodiment of the present invention, (A) is an X-axis heat displacement measurement amount, and (B) is a Z-axis heat displacement measurement amount.

【図5】本発明の実施例を示す,工作機械の簡易熱変位
補正方法における,(A)は主軸発熱変位測定量,そし
て(B)は冷却変位測定量。
5A and 5B show a spindle heat generation displacement measurement amount and a cooling displacement measurement amount in a simple thermal displacement correction method for a machine tool showing an embodiment of the present invention.

【図6】本発明の実施例を示す,工作機械の簡易熱変位
補正方法における,位置補正主工程。
FIG. 6 is a position correction main process in a simple thermal displacement correction method for a machine tool showing an embodiment of the present invention.

【図7】本発明の実施例を示す,工作機械の簡易熱変位
補正方法における,位置補正主工程の変位量サンプリン
グ工程に用いる概略変位量演算手段説明図。
FIG. 7 is an explanatory diagram of a schematic displacement amount calculating means used in a displacement amount sampling process of a position correction main process in a simple thermal displacement correction method for a machine tool, showing an embodiment of the present invention.

【図8】本発明の実施例を示す,工作機械の簡易熱変位
補正方法における,位置補正主工程の勾配補正工程を示
す,(A)はX軸補正量:Cx ,(B)はY軸補正量:C
y,そして(C)はZ軸補正量:Cz の概略補正量演算手
段説明図。
FIG. 8 shows a gradient correction process of a position correction main process in a simple thermal displacement correction method for a machine tool showing an embodiment of the present invention. (A) is an X-axis correction amount: Cx, (B) is a Y-axis Correction amount: C
y, and (C) are schematic diagrams of the Z-axis correction amount: Cz.

【図9】本発明の実施例を示す,工作機械の簡易熱変位
補正方法における,補正無しと補正有りの比較変位量測
定結果の,(A)はY軸測定値,そして(B)はZ軸測
定値。
9A and 9B show comparative displacement amount measurement results with and without correction in a simple thermal displacement correction method for a machine tool showing an embodiment of the present invention, where A is a Y-axis measurement value and B is a Z value. Axis measurement.

【符号の説明】[Explanation of symbols]

1 主軸回転装置 1a 主軸本体 1b 主軸前端面 1c 切削工具 1d 主軸モータ 2 X軸移動装置 2d X軸モータ 3 Y軸移動装置 3a Y軸移動台 3b Y軸送り部材 3c Y軸移動部材 3d Y軸モータ 3e Y軸変位固定部材 4 Z軸移動装置 4a Z軸移動台 4b Z軸送り部材 4c Z軸移動部材 4d Z軸モータ 4e Z軸変位固定部材 5 制御手段 5a 操作部 6 治具 7 加工物 8 架台 10 位置測定手段 11 温度測定手段 δ 変位量(添字x,y,z は各軸, そしてs は主軸に
属する) δm 到達変位量(添字x,y,z は各軸, そしてs は主
軸に属する) τ 時定数( 添字h は発熱状態, そしてc は冷却状
態に属する) e 誤差 f(t) 発熱関数(添字x,y,z は各軸, そしてs は主軸
に属する) g(t) 冷却関数(添字x,y,z は各軸, そしてs は主軸
に属する) rpm 回転平均速度: 分当たりの回転数 s 主軸 t 時間 C 補正量( 添字x,y,z は各軸に属する) DS データ・セット E 変位自由端(添字x,y,z は各軸に属する) F 変位固定端(添字x,y,z は各軸に属する) K 特性係数(=δm/V)(添字x,y,z は各軸, そして
s は主軸に属する) ST ストローク(添字x,y,z は各軸に属する) Tc 補正時間 Tm サンフ゜リンク゛時間 V 平均速度(添字x,y,z は各軸の送り速度, そし
てs は主軸の回転速度に属する)
1 spindle rotation device 1a spindle body 1b spindle front end surface 1c cutting tool 1d spindle motor 2 X-axis moving device 2d X-axis motor 3 Y-axis moving device 3a Y-axis moving table 3b Y-axis feed member 3c Y-axis moving member 3d Y-axis motor 3e Y-axis displacement fixing member 4 Z-axis moving device 4a Z-axis moving table 4b Z-axis feed member 4c Z-axis moving member 4d Z-axis motor 4e Z-axis displacement fixing member 5 Control means 5a Operation part 6 Jig 7 Workpiece 8 stand 10 Position measuring means 11 Temperature measuring means δ Displacement (subscripts x, y, z belong to each axis, and s belongs to the main axis) δm Reachable displacement (subscripts x, y, z belong to each axis, and s belongs to the main axis) ) τ time constant (subscript h belongs to heating state, and c belongs to cooling state) e error f (t) heating function (subscripts x, y, z belong to each axis, and s belongs to main axis) g (t) cooling Function (subscripts x, y, z belong to each axis, and s belongs to the main axis) rpm Average rotation speed: rotations per minute s Axis t Time C Correction amount (Subscript x, y, z belongs to each axis) DS Data set E Displacement free end (Subscript x, y, z belongs to each axis) F Displacement fixed end (Subscript x, y, z z characteristic coefficient (= δm / V) (subscript x, y, z is each axis, and
ST stroke (suffixes x, y, z belong to each axis) Tc compensation time Tm sampling time V average speed (subscripts x, y, z are feed speeds of each axis, and s is rotation of the spindle) Belongs to speed)

