JP2003243675A - Polycrystalline silicon wafer for solar cell and its manufacturing method - Google Patents

Polycrystalline silicon wafer for solar cell and its manufacturing method

Info

Publication number
JP2003243675A
JP2003243675A JP2002041655A JP2002041655A JP2003243675A JP 2003243675 A JP2003243675 A JP 2003243675A JP 2002041655 A JP2002041655 A JP 2002041655A JP 2002041655 A JP2002041655 A JP 2002041655A JP 2003243675 A JP2003243675 A JP 2003243675A
Authority
JP
Japan
Prior art keywords
wafer
crystal grains
polycrystalline silicon
solar cell
silicon wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002041655A
Other languages
Japanese (ja)
Inventor
Shinko Tsuchida
真弘 土田
Ryuji Ozawa
竜司 小澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002041655A priority Critical patent/JP2003243675A/en
Publication of JP2003243675A publication Critical patent/JP2003243675A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polycrystalline silicon wafer for a solar cell which has superior photoelectric conversion efficiency and its manufacturing method. <P>SOLUTION: The polycrystalline silicon wafer for the solar cell which has many sliced crystal grains is characterized in that crystal grains of ≥3 in the ratio of the maximum value of the long size and the maximum value of the short side of rectangles circumscribed with the crystal grains are included in one wafer by ≥75% and, preferably, a standard deviation of a distribution of angles between the long-axis direction of the rectangle having the maximum long-side value among the rectangles circumscribed with the crystal grains and the reference line of the wafer is ≤25°. Such a polycrystalline silicon wafer for a solar cell can be formed by slicing a polycrystalline ingot for solar cells in parallel to the growing direction of the crystal grains. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は光電変換効率が優れ
た太陽電池用多結晶シリコンウエハ及びその製造方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polycrystalline silicon wafer for solar cells having excellent photoelectric conversion efficiency and a method for manufacturing the same.

【0002】[0002]

【従来の技術】近年、半導体デバイスの高集積化、細密
化、基板の大口径化の要請は一段と厳しいものになり、
それに伴って半導体基板として利用されるシリコン基板
の高品質化、すなわち結晶欠陥の低減が求められてい
る。結晶欠陥の中でも結晶粒界は、未結合手や不純物原
子の密度が高くて少数キャリヤが再結合しやすいため、
太陽電池の変換効率を下げる大きな要因となる。
2. Description of the Related Art In recent years, demands for higher integration, finer integration of semiconductor devices and larger diameters of substrates have become more severe.
Along with this, it is required to improve the quality of silicon substrates used as semiconductor substrates, that is, to reduce crystal defects. Among the crystal defects, the crystal grain boundaries have high density of dangling bonds and impurity atoms, so that minority carriers are easily recombined.
This is a major factor in reducing the conversion efficiency of solar cells.

【0003】そこで、結晶粒径を大きくすることにより
ウエハ一枚に占める総粒界長さを短くする製造方法とし
て、米国クリスタルシステムズ社のHEM法(特公昭5
8−54115号)などの製造方法が提案されている。
つまり、ルツボの側壁部を半導体材料の融点以上の温度
に維持し、ルツボの底部中心部から熱を奪いながら凝固
させるHEM法において、ルツボ底に種結晶を敷く方法
が開示されている。
Therefore, as a manufacturing method in which the total grain boundary length occupying one wafer is shortened by increasing the crystal grain size, the HEM method of Crystal Systems, Inc. (US Pat.
No. 8-54115) has been proposed.
That is, a method of laying a seed crystal on the bottom of the crucible is disclosed in the HEM method in which the side wall of the crucible is maintained at a temperature equal to or higher than the melting point of the semiconductor material and heat is taken from the center of the bottom of the crucible to solidify.

【0004】[0004]

【発明が解決しようとする課題】ところが、単結晶並み
の光電変換効率を得るためには、粒径は数mm以上あれ
ばよいとの報告(多結晶Si太陽電池の現状:応用物理
第50巻第4号1981)もあり、結晶粒を大きくする
だけでは高効率太陽電池を実現することはできない。そ
のため、粒界の性質や粒形状に関する知見が必要とされ
ていた。
However, in order to obtain photoelectric conversion efficiency comparable to that of a single crystal, it is reported that the particle size should be several mm or more (Current status of polycrystalline Si solar cell: Applied Physics Vol. 50). No. 4, 1981), it is not possible to realize a high-efficiency solar cell simply by enlarging the crystal grains. Therefore, knowledge on the nature and shape of the grain boundaries has been required.

