JP2003243194A - Driving method of high pressure mercury lamp - Google Patents

Driving method of high pressure mercury lamp

Info

Publication number
JP2003243194A
JP2003243194A JP2002042145A JP2002042145A JP2003243194A JP 2003243194 A JP2003243194 A JP 2003243194A JP 2002042145 A JP2002042145 A JP 2002042145A JP 2002042145 A JP2002042145 A JP 2002042145A JP 2003243194 A JP2003243194 A JP 2003243194A
Authority
JP
Japan
Prior art keywords
frequency
pressure mercury
mercury lamp
lamp
acoustic resonance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002042145A
Other languages
Japanese (ja)
Inventor
Tomoyoshi Arimoto
智良 有本
Mitsuru Ikeuchi
満 池内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Denki KK
Ushio Inc
Original Assignee
Ushio Denki KK
Ushio Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Denki KK, Ushio Inc filed Critical Ushio Denki KK
Priority to JP2002042145A priority Critical patent/JP2003243194A/en
Publication of JP2003243194A publication Critical patent/JP2003243194A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a driving method for lessening loss of electrode loss, extending life and stabilizing I and light output as a light source for an image projector. <P>SOLUTION: Drive power of a high pressure lamp is selected in such a manner that when a power wave form is frequency-resolved, a frequency of a component not lower than 5% of the whole powder is at least 2 kHz and not higher than the lowest acoustical resonance frequency of the lamp. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、主に映像プロジェ
クターに用いられる、石英ガラスからなる放電容器に一
対のタングステン電極を有し、水銀および希ガスが封入
されている高圧水銀ランプの駆動方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for driving a high-pressure mercury lamp, which is mainly used for image projectors, and which has a pair of tungsten electrodes in a discharge vessel made of quartz glass and in which mercury and a rare gas are sealed. It is a thing.

【0002】[0002]

【従来の技術】映像プロジェクター装置用の光源などと
して好適に用いられている高圧水銀ランプは、石英ガラ
スからなる放電容器の内部に、一対の電極が対向して配
置されると共に、水銀と、希ガスと、ハロゲンとが封入
されている。係る高圧水銀ランプは、上記映像プロジェ
クター装置用途では、スクリーンの高照度化が要求され
ており、ランプの高輝度化を達成するため、動作時の圧
力確保の目的で水銀量が益々増大する傾向にあり、近時
においては0.16mg/mm以上も封入されてい
る。一方、上記高圧水銀ランプは、封入された水銀を完
全に蒸発させるためにも高い入力電力が必要で、ランプ
の管壁負荷が0.8W/mm以上となる。これらの条
件を具備することにより、従来にない、極めて高輝度な
ランプを提供することができ、上記装置の光源に好適に
使用可能なランプとなる。上記に係る高圧水銀ランプに
おいては、数十ないし数百Hz程度の交流電流を供給し
て駆動されることがほとんどである。更に零となる期間
が十分短くまた電流波形における立ち上がりの十分速
い、矩形波の電流を用いることによって、例えば正弦波
電流で駆動する場合において発生する再点弧電圧が上昇
することを防止できて電極の損耗を抑制でき、従って、
ランプの寿命を長くすることが可能となる。
2. Description of the Related Art A high pressure mercury lamp, which is preferably used as a light source for a video projector device, has a pair of electrodes facing each other inside a discharge vessel made of quartz glass, and has a mercury and a rare gas. Gas and halogen are enclosed. The high-pressure mercury lamp is required to have high illuminance of the screen in the above-mentioned video projector device application, and in order to achieve high brightness of the lamp, the amount of mercury tends to increase more and more for the purpose of ensuring pressure during operation. Yes, 0.16 mg / mm 3 or more has been encapsulated recently. On the other hand, the high-pressure mercury lamp requires high input power to completely evaporate the enclosed mercury, and the tube wall load of the lamp is 0.8 W / mm 2 or more. By satisfying these conditions, it is possible to provide an unprecedented, extremely high-luminance lamp, and the lamp can be suitably used as the light source of the above-mentioned device. Most of the high-pressure mercury lamps described above are driven by supplying an alternating current of about several tens to several hundreds of Hz. Furthermore, by using a rectangular-wave current whose period of zero is sufficiently short and whose current waveform rises sufficiently fast, it is possible to prevent the re-ignition voltage from rising when driving with a sine-wave current, for example. Wear can be suppressed, and therefore
It is possible to extend the life of the lamp.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、ランプ
を交流電流で駆動するとき、電極の熱設計は困難を極め
る。つまり、ランプを交流点灯する場合、電極は半サイ
クルにおいては陽極として動作し、残りの半サイクルは
陰極として動作するので、電子流入時の電極温度の上昇
と、極性が反転したときの電極温度の低下とのバランス
をとる必要があり、最適温度で動作するように設計する
ことは、非常に難しい。例えば、温度の上がりやすい陽
極半サイクルに適した電極設計とすると、陰極半サイク
ルにおいては、温度が十分な熱電子放出を与えるまでに
は高くならず、陰極輝点の不安定現象を引き起こし、こ
れと逆に、陰極半サイクルに適した電極設計とすると、
陽極半サイクルにおいては温度が高くなりすぎて、電極
の溶融・変形や蒸発が生じ、これに起因して放電容器が
黒化して照度が低下してしまう、という種々の問題を招
来することになる。
However, when driving the lamp with an alternating current, the thermal design of the electrodes is extremely difficult. In other words, when the lamp is lit by alternating current, the electrode operates as an anode in the half cycle and operates as a cathode in the other half cycle, so that the electrode temperature rises when electrons flow in and the electrode temperature when the polarity is reversed. It must be balanced against degradation and it is very difficult to design to operate at optimum temperature. For example, when the electrode design is suitable for the anode half cycle where the temperature easily rises, in the cathode half cycle, the temperature does not become high enough to give sufficient thermionic emission, which causes an unstable phenomenon of the cathode bright spot. On the contrary, if the electrode design is suitable for the cathode half cycle,
In the anode half cycle, the temperature becomes too high, which causes melting, deformation and evaporation of the electrode, which causes various problems such as blackening of the discharge vessel and reduction of illuminance. .

【0004】そこで、このような問題に鑑み、駆動電流
の周波数を高くして駆動すれば、陽極半サイクルと陰極
半サイクルでの電極温度の差が小さくなり、どちらの半
サイクルにも適した電極の熱設計が可能になる。
In view of such a problem, if the driving current is driven at a high frequency, the difference in electrode temperature between the anode half cycle and the cathode half cycle becomes small, and an electrode suitable for both half cycles is obtained. It enables the thermal design of.

【0005】然るに、ランプの駆動電流の周波数を高く
すると、その駆動電力波形が該ランプの音響的共鳴周波
数と一致する場合が多くなる。
However, when the frequency of the lamp drive current is increased, the drive power waveform often coincides with the acoustic resonance frequency of the lamp.

【0006】音響的共鳴は、ランプの高周波点灯時に、
発光管内の封入物と発光管の形状とで決まるランプ固有
の周波数と、ランプに入力される電力の周期的変化の周
波数とがほぼ等しくなったときに、発光管内に粗密波の
定在波が生じるために発生する現象であり、一般には、
アークの不安定化、消滅、発光管の破裂などの原因とな
る。音響的共鳴に由来してランプにアークの不安定が生
じると、映像プロジェクターにより投影された映像は明
るさが安定せずちらつくため、映像プロジェクター装置
の用途にこのようなランプを使用することはできない。
Acoustic resonance is caused by high-frequency lighting of a lamp.
When the frequency peculiar to the lamp, which is determined by the enclosure in the arc tube and the shape of the arc tube, and the frequency of the periodic change in the power input to the lamp become almost equal, a standing wave of compressional wave is generated in the arc tube. It is a phenomenon that occurs because it occurs, generally,
This may cause the arc to become unstable, disappear, or the arc tube to burst. When an arc instability occurs in the lamp due to acoustic resonance, the image projected by the video projector has unstable brightness and flickers, so such a lamp cannot be used for the purpose of the video projector device. .