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3C001 KA05 KB02 KB04 TA04 TB01 TB05 TB09 TB10 TC05 TC09 TD03 TD07 3C029 BB02 5H269 AB01 BB01 BB03 CC02 CC18 DD01 EE05 EE07 EE11 EE14 FF06 GG06 NN04 NN07 NN16 PP17    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 3C001 KA05 KB02 KB04 TA04 TB01                       TB05 TB09 TB10 TC05 TC09                       TD03 TD07                 3C029 BB02                 5H269 AB01 BB01 BB03 CC02 CC18                       DD01 EE05 EE07 EE11 EE14                       FF06 GG06 NN04 NN07 NN16                       PP17

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】主軸本体(1a)の回転平均速度(Vs),3次元各
軸方向の送り部材(2b,3b,4b)上を動く移動部材(2c,3c,4
c)の送り平均速度(Vx,Vy,Vz)とその稼働時間(t),更にこ
れらの作動熱環境条件に起因する, 発熱及び冷却熱変位
による主軸前端面(1b)の主軸位置を常時補正する為の位
置補正主工程を, 切削加工工程と共に, 制御手段(5) に
より行う工作機械の簡易熱変位補正方法であって,該位
置補正主工程に用いる各変位量δをそれぞれ表す発熱関
数f(t)及び冷却関数g(t)を予め定めるために, 熱変位補
正前処理工程を,熱変位測定手段を用いて,行うことと
し,該工作機械において, 主軸(s) 軸心をz 軸とし,各
該発熱関数f(t)は,到達変位量δm が,発熱時定数τh
で時間t と共に飽和に達する, 一次遅れの式とし,該到
達変位量δm は, 対応する比例係数である特性係数K(k
x,ky,kz,ks)を有し, 移動頻度を含む平均速度V(Vx,Vy,V
z,Vs)に比例することとし,一方,各該冷却関数g(t)は,
対応する作動を停止した時点で, 初期変位量δm から指
数関数的に冷却時定数τc で時間t と共に減衰する, 指
数減衰式とし,そして該主軸の熱変位測定手段は,該主
軸前端面のz 軸方向の変位量δs を,位置測定手段(10)
により測定し, 一方,z 軸の熱変位測定手段は,回転自
在な該送り部材(4b)のストローク(STz) を定める, z 軸
方向の変位を固定した一端部の変位固定端(Fz)と,他端
部の変位自在な変位自由端(Ez)において,該変位自由端
(Ez)に対応する位置で, 変位量δz を該位置測定手段に
より測定し, そしてx 及びy 軸の熱変位測定手段は,該
主軸前端面の対応する側周角部近傍を, 各ストローク(S
Tx,STy) の変位自由端(Ex,Ey) で, 変位量( δx,δy)を
それぞれ該位置測定手段により測定し,該位置補正主工
程において,各変位量δ( δx,δy,δz,δs)による,該
主軸前端面の主軸位置の補正量C は,勾配補正工程(S5
1) を用い,z軸の補正量Czは,該変位量δz を該ストロ
ーク(STz) 間に直線勾配を用いて比例配分し,かつ該変
位量δs を一様に加算して補正確保し, 他方,x及びy 軸
の補正量Cx,Cy は,それぞれ各該変位量( δx,δy)を,
対応する各該ストローク(STx,STy) 間に直線勾配を用い
て比例配分して補正確保し,特に該熱変位補正前処理工
程を行う作動熱環境条件が,周囲雰囲気温度中で該主軸
が無負荷である事を特徴とする工作機械の簡易熱変位補
正方法。
1. A moving member (2c, 3c, 4) that moves on a rotation average speed (Vs) of a main spindle body (1a) and a feed member (2b, 3b, 4b) in each three-dimensional axial direction.
The average feed rate (Vx, Vy, Vz) and its operating time (t) in c), and the spindle position of the spindle front end face (1b) due to heat and cooling heat displacement due to these operating thermal environment conditions are constantly corrected. This is a simple thermal displacement correction method for a machine tool that performs the position correction main process together with the cutting process by the control means (5) .The heat generation function f represents each displacement δ used in the position correction main process. In order to predetermine (t) and the cooling function g (t), the thermal displacement correction pretreatment process is performed using the thermal displacement measuring means, and in the machine tool, the main axis (s) axis is the z axis. In each heat generation function f (t), the reached displacement amount δm is the heat generation time constant τh
Is a first-order lag equation that reaches saturation with time t, and the ultimate displacement δm is the characteristic coefficient K (k
x, ky, kz, ks) and average velocity V (Vx, Vy, V
z, Vs), while each cooling function g (t) is