【0005】このうち粒界の性質については、水素原子
などをウエハ内に導入してダングリングボンドを不活性
化するパッシベーション技術に関する研究が盛んになさ
れているが、粒形状についての研究例は少なく、変換効
率の優れた太陽電池用多結晶シリコンウエハに必要な粒
形状については、結晶粒の大部分が一定の方向に配向す
る長軸を持つように形成するとの記述(実開平5−55
564号)にとどまっており、明確な粒形状の知見はな
かった。そのため、従来、鋳型鋳造した太陽電池用多結
晶シリコンインゴットは凝固方向に対して垂直にスライ
スされており、このようなウエハでは結晶粒の大部分が
一定の方向に配向する形状を持つウエハではなく、不規
則な形状を持った粒が分布したウエハになっていた。つ
まり、結晶粒に外接する長方形の長辺の最大値と短辺の
最小値の比が3以下か、3以上のものが75%以下のウ
エハであった。
Regarding the properties of the grain boundaries, much research has been conducted on the passivation technology for inactivating dangling bonds by introducing hydrogen atoms into the wafer, but there are few studies on the grain shape. Regarding the grain shape required for a polycrystalline silicon wafer for solar cells with excellent conversion efficiency, it is described that most of the crystal grains are formed so as to have a major axis oriented in a certain direction (Actual Publication No. H5-55).
No. 564) and no clear grain shape was found. Therefore, conventionally, the cast polycrystalline silicon ingot for solar cells is sliced perpendicularly to the solidification direction, and such a wafer is not a wafer having a shape in which most of the crystal grains are oriented in a certain direction. The wafer had irregularly shaped grains distributed. That is, the ratio of the maximum value of the long side to the minimum value of the short side of the rectangle circumscribing the crystal grain was 3 or less, or 3 or more was 75% or less of the wafer.

【0006】一般的な太陽電池では結晶粒内で発生した
キャリヤは櫛型電極で収集されるが、キャリヤが櫛型電
極に到達する途中に粒界が存在すると、その粒界が抵抗
となって太陽電池としての特性を下げることになる。そ
のため、櫛型電極を効果的に配置してキャリヤの収集効
率を高める必要があるが、前記のような不規則な形状を
持った粒が分布したウエハでは結晶粒界も不規則な分布
となり、太陽電池の櫛型電極を効果的に配置することが
できず、太陽電池としての特性を下げる要因になってい
た。
In a general solar cell, carriers generated in crystal grains are collected by a comb-shaped electrode. However, if there is a grain boundary on the way of the carrier reaching the comb-shaped electrode, the grain boundary becomes a resistance. This will reduce the characteristics of the solar cell. Therefore, it is necessary to effectively arrange the comb-shaped electrodes to enhance the carrier collection efficiency, but in the wafer in which the grains having the irregular shape are distributed as described above, the crystal grain boundaries are also irregularly distributed. The comb-shaped electrode of the solar cell cannot be effectively arranged, which has been a factor of deteriorating the characteristics of the solar cell.

【0007】本発明は、このような問題点に鑑みて発明
されたものであり、変換効率の優れた太陽電池用多結晶
シリコンウエハに必要な粒形状を明らかにし、光電変換
効率が優れた太陽電池用多結晶シリコンウエハ及びその
製造方法を提供することを目的とする。
The present invention has been invented in view of the above problems, and clarifies the grain shape required for a polycrystalline silicon wafer for a solar cell having excellent conversion efficiency, and a solar cell having excellent photoelectric conversion efficiency. An object is to provide a polycrystalline silicon wafer for a battery and a method for manufacturing the same.

【0008】[0008]

【課題を解決するための手段】上記目的を達するため
に、請求項1に係る太陽電池用多結晶シリコンウエハで
は、シリコンウエハ中の結晶粒に外接する長方形の長辺
の最大値と短辺の最小値の比が3以上である結晶粒がウ
エハ一枚内に75%以上含まれることを特徴とする。
In order to achieve the above object, in a polycrystalline silicon wafer for solar cells according to a first aspect, the maximum value of the long side and the short side of the rectangular side circumscribing the crystal grains in the silicon wafer are defined. One of the wafers is characterized by containing 75% or more of crystal grains having a minimum value ratio of 3 or more.

【0009】上記太陽電池用多結晶シリコンウエハで
は、シリコンウエハ中の結晶粒に外接する長方形の長辺
の最大値と短辺の最小値の比が3以上である結晶粒がウ
エハ一枚内に75%以上含まれ、かつ前記結晶粒に外接
する長方形のうち長辺の最大値を持つ長方形の長軸方向
とウエハの基準線との角度の分布の標準偏差が25°以
下であることが望ましい。
In the above-mentioned polycrystalline silicon wafer for solar cells, a crystal grain in which the ratio of the maximum value of the long side to the minimum value of the short side of the rectangle circumscribing the crystal grain in the silicon wafer is 3 or more is within one wafer. It is desirable that the standard deviation of the distribution of the angle between the long axis direction of the rectangle having the maximum value of the long sides among the rectangles circumscribing the crystal grains of 75% or more and the reference line of the wafer is 25 ° or less. .

【0010】また、請求項3に係る太陽電池用多結晶シ
リコンウエハの製造方法では、一方向凝固したシリコン
インゴットをスライスしてシリコンウエハを形成する太
陽電池用多結晶シリコンウエハの形成方法において、前
記シリコンインゴットを結晶粒の成長方向に対して水平
にスライスすることを特徴とする。
According to a third aspect of the present invention, there is provided a method of manufacturing a polycrystalline silicon wafer for a solar cell, wherein the unidirectionally solidified silicon ingot is sliced to form a silicon wafer. It is characterized in that the silicon ingot is sliced horizontally with respect to the crystal grain growth direction.

【0011】[0011]

【発明の実施の形態】以下、本発明を添付図面に基づき
詳細に説明する。図1(a)は太陽電池用多結晶シリコ
ンウエハを示す図であり、(b)は外接する長方形を示
す図である。
DETAILED DESCRIPTION OF THE INVENTION The present invention will be described below in detail with reference to the accompanying drawings. FIG. 1A is a diagram showing a polycrystalline silicon wafer for solar cells, and FIG. 1B is a diagram showing a circumscribing rectangle.

【0012】シリコンウエハ1は、多数の結晶粒2が存
在する多結晶シリコンウエハからなり、鋳造法によって
形成されたシリコンインゴットを角柱状に切り出して多
数枚にスライスしたウエハで構成される。このシリコン
ウエハ1には、スライスされて平面視した形状が多角形
状の粒界で画定される多数の結晶粒が存在する。この結
晶粒2に外接する長方形は無数に描くことができるが、
そのうち本発明では、結晶粒2に外接する長方形3の長
辺の最大値と短辺の最小値の比が3以上である結晶粒
が、ウエハ一枚内に75%以上含まれるウエハ、特に8
5%以上含まれるウエハを使用する。
The silicon wafer 1 is made of a polycrystalline silicon wafer having a large number of crystal grains 2, and is formed by cutting a silicon ingot formed by a casting method into a prismatic shape and slicing it into a large number. The silicon wafer 1 has a large number of crystal grains that are sliced and defined by grain boundaries having a polygonal shape in a plan view. Infinite rectangles circumscribing the crystal grains 2 can be drawn,
Among them, in the present invention, a wafer containing 75% or more of crystal grains in which the ratio of the maximum value of the long side to the minimum value of the short side of the rectangle 3 circumscribing the crystal grain 2 is 3 or more, particularly 8
A wafer containing 5% or more is used.

【0013】結晶粒2に外接する長方形3の長辺の最大
値と短辺の最小値の比とは、図1に示すように、ウエハ
1中から結晶粒2を抜き取り、その結晶粒1に外接する
長方形3を描かせた後、その長方形の長辺の中で最大の
値と長方形の短辺の中で最小の値を求め、(長辺の最大
値)を(短辺の最小値)で割った値のことをいう。
The ratio of the maximum value of the long side of the rectangle 3 circumscribing the crystal grain 2 to the minimum value of the short side thereof is as shown in FIG. After drawing the circumscribing rectangle 3, find the maximum value of the long sides of the rectangle and the minimum value of the short sides of the rectangle, and calculate the (maximum value of the long side) (the minimum value of the short side). The value divided by.

【0014】太陽電池を作製するに際し、結晶粒に外接
する長方形の長辺の最大値と短辺の最小値の比が3以下
か、3以上のものが75%以下のウエハでは、不規則な
形状を持った結晶粒2が分布するために粒界も不規則な
分布となる。粒内で発生したキャリヤは粒界をまたぐこ
となく電極に収集されることが理想であるが、このよう
な粒界が不規則分布したウエハでは、通常の櫛型電極を
設けても効率的にキャリヤを収集することができない。
従って、このようなウエハで高効率な太陽電池を作製す
るためには、複雑な電極構造が必要となってしまう。
In producing a solar cell, a wafer having a ratio of the maximum value of the long sides of the rectangle circumscribing the crystal grains to the minimum value of the short sides of 3 or less or 75% or less of 3 or more is irregular. Since the crystal grains 2 having a shape are distributed, the grain boundaries also have an irregular distribution. Ideally, the carriers generated in the grains are collected at the electrodes without straddling the grain boundaries, but with a wafer in which such grain boundaries are irregularly distributed, even if an ordinary comb-shaped electrode is provided, it is efficient. Unable to collect carriers.
Therefore, in order to manufacture a highly efficient solar cell with such a wafer, a complicated electrode structure is required.

【0015】しかしながら、結晶粒2に外接する長方形
の長辺の最大値と短辺の最小値の比が3以上の結晶粒2
を75%以上含むウエハを用いる場合、結晶粒2に外接
する長方形の長辺の最大値と短辺の最小値の比が3以下
か、3以上のものが75%以下のウエハと比較して細長
い形状の粒が多く分布することになる。これにより、規
則的な結晶粒界が分布することになるため、通常の櫛型
電極でもキャリヤの収集効率を高めることが可能とな
り、複雑な電極構造は必要でなくなる。
However, the crystal grain 2 in which the ratio of the maximum value of the long side to the minimum value of the short side of the rectangle circumscribing the crystal grain 2 is 3 or more.
When a wafer containing 75% or more is used, the ratio of the maximum value of the long side of the rectangle circumscribing the crystal grain 2 to the minimum value of the short side thereof is 3 or less, or 3 or more is compared with the wafer of 75% or less. Many slender particles will be distributed. As a result, since the crystal grain boundaries are regularly distributed, it is possible to improve the carrier collection efficiency even with a normal comb-shaped electrode, and a complicated electrode structure is not required.

【0016】尚、結晶粒2に外接する長方形の長辺の最
大値と短辺の最小値の比が3以上である結晶粒が75%
のウエハでは、結晶粒界が櫛型電極に対して十二分に垂
直な分布をしているとは言えないため、品質の安定性を
考慮すると85%以上含まれていることがより好まし
い。
75% of the crystal grains have a ratio of the maximum value of the long side of the rectangle circumscribing the crystal grain 2 to the minimum value of the short side thereof is 3 or more.
In the wafer No. 2, it cannot be said that the crystal grain boundaries are more than perpendicular to the comb-shaped electrodes, and therefore, it is more preferable that the grain boundaries are contained in an amount of 85% or more in consideration of the stability of quality.

【0017】櫛型電極を設けるうえで、結晶粒2の配向
性が揃っているほど効果的なキャリヤの収集が可能とな
るため、結晶粒2に外接する長方形4の長辺の最大値と
短辺の最小値の比が3以上である結晶粒2をウエハ内に
75%以上含み、かつ結晶粒2に外接する長方形のうち
長辺の最大値を持つ長方形の長軸方向とウエハの基準線
との角度の分布の標準偏差が25°以下のウエハを用い
ることで太陽電池の光電変換効率を更に向上させること
が可能となる。つまり、結晶粒2に外接する長方形3の
うち長辺の最大値を持つ長方形4を抜き取り、その長軸
方向5とウエハの基準線6との間の角度の分布の標準偏
差が25°以下であるウエハを使用することで、更なる
光電変換効率の向上が期待できる。
In providing the comb-shaped electrode, the more uniform the orientation of the crystal grains 2, the more effectively the carriers can be collected. Therefore, the maximum and short sides of the long side of the rectangle 4 circumscribing the crystal grains 2 are short. The long axis direction of the rectangle having the maximum value of the long sides among the rectangles that include 75% or more of the crystal grains 2 in which the ratio of the minimum values of the sides is 3 or more in the wafer and the reference line of the wafer. It is possible to further improve the photoelectric conversion efficiency of the solar cell by using a wafer having a standard deviation of the angle distribution of 25 ° or less. That is, of the rectangles 3 circumscribing the crystal grains 2, the rectangle 4 having the longest maximum value is extracted, and the standard deviation of the angle distribution between the long-axis direction 5 and the reference line 6 of the wafer is 25 ° or less. Further improvement in photoelectric conversion efficiency can be expected by using a certain wafer.

【0018】結晶粒2に外接する長方形4の長辺の最大
値と短辺の最小値の比が3以上の結晶粒2を75%以上
含むウエハは、凝固させた太陽電池用シリコンインゴッ
トを所定寸法にカットした後、この半導体塊を、砥粒が
混在するスラリーを供給すると共にワイヤーを高速回転
させて切削するマルチワイヤーソー装置(不図示)でス
ライスする。このとき、結晶粒の成長方向に対して水平
にワイヤーが入るように半導体塊をカーボンなどから成
る基材(不図示)に貼着してスライスすることで、容易
に製造することができる。
A wafer containing 75% or more of the crystal grains 2 in which the ratio of the maximum value of the long side to the minimum value of the short side of the rectangle 4 circumscribing the crystal grain 2 is 3 or more is a solidified silicon ingot for a solar cell. After being cut to a size, this semiconductor block is sliced by a multi-wire saw device (not shown) that supplies slurry containing abrasive grains and cuts the wire by rotating the wire at high speed. At this time, the semiconductor block can be easily manufactured by adhering the semiconductor block to a base material (not shown) made of carbon or the like and slicing it so that the wire can be inserted horizontally with respect to the crystal grain growth direction.

【0019】結晶粒2の成長方向に対して水平にスライ
スするだけでは、結晶粒2に外接する長方形の長辺の最
大値と短辺の最小値の比が3以上である結晶粒をウエハ
内に75%以上含み、かつ結晶粒に外接する長方形のう
ち長辺の最大値を持つ長方形の長軸方向とウエハの基準
線との角度の分布の標準偏差が25°以下のウエハを製
造することは困難であるが、鋳型側面を断熱しながら底
部から十分な抜熱をした一方向凝固性の優れた太陽電池
用シリコンインゴットからマルチワイヤーソー装置で結
晶粒の成長方向に水平にスライスすることで製造でき
る。
By simply slicing the crystal grains 2 horizontally with respect to the growth direction, crystal grains having a ratio of the maximum value of the long sides of the rectangle circumscribing the crystal grains 2 to the minimum value of the short sides of 3 or more are within the wafer. To produce a wafer whose standard deviation of the angle distribution between the long axis direction of the rectangle having the maximum value of the long side among the rectangles circumscribing the crystal grains and the reference line of the wafer is 25 ° or less. It is difficult to do so, but by slicing horizontally from the silicon ingot for solar cells with excellent unidirectional solidification with sufficient heat removal from the bottom while insulating the side surface of the mold with a multi-wire saw device in the growth direction of crystal grains. Can be manufactured.

【0020】このような一方向凝固性の優れた太陽電池
用シリコンインゴットは、図2に示すような鋳造装置で
次のように製造することができる。図2において7はグ
ラファイトなどからなる断熱材、8は加熱体、9はグラ
ファイトなどからなる鋳型、10は冷却板、11は溶融
シリコンである。石英るつぼ(不図示)内で溶解した溶
融シリコンを内壁面に窒化珪素、炭化珪素などを主成分
とする離型材を塗布した鋳型9の中に注ぎ込み、その
後、その溶融シリコン11を液面が固まらない程度の加
熱を加熱体8により加えながら、鋳型9の下部に冷却板
10を接触させて下部から上部へと凝固させシリコンイ
ンゴットを製造する。
Such a silicon ingot for a solar cell having excellent unidirectional solidification can be manufactured by a casting apparatus as shown in FIG. 2 as follows. In FIG. 2, 7 is a heat insulating material such as graphite, 8 is a heating body, 9 is a mold such as graphite, 10 is a cooling plate, and 11 is molten silicon. Molten silicon melted in a quartz crucible (not shown) is poured into a mold 9 whose inner wall surface is coated with a release material containing silicon nitride, silicon carbide or the like as a main component, and then the molten silicon 11 is solidified on the liquid surface. While heating the heating body 8 to a certain extent, the cooling plate 10 is brought into contact with the lower portion of the mold 9 and solidified from the lower portion to the upper portion to manufacture a silicon ingot.

【0021】このとき、鋳型9の側面を断熱しながら、
鋳型底部の離型材(不図示)の断熱性を悪くする方法、
鋳型底部の厚み薄くして断熱性を悪くする方法、および
冷却板10の抜熱量を増す方法などを用いて、底部から
通常より抜熱量を増すことで一方向に凝固した太陽電池
用シリコンインゴットが製造できる。
At this time, while insulating the side surface of the mold 9,
Method to deteriorate the heat insulation of the mold release material (not shown) at the bottom of the mold,
A silicon ingot for a solar cell that is solidified in one direction by increasing the heat removal amount from the bottom by using a method of reducing the thickness of the bottom of the mold to deteriorate the heat insulating property, a method of increasing the heat removal amount of the cooling plate 10, and the like. Can be manufactured.

【0022】[0022]

【実施例】次に、本発明の実施例を説明する。図3に示
すように、結晶粒に外接する長方形の長辺の最大値と短
辺の最小値の比が3以上である結晶粒がウエハ一枚内に
65%含まれるもの(同図(a))、75%含まれるも
の(同図(b))、85%含まれるもの(同図(c))
を用意し、結晶粒に外接する長方形の長辺の最大値と短
辺の最小値の比ごとのウエハ一枚に占める割合を調べ
た。その結果、ウエハ一枚内の分布は、図4のようにな
っていた。ここで、比較に用いた多結晶シリコンウエハ
のうち(a)、(b)は結晶粒の成長方向に対して垂直
にスライスしたウエハ、(c)は結晶粒の成長方向に対
して水平にスライスして作製したウエハである。これら
のウエハを素子化したときの光電変換効率を表1に示
す。
EXAMPLES Next, examples of the present invention will be described. As shown in FIG. 3, one wafer contains 65% of crystal grains in which the ratio of the maximum value of the long side of the rectangle circumscribing the crystal grain to the minimum value of the short side thereof is 3 or more. )), Those containing 75% ((b) in the same figure), those containing 85% ((c) in the same figure)
Was prepared, and the ratio of the maximum value of the long side of the rectangle circumscribing the crystal grain to the minimum value of the short side of the rectangle occupying one wafer was examined. As a result, the distribution within one wafer was as shown in FIG. Here, of the polycrystalline silicon wafers used for comparison, (a) and (b) are wafers sliced perpendicularly to the crystal grain growth direction, and (c) are sliced horizontally to the crystal grain growth direction. It is a wafer manufactured by Table 1 shows the photoelectric conversion efficiency when these wafers are made into elements.

【0023】[0023]

【表1】 [Table 1]

【0024】表1から外接する長方形の長辺の最大値と
短辺の最小値の比が3以上の結晶粒を75%以上含むウ
エハの光電変換効率は15%以上となって極めて優れて
いることが分かり、特に85%以上含まれているウエハ
の光電変換効率が優れていることが分かる。
From Table 1, a wafer containing 75% or more of crystal grains in which the ratio of the maximum value of the long side to the minimum value of the short side of the circumscribed rectangle is 3 or more is 15% or more, which is extremely excellent. It can be seen that the photoelectric conversion efficiency of the wafer containing 85% or more is particularly excellent.

【0025】図5は、結晶粒に外接する長方形のうち長
辺の最大値を持つ長方形の長軸方向とウエハの基準線と
の角度の分布の標準偏差が30°のウエハ(同図
(a))と25°のウエハ(同図(b))の比較であ
る。図5(a)(図3(c)と同じウエハ)、(b)は
共に結晶粒の成長方向に対して水平にスライスして作製
したウエハであり、結晶粒に外接する長方形の長辺の最
大値と短辺の最小値の比が3以上である結晶粒がウエハ
一枚内に85%以上含まれる多結晶シリコンウエハであ
る。また、(b)のウエハは(a)に対して離型材の断
熱性を変えることで底部の抜熱量を1.5倍にして一方
向凝固性を良くしたインゴットからスライスしたウエハ
である。このウエハを素子化したときの光電変換効率の
比較を表2に示す。
FIG. 5 shows a wafer in which the standard deviation of the angle distribution between the long axis direction of the rectangle having the maximum value of the long sides among the rectangles circumscribing the crystal grains and the reference line of the wafer is 30 ° (see FIG. )) And a 25 ° wafer ((b) in the same figure). 5A (the same wafer as FIG. 3C) and FIG. 5B are wafers produced by slicing horizontally with respect to the crystal grain growth direction. It is a polycrystalline silicon wafer containing 85% or more of crystal grains in which the ratio of the maximum value to the minimum value of the short side is 3 or more in one wafer. Further, the wafer (b) is a wafer sliced from an ingot in which the heat removal amount at the bottom is increased by 1.5 times by changing the heat insulating property of the release material to that in (a) to improve the unidirectional solidification property. Table 2 shows a comparison of photoelectric conversion efficiencies when the wafer is made into an element.

【0026】[0026]

【表2】 [Table 2]

【0027】表1、表2から結晶粒に外接する長方形の
長辺の最大値と短辺の最小値の比が3以上である結晶粒
がウエハ一枚内に75%以上含まれ、かつ前記結晶粒に
外接する長方形のうち長辺の最大値を持つ長方形の長軸
方向とウエハの基準線との角度の分布の標準偏差が25
°以下である図5(b)の光電変換効率が最も優れてい
ることが分かる。
From Tables 1 and 2, 75% or more of crystal grains having a ratio of the maximum value of the long sides of the rectangle circumscribing the crystal grains to the minimum value of the short sides of 3 or more are contained in one wafer, and Of the rectangles circumscribing the crystal grains, the standard deviation of the distribution of the angle between the long axis direction of the rectangle having the longest maximum value and the wafer reference line is 25.
It can be seen that the photoelectric conversion efficiency of FIG.

【0028】[0028]

【発明の効果】以上のように、本発明の太陽電池用多結
晶シリコンウエハ中の結晶粒に外接する長方形の長辺の
最大値と短辺の最小値の比が3以上である結晶粒がウエ
ハ一枚内に75%以上含まれることで、細長い形状の粒
が多く分布することになる。これにより、規則的な結晶
粒界が分布することになるため、通常の櫛型電極でもキ
ャリヤの収集効率を高めることが可能となって光電変換
効率が向上し、複雑な電極構造も必要でなくなる。
As described above, a crystal grain having a ratio of the maximum value of the long side to the minimum value of the short side of the rectangle circumscribing the crystal grain in the polycrystalline silicon wafer for solar cells of the present invention is 3 or more. By containing 75% or more in one wafer, many elongated particles are distributed. As a result, the regular crystal grain boundaries are distributed, so that the carrier collection efficiency can be increased even with a normal comb-shaped electrode, the photoelectric conversion efficiency is improved, and a complicated electrode structure is not required. .

【0029】また、櫛型電極を設けるうえで、結晶粒の
配向性が揃っているほど効果的なキャリヤの収集が可能
となるため、結晶粒に外接する長方形のうち長辺の最大
値を持つ長方形の長軸方向とウエハの基準線との角度の
分布の標準偏差が25°以下のウエハを用いることで太
陽電池の光電変換効率を更に向上させることが可能とな
る。
Further, in providing the comb-shaped electrode, the more uniform the orientation of the crystal grains, the more effectively the carriers can be collected, so that the longest side of the rectangle circumscribing the crystal grains has the maximum value. The photoelectric conversion efficiency of the solar cell can be further improved by using a wafer having a standard deviation of 25 ° or less in the distribution of the angle between the long axis direction of the rectangle and the reference line of the wafer.

【0030】また、太陽電池用多結晶シリコンインゴッ
トを結晶粒の成長方向に対して水平にスライスすること
で、シリコンウエハ中の結晶粒に外接する長方形の長辺
の最大値と短辺の最小値の比が3以上である結晶粒がウ
エハ一枚内に75%以上含まれるウエハを容易に製造す
ることが可能となる。更に、底部から通常より抜熱量を
増すことで一方向に凝固した太陽電池用シリコンインゴ
ットを結晶粒の成長方向に対して水平にスライスするこ
とで、結晶粒に外接する長方形のうち長辺の最大値を持
つ長方形の長軸方向とウエハの基準線との角度の分布の
標準偏差が25°以下のウエハを製造することが可能と
なる。
Further, by slicing the polycrystalline silicon ingot for solar cells horizontally with respect to the growth direction of crystal grains, the maximum value of the long side and the minimum value of the short side of the rectangle circumscribing the crystal grain in the silicon wafer are obtained. It becomes possible to easily manufacture a wafer in which a crystal grain having a ratio of 3 or more is 75% or more in one wafer. Furthermore, by slicing the solar cell silicon ingot solidified in one direction by increasing the amount of heat removed from the bottom horizontally than the normal direction, the longest side of the rectangle circumscribing the crystal grain is the largest. It is possible to manufacture a wafer having a standard deviation of 25 ° or less in the distribution of the angle between the long axis direction of a rectangle having a value and the reference line of the wafer.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る太陽電池用多結晶シリコンウエハ
における結晶粒に外接する長方形を説明するための図で
ある。
FIG. 1 is a diagram for explaining a rectangle circumscribing crystal grains in a polycrystalline silicon wafer for solar cells according to the present invention.

【図2】本発明に係る太陽電池用多結晶シリコンウエハ
の製造に用いられる鋳造装置の凝固部を示す図である。
FIG. 2 is a view showing a solidification part of a casting apparatus used for manufacturing a polycrystalline silicon wafer for solar cells according to the present invention.

【図3】太陽電池用多結晶シリコンウエハを示す図であ
り、(a)は結晶粒に外接する長方形の長辺の最大値と
短辺の最小値の比が3以上の結晶粒を65%含む図、
(b)は75%含む図、(c)は85%含む図である。
FIG. 3 is a diagram showing a polycrystalline silicon wafer for solar cells, in which (a) shows 65% of crystal grains in which the ratio of the maximum value of the long side of the rectangle circumscribing the crystal grain to the minimum value of the short side is 3 or more. Including figure,
(B) is a diagram including 75%, and (c) is a diagram including 85%.

【図4】図3のウエハにおける結晶粒に外接する長方形
の長辺の最大値と短辺の最小値の比の分布を示す図であ
る。
4 is a diagram showing a distribution of a ratio of a maximum value of a long side and a minimum value of a short side of a rectangle circumscribing a crystal grain in the wafer of FIG.

【図5】太陽電池用多結晶シリコンウエハを示す図であ
り、(a)は結晶粒に外接する長方形のうち長辺の最大
値を持つ長方形の長軸方向とウエハの基準線との角度の
分布の標準偏差が30°のウエハを示す図、(b)は2
5°のウエハを示す図である。
FIG. 5 is a diagram showing a polycrystalline silicon wafer for solar cells, in which (a) shows the angle between the long axis direction of the rectangle having the longest maximum value among the rectangles circumscribing the crystal grains and the reference line of the wafer. A diagram showing a wafer having a standard deviation of distribution of 30 °, (b) is 2
It is a figure which shows a 5 degree wafer.

【符号の説明】[Explanation of symbols]

1:ウエハ、2:結晶粒、3:結晶粒に外接する長方
形、4:外接する長方形のうち、長辺の最大値を持つ長
方形、5:長軸方向、6:基準線、7:グラファイトな
どからなる断熱材、8:加熱体、9:グラファイトなど
からなる鋳型、10:冷却板、11:溶融シリコン
1: wafer, 2: crystal grain, 3: rectangle circumscribing the crystal grain, 4: rectangle having the longest maximum value among rectangles circumscribing, 5: major axis direction, 6: reference line, 7: graphite, etc. Insulating material consisting of: 8: Heating body, 9: Mold made of graphite, 10: Cooling plate, 11: Molten silicon