【0007】そこで、本発明は、交流電流で駆動した場
合にも、音響的共鳴によるアーク不安定が生じることな
く、従って安定して放電を維持できると共に、陰極輝点
が不安定となることを防止でき、交流電流の1サイクル
の間における電極先端温度の変動を十分小さくできて、
電極の損耗を抑制できる、電極の熱設計が容易な、映像
プロジェクター用途として水銀ランプを駆動する方法を
提供することを目的としている。
Therefore, according to the present invention, even when driven by an alternating current, arc instability due to acoustic resonance does not occur, and therefore stable discharge can be maintained and the cathode luminescent spot becomes unstable. It can be prevented and the fluctuation of the electrode tip temperature during one cycle of alternating current can be made sufficiently small,
It is an object of the present invention to provide a method of driving a mercury lamp for use in an image projector, which can suppress the wear of the electrode and facilitate the thermal design of the electrode.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するた
め、本発明のランプの駆動方法は、水銀ランプに供給さ
れる電力の電力波形を周波数分解したとき、この周波数
成分のうち、供給される全電力に対して5%以上となる
全ての周波数成分が、2kHz以上であり、かつ、当該
ランプにおける最低の音響的共鳴周波数以下であること
を特徴とする。つまり、水銀ランプに供給される電力の
電力波形を周波数分解したとき、この周波数成分のう
ち、供給される全電力に対して5%以上となる全ての周
波数成分は、2kHz以上であるので、交流電流の1サ
イクルの間における電極先端温度の変動が小さくて電極
の損耗を抑制できと共に、該ランプにおける最低の音響
的共鳴周波数以下であるので、音響的共鳴に由来してア
ークが不安定になることもない。
In order to solve the above-mentioned problems, the lamp driving method according to the present invention supplies the frequency component of the power waveform supplied to the mercury lamp when the power waveform is decomposed. It is characterized in that all the frequency components that are 5% or more of the total power are 2 kHz or more and are the lowest acoustic resonance frequency or less in the lamp. In other words, when the power waveform of the power supplied to the mercury lamp is frequency-resolved, all the frequency components that account for 5% or more of the total power supplied are 2 kHz or higher. The fluctuation of the electrode tip temperature during one cycle of the electric current is small, so that the wear of the electrode can be suppressed and the arc is unstable due to the acoustic resonance because it is lower than the lowest acoustic resonance frequency in the lamp. Nothing.

【0009】また、本発明のランプの駆動方法は、正弦
波電圧を印加して点灯する場合においては、電流の周波
数が1kHz以上でありかつ当該高圧水銀ランプにおけ
る前記最低音響的共鳴周波数の1/2以下の範囲にある
ことを特徴とする。
Further, in the lamp driving method of the present invention, when a sine wave voltage is applied to light the lamp, the current frequency is 1 kHz or higher and 1/1 of the lowest acoustic resonance frequency in the high pressure mercury lamp. It is characterized by being in the range of 2 or less.

【0010】また、上記最低音響的共鳴周波数は、高圧
水銀ランプの放電空間の軸方向の長さをL(mm)とす
るとき、197.2×L‐0.83[kHz]であるこ
とを特徴とする。
The lowest acoustic resonance frequency is 197.2 × L −0.83 [kHz] when the axial length of the discharge space of the high pressure mercury lamp is L (mm). Characterize.

【0011】まず、本願発明者らは、高圧水銀ランプを
交流矩形波電流で駆動させたときの1サイクルの間の電
極先端温度の変動幅について周波数を変化させて測定し
た。図2は、実験に使用した高圧水銀ランプの概略説明
図で、ランプの管軸方向に切断した断面図である。放電
容器2の内部である放電空間は、略楕円図形をその長軸
を軸として回転させて得られる回転対称形である。な
お、図2に示すように、放電空間の長径、すなわち前記
略楕円図形の長軸の長さをL[mm]とする。なお、放
電容器2は石英ガラス製で、アルゴンガス、ハロゲン化
物、更に一対の電極が対向して配置されると共に、0.
2mg/mmの水銀を封入し、管壁負荷1.0W/m
で駆動した。周波数100Hzの矩形波電流で高圧
水銀ランプを駆動したところ、1サイクルの間の電極先
端温度の変動幅は数百K(ケルビン)に達した。次い
で、電流波形を変えずに駆動電流の周波数を1kHzに
したところ、電極先端温度の変動幅が数10K(ケルビ
ン)に低下するということが確認された。さらに、駆動
電流の周波数を20kHzにして駆動したところ、変動
幅は数K(ケルビン)にまで低下すると分った。以上の
実験から、駆動電流の周波数を1kHz以上と設定する
と、1サイクルにおける温度変動があったとしてわずか
数10K(ケルビン)のオーダーで変動する程度であ
り、陽極にも陰極にも適した電極の熱設計が可能となる
と分った。この結果、駆動電流の周波数としては1kH
z以上が好ましく、特に望ましくは、数10kHz程度
以上である。
First, the inventors of the present invention measured the fluctuation range of the electrode tip temperature during one cycle when the high-pressure mercury lamp was driven by an alternating rectangular wave current, while changing the frequency. FIG. 2 is a schematic explanatory view of the high pressure mercury lamp used in the experiment, and is a cross-sectional view taken along the tube axis of the lamp. The discharge space inside the discharge vessel 2 has a rotationally symmetric shape obtained by rotating a substantially elliptical shape with its major axis as an axis. Note that, as shown in FIG. 2, the major axis of the discharge space, that is, the major axis of the substantially elliptical shape is L [mm]. The discharge vessel 2 is made of quartz glass, and an argon gas, a halide, and a pair of electrodes are arranged so as to face each other.
Enclose 2 mg / mm 3 of mercury and load on the tube wall 1.0 W / m
It was driven by m 2 . When the high pressure mercury lamp was driven with a rectangular wave current having a frequency of 100 Hz, the fluctuation range of the electrode tip temperature during one cycle reached several hundred K (Kelvin). Next, when the frequency of the drive current was set to 1 kHz without changing the current waveform, it was confirmed that the fluctuation range of the electrode tip temperature decreased to several tens K (Kelvin). Further, it was found that when the frequency of the driving current was set to 20 kHz and driving was performed, the fluctuation range decreased to several K (Kelvin). From the above experiment, when the frequency of the drive current is set to 1 kHz or more, even if there is temperature fluctuation in one cycle, it fluctuates on the order of only a few tens of K (Kelvin), which is suitable for both the anode and the cathode. I found that thermal design is possible. As a result, the drive current frequency is 1 kHz.
It is preferably z or more, and particularly preferably about several tens kHz or more.

【0012】ところで、音響的共鳴は、電力の変動に伴
うガス温度の変動に起因する圧力変動が、ランプ固有の
音響的共鳴周波数と共鳴する現象であるから、駆動電力
波形に含まれる周波数成分が重要である。この観点か
ら、発明者らがさらに詳細に調査した結果、電力波形に
ついて含まれている周波数成分に分解したところ、任意
の周波数成分についてその電力が全ての駆動電力に対し
5%を超え、かつ、その周波数が、そのランプの音響的
共鳴周波数に一致したときに、音響的共鳴現象が引き起
こされることが判明した。このことを換言すると、全電
力波形を周波数成分に分解したときの電力が、全電力の
5%未満の場合には、そのランプの音響的共鳴周波数に
一致していても、音響的共鳴現象を発生しない。
Incidentally, the acoustic resonance is a phenomenon in which the pressure fluctuation caused by the fluctuation of the gas temperature accompanying the fluctuation of the electric power resonates with the acoustic resonance frequency peculiar to the lamp. is important. From this viewpoint, as a result of further detailed investigation by the inventors, when the power waveform is decomposed into frequency components included in the power waveform, the power of the arbitrary frequency component exceeds 5% with respect to all driving power, and It has been found that an acoustic resonance phenomenon is triggered when the frequency matches the acoustic resonance frequency of the lamp. In other words, if the electric power when the total electric power waveform is decomposed into frequency components is less than 5% of the total electric power, the acoustic resonance phenomenon is generated even if it matches the acoustic resonance frequency of the lamp. Does not occur.

【0013】なおここで、電力波形の周波数分解につい
て、説明する。電流波形をI(t)、電圧波形をV
(t)とするとき、それらの周期がT秒であれば、電力
波形w(t)もまた周期T秒の波形になり、w(t)=
I(t)×V(t)と書くことができる。このとき、電
力波形をフーリエ級数に分解すると、次式のようにな
る。
Here, the frequency decomposition of the power waveform will be described. Current waveform is I (t), voltage waveform is V
(T), if their period is T seconds, the power waveform w (t) also becomes a waveform of period T seconds, and w (t) =
It can be written as I (t) × V (t). At this time, when the power waveform is decomposed into Fourier series, the following equation is obtained.

【0014】[0014]

【式1】 [Formula 1]

【0015】なお上記式(1)は、周期T秒の電力波形
は、一般的には、a/2の大きさの直流成分と基本角
周波数ω=2π/Tの自然数n倍の角周波数をもつ正弦
波成分を含むことを表している。
[0015] Note that the above formula (1), the power waveform of the period T seconds, in general, a 0/2 of the magnitude of the DC component and the natural number n times the angular frequency of the fundamental angular frequency omega = 2 [pi / T It indicates that the sine wave component with is included.

【0016】そして、この電力波形の全電力は、a
2 [W]であり、角周波数nωの電力成分は、√(a
+b )[W]であるので、電力成分が全電力の
5%を超える成分、つまり、 √(a +b )≧0.05×(a/2) なる範囲にある成分の周波数nω/(2π)が、所定の
周波数範囲内に規制されていれば、音響的共鳴現象を発
生することなく、また電極の損耗等を防止でき、安定し
た点灯状態を維持できる。
The total power of this power waveform is a 0 /
2 [W], and the power component of the angular frequency nω is √ (a
Since n 2 + b n 2) is a [W], component power component is more than 5% of the total power, i.e., √ (a a n 2 + b n 2) ≧ 0.05 × (a 0/2) Scope If the frequency nω / (2π) of a certain component is regulated within a predetermined frequency range, the acoustic resonance phenomenon does not occur, the electrode wear can be prevented, and a stable lighting state can be maintained.

【0017】ここで、先に述べた本願発明者らの電極先
端温度の変動幅の実験結果についても検討すると、前記
周波数成分のうちその電力が全電力の5%未満となるよ
うな成分では、電極は影響されず、周波数が例えば10
0Hz以下であっても電極を温度上昇させるようなこと
はない。よって、前記周波数成分のうちその電力が全電
力の5%以上となるような成分について、周波数が2k
W以上であればよい。なお、係る成分の周波数の下限を
2kHzとしたのは、駆動電流を1kHzとした場合、
電力の周波数は2kHzとなるからである。
Examining the above-mentioned experimental results of the variation range of the electrode tip temperature by the inventors of the present application, the components of the frequency component whose power is less than 5% of the total power are: The electrodes are not affected and the frequency is, for example, 10
Even if the frequency is 0 Hz or less, the temperature of the electrode does not rise. Therefore, the frequency component of which the power is 5% or more of the total power has a frequency of 2k.
It may be W or more. It should be noted that the lower limit of the frequency of the component is set to 2 kHz because when the drive current is 1 kHz,
This is because the frequency of electric power is 2 kHz.

【0018】さらに、ランプの駆動電力波形のその電力
波形を周波数分解したとき、全電力の5%以上である成
分の周波数が、該ランプの最低の音響共鳴周波数以下で
あれば、音響的共鳴現象の防止された該ランプの駆動が
可能になる。
Further, when the power waveform of the driving power waveform of the lamp is subjected to frequency decomposition, if the frequency of the component which is 5% or more of the total power is equal to or lower than the lowest acoustic resonance frequency of the lamp, the acoustic resonance phenomenon is generated. It becomes possible to drive the lamp with the prevention of

【0019】ここで、ランプの最低音響的共鳴周波数
は、ランプがそもそも放電空間の寸法等により、音響的
共鳴が発生する周波数は、概ねランプに固有であると考
えてよい。係る音響的共鳴が生じる最低周波数は、言う
までもなく低周波数側となるため、ランプの放電空間の
長手方向の長さとの関係で決定される。
Here, it can be considered that the lowest acoustic resonance frequency of the lamp is the frequency at which the acoustic resonance occurs due to the size of the discharge space of the lamp and the like. Needless to say, the lowest frequency at which such acoustic resonance occurs is on the low frequency side, and is therefore determined in relation to the length of the discharge space of the lamp in the longitudinal direction.