When the corresponding operation is stopped, the exponential decay of the initial displacement amount δm with the cooling time constant τc is performed with time t, and the exponential decay formula is used. Axial displacement δs is measured by the position measuring means (10)
On the other hand, the z-axis thermal displacement measuring means defines the stroke (STz) of the rotatable feed member (4b) and the displacement fixed end (Fz) at one end that fixes the displacement in the z-axis direction. , At the other end of displacement free end (Ez)
At the position corresponding to (Ez), the displacement amount δz is measured by the position measuring means, and the thermal displacement measuring means of the x and y axes measure the strokes near the corresponding side circumferential corners of the front end face of the spindle. S
Tx, STy) at the displacement free ends (Ex, Ey), the displacements (δx, δy) are measured by the position measuring means, and the displacements δ (δx, δy, δz, The correction amount C of the spindle position on the front end face of the spindle according to δs) is calculated by the gradient correction step (S5
1), the correction amount Cz of the z-axis is proportionally distributed by using a linear gradient between the strokes (STz), and the displacement amount δs is uniformly added to secure the correction amount Cz. On the other hand, the correction amounts Cx and Cy on the x and y axes are respectively the displacement amounts (δx, δy)
The linear gradient is proportionally distributed between the corresponding strokes (STx, STy) to ensure the correction, and especially the operating thermal environment condition for performing the thermal displacement correction pretreatment step is A simple thermal displacement correction method for machine tools characterized by being a load.
【請求項2】熱変位補正前処理工程を行う作動熱環境条
件が,加工部近傍を冷却する所定の量のクーラント液を
循環使用し,クーラント装置を装備する,請求項1記載
の工作機械の簡易熱変位補正方法。
2. The machine tool according to claim 1, wherein the working thermal environment conditions for performing the thermal displacement correction pretreatment step are such that a predetermined amount of coolant liquid for cooling the vicinity of the processing portion is circulated and equipped with a coolant device. Simple thermal displacement correction method.
【請求項3】熱変位補正前処理工程を行う作動熱環境条
件が,主軸本体(1a)・切削工具(1c)が所定量の負荷状態
である, 請求項1及び2記載の工作機械の簡易熱変位補
正方法。
3. The simple machine tool according to claim 1 or 2, wherein the working thermal environment condition in which the thermal displacement correction pretreatment step is performed is that the spindle body (1a) and the cutting tool (1c) are loaded with a predetermined amount. Thermal displacement compensation method.
JP2002047535A 2002-02-25 2002-02-25 Simple thermal displacement compensation method for machine tools Expired - Fee Related JP3517738B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002047535A JP3517738B2 (en) 2002-02-25 2002-02-25 Simple thermal displacement compensation method for machine tools

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002047535A JP3517738B2 (en) 2002-02-25 2002-02-25 Simple thermal displacement compensation method for machine tools