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 スライスされた多数の結晶粒を有する太
陽電池用多結晶シリコンウエハにおいて、前記結晶粒に
外接する長方形の長辺の最大値と短辺の最小値の比が3
以上である結晶粒が、ウエハ一枚内に75%以上含まれ
ることを特徴とする太陽電池用多結晶シリコンウエハ。
1. In a polycrystalline silicon wafer for solar cells having a large number of sliced crystal grains, the ratio of the maximum value of the long sides of the rectangle circumscribing the crystal grains to the minimum value of the short sides thereof is 3.
A polycrystalline silicon wafer for a solar cell, characterized in that the above-mentioned crystal grains are contained in 75% or more in one wafer.
【請求項2】 請求項1に記載の太陽電池用多結晶シリ
コンウエハにおいて、前記結晶粒に外接する長方形のう
ち長辺の最大値を持つ長方形の長軸方向とウエハの基準
線との角度の分布の標準偏差が25°以下であることを
特徴とする太陽電池用多結晶シリコンウエハ。
2. The polycrystalline silicon wafer for a solar cell according to claim 1, wherein among the rectangles circumscribing the crystal grains, the angle between the long axis direction of the rectangle having the longest maximum value and the reference line of the wafer. A polycrystalline silicon wafer for a solar cell, having a standard deviation of distribution of 25 ° or less.
【請求項3】 一方向凝固したシリコンインゴットをス
ライスしてシリコンウエハを形成する太陽電池用多結晶
シリコンウエハの形成方法において、前記シリコンイン
ゴットを結晶粒の成長方向に対して水平にスライスする
ことを特徴とする太陽電池用多結晶シリコンウエハの製
造方法。
3. A method of forming a polycrystalline silicon wafer for a solar cell, comprising slicing a unidirectionally solidified silicon ingot to form a silicon wafer, comprising slicing the silicon ingot horizontally with respect to a crystal grain growth direction. A method for producing a polycrystalline silicon wafer for a solar cell, which is characterized.
JP2002041655A 2002-02-19 2002-02-19 Polycrystalline silicon wafer for solar cell and its manufacturing method Pending JP2003243675A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002041655A JP2003243675A (en) 2002-02-19 2002-02-19 Polycrystalline silicon wafer for solar cell and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002041655A JP2003243675A (en) 2002-02-19 2002-02-19 Polycrystalline silicon wafer for solar cell and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2003243675A true JP2003243675A (en) 2003-08-29

Family

ID=27781997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002041655A Pending JP2003243675A (en) 2002-02-19 2002-02-19 Polycrystalline silicon wafer for solar cell and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2003243675A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004036657A1 (en) * 2002-10-16 2004-04-29 Canon Kabushiki Kaisha Polycrystalline silicon substrate
JP2007523489A (en) * 2004-02-20 2007-08-16 リニューアブル・エナジー・コーポレーション・エーエスエー Establishing correspondence and traceability between wafers and solar cells

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004036657A1 (en) * 2002-10-16 2004-04-29 Canon Kabushiki Kaisha Polycrystalline silicon substrate
JP2007523489A (en) * 2004-02-20 2007-08-16 リニューアブル・エナジー・コーポレーション・エーエスエー Establishing correspondence and traceability between wafers and solar cells
US7920738B2 (en) 2004-02-20 2011-04-05 Renewable Energy Corporation Asa Establishing correspondence and traceability between wafers and solar cells

Similar Documents

Publication Publication Date Title
Ciszek Techniques for the crystal growth of silicon ingots and ribbons
KR101815620B1 (en) Poly-crystalline silicon ingot, silicon wafer therefrom and method of fabricating poly-crystalline silicon ingot
JP3551867B2 (en) Silicon focus ring and manufacturing method thereof
TWI493082B (en) Method of fabricating crystalline silicon ingot
JP4528995B2 (en) Method for producing Si bulk polycrystalline ingot
JP2011528308A (en) Method and apparatus for producing cast silicon from seed crystals
TW201144492A (en) Method of manufacturing crystalline silicon ingot
CN1227395C (en) Silicom wafer and method for producing silicon wafer crystal
CN104441276A (en) Cutting method of crystalline silicon ingot
US20050066881A1 (en) Continuous production method for crystalline silicon and production apparatus for the same
CN102312291A (en) Doped casting monocrystalline silicon and preparation method
KR102144135B1 (en) Silicon member for semiconductor apparatus and method of producing the same
CN104203845A (en) Method of preparing cast silicon by directional solidification
EP1485956B2 (en) Process of producing multicrystalline silicon substrate
JP2003243675A (en) Polycrystalline silicon wafer for solar cell and its manufacturing method
TW565949B (en) Silicon sheet and solar cell including the same
il Kim et al. Characteristics of structural defects in the 240 kg silicon ingot grown by directional solidification process
JP4132786B2 (en) Thin plate manufacturing method and solar cell
JP6798637B1 (en) Gallium arsenide single crystal substrate
JP5721207B2 (en) Si polycrystalline ingot manufacturing apparatus, Si polycrystalline ingot, and Si polycrystalline wafer
JP3208216U (en) Polycrystalline silicon ingot
JP4002715B2 (en) Polycrystalline silicon and silicon wafer for solar cells
JP5131860B2 (en) Silicon sheet and solar cell
JP2000264618A (en) Production of silicon plate polycrystal
WO2004007813A1 (en) A method of producing silicon crystals with a cyclical twin structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090113