【0020】図1は、放電空間の長さが異なる高圧水銀
ランプを、正弦波電流によって点灯し、その周波数を変
えていったとき、各ランプにおいて、音響的共鳴が発生
した最低の点灯周波数の2倍、すなわち、最低音響共鳴
的周波数と各ランプのLとの関係を示したものである。
FIG. 1 shows that when high-pressure mercury lamps having different discharge spaces are lit by a sinusoidal current and the frequencies are changed, the lowest lighting frequency at which acoustic resonance occurs in each lamp is shown. It shows the relationship between double, that is, the lowest acoustic resonance frequency and L of each lamp.

【0021】ここで、音響的共鳴周波数が発生する最低
周波数は、放電容器の長手方向の長さとの関係で、下記
の式(2)であらわすことができる。(なお、この式
(2)については、同図において曲線で示す。)
The minimum frequency at which the acoustic resonance frequency is generated can be expressed by the following equation (2) in relation to the length of the discharge vessel in the longitudinal direction. (Note that this equation (2) is shown by a curve in the figure.)

【0022】[0022]

【式2】 f[kHz] = 197.2×L−0.83 (2)[Equation 2] f [kHz] = 197.2 × L -0.83 (2)

【0023】つまり、電力波形を周波数分解したときの
周波数成分のうち、供給される全電力に対して5%以上
となる周波数成分が、ランプの音響的共鳴が生じない上
記式(2)以下の周波数領域に存在すれば、音響的共鳴
を生じることがない。
That is, among the frequency components when the power waveform is frequency-resolved, the frequency components of 5% or more with respect to the total power supplied are expressed by the above formula (2) or less at which no acoustic resonance of the lamp occurs. If present in the frequency domain, no acoustic resonance will occur.

【0024】以上の結果から、該放電、その電力波形を
周波数分解したとき、全電力の5%以上である成分の周
波数が、2kHz以上で、かつ該ランプの最低の音響的
共鳴周波数以下であるように選べば、1サイクルの間の
電極先端温度の変動が小さく、かつ、音響的共鳴現象の
防止された該ランプの駆動が可能になる。
From the above results, when the discharge and the power waveform thereof are frequency-decomposed, the frequency of the component which is 5% or more of the total power is 2 kHz or more and the lowest acoustic resonance frequency of the lamp or less. With such a selection, it is possible to drive the lamp in which the fluctuation of the electrode tip temperature during one cycle is small and the acoustic resonance phenomenon is prevented.

【0025】ところで、上記については、一般的な交流
波形にて、ランプを駆動させるときの条件を述べたもの
である。ここで交流の正弦波に限定した場合、電流も正
弦波になるので、電力波形は直流成分と電圧波形の周波
数の2倍の周波数の成分だけからなるので、その周波数
が1kHz以上かつ当該高圧水銀ランプにおける前記最
低音響的共鳴周波数の1/2以下、の範囲にあればよ
い。
By the way, the above describes the conditions for driving the lamp with a general AC waveform. In the case of limiting to the AC sine wave, the current also becomes a sine wave, so the power waveform consists of only the DC component and the frequency component twice the frequency of the voltage waveform. It may be in the range of ½ or less of the lowest acoustic resonance frequency in the lamp.

【0026】放電空間長Lが6mm、定格消費電力が1
20Wである高圧水銀ランプを、交流正弦波電流で駆動
する場合、その周波数が、1kHz以上、22.3kH
z以下の範囲にあるように、点灯周波数を設定してラン
プを駆動させればよい。なお、電力波形の直流成分を除
く成分は、2kHz以上44.6kHz未満の範囲に1
つ存在することになる。
The discharge space length L is 6 mm and the rated power consumption is 1
When driving a high-pressure mercury lamp of 20 W with an alternating sine wave current, the frequency is 1 kHz or higher, 22.3 kHz.
The lighting frequency may be set so that the lamp is driven so that it falls within the range of z or less. The component of the power waveform excluding the DC component is 1 in the range of 2 kHz or more and less than 44.6 kHz.
Will exist.

【0027】[0027]

【発明の効果】以上のように、本発明によれば、映像プ
ロジェクター用光源として、長寿命、光出力の安定でき
るランプの駆動方法を提供することができる。
As described above, according to the present invention, it is possible to provide a lamp driving method as a light source for a video projector, which has a long life and a stable light output.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかる高圧水銀ランプの放電空間の内
長Lと最低の音響的共鳴周波数との関係を示すグラフ。
FIG. 1 is a graph showing a relationship between an inner length L of a discharge space of a high-pressure mercury lamp according to the present invention and a minimum acoustic resonance frequency.

【図2】本発明にかかる高圧水銀ランプの構成を示す説
明図。
FIG. 2 is an explanatory diagram showing a configuration of a high pressure mercury lamp according to the present invention.

【符号の説明】[Explanation of symbols]

1:高圧水銀ランプ 2:放電容器 3:封止部 4:電極 5:金属箔 6:外部リード 1: High pressure mercury lamp 2: Discharge container 3: Sealing part 4: Electrode 5: Metal foil 6: External lead

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3K072 AA12 AC02 AC11 CA03 CA06 CA14 CA16 GB01 5C039 HH02 HH06    ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 3K072 AA12 AC02 AC11 CA03 CA06                       CA14 CA16 GB01                 5C039 HH02 HH06

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 石英ガラスからなる放電容器の内部に、
一対の電極が対向して配置されると共に、0.16mg
/mm以上の水銀と、希ガスと、ハロゲンとが封入さ
れ、管壁負荷が0.8W/mm以上で駆動される高圧
水銀ランプの駆動方法であって、 前記高圧水銀ランプに供給される電力の電力波形を周波
数分解したときの周波数成分のうち、供給される全電力
に対して5%以上となる全ての周波数成分は、2kHz
以上であり、かつ、当該高圧水銀ランプにおける最低の
音響的共鳴周波数以下であることを特徴とする高圧水銀
ランプの駆動方法。
1. Inside a discharge vessel made of quartz glass,
A pair of electrodes are arranged facing each other, and 0.16 mg
/ Mm 3 or more of mercury, a rare gas, and a halogen are enclosed, and a method for driving a high-pressure mercury lamp, which is driven at a tube wall load of 0.8 W / mm 2 or more, is supplied to the high-pressure mercury lamp. Of the frequency components when the power waveform of the power is decomposed into frequencies, all frequency components that account for 5% or more of the total power supplied are 2 kHz.
The method for driving a high-pressure mercury lamp, which is not less than the lowest acoustic resonance frequency in the high-pressure mercury lamp.
【請求項2】 石英ガラスからなる放電容器の内部に、
一対の電極が対向して配置されると共に、0.16mg
/mm以上の水銀と、希ガスと、ハロゲンとが封入さ
れ、管壁負荷が0.8W/mm以上で駆動される高圧
水銀ランプの駆動方法であって、 前記高圧水銀ランプには正弦波電圧が印加され、 前記高圧水銀ランプに供給される電流の周波数は、1k
Hz以上であり、かつ、当該高圧水銀ランプにおける最
低の音響的共鳴周波数の1/2以下であることを特徴と
する高圧水銀ランプの駆動方法。
2. Inside the discharge vessel made of quartz glass,
A pair of electrodes are arranged facing each other, and 0.16 mg
/ Mm 3 or more of mercury, a rare gas, and a halogen are enclosed, and a driving method of a high-pressure mercury lamp driven by a tube wall load of 0.8 W / mm 2 or more. Wave voltage is applied, and the frequency of the current supplied to the high-pressure mercury lamp is 1 k.
A driving method for a high-pressure mercury lamp, which is equal to or higher than Hz and is equal to or lower than 1/2 of the lowest acoustic resonance frequency in the high-pressure mercury lamp.
【請求項3】 請求項1又は請求項2に記載の高圧水銀
ランプの駆動方法であって、 前記最低音響的共鳴周波数は、放電空間の軸方向の長さ
をLmmとするとき、 197.2×L‐0.83[kHz] であることを特徴とする高圧水銀ランプの駆動方法。
3. The method for driving a high-pressure mercury lamp according to claim 1, wherein the lowest acoustic resonance frequency is 197.2 when the axial length of the discharge space is Lmm. × L −0.83 [kHz] The method for driving a high-pressure mercury lamp, characterized in that
JP2002042145A 2002-02-19 2002-02-19 Driving method of high pressure mercury lamp Pending JP2003243194A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002042145A JP2003243194A (en) 2002-02-19 2002-02-19 Driving method of high pressure mercury lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002042145A JP2003243194A (en) 2002-02-19 2002-02-19 Driving method of high pressure mercury lamp

Publications (1)

Publication Number Publication Date
JP2003243194A true JP2003243194A (en) 2003-08-29

Family

ID=27782353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002042145A Pending JP2003243194A (en) 2002-02-19 2002-02-19 Driving method of high pressure mercury lamp

Country Status (1)

Country Link
JP (1) JP2003243194A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7230388B2 (en) 2004-09-14 2007-06-12 Seiko Epson Corporation Lighting of discharge lamp by frequency control
JP2009042715A (en) * 2007-07-17 2009-02-26 Ushio Inc Light source device
JP2010526418A (en) * 2007-05-07 2010-07-29 オスラム ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for starting and starting a high-pressure discharge lamp
US9632398B2 (en) 2013-12-04 2017-04-25 Seiko Epson Corporation Discharge lamp driving device, projector, and discharge lamp driving method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7230388B2 (en) 2004-09-14 2007-06-12 Seiko Epson Corporation Lighting of discharge lamp by frequency control
US7692392B2 (en) 2004-09-14 2010-04-06 Seiko Epson Corporation Lighting of discharge lamp by frequency control
US7999482B2 (en) 2004-09-14 2011-08-16 Seiko Epson Corporation Lighting of discharge lamp by frequency control
JP2010526418A (en) * 2007-05-07 2010-07-29 オスラム ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for starting and starting a high-pressure discharge lamp
US8450939B2 (en) 2007-05-07 2013-05-28 Osram Ag Method for igniting and starting high-pressure discharge lamps
JP2009042715A (en) * 2007-07-17 2009-02-26 Ushio Inc Light source device
US9632398B2 (en) 2013-12-04 2017-04-25 Seiko Epson Corporation Discharge lamp driving device, projector, and discharge lamp driving method

Similar Documents

Publication Publication Date Title
JP4990490B2 (en) High pressure discharge lamp lighting device, high pressure discharge lamp device, projection-type image display device, and high pressure discharge lamp lighting method
JP5145787B2 (en) Discharge lamp lighting device and projector
JP3851343B2 (en) High pressure discharge lamp lighting device
JP2004296427A (en) Super high pressure mercury lamp lighting device
JP4697326B2 (en) High pressure discharge lamp lighting device
JP4389623B2 (en) High pressure discharge lamp lighting device
JP2007280734A (en) High-pressure discharge lamp lighting device, high-pressure discharge lamp device, projection-type image display device, and high-pressure discharge lamp lighting method
JP2003243194A (en) Driving method of high pressure mercury lamp
JP3385010B2 (en) Mercury-free high-intensity discharge lamp lighting device and mercury-free metal halide lamp
JP5266431B1 (en) High pressure discharge lamp lighting device, projector using the high pressure discharge lamp lighting device, and lighting method of high pressure discharge lamp
JP4345401B2 (en) High pressure mercury lamp equipment
JP2007273439A (en) High-voltage discharge lamp lighting device and starting method
EP2654384B1 (en) Discharge lamp lighting device
JP5056939B2 (en) Discharge lamp lighting device
JP5158185B2 (en) Discharge lamp lighting device
JP3125775B2 (en) High-pressure mercury lamp and its light source device
JP2010113979A (en) Cooling device and cooling method of high-pressure discharge lamp
EP1665905B8 (en) Circuit arrangement and method of operating a gas discharge lamp
JP5056935B2 (en) Discharge lamp lighting device
JP2007265709A (en) Ultrahigh pressure mercury lamp
JP6548039B2 (en) Discharge lamp lighting device
JP2006179414A (en) High-pressure discharge lamp lighting device and lighting method of the same
JP2000311657A (en) High-pressure discharge lamp and its driving method
JP2009004203A (en) Ultrahigh-pressure mercury lamp
JP2008293934A (en) High pressure discharge lamp device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060714

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070109