JP2003240150A - Hydraulic system - Google Patents

Hydraulic system

Info

Publication number
JP2003240150A
JP2003240150A JP2002034812A JP2002034812A JP2003240150A JP 2003240150 A JP2003240150 A JP 2003240150A JP 2002034812 A JP2002034812 A JP 2002034812A JP 2002034812 A JP2002034812 A JP 2002034812A JP 2003240150 A JP2003240150 A JP 2003240150A
Authority
JP
Japan
Prior art keywords
electromagnetic solenoid
current
switching element
hydraulic
hydraulic system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002034812A
Other languages
Japanese (ja)
Inventor
Hitomi Iiizumi
仁美 飯泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2002034812A priority Critical patent/JP2003240150A/en
Publication of JP2003240150A publication Critical patent/JP2003240150A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Magnetically Actuated Valves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low power consumption-type hydraulic system which reduces the consumption of a battery DC power source by reducing the electric power consumed in an electromagnetic solenoid. <P>SOLUTION: When a start signal is inputted to a microcomputer 1, a switching element driving part 2 is operated on the basis of a set program, and a switching element 3 is driven with 0% modulation by 100 ms at an initial period of the operation, and then with 90% modulation thereafter by controlling the modulation of pulse widths. The electric current from a DC power source 7, flows to the electromagnetic solenoid 5 in a rated state during 100 ms in an ON state of the switching element 3, the electric current is reduced to approximately 1/10 during the ON-OFF 90% modulation to be the predetermined holding current of the electromagnetic solenoid 5. When the start signal is stopped, the switching element 3 is kept in an OFF state, and the operation of the electromagnetic solenoid 5 is stopped. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、トラックなどの荷
役装置を構成する油圧装置に係わり、特に、電磁ソレノ
イドを用いて油圧回路を制御する油圧装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydraulic device that constitutes a cargo handling device such as a truck, and more particularly to a hydraulic device that controls a hydraulic circuit using an electromagnetic solenoid.

【0002】[0002]

【従来の技術】トラックなどの荷役装置であるゲート、
ウイングなどの駆動方式として、DCモータ、油圧モー
タ、油圧制御回路、油圧シリンダなどが使われている。
そして、その油圧制御回路に電磁ソレノイドが使用され
ている。電磁ソレノイドは、固定鉄心にコイルを巻き、
これに通電して得られる磁気的吸引力を用いて、プラン
ジャと呼ばれる可動鉄片を動作させるもので、得られる
機械力は主として直線的な機械力が利用され、電流によ
る磁気作用を応用した簡単な構造のため、広い分野に制
御機器として用いられる。電磁ソレノイドは電源の種類
によって細部が異なり、交流ソレノイドと直流ソレノイ
ドがある。交流ソレノイドでは単相交流による交番磁界
で生じる鉄損を軽減するために積層鉄心が用いられる。
鉄損は銅損に比して比較的大きいので、一般的には大容
量のものや大きな力を要するもの、あるいは連続使用の
ものには向かない。また、単相交流による吸引力はその
ままでは電源周波数の2倍の周波数で零と最大値の間を
脈動する。このため吸引力が零になり、プランジャの吸
着時の騒音が問題となる。これに対し、直流ソレノイド
では磁束が一定で鉄損はないので、塊状鉄心が用いら
れ、交流式のように吸引力の脈動がなく騒音の問題もな
いので油圧装置に広く用いられる。そして、直流電源と
して車に搭載するバッテリなどが用いられる。また、電
磁ソレノイドは構造上から分類すると、図3に示すよう
に、直線運動をするものとして(a)プランジャ形(ソ
レノイドの大半を占め、プランジャ9がコイル8内で直
線運動する)、(b)漏れ磁束形(プランジャ形で固定
鉄心10のないもので、通常のプランジャ形のストロー
クが数mmから数十mm程度であるのに対しストローク
が長くとれる特徴がある)、(c)平板形(磁石がE形
で平板を吸引する)等がある。油圧装置には(a)プラ
ンジャ形が多く用いられる。固定鉄心10は磁束を収束
させ、漏洩磁束を少なくし、短いストロークで強い吸引
力を有する。
2. Description of the Related Art A gate, which is a cargo handling device such as a truck,
A DC motor, a hydraulic motor, a hydraulic control circuit, a hydraulic cylinder, etc. are used as a drive system for the wings and the like.
An electromagnetic solenoid is used in the hydraulic control circuit. The electromagnetic solenoid has a coil wound around a fixed iron core.
A magnetic ironing force obtained by energizing this is used to move a movable iron piece called a plunger.The mechanical force obtained is mainly a linear mechanical force, and a simple magnetic force applied magnetic action is used. Due to its structure, it is used as a control device in a wide range of fields. The details of the electromagnetic solenoid differ depending on the type of power source, and there are AC solenoids and DC solenoids. In an AC solenoid, a laminated iron core is used to reduce iron loss caused by an alternating magnetic field due to single-phase AC.
Since iron loss is relatively large compared to copper loss, it is generally unsuitable for large-capacity ones, those requiring large force, or those for continuous use. Further, if the suction force due to the single-phase alternating current remains as it is, it pulsates between zero and the maximum value at a frequency twice the power supply frequency. For this reason, the suction force becomes zero, and noise when the plunger is sucked becomes a problem. On the other hand, in the DC solenoid, since the magnetic flux is constant and there is no iron loss, a lump iron core is used, and since there is no pulsation of the suction force and no noise problem as in the AC type, it is widely used in hydraulic systems. A battery or the like mounted on the vehicle is used as the DC power supply. When the electromagnetic solenoids are classified according to their structures, as shown in FIG. 3, (a) a plunger type (which occupies most of the solenoid, the plunger 9 linearly moves in the coil 8), (b) is assumed to move linearly, ) Leakage magnetic flux type (plunger type without fixed iron core 10, which has a characteristic that the stroke can be long compared to the stroke of a normal plunger type of several mm to several tens of mm), (c) flat plate type ( The magnet is E-shaped and attracts the flat plate). Plunger type (a) is often used for the hydraulic device. The fixed iron core 10 converges the magnetic flux, reduces the leakage magnetic flux, and has a strong attractive force with a short stroke.

【0003】そして、直流ソレノイドに流れる電流は、
コイル抵抗Rで決まり、その消費電力はIRとなり、
その吸引力Fは、F=−μ(NI)×S/2×x
なり、ほぼストロークxの自乗に反比例する。ここでは
NIはコイルの巻数と電流の積(AT)、Sは鉄心の断
面積(m)、xはストロークを表す。交流ソレノイド
に流れる電流は、主としてコイルのインダクタンスωL
で決まり、その消費電力はIωLとなり、インダクタ
ンスはストロークとともに減少するので、電流はほぼス
トロークに比例する。また、直流ソレノイドの固定鉄心
10の形状を改良して、ストロークに対する制御機能を
もたせた比例ソレノイドがある。比例ソレノイドは、鉄
心の突出部の複雑な飽和現象によって、ストロークに対
する吸引力特性が、アプローチ領域と制御領域で大幅に
異なり、アプローチ領域では単なるプランジャの移動に
用いられ、制御領域では比例制御を実現することができ
る。
The current flowing through the DC solenoid is
Determined by the coil resistance R, its power consumption is I 2 R,
The suction force F is F = -μ (NI) 2 × S / 2 × x 2 , which is almost inversely proportional to the square of the stroke x. Here, NI is the product of the number of turns of the coil and the current (AT), S is the cross-sectional area (m 2 ) of the iron core, and x is the stroke. The current flowing through the AC solenoid is mainly the inductance ωL of the coil.
The power consumption is I 2 ωL, and the inductance decreases with the stroke, so that the current is almost proportional to the stroke. Further, there is a proportional solenoid in which the shape of the fixed iron core 10 of the DC solenoid is improved to have a stroke control function. Due to the complex saturation phenomenon of the protrusion of the iron core, the proportional solenoid has drastically different suction force characteristics for the stroke in the approach area and the control area, and it is used for mere plunger movement in the approach area and realizes proportional control in the control area. can do.

【0004】[0004]

【発明が解決しようとする課題】従来の油圧装置に用い
られている電磁ソレノイドは以上のように構成されてい
るが、ゲートなど荷役装置用油圧装置の油圧回路の切換
に使用されている電磁ソレノイドは、切換時間の高速化
が要求され、車載用のバッテリで駆動されて頻繁にON
−OFFが繰り返されるため、バッテリの消耗が早くな
るという問題がある。バッテリの消耗を少なくし、長時
間にわたって使用することができるようにするために
は、電磁ソレノイドの低消費電力化を図らなければなら
ないという課題がある。図4に、実験データによる電磁
ソレノイドのコイル8の発熱の連続通電温度特性を示
す。電磁ソレノイドの温度上昇は、通電してから5〜6
分経過するまでに急激に上昇し、その後は比較的緩やか
に上昇し、放熱と発熱のバランスがとれるところでほぼ
飽和した状態になる。低消費電力化をするためには電磁
ソレノイドの駆動時の発熱を少なくするようにしなけれ
ばならない。また、頻繁に荷役装置を使用すると、電磁
ソレノイドは発熱し、それにより電磁ソレノイドを構成
するコイル8の抵抗が大きくなり、最低作動電圧が高く
なり、作動しなくなるという問題がある。図5に電磁ソ
レノイドの温度に対する作動電圧の特性を示す。横軸に
電磁ソレノイド温度を、縦軸に作動電圧を示す。温度の
上昇と共に1次関数的に高くなる特性を有する。そのた
め電磁ソレノイドを正常に作動させるためにコイル8の
発熱を減らすことにより、最低作動電圧を下げるように
しなければならない。
Although the electromagnetic solenoid used in the conventional hydraulic system is constructed as described above, the electromagnetic solenoid used for switching the hydraulic circuit of the hydraulic system for cargo handling devices such as gates. Requires a fast switching time and is frequently turned on by being driven by a vehicle battery.
Since -OFF is repeated, there is a problem that the battery is consumed quickly. In order to reduce the consumption of the battery and enable the battery to be used for a long period of time, there is a problem in that the power consumption of the electromagnetic solenoid must be reduced. FIG. 4 shows the continuous energization temperature characteristic of the heat generation of the coil 8 of the electromagnetic solenoid based on the experimental data. The temperature rise of the electromagnetic solenoid is 5 to 6 after the power is turned on.
It rises rapidly before the lapse of minutes, then rises relatively slowly, and becomes almost saturated where heat dissipation and heat generation are balanced. In order to reduce power consumption, it is necessary to reduce heat generation when the electromagnetic solenoid is driven. Further, when the cargo handling device is frequently used, the electromagnetic solenoid generates heat, which increases the resistance of the coil 8 forming the electromagnetic solenoid, which raises the minimum operating voltage, which causes a problem that it does not operate. FIG. 5 shows the characteristic of the operating voltage with respect to the temperature of the electromagnetic solenoid. The horizontal axis shows the electromagnetic solenoid temperature, and the vertical axis shows the operating voltage. It has the characteristic of increasing linearly as the temperature rises. Therefore, in order to operate the electromagnetic solenoid normally, the minimum operating voltage must be lowered by reducing the heat generation of the coil 8.

【0005】本発明は、このような事情に鑑みてなされ
たものであって、電磁ソレノイドで消費される電力を低
減し、作動電流によるコイル温度上昇を少なくし、バッ
テリ直流電源の消耗を少なくした低電力消費型の油圧装
置を提供することを目的とする。
The present invention has been made in view of the above circumstances, and reduces the power consumed by the electromagnetic solenoid, reduces the coil temperature rise due to the operating current, and reduces the consumption of the battery DC power supply. An object is to provide a low power consumption hydraulic system.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
め、本発明の油圧装置は、負荷を移動させる手段として
油圧を用いた油圧制御回路に電磁ソレノイドを備えた油
圧装置において、前記電磁ソレノイドに流す電流を作動
初期には定格電流を流し、作動後に保持した状態では所
定の保持電流まで電流を制限する油圧制御回路を備える
ものである。
In order to achieve the above object, a hydraulic system of the present invention is a hydraulic system comprising an electromagnetic solenoid in a hydraulic control circuit using hydraulic pressure as means for moving a load. A hydraulic pressure control circuit is provided that allows a rated current to flow in the initial stage of operation and limits the current to a predetermined holding current in a state where the rated current is maintained after the operation.

【0007】また、本発明の油圧装置は、前記油圧制御
回路にスイッチング素子を用いたパルス回路を設け前記
電磁ソレノイドに流れる作動初期及び作動後の電流をパ
ルス幅変調制御することができるようにしたものであ
る。
Also, in the hydraulic apparatus of the present invention, a pulse circuit using a switching element is provided in the hydraulic control circuit to enable pulse width modulation control of the electric current flowing through the electromagnetic solenoid after the initial operation and after the operation. It is a thing.

【0008】本発明の油圧装置は上記のように構成され
ており、電磁ソレノイドに流す電流を作動初期の100
ms程度では直流の定格電流を流し、作動後に保持した
状態では駆動電流を数分の一の所定の保持電流まで電流
を制限する油圧制御回路を備えており、その油圧制御回
路にスイッチング素子を用い、PWM(パルス幅変調)
制御のパルス回路を設け、電磁ソレノイドに流れる作動
初期及び作動後の電流をパルス幅制御することができる
ようにしたものである。これにより電磁ソレノイドのコ
イルの発熱を抑え、作動電圧を下げることができ確実に
作動させ、低消費電力化されて、バッテリの消耗を少な
くすることができる。
The hydraulic system of the present invention is constructed as described above, and the electric current supplied to the electromagnetic solenoid is set to 100 at the initial stage of operation.
It is equipped with a hydraulic control circuit that allows a rated DC current to flow for about ms, and limits the drive current to a predetermined holding current, which is a fraction of the driving current when it is held after operation. A switching element is used in the hydraulic control circuit. , PWM (pulse width modulation)
A control pulse circuit is provided so that the pulse width of the current flowing through the electromagnetic solenoid at the initial stage and after the period can be controlled. As a result, heat generation of the coil of the electromagnetic solenoid can be suppressed, the operating voltage can be lowered and the electromagnetic solenoid can be reliably operated, the power consumption can be reduced, and the battery consumption can be reduced.

【0009】[0009]

【発明の実施の形態】本発明の油圧装置の一実施例を
図1を参照しながら説明する。図1は本発明の油圧装置
の電磁ソレノイド5のPWM(パルス幅変調)によるス
イッチング制御回路を示す図である。本油圧装置は、電
磁ソレノイド5の作動を制御するプログラムが設定され
記憶されスタート信号を入力することで実行することが
できるマイクロコンピュータ1と、マイクロコンピュー
タ1のプログラムに従ってPWM(パルス幅変調)制御
のパルス回路によってスイッチング素子3を駆動させる
電圧を発生するスイッチング素子駆動部2と、並列に整
流素子4を備えDC電源7からの電流をON‐OFFす
るスイッチング素子3と、そのスイッチング素子3と直
列に接続され並列に整流素子6を備えた油圧装置制御回
路用の電磁ソレノイド5と、バッテリからなるDC電源
7とから構成される。
BEST MODE FOR CARRYING OUT THE INVENTION One embodiment of the hydraulic system of the present invention
Description will be made with reference to FIG. FIG. 1 is a diagram showing a PWM (pulse width modulation) switching control circuit of an electromagnetic solenoid 5 of a hydraulic system according to the present invention. The present hydraulic system includes a microcomputer 1 which is set and stored with a program for controlling the operation of the electromagnetic solenoid 5 and can be executed by inputting a start signal, and a PWM (pulse width modulation) control according to the program of the microcomputer 1. A switching element drive unit 2 that generates a voltage for driving the switching element 3 by a pulse circuit, a switching element 3 that includes a rectifying element 4 in parallel and that turns on and off the current from the DC power supply 7, and the switching element 3 in series. It is composed of an electromagnetic solenoid 5 for a hydraulic device control circuit, which is connected and provided with a rectifying element 6 in parallel, and a DC power supply 7 composed of a battery.

【0010】本油圧装置と従来の装置との異なる点は、
従来の装置では、使用されている電磁ソレノイド5の駆
動電流を、スタート信号のON状態の間、一定の定格電
流を最後まで流しているが、本装置では、作動初期の1
00ms程度の期間では定格電流を流し、図3に示すプ
ランジャ9が吸引された作動後には、プランジャ9を保
持した状態で駆動電流を数分の一に低減し、所定の保持
電流まで電流を制限している点にある。これは、油圧制
御回路に使用される図3に示す電磁ソレノイド5のプラ
ンジャ9が、コイル8に吸引されるストローク中は、コ
イル8に定格の電流を流さないと動作しないが、一旦、
プランジャ9が保持されると、磁気回路の抵抗が減少
し、プランジャ9を保持するための電流は、初期駆動時
の定格電流の数分の1程度で十分となるからである。本
油圧装置は、この電磁ソレノイド5の作動電流特性を利
用して、プランジャ9の保持後の駆動電流を少なくし
て、コイル8の発熱を抑え、かつ、確実に作動させ、低
消費電力化したものである。
The difference between this hydraulic system and the conventional system is that
In the conventional device, the drive current of the electromagnetic solenoid 5 used is supplied with a constant rated current until the end while the start signal is in the ON state.
A rated current is supplied for a period of about 00 ms, and after the plunger 9 shown in FIG. 3 is actuated, the drive current is reduced to a fraction of a number while the plunger 9 is held, and the current is limited to a predetermined holding current. There is a point. This is because the plunger 9 of the electromagnetic solenoid 5 shown in FIG. 3 used in the hydraulic control circuit does not operate unless a rated current is applied to the coil 8 during the stroke of being attracted to the coil 8.
This is because when the plunger 9 is held, the resistance of the magnetic circuit is reduced, and the current for holding the plunger 9 is only a fraction of the rated current at the time of initial driving. The hydraulic system utilizes the operating current characteristic of the electromagnetic solenoid 5 to reduce the drive current after the plunger 9 is held, suppress the heat generation of the coil 8, and reliably operate the system to reduce the power consumption. It is a thing.

【0011】次に、各部の機能と動作について説明す
る。マイクロコンピュータ1は、電磁ソレノイド5に流
す電流を、作動初期の100ms程度では直流の定格電
流を流し、作動後に保持した状態ではPWM制御によっ
て駆動電流を数分の一の所定の保持電流まで電流を制限
するように、パルス幅のタイミングのプログラムが設定
され記憶されている。油圧装置の操作部(図示せず)の
スタートボタンを操作しスタート信号を入力すると、マ
イクロコンピュータ1のプログラムが実行され、その信
号がスイッチング素子駆動部2に入力される。スイッチ
ング素子駆動部2は、PWM(パルス幅変調)制御のパ
ルス回路を備え、マイクロコンピュータ1からのパルス
タイミングの信号を受け、PWM制御のパルス回路から
パルス幅変調された電圧が出力され、次段のスイッチン
グ素子3を駆動させる。スイッチング素子3は、電力用
のFETが用いられる。ゲート電極とソース電極とドレ
イン電極を有するスイッチング機能を備えたトランジス
タで、ゲート電極に所定の電圧を印加すると、ドレイン
電極からソース電極に直流の電流が流れ導通状態にな
り、逆にゲート電極の電位が所定の電圧以下になると、
ドレイン電極とソース電極はOFFされた状態になる。
そして、スイッチング素子3に並列に整流素子4が設け
られ、電磁ソレノイド5と整流素子6が並列に接続され
た回路が直列に接続され、DC電源7が接続される。そ
して、DC電源7からの電流が、このスイッチング素子
3によってON‐OFFされる。スイッチング素子3が
ONからOFFに切換るときに、スイッチング素子3及
び導線のインダクタンスによって発生する逆電力を整流
素子4によって消去する。電磁ソレノイド5は、油圧装
置の油圧回路の弁などを開閉するために、図3に示すプ
ランジャ9、コイル8、固定鉄心10などを有した電磁
駆動によるソレノイドである。そして、電磁ソレノイド
5は、スイッチング素子3と直列に接続され、電磁ソレ
ノイド5と並列に整流素子6が設けられ、DC電源7が
接続され、DC電源7からの電流がこのスイッチング素
子3によってON‐OFFされ、電磁ソレノイド5のコ
イル8に流される。スイッチングのONからOFFに切
換るとき時に、電磁ソレノイド5に逆起電力が発生する
のでその電力を整流素子6によって消去する。DC電源
7は、電磁ソレノイド5を作動させるに十分な直流の電
源容量のバッテリなどからなる。一般に、ゲートなど荷
役装置用油圧装置の油圧回路の切換に使用されている電
磁ソレノイド5は、車載用のバッテリで駆動され、頻繁
にON‐OFFが繰り返される。このために本油圧装置
は、電磁ソレノイド5に流す電流をPWM制御によっ
て、必要最小限に制限し、消費電力を低減し、バッテリ
の寿命を延ばすことができる。
Next, the function and operation of each unit will be described. The microcomputer 1 supplies a DC rated current to the electromagnetic solenoid 5 for about 100 ms at the beginning of the operation, and in the state where the current is maintained after the operation, the driving current is reduced to a predetermined holding current of a fraction by a PWM control. A pulse width timing program is set and stored to limit. When a start button of a control unit (not shown) of the hydraulic device is operated to input a start signal, the program of the microcomputer 1 is executed and the signal is input to the switching element drive unit 2. The switching element driving unit 2 includes a pulse circuit for PWM (pulse width modulation) control, receives a pulse timing signal from the microcomputer 1, outputs a pulse width modulated voltage from the pulse circuit for PWM control, and outputs it to the next stage. The switching element 3 is driven. As the switching element 3, a power FET is used. In a transistor with a switching function that has a gate electrode, a source electrode, and a drain electrode, when a predetermined voltage is applied to the gate electrode, a direct current flows from the drain electrode to the source electrode and becomes conductive, and conversely the potential of the gate electrode. Is below a certain voltage,
The drain electrode and the source electrode are turned off.
A rectifying element 4 is provided in parallel with the switching element 3, a circuit in which an electromagnetic solenoid 5 and a rectifying element 6 are connected in parallel is connected in series, and a DC power source 7 is connected. Then, the current from the DC power supply 7 is turned on and off by the switching element 3. When the switching element 3 is switched from ON to OFF, the reverse power generated by the inductance of the switching element 3 and the conducting wire is erased by the rectifying element 4. The electromagnetic solenoid 5 is an electromagnetically driven solenoid having a plunger 9, a coil 8, a fixed iron core 10 and the like shown in FIG. 3 for opening and closing a valve of a hydraulic circuit of a hydraulic device. The electromagnetic solenoid 5 is connected in series with the switching element 3, the rectifying element 6 is provided in parallel with the electromagnetic solenoid 5, the DC power source 7 is connected, and the current from the DC power source 7 is turned on by the switching element 3. It is turned off and passed through the coil 8 of the electromagnetic solenoid 5. When the switching is switched from ON to OFF, a back electromotive force is generated in the electromagnetic solenoid 5, and the power is erased by the rectifying element 6. The DC power supply 7 is composed of a battery or the like having a DC power supply capacity sufficient to operate the electromagnetic solenoid 5. In general, the electromagnetic solenoid 5 used for switching the hydraulic circuit of a hydraulic device for a cargo handling device such as a gate is driven by an on-vehicle battery and frequently turned on and off repeatedly. For this reason, the present hydraulic apparatus can limit the current flowing through the electromagnetic solenoid 5 to the minimum necessary by PWM control, reduce power consumption, and extend the life of the battery.

【0012】図2に、本油圧装置の電磁ソレノイド5の
駆動タイミングチャートを示す。はじめに、油圧装置の
操作部(図示せず)のスタートボタンが操作されると、
図2の最上段に示したスタート信号がマイクロコンピュ
ータ1に入力される。それによって、マイクロコンピュ
ータ1に設定されたプログラム(作動初期の100ms
程度の期間はスイッチング素子駆動部2のスイッチング
回路をON状態にし、その後はスイッチング回路をON
‐OFF状態にPWM制御するタイミング信号を出すプ
ログラム)によって、スイッチング素子駆動部2が動作
し、PWM(パルス幅変調)制御信号がスイッチング素
子3に出力される。スイッチング素子3のA点(ゲート
電極)の電位は、PWM制御によって図2の二段目に示
した制御波形になり、作動初期の期間の100msの間
は所定のベース電位になり、その後はパルス幅が狭めら
れPWM制御によってパルス電流が流される。これによ
り電磁ソレノイド5に流れる電磁ソレノイド電流Iは、
図2の最下段に示したように、100msの期間は電磁
ソレノイド5の定格電流が流れ、その後は図3に示す電
磁ソレノイド5のプランジャ9を保持する所定の保持電
流、例えば、数分の一の所定の保持電流までに低減され
る。そのため、PWM制御された後半の期間においては
低消費電力化が行なわれる。そして、装置のスタートボ
タン(図示せず)を離すとスタート信号が0レベルにな
り、A点の電位は0レベルになり、電磁ソレノイド5の
電流が遮断され、油圧装置の動作が停止する。
FIG. 2 shows a drive timing chart of the electromagnetic solenoid 5 of the hydraulic system. First, when the start button of the operating unit (not shown) of the hydraulic system is operated,
The start signal shown at the top of FIG. 2 is input to the microcomputer 1. As a result, the program set in the microcomputer 1 (100 ms at the beginning of operation)
The switching circuit of the switching element drive unit 2 is turned on for a certain period, and then the switching circuit is turned on.
The switching element driving unit 2 is operated by a program that outputs a timing signal for PWM control in the -OFF state, and a PWM (pulse width modulation) control signal is output to the switching element 3. The potential at the point A (gate electrode) of the switching element 3 has the control waveform shown in the second stage of FIG. 2 by the PWM control, becomes a predetermined base potential during 100 ms in the initial period of operation, and then becomes a pulse. The width is narrowed and a pulse current is passed by PWM control. As a result, the electromagnetic solenoid current I flowing through the electromagnetic solenoid 5 is
As shown at the bottom of FIG. 2, the rated current of the electromagnetic solenoid 5 flows for a period of 100 ms, and thereafter, a predetermined holding current for holding the plunger 9 of the electromagnetic solenoid 5 shown in FIG. Is reduced to a predetermined holding current. Therefore, low power consumption is performed in the latter half period of the PWM control. When the start button (not shown) of the device is released, the start signal becomes 0 level, the potential at point A becomes 0 level, the current of the electromagnetic solenoid 5 is cut off, and the operation of the hydraulic device is stopped.

【0013】上記の実施例では、スイッチング素子3に
電力用のFETを用いて説明したが、トランジスタを用
いた回路でも同様に、電磁コイル5に流れる電流を制御
することができる。
In the above embodiments, the power FET is used as the switching element 3, but a circuit using a transistor can control the current flowing through the electromagnetic coil 5 in the same manner.

【0014】[0014]

【発明の効果】本発明の油圧装置は上記のように構成さ
れており、電磁ソレノイドに流す電流を制御する回路
に、スイッチング素子を用いたPWM(パルス幅変調)
制御のパルス回路を設け、電磁ソレノイドに流す電流を
作動初期の100ms程度までは直流の定格電流を流
し、作動後に保持した状態では駆動電流を数分の一の所
定の保持電流まで電流を制限するようにしているので、
電磁ソレノイドのコイルの温度上昇を少なくし、コイル
の作動電圧を低くして作動することができ、低電力消費
化を図り、車載バッテリの消耗を少なくすることができ
る。
The hydraulic system of the present invention is configured as described above, and PWM (pulse width modulation) using a switching element in the circuit for controlling the current flowing through the electromagnetic solenoid is used.
The control pulse circuit is provided, and the rated current of the direct current flows through the electromagnetic solenoid up to about 100 ms at the beginning of the operation, and in the state where it is maintained after the operation, the drive current is limited to a predetermined holding current of a few fractions. I am doing so
It is possible to reduce the temperature rise of the coil of the electromagnetic solenoid and to lower the operating voltage of the coil for operation, thereby reducing the power consumption and reducing the consumption of the on-vehicle battery.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の油圧装置の一実施例を示す図であ
る。
FIG. 1 is a diagram showing an embodiment of a hydraulic device of the present invention.

【図2】 本発明の油圧装置の回路のタイミングチャー
トを示す図である。
FIG. 2 is a diagram showing a timing chart of a circuit of the hydraulic system of the present invention.

【図3】 電磁ソレノイドの構造を示す図である。FIG. 3 is a diagram showing a structure of an electromagnetic solenoid.

【図4】 電磁ソレノイドの連続通電温度特性を示す図
である。
FIG. 4 is a diagram showing a continuous energization temperature characteristic of an electromagnetic solenoid.

【図5】 電磁ソレノイドの温度に対する作動電圧を示
す図である。
FIG. 5 is a diagram showing an operating voltage with respect to a temperature of an electromagnetic solenoid.

【符号の説明】[Explanation of symbols]

1…マイクロコンピュータ 2…スイッチング素子駆動部 3…スイッチング素子 4…整流素子 5…電磁ソレノイド 6…整流素子 7…DC電源 8…コイル 9…プランジャ 10…固定鉄心 1. Microcomputer 2 ... Switching element driver 3 ... Switching element 4 ... Rectifying element 5 ... Electromagnetic solenoid 6 ... Rectifying element 7 ... DC power supply 8 ... coil 9 ... Plunger 10 ... Fixed iron core

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】負荷を移動させる手段として油圧を用いた
油圧制御回路に電磁ソレノイドを備えた油圧装置におい
て、前記電磁ソレノイドに流す電流を作動初期には定格
電流を流し、作動後は所定の保持電流まで電流を制限す
る油圧制御回路を備えることを特徴とする油圧装置。
1. A hydraulic system comprising an electromagnetic solenoid in a hydraulic control circuit using hydraulic pressure as a means for moving a load, wherein a current supplied to the electromagnetic solenoid is a rated current at the initial stage of operation, and a predetermined hold is maintained after the operation. A hydraulic system comprising a hydraulic control circuit that limits a current to a current.
【請求項2】請求項1記載の油圧装置において、前記油
圧制御回路にスイッチング素子を用いたパルス回路を設
け前記電磁ソレノイドに流れる作動初期及び作動後の電
流をパルス幅変調制御することができるようにしたこと
を特徴とする油圧装置。
2. A hydraulic system according to claim 1, wherein the hydraulic control circuit is provided with a pulse circuit using a switching element so that the current flowing through the electromagnetic solenoid at the initial stage and after the pulse sequence can be pulse width modulation controlled. A hydraulic system characterized in that
JP2002034812A 2002-02-13 2002-02-13 Hydraulic system Withdrawn JP2003240150A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002034812A JP2003240150A (en) 2002-02-13 2002-02-13 Hydraulic system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002034812A JP2003240150A (en) 2002-02-13 2002-02-13 Hydraulic system

Publications (1)

Publication Number Publication Date
JP2003240150A true JP2003240150A (en) 2003-08-27

Family

ID=27777177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002034812A Withdrawn JP2003240150A (en) 2002-02-13 2002-02-13 Hydraulic system

Country Status (1)

Country Link
JP (1) JP2003240150A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005121620A1 (en) * 2004-06-07 2005-12-22 Yazaki Corporation Electromagnetic valve drive method, electromagnetic valve drive device, and electric cable coloring device
JP2009014185A (en) * 2007-07-09 2009-01-22 Smc Corp Solenoid valve driving circuit and solenoid valve
CN102272487A (en) * 2009-01-09 2011-12-07 丰田自动车株式会社 Control device for vehicular on/off control valve
CN114918873A (en) * 2022-03-29 2022-08-19 四川美创达电子科技有限公司 Electromagnetic pin puller and control method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005121620A1 (en) * 2004-06-07 2005-12-22 Yazaki Corporation Electromagnetic valve drive method, electromagnetic valve drive device, and electric cable coloring device
CN100449190C (en) * 2004-06-07 2009-01-07 矢崎总业株式会社 Electromagnetic valve drive method, electromagnetic valve drive device, and electric cable coloring device
US7944673B2 (en) 2004-06-07 2011-05-17 Yazaki Corporation Driving method of electromagnetic valve, electromagnetic valve driving unit and apparatus for coloring electric wire
JP2009014185A (en) * 2007-07-09 2009-01-22 Smc Corp Solenoid valve driving circuit and solenoid valve
CN102272487A (en) * 2009-01-09 2011-12-07 丰田自动车株式会社 Control device for vehicular on/off control valve
JP2012514720A (en) * 2009-01-09 2012-06-28 トヨタ自動車株式会社 Control device for on-off control valve for vehicle
CN114918873A (en) * 2022-03-29 2022-08-19 四川美创达电子科技有限公司 Electromagnetic pin puller and control method

Similar Documents

Publication Publication Date Title
JP4390231B2 (en) Electromagnetic operation device
US10378242B2 (en) Constant-current controller for an inductive load
US20150062770A1 (en) Energy efficient bi-stable permanent magnet actuation system
JP3778329B2 (en) Switchgear
US7542261B2 (en) Device for driving and electromagnet, particularly for operating pumps
WO2011125092A1 (en) Drive circuit for electromagnetic manipulation mechanism
JP5249704B2 (en) Electromagnetic operating mechanism drive circuit
US6201681B1 (en) Control apparatus for electromagnetic actuator
KR101253397B1 (en) Solenoid controller for electromechanical lock
JP2003240150A (en) Hydraulic system
US20090237856A1 (en) Solenoid valve drive control apparatus and method for driving a solenoid valve
JP2009232654A (en) Total-voltage starting/voltage-fall maintaining drive circuit with electro-magnetic excitation load
JP3058869B1 (en) Solenoid drive circuit
CN107208615B (en) Method for operating a piston pump, actuating device for a piston pump, and piston pump
JP4038847B2 (en) Lifting electromagnet for attachment
CN214099429U (en) Electromagnetic driver
JP3794304B2 (en) Air conditioner
US11843380B2 (en) Contactor, and device and method for controlling same
WO2021111656A1 (en) Electromagnetic coil drive circuit
JPH07220598A (en) Electromagnetic operation switch
EP2513938A1 (en) Apparatus for an electromagnetic switching device
KR100667872B1 (en) Massage apparatus using a dc power
JPH03172693A (en) Drainage solenoid valve device
JP2004225229A (en) Driving apparatus for actuator and driving method
CN114267515A (en) AC electromagnet using three bridge circuits

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040927

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070330