Publications (2)

Publication Number Publication Date
JP2003245844A true JP2003245844A (en) 2003-09-02
JP3517738B2 JP3517738B2 (en) 2004-04-12

Family

ID=28660568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002047535A Expired - Fee Related JP3517738B2 (en) 2002-02-25 2002-02-25 Simple thermal displacement compensation method for machine tools

Country Status (1)

Country Link
JP (1) JP3517738B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009061557A (en) * 2007-09-07 2009-03-26 Kira Corporation:Kk Thermal displacement compensation method for ball screw and nc machine tool performing the method
JP2013146823A (en) * 2012-01-19 2013-08-01 Fanuc Ltd Thermal displacement compensating device for machine tool
JP2013202741A (en) * 2012-03-28 2013-10-07 Mitsubishi Electric Corp Control device for machine tool and machine tool
CN110394686A (en) * 2019-06-26 2019-11-01 东华大学 It is a kind of actively to seek position and correction installation system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102589476B1 (en) * 2019-08-22 2023-10-16 주식회사 디엔솔루션즈 Method and apparatus for correcting thermal deformation of machine tool spindle, machine tools using the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009061557A (en) * 2007-09-07 2009-03-26 Kira Corporation:Kk Thermal displacement compensation method for ball screw and nc machine tool performing the method
JP4538480B2 (en) * 2007-09-07 2010-09-08 株式会社キラ・コーポレーション Ball screw thermal displacement compensation method and NC machine tool executing the compensation method
JP2013146823A (en) * 2012-01-19 2013-08-01 Fanuc Ltd Thermal displacement compensating device for machine tool
US9092025B2 (en) 2012-01-19 2015-07-28 Fanuc Corporation Thermal displacement compensating device for machine tool
JP2013202741A (en) * 2012-03-28 2013-10-07 Mitsubishi Electric Corp Control device for machine tool and machine tool
CN110394686A (en) * 2019-06-26 2019-11-01 东华大学 It is a kind of actively to seek position and correction installation system

Also Published As

Publication number Publication date
JP3517738B2 (en) 2004-04-12

Similar Documents

Publication Publication Date Title
JP4359573B2 (en) Machine tool thermal displacement compensation method
Schmitz et al. Case study: A comparison of error sources in high-speed milling
JP3792266B2 (en) Method and apparatus for correcting thermal displacement of machine tool
Gebhardt et al. High precision grey-box model for compensation of thermal errors on five-axis machines
US20060089745A1 (en) Method and apparatus for correcting thermal displacement of machine tool
JP5811102B2 (en) Thermal displacement correction apparatus and thermal displacement correction method
JP2001269841A (en) Method and device for automatically correcting measurement error
JP3151655B2 (en) Estimation method of thermal displacement of machine tools
JPH0798607A (en) Object movement apparatus and its control unit
Bitar-Nehme et al. Thermal volumetric effects under axes cycling using an invar R-test device and reference length
CN108356603B (en) Method and system for compensating thermal deformation error of spindle of five-axis numerical control machine tool
JP3517738B2 (en) Simple thermal displacement compensation method for machine tools
JP6155946B2 (en) Method for determining linear expansion coefficient of each member of machine tool and thermal displacement correction device for machine tool
Ko et al. Particular behavior of spindle thermal deformation by thermal bending
US6539274B1 (en) Method for compensating for temperature-related dimensional deviations in machine geometry
JP2017087405A (en) Thermal displacement correction device of machine tool
JP2004042260A (en) Thermal displacement correcting method for machine tool, and device thereof
JP2015009352A (en) Thermal displacement correction method and thermal displacement correction device
CN109765844B (en) Numerical control machine tool temperature error compensation estimation method and device
Kruth et al. Interaction between workpiece and CMM during geometrical quality control in non-standard thermal conditions
JP2002239872A (en) Thermal displacement correcting method and thermal displacement correcting coefficient changing method as well as numerical control device having the same correcting function
Segonds et al. Compensation for machining defects due to spindle dilatation
JP5334932B2 (en) Parameter setting method and parameter setting device
Mareš et al. Enhancement of specialised vertical turning lathe accuracy through minimisation of thermal errors depending on turning and milling operations
Schmitz et al. Part accuracy in high-speed machining: preliminary results

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040113

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110206

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees