JP2003239142A - Carbon fiber by gas phase method and method for producing the same - Google Patents

Carbon fiber by gas phase method and method for producing the same

Info

Publication number
JP2003239142A
JP2003239142A JP2002034883A JP2002034883A JP2003239142A JP 2003239142 A JP2003239142 A JP 2003239142A JP 2002034883 A JP2002034883 A JP 2002034883A JP 2002034883 A JP2002034883 A JP 2002034883A JP 2003239142 A JP2003239142 A JP 2003239142A
Authority
JP
Japan
Prior art keywords
carbon fiber
transition metal
metal compound
producing
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002034883A
Other languages
Japanese (ja)
Other versions
JP3868824B2 (en
Inventor
Kazuo Muramaki
一男 村槇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2002034883A priority Critical patent/JP3868824B2/en
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to US10/475,777 priority patent/US7524479B2/en
Priority to DE60230514T priority patent/DE60230514D1/en
Priority to PCT/JP2002/006402 priority patent/WO2003002789A1/en
Priority to AT02743727T priority patent/ATE418632T1/en
Priority to EP02743727A priority patent/EP1407064B1/en
Priority to CN02812912A priority patent/CN100585037C/en
Publication of JP2003239142A publication Critical patent/JP2003239142A/en
Application granted granted Critical
Publication of JP3868824B2 publication Critical patent/JP3868824B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Inorganic Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a carbon fiber in a gas phase by increasing choices of transition metal compounds essential to produce the carbon fiber in the gas phase and yield of the carbon fiber. <P>SOLUTION: This method for producing the carbon fiber in the gas phase is to dissolve the transition element compound in a solvent, generate minute droplets from the solution, generate fine particles of the transition metal element by vaporizing the solvent in the droplets and feed the fine particles together with an organic compound which is a raw material to a carbon fiber-producing furnace. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は有機化合物の気相熱
分解法による微細な炭素繊維の製造方法に関し、さらに
詳しくは炭素繊維の製造の際の触媒となる遷移金属化合
物の微粒子を特定の方法で炭素繊維生成炉内に供給する
ことにより炭素繊維を効率よく製造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing fine carbon fibers by vapor phase pyrolysis of organic compounds, and more particularly to a method for identifying fine particles of a transition metal compound as a catalyst for producing carbon fibers. The present invention relates to a method for efficiently producing carbon fibers by supplying the carbon fibers into a carbon fiber production furnace.

【0002】[0002]

【従来の技術】有機化合物の熱分解によって得られるい
わゆる気相法炭素繊維はFe、Ni等の遷移金属の微粒
子を触媒として成長するものである。その生成機構は微
粒子の周囲に有機化合物の熱分解により生成した炭素が
析出し、繊維状に伸長することからなっている。そのた
め微細な炭素繊維を得るためには微粒子はできるだけ細
かい方がよい。この細かい微粒子を用い成長時間を短く
することにより微細な繊維の製造が可能となる。
2. Description of the Related Art So-called vapor grown carbon fibers obtained by thermal decomposition of organic compounds grow using fine particles of transition metals such as Fe and Ni as catalysts. The generation mechanism is that carbon generated by thermal decomposition of an organic compound is deposited around the fine particles and extends into a fibrous shape. Therefore, in order to obtain fine carbon fibers, the fine particles should be as small as possible. By using these fine particles and shortening the growth time, it becomes possible to manufacture fine fibers.

【0003】気相法炭素繊維は導電性や熱伝導性フィラ
ー材として合成樹脂や塗料の充填剤、リチウム電池等の
充填剤、燃料電池、二次電池、キャパシタ等の電極材、
電界放出ディスプレイ(FED)等の電子放出材料等に
用いられるが、これらの用途には炭素繊維はできるだけ
細かい径のものが好ましい。従来、遷移金属の微粒子を
炭素繊維生成炉(反応炉)内に存在させる方法として各
種のものが提案されている。一つは遷移金属化合物を熱
分解して該金属の微粒子を予め得、それを反応炉内に存
在させる方法である(特公昭58−22571号公
報)。またフェロセンのような有機遷移金属化合物で熱
分解温度より蒸発温度(気化温度)が低い化合物をガス
状にして反応炉に供給し、そこで熱分解して遷移金属の
微粒子を生成させる方法もある(特公昭62−4936
3号公報)。さらに遷移金属化合物を溶媒に溶解し、そ
の溶液を噴霧して反応炉内に供給し、反応炉内で該化合
物を分解し、遷移金属の微粒子を生成させる方法もある
(特許第2778434号)。
Vapor grown carbon fiber is a filler of synthetic resin or paint as a conductive or heat conductive filler material, a filler of lithium battery or the like, an electrode material of fuel cell, secondary battery, capacitor or the like,
It is used as an electron emission material such as a field emission display (FED). For these applications, it is preferable that the carbon fiber has a diameter as small as possible. Heretofore, various methods have been proposed as a method for allowing fine particles of a transition metal to exist in a carbon fiber production furnace (reaction furnace). One is a method in which a transition metal compound is thermally decomposed to obtain fine particles of the metal in advance, and the fine particles are allowed to exist in a reaction furnace (Japanese Patent Publication No. 58-22571). In addition, there is also a method in which an organic transition metal compound such as ferrocene having a lower evaporation temperature (vaporization temperature) than the thermal decomposition temperature is gasified and supplied to a reaction furnace, where it is thermally decomposed to produce fine particles of the transition metal ( Japanese Patent Publication No. 62-4936
3 gazette). Further, there is also a method in which a transition metal compound is dissolved in a solvent, the solution is sprayed and supplied into a reaction furnace, and the compound is decomposed in the reaction furnace to generate fine particles of a transition metal (Japanese Patent No. 2778434).

【0004】[0004]

【発明が解決しようとする課題】前記従来技術におい
て、予め遷移金属の微粒子を得る方法では非常に細かい
微粒子とすることが難しい。粉砕では限度がある上、凝
集して二次粒子となり易く粗大化する。またフェロセン
のようなガスの熱分解でも、生成した金属の粒子が熱分
解の温度領域で凝集し大きくなる傾向がある。遷移金属
化合物をガス状にして反応炉に供給する方法はその化合
物が熱分解温度より低い温度で蒸発する必要があり、化
合物の種類がかなり限られる。フェロセンのような化合
物はこの条件を満たすが高価で経済性に問題がある。ま
た遷移金属化合物をガス状で供給した場合、微粒子の大
きさにバラツキが生じ易い。特に化合物が分子状態で供
給されるので熱分解が早く、反応炉の入口付近で大部分
が熱分解し、生成した金属粒子がガスの流れに沿って凝
集し、粗大化するものが多く、触媒として機能しない大
きさに成長してしまう。このため微細な炭素繊維の生成
効率(収率)が低い。遷移金属化合物を溶媒に溶解し、
その溶液を微細な液滴にして反応炉内に供給する方法は
溶媒を選択することにより該化合物が広範囲に種々のも
のが使用可能となる利点がある。しかし溶媒が反応炉内
で蒸発するため、その蒸発潜熱による温度の影響が現れ
反応炉内の温度を均一に保てないため、均一な径を持っ
た炭素繊維が得られないという問題点がある。本発明は
触媒となる遷移金属化合物が広範囲に種々のものに適用
可能にして、かつ効率よく微細な気相法炭素繊維を製造
する方法を提供することを目的とする。
In the above-mentioned prior art, it is difficult to obtain fine particles of transition metal by the method of previously obtaining fine particles of transition metal. There is a limit in pulverization, and it tends to agglomerate into secondary particles and coarsens. Further, even in the thermal decomposition of a gas such as ferrocene, the produced metal particles tend to aggregate and become large in the thermal decomposition temperature region. The method of supplying the transition metal compound in the form of gas to the reaction furnace requires that the compound be vaporized at a temperature lower than the thermal decomposition temperature, and the types of the compound are considerably limited. Compounds such as ferrocene satisfy this condition, but are expensive and have problems in economic efficiency. When the transition metal compound is supplied in the form of gas, the size of the fine particles tends to vary. In particular, since the compounds are supplied in the molecular state, thermal decomposition is fast, and most of them are thermally decomposed near the inlet of the reaction furnace, and the generated metal particles agglomerate along the flow of gas and often become coarse. It grows to a size that does not function as. Therefore, the production efficiency (yield) of fine carbon fibers is low. Dissolving the transition metal compound in a solvent,
The method of supplying the solution as fine droplets into the reaction furnace has an advantage that various compounds can be used in a wide range by selecting a solvent. However, since the solvent evaporates in the reaction furnace, the effect of temperature due to the latent heat of evaporation appears and the temperature in the reaction furnace cannot be kept uniform, so that there is a problem that carbon fibers having a uniform diameter cannot be obtained. . An object of the present invention is to provide a method for producing a fine vapor-phase grown carbon fiber with a transition metal compound serving as a catalyst that can be widely applied to various compounds.

【0005】[0005]

【課題を解決するための手段】本発明は上記の課題を解
決するためになされたもので以下の各項からなる。 (1)遷移金属化合物を溶媒に溶解し、その溶液から微
細な液滴を発生させ、次いで液滴中の溶媒を蒸発させて
遷移金属化合物の微粒子とし、該微粒子を浮遊状態で有
機化合物のガスと共に炭素繊維生成炉に供給することを
特徴とする気相法炭素繊維の製造方法。 (2)遷移金属化合物を溶媒に溶解し、その溶液から微
細な液滴を発生させ、次いで液滴中の溶媒を蒸発させて
遷移金属化合物の微粒子とし、該微粒子を浮遊状態で有
機化合物のガス及び遷移金属化合物のガスと共に炭素繊
維生成炉に供給することを特徴とする気相法炭素繊維の
製造方法。 (3)液滴中に熱分解温度あるいは水素による還元温度
が異なる2種以上の遷移金属化合物を含む上記(1)ま
たは(2)に記載の気相法炭素繊維の製造方法。 (4)液滴が2種以上であり、それぞれの液滴に熱分解
温度あるいは水素による還元温度が異なる遷移金属化合
物を含む上記(1)または(2)に記載の気相法炭素繊
維の製造方法。 (5)液滴中の遷移金属化合物の濃度(2種以上の場合
はその合計量)が0.01〜40質量%である上記
(1)〜(4)のいずれか1項に記載の気相法炭素繊維
の製造方法。 (6)遷移金属化合物が、鉄、ニッケル、コバルト、モ
リブデン、白金、パラジウム、ロジウム、ルテニウム、
チタン、バナジウムのそれぞれの酸化物、水酸化物、硫
化物、フッ化物、フルオロ錯体、塩化物、クロロ錯体、
臭化物、ヨウ化物、過塩素酸塩、硝酸塩、硫酸複塩、炭
酸塩、シアノ錯体、メタロセンから選ばれた1種である
上記(1)〜(5)のいずれか1項に記載の気相法炭素
繊維の製造方法。
The present invention has been made to solve the above-mentioned problems and comprises the following items. (1) A transition metal compound is dissolved in a solvent, fine droplets are generated from the solution, and then the solvent in the droplets is evaporated to form fine particles of the transition metal compound, and the fine particles are suspended in a gas of an organic compound. And a method for producing vapor grown carbon fiber, characterized in that the carbon fiber is supplied to a carbon fiber production furnace together with the carbon fiber production furnace. (2) A transition metal compound is dissolved in a solvent, fine droplets are generated from the solution, and then the solvent in the droplets is evaporated to form fine particles of the transition metal compound, and the fine particles are suspended in a gas of an organic compound. And a method for producing a vapor grown carbon fiber, which comprises supplying a transition metal compound gas together with a gas to a carbon fiber production furnace. (3) The method for producing a vapor grown carbon fiber according to the above (1) or (2), wherein the droplets contain two or more kinds of transition metal compounds having different thermal decomposition temperatures or reduction temperatures with hydrogen. (4) Production of the vapor grown carbon fiber according to the above (1) or (2), wherein there are two or more kinds of liquid droplets, and each liquid droplet contains a transition metal compound having a different thermal decomposition temperature or reduction temperature with hydrogen. Method. (5) The gas according to any one of (1) to (4) above, wherein the concentration of the transition metal compound in the droplets (the total amount of two or more kinds) is 0.01 to 40 mass%. Phased carbon fiber manufacturing method. (6) The transition metal compound is iron, nickel, cobalt, molybdenum, platinum, palladium, rhodium, ruthenium,
Titanium and vanadium oxides, hydroxides, sulfides, fluorides, fluoro complexes, chlorides, chloro complexes,
The gas phase method according to any one of (1) to (5) above, which is one selected from bromide, iodide, perchlorate, nitrate, double sulfate, carbonate, cyano complex, and metallocene. Carbon fiber manufacturing method.

【0006】(7)遷移金属化合物が、その熱分解温度
が該蒸発温度より低いものである上記(1)〜(6)の
いずれか1項に記載の気相法炭素繊維の製造方法。 (8)遷移金属化合物溶液の液滴を発生させる方法が、
圧力微粒化法、二流体式微粒化法、遠心式微粒化法、振
動法、超音波法、音響微粒化法、電気力微粒化法から選
ばれた少なくとも1種である上記(1)〜(7)のいず
れか1項に記載の気相法炭素繊維の製造方法。 (9)遷移金属化合物の溶媒が、水、有機溶媒、含水有
機溶媒である上記(1)〜(8)のいずれ1項に記載の
炭素繊維の製造方法。 (10)遷移金属化合物の溶媒が、水、メタノール、エ
タノール、プロパノール、ベンゼン、トルエン、キシレ
ン、アセトン、エーテル、ヘキサンから選ばれた少なく
とも1種である上記(1)〜(9)のいずれか1項に記
載の炭素繊維の製造方法。 (11)上記(1)〜(10)に記載の製造方法で製造
された気相法炭素繊維。 (12)繊維外径が1〜500nm、繊維長さが0.5
〜100μmである上記(11)に記載の気相法炭素繊
維。 (13)樹脂に上記(11)に記載の気相法炭素繊維を
含有する樹脂組成物。
(7) The method for producing a vapor grown carbon fiber according to any one of (1) to (6) above, wherein the transition metal compound has a thermal decomposition temperature lower than the evaporation temperature. (8) A method of generating droplets of a transition metal compound solution is
At least one selected from the pressure atomization method, the two-fluid atomization method, the centrifugal atomization method, the vibration method, the ultrasonic method, the acoustic atomization method, and the electric force atomization method (1) to ( 7. The method for producing a vapor grown carbon fiber according to any one of 7). (9) The method for producing carbon fiber according to any one of (1) to (8) above, wherein the solvent of the transition metal compound is water, an organic solvent, or a water-containing organic solvent. (10) Any one of the above (1) to (9), wherein the solvent of the transition metal compound is at least one selected from water, methanol, ethanol, propanol, benzene, toluene, xylene, acetone, ether and hexane. The method for producing a carbon fiber according to item. (11) A vapor grown carbon fiber produced by the production method described in (1) to (10) above. (12) Fiber outer diameter is 1 to 500 nm, fiber length is 0.5
The vapor grown carbon fiber according to (11) above, which has a thickness of -100 μm. (13) A resin composition containing the vapor grown carbon fiber according to (11) above in a resin.

【0007】[0007]

【発明の実施の形態】本発明は気相法炭素繊維の製造方
法において、遷移金属化合物を含有する溶液から液滴を
発生させ、その液滴から溶媒を蒸発させて遷移金属化合
物の微粒子を生成させ、該微粒子を反応炉内に供給する
ことを特徴とする。遷移金属化合物としては無機あるい
は有機の遷移金属化合物のいずれも使用可能である。こ
れらの化合物としては鉄、ニッケル、コバルト、モリブ
デン、白金、パラジウム、ロジウム、ルテニウム、チタ
ン、バナジウムのそれぞれの酸化物、水酸化物、硫化
物、フッ化物、フルオロ錯体、塩化物、クロロ錯体、臭
化物、ヨウ化物、過塩素酸塩、硝酸塩、硫酸複塩、炭酸
塩、シアノ錯体、メタロセンなど例えばFeF2、Fe
Cl2、FeCl3、FeSO4、FeNO3、Fe(C
O)5、Fe(C552、FeS、FeS2、NiC
2、K3[NiF6]、K3[CoF6]、MoCl2、R
hCl2、RuCl2、TiCl4などを挙げることがで
きる。また、これらは無水和物、水和物でもよい。これ
らの中で例えば鉄の塩化物、フェロセン等を除く多くの
化合物は蒸発させることが困難かあるいは熱分解温度が
蒸発温度より低いので、ガス化して反応炉に導くことは
出来ない。したがってこれらの遷移金属化合物は本発明
に特に有用である。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention is a method for producing a vapor grown carbon fiber, wherein droplets are generated from a solution containing a transition metal compound and the solvent is evaporated from the droplets to produce fine particles of the transition metal compound. And supplying the fine particles into the reaction furnace. As the transition metal compound, either an inorganic or organic transition metal compound can be used. These compounds include iron, nickel, cobalt, molybdenum, platinum, palladium, rhodium, ruthenium, titanium, vanadium oxides, hydroxides, sulfides, fluorides, fluorocomplexes, chlorides, chlorocomplexes, bromides. , Iodide, perchlorate, nitrate, double sulfate, carbonate, cyano complex, metallocene, etc., such as FeF 2 , Fe
Cl 2 , FeCl 3 , FeSO 4 , FeNO 3 , Fe (C
O) 5 , Fe (C 5 H 5 ) 2 , FeS, FeS 2 , NiC
l 2 , K 3 [NiF 6 ], K 3 [CoF 6 ], MoCl 2 , R
Examples thereof include hCl 2 , RuCl 2 , TiCl 4 and the like. Further, these may be anhydrate or hydrate. Of these, for example, many compounds other than iron chloride, ferrocene, and the like are difficult to vaporize or have a thermal decomposition temperature lower than the vaporization temperature, so that they cannot be gasified and led to a reaction furnace. Therefore, these transition metal compounds are particularly useful in the present invention.

【0008】上記の遷移金属化合物は反応炉内で熱分解
するか、あるいは反応炉には通常キャリアガスとして用
いられる水素ガスが存在するので、その水素ガスにより
還元されて遷移金属の微粒子が生成する。本発明におい
て遷移金属化合物は2種以上併用することができ、特に
熱分解温度あるいは水素による還元温度の異なる化合物
を2種以上併用することが好ましい。この併用により遷
移金属の微粒子が反応炉内の狭い範囲帯域に集中して生
成するのを防ぎ、広範囲の帯域で生成させることがで
き、微粒子の利用効率が高まる。このような2種以上の
遷移金属化合物を用いる方法としては、一つは溶媒中に
2種以上の遷移金属化合物を溶解させ、それを液滴にし
て用いる方法である。この場合は一つの液滴中に熱分解
温度あるいは水素による還元温度(併せて熱分解温度等
という)が異なる2種以上の遷移金属化合物を含むこと
になる。他の方法は熱分解温度等が異なる2種以上の遷
移金属化合物から2種以上の別々の液滴を生成させ、そ
れらを反応炉に供給する方法である。本発明において、
液滴を生成させる溶媒中の遷移金属化合物の濃度は特に
限定されないが、低すぎると該化合物微粒子の生成量が
少なく、また高すぎると微粒子が大きくなるり易いの
で、0.01〜40質量%程度が適し、好ましくは0.
1〜30質量%、さらに好ましくは1〜15質量%であ
る。
The above-mentioned transition metal compound is thermally decomposed in the reaction furnace, or hydrogen gas which is usually used as a carrier gas exists in the reaction furnace and is reduced by the hydrogen gas to form fine particles of transition metal. . In the present invention, two or more transition metal compounds can be used in combination, and it is particularly preferable to use two or more compounds having different thermal decomposition temperatures or reduction temperatures with hydrogen. By this combined use, it is possible to prevent the fine particles of the transition metal from being concentrated and produced in a narrow range zone in the reaction furnace, and to produce them in a wide range of zones, thereby improving the utilization efficiency of the fine particles. As a method of using two or more kinds of transition metal compounds, one is a method of dissolving two or more kinds of transition metal compounds in a solvent and using them as droplets. In this case, one droplet contains two or more kinds of transition metal compounds having different thermal decomposition temperatures or hydrogen reduction temperatures (collectively referred to as thermal decomposition temperatures). Another method is to generate two or more kinds of separate droplets from two or more kinds of transition metal compounds having different thermal decomposition temperatures and supply them to the reaction furnace. In the present invention,
The concentration of the transition metal compound in the solvent for forming the droplets is not particularly limited, but if it is too low, the production amount of the compound fine particles is small, and if it is too high, the fine particles tend to become large. The degree is suitable, preferably 0.
It is 1 to 30% by mass, more preferably 1 to 15% by mass.

【0009】液滴生成に用いられる溶媒は遷移金属化合
物を溶解するものであればよく、水、有機溶媒、含水有
機溶媒、好ましくは水、アルコール類、芳香族化合物、
ケトン類、エーテル類、鎖状炭化水素類例えば、水、メ
タノール、エタノール、プロパノール、ベンゼン、ヘキ
セン、トルエン、キシレン、アセトン、エーテル、ヘキ
サンなどの中から選択使用される。溶媒は1種でも2種
以上を混合したものでもよい。一般的には無機遷移金属
化合物では水、有機遷移金属化合物では有機溶媒が用い
られる。 遷移金属化合物含有溶液から液滴を発生させ
る方法は公知である圧力微粒化法、二流体式微粒化法、
遠心式微粒化法、振動法、超音波法、音響微粒化法、電
気力微粒化法などを用いることが出来る。これらの方法
に属する装置としてはエアジェット噴霧装置、ラスキン
ノズル、スプレーノズル、超音波アトマイザーなどがあ
る。これらの装置を用いて出来るだけ微細な液滴を発生
させる必要がある。その条件を満たす好ましい装置はエ
アジェット噴霧装置である。液滴の発生は窒素、ヘリウ
ム、アルゴン又は水素ガスの雰囲気で行う。
The solvent used for forming the liquid droplets may be any one capable of dissolving the transition metal compound, and water, an organic solvent, a water-containing organic solvent, preferably water, alcohols, aromatic compounds,
It is selected and used from ketones, ethers, chain hydrocarbons such as water, methanol, ethanol, propanol, benzene, hexene, toluene, xylene, acetone, ether, and hexane. The solvent may be one kind or a mixture of two or more kinds. Generally, water is used for the inorganic transition metal compound and an organic solvent is used for the organic transition metal compound. A method for generating droplets from a transition metal compound-containing solution is a known pressure atomization method, two-fluid atomization method,
A centrifugal atomization method, a vibration method, an ultrasonic method, an acoustic atomization method, an electric force atomization method, or the like can be used. Devices belonging to these methods include an air jet spraying device, a Ruskin nozzle, a spray nozzle, and an ultrasonic atomizer. It is necessary to generate droplets as fine as possible using these devices. A preferred device that meets that requirement is an air jet atomizer. The droplets are generated in an atmosphere of nitrogen, helium, argon or hydrogen gas.

【0010】一般に数ミクロン以下の液滴はブラウン運
動の影響を受けて、重力沈降が起こりづらくなるため凝
集は起こりづらくなる。本発明において遷移金属化合物
の望ましい径の微粒子を得るためには、遷移金属化合物
の溶液濃度と発生させる液滴径を制御する必要がある。
液滴径は液滴発生装置の種類を変えることにより制御す
ることが可能である。例えば上記の硫酸第一鉄微粒子を
発生させる場合を例にとると0.3〜0.8ミクロン径
の液滴を発生させる装置、例えば定出力アトマイザを使
用する場合では、10質量%硫酸第一鉄水溶液を用いる
ことにより、硫酸第一鉄の50〜140ナノメータ径程
度の微粒子を発生させることが出来る。この場合、5質
量%硫酸第一鉄水溶液を用いれば、40〜110ナノメ
ータ径程度の微粒子を発生させることが出来る。液滴か
ら遷移金属化合物の微粒子を得るには液滴中の溶媒を蒸
発させればよい。溶媒の蒸発は液滴を例えば加熱管内を
通すことによっても可能であるが、気相法炭素繊維の製
造では通常水素ガスを予熱してキャリアガスとして使用
するので、そのキャリアガスと液滴を混合し、キャリア
ガスの熱によって液滴中の溶媒を蒸発させるのが効率的
である。溶媒が蒸発すると遷移金属化合物の微粒子が生
成し、ガス中に浮遊する。この微粒子は非常に小さいの
で、沈降は起こらず、また溶媒の蒸発程度の温度では熱
分解、凝集することもない。そして液滴はかなり粒径が
揃った状態で得られるので、生成する微粒子も粒径が揃
っていて粒径分布が狭い。
In general, droplets having a size of several microns or less are affected by Brownian motion, and gravitational sedimentation is less likely to occur, so that aggregation is less likely to occur. In the present invention, in order to obtain fine particles having a desired diameter of the transition metal compound, it is necessary to control the solution concentration of the transition metal compound and the diameter of droplets to be generated.
The droplet diameter can be controlled by changing the type of droplet generator. For example, in the case of generating the above-mentioned ferrous sulfate fine particles as an example, in the case of using an apparatus for generating droplets having a diameter of 0.3 to 0.8 μm, for example, when using a constant output atomizer, By using the iron aqueous solution, it is possible to generate fine particles of ferrous sulfate having a diameter of about 50 to 140 nanometers. In this case, if a 5 mass% ferrous sulfate aqueous solution is used, fine particles having a diameter of about 40 to 110 nanometers can be generated. To obtain fine particles of the transition metal compound from the droplet, the solvent in the droplet may be evaporated. Evaporation of the solvent is also possible by passing the droplets through, for example, a heating tube, but since hydrogen gas is usually preheated and used as a carrier gas in the production of vapor grown carbon fiber, the carrier gas is mixed with the droplets. However, it is efficient to evaporate the solvent in the droplets by the heat of the carrier gas. When the solvent evaporates, fine particles of the transition metal compound are generated and float in the gas. Since these fine particles are very small, no sedimentation occurs, and neither thermal decomposition nor aggregation occurs at a temperature about the evaporation of the solvent. Further, since the droplets are obtained in a state in which the particle diameters are considerably uniform, the generated fine particles also have a uniform particle diameter and the particle size distribution is narrow.

【0011】次にこの微粒子を原料となる有機化合物と
共に反応炉に供給する。供給方法としては微粒子が浮遊
しているガス、キャリアガス、原料の有機化合物を例え
ばラインミキサーに送り、十分混合して反応炉に供給す
るのが好ましい。キャリアガスには通常水素ガスが用い
られ、これを200〜400℃程度に予熱する。有機化
合物は気相法炭素繊維の製造に一般に用いられるもの
で、ベンゼン、トルエン、キシレン、ナフタレン、フェ
ナントレン等の芳香族炭化水素、シクロプロパン、シク
ロペンテン、シクロヘキサン等の脂環式炭化水素、メタ
ン、エタン、アセチレン、ブタジエン、エチレン等の鎖
状炭化水素、メタノール、エタノール等の含酸素化合物
など及びこれらの混合物を用いることができる。これら
の中で好ましいのはベンゼン、トルエン、シクロヘキサ
ン、アセチレン、ブタジエン、エチレン、特に好ましい
のはベンゼンである。反応に供給するガスの割合は一般
的には有機化合物1モルに対しキャリアガス30〜60
モル程度がよい。また遷移金属化合物の微粒子は有機化
合物に対し1〜10質量%程度用いられる。
Next, the fine particles are supplied to a reaction furnace together with an organic compound as a raw material. As a supply method, it is preferable that a gas in which fine particles are suspended, a carrier gas, and an organic compound as a raw material are sent to, for example, a line mixer, sufficiently mixed and supplied to a reaction furnace. Hydrogen gas is usually used as the carrier gas and is preheated to about 200 to 400 ° C. Organic compounds are generally used in the production of vapor grown carbon fibers, and are aromatic hydrocarbons such as benzene, toluene, xylene, naphthalene and phenanthrene, alicyclic hydrocarbons such as cyclopropane, cyclopentene and cyclohexane, methane and ethane. , Chain hydrocarbons such as acetylene, butadiene, and ethylene, oxygen-containing compounds such as methanol and ethanol, and mixtures thereof can be used. Among these, benzene, toluene, cyclohexane, acetylene, butadiene and ethylene are preferable, and benzene is particularly preferable. The ratio of the gas supplied to the reaction is generally 30 to 60 carrier gas to 1 mol of the organic compound.
Good molarity. The fine particles of the transition metal compound are used in an amount of about 1 to 10% by mass based on the organic compound.

【0012】反応炉は一般的には1000〜1500℃
に加熱される。この温度で有機化合物は熱分解され、遷
移金属化合物の微粒子は熱分解あるいは水素還元により
遷移金属の微粒子が生成する。有機化合物が分解すると
炭素原子及び炭素クラスターが発生する。そして前記微
粒子を核として炭素クラスターが繊維状に伸びて炭素繊
維になる。この際に、遷移金属化合物の熱分解温度が低
い場合では反応炉入口近傍で遷移金属化合物の分解及び
該金属微粒子の生成が起こってしまうが、そこでは炭素
繊維を生成する炭素クラスターの供給が不十分であるか
ら、得られる炭素繊維の生成本数は少ないものになり、
反応収率の低下を招く。ここで触媒とならなかった余剰
の遷移金属微粒子及びクラスターは、成長して巨大化す
るため、炭素クラスターの供給が十分行われる反応炉の
下流域でも触媒となり得ない。従って、炭素繊維の生成
本数を増やして、反応収率を向上させるためには、反応
炉の全域に亘って遷移金属微粒子及びクラスターの放出
が起こるようにするのがよい。。その一つの方法として
熱分解温度等が異なる複数の遷移金属化合物を用いると
効果的である。また、本発明は、遷移金属化合物は微粒
子として反応炉に供給されるから、該化合物をガス(分
子)として供給する場合に比べて反応炉の入口付近で分
解する割合が少なく、反応炉の広い領域で望ましい遷移
金属の微粒子とすることができる。
The reaction furnace is generally 1000 to 1500 ° C.
To be heated. At this temperature, the organic compound is thermally decomposed, and the fine particles of the transition metal compound are thermally decomposed or reduced by hydrogen to produce fine particles of the transition metal. When the organic compound is decomposed, carbon atoms and carbon clusters are generated. Then, the carbon clusters are extended into fibrous shapes with the fine particles as nuclei to become carbon fibers. At this time, when the thermal decomposition temperature of the transition metal compound is low, decomposition of the transition metal compound and formation of the metal fine particles occur near the inlet of the reaction furnace, but the supply of carbon clusters that form carbon fibers is not possible there. Since it is sufficient, the number of carbon fibers produced will be small,
This leads to a decrease in reaction yield. Excess transition metal fine particles and clusters that have not become catalysts here grow and become huge, and therefore cannot be catalysts even in the downstream region of the reactor where carbon clusters are sufficiently supplied. Therefore, in order to increase the number of carbon fibers produced and improve the reaction yield, it is preferable that the transition metal fine particles and clusters be released over the entire area of the reaction furnace. . As one of the methods, it is effective to use a plurality of transition metal compounds having different thermal decomposition temperatures. Further, according to the present invention, since the transition metal compound is supplied as fine particles to the reaction furnace, the ratio of decomposition in the vicinity of the inlet of the reaction furnace is smaller than that in the case where the compound is supplied as a gas (molecule), and the reaction furnace is wide. Fine particles of the desired transition metal can be provided in the region.

【0013】本発明は、従来から行われている遷移金属
微粒子を発生する方法と併用して用いることが可能であ
る。例えば、フェロセンの昇華性を利用して、フェロセ
ンを予め原料(炭素原となる有機化合物)に溶解させた
後、蒸発させて反応炉に供給する方法に本発明による方
法を組み合わせて、昇華性を有さない遷移金属化合物を
同時に反応炉に供給することが可能である。従来の方法
に本発明の方法を併用することにより、反応炉内でのよ
り広範囲な領域での遷移金属微粒子の発生が可能となる
ため、反応収率が向上する。併用する場合のそれらの割
合は、遷移金属化合物の遷移金属元素換算で、液滴中の
遷移金属化合物1モルに対し、ガス状の遷移金属化合物
1モル以下が好ましい。この方法で得られる炭素繊維
は、代表的には直径1〜500nm、長さ0.5〜10
0μmである。
The present invention can be used in combination with a conventional method for producing fine particles of transition metal. For example, by utilizing the sublimability of ferrocene, the method of the present invention is combined with the method of dissolving ferrocene in a raw material (organic compound serving as a carbon source) in advance, and then evaporating and supplying the ferrocene to the reaction furnace. It is possible to feed the transition metal compound not having it to the reaction furnace at the same time. By using the method of the present invention in combination with the conventional method, it is possible to generate the transition metal fine particles in a wider area in the reaction furnace, and thus the reaction yield is improved. When they are used in combination, the ratio thereof is preferably 1 mol or less of a gaseous transition metal compound based on 1 mol of the transition metal compound in the liquid droplets in terms of the transition metal element of the transition metal compound. The carbon fibers obtained by this method are typically 1 to 500 nm in diameter and 0.5 to 10 in length.
It is 0 μm.

【0014】[0014]

【実施例】以下実施例により具体的に説明する。 (実施例1)図1のような装置を用いて炭素繊維を製造
した。図1において、1はキャリアガス加熱炉、2は有
機化合物加熱炉、3は反応炉(反応管)、32は反応管
に向けて径が大きくなる拡大管、31は多数の小孔を有
する整流板で、31,32はガスの反応管への均一供給
のためのものである。4は捕集器、5は液滴発生装置、
6は遷移金属化合物の溶液槽である。11,21,33
はそれぞれヒーターで炉内を所定の温度に加熱するもの
である。炭素繊維の原料となるベンゼンは送入口22よ
り送入した。キャリアガスの水素は水素ガス送入口12
より送入した。また遷移金属化合物としては硫酸第一鉄
及び塩化第二鉄を使用し、この水溶液を調製して、窒素
ガスを駆動源として、液滴発生装置により液滴を発生さ
せた。この液滴、加熱されたキャリアガス、原料ガスは
ラインミキサー7により瞬時に混合させた。反応管3に
て生成した炭素繊維42は捕集器4に入り、フィルター
41により捕集した。キャリアガスはガス排出口43よ
り排出した。運転条件及び結果は以下の通りである。 (1) キャリアガス加熱炉 温度 約300℃ 水素ガス送入量 150L/min.(標準状態:0℃、1気圧) (2)有機化合物加熱炉 有機化合物の種類 ベンゼン 温度 約300℃ 有機化合物送入量 10g/min. (3)液滴発生装置 定出力アトマイザ(日本カノマックス株式会社 MODEL3076) 液滴の種類 硫酸第一鉄と塩化第二鉄の混合水溶液 混合水溶液の濃度 硫酸第一鉄4質量%、塩化第二鉄4質量% 液滴供給量 0.6×10-3L/min. 液滴サイズ 約0.3μm(顕微鏡により測定。数平均粒径) 駆動用窒素供給量 3.5L/min.(2.5Kg/cm2G) (4)反応条件 反応温度 約1200℃(最高温度領域) 反応時間 1sec(反応管中の平均滞留時間) (5)結果 炭素繊維の収得量 0.92g/min.(収率*10%) 炭素繊維の形状 太さ0.03μm、長さ15μm(いずれも平均) (*収率はベンゼン中の炭素に対するもの)
Embodiments will be specifically described below with reference to embodiments. (Example 1) Carbon fiber was manufactured using an apparatus as shown in FIG. In FIG. 1, 1 is a carrier gas heating furnace, 2 is an organic compound heating furnace, 3 is a reaction furnace (reaction tube), 32 is an expansion tube whose diameter increases toward the reaction tube, and 31 is a rectifier having many small holes. The plates 31 and 32 are for uniform supply of gas to the reaction tube. 4 is a collector, 5 is a droplet generator,
6 is a solution bath of the transition metal compound. 11, 21, 33
Each is for heating the inside of the furnace to a predetermined temperature with a heater. Benzene, which is a raw material of carbon fiber, was fed through the inlet 22. Hydrogen as the carrier gas is the hydrogen gas inlet 12
Sent in. Further, ferrous sulfate and ferric chloride were used as the transition metal compounds, an aqueous solution thereof was prepared, and droplets were generated by a droplet generator using nitrogen gas as a driving source. The droplets, the heated carrier gas and the raw material gas were instantaneously mixed by the line mixer 7. The carbon fiber 42 produced in the reaction tube 3 entered the collector 4 and was collected by the filter 41. The carrier gas was discharged from the gas discharge port 43. The operating conditions and results are as follows. (1) Carrier gas heating furnace Temperature: approx. 300 ° C Hydrogen gas feed rate: 150 L / min. (Standard condition: 0 ° C, 1 atm) (2) Organic compound heating furnace Type of organic compound Benzene temperature: approx. 300 ° C Feed organic compound Amount 10g / min. (3) Droplet generator Constant output atomizer (MODEL3076, Japan Canomax Co., Ltd.) Droplet type Mixed aqueous solution of ferrous sulfate and ferric chloride Concentration of mixed aqueous solution Ferrous sulfate 4% by mass, Ferric chloride 4 mass% Droplet supply rate 0.6 × 10 -3 L / min. Droplet size about 0.3 μm (measured by microscope. Number average particle size) Driving nitrogen supply rate 3.5 L / min. ( 2.5 Kg / cm 2 G) (4) Reaction conditions Reaction temperature Approx. 1200 ° C (maximum temperature range) Reaction time 1 sec (average residence time in reaction tube) (5) Results Carbon fiber yield 0.92 g / min. (yield * 10%) carbon fiber shapes thickness 0.03 .mu.m, a length 15 [mu] m (both flat ) (* The yield is intended to carbon in benzene)

【0015】(実施例2)実施例1において、ベンゼン
中にフェロセンを0.5質量%溶解させ、遷移金属化合
物の水溶液として硫酸第一鉄7質量%のもの1種を用い
た他は実施例1と同様にして炭素繊維を製造した。 結果 炭素繊維の収得量 0.74g/min.(収率8%) 炭素繊維の形状 太さ0.03μm、長さ15μm(いずれも平均)
(Example 2) Example 2 was repeated except that ferrocene was dissolved in benzene in an amount of 0.5% by mass, and one kind of an aqueous solution of a transition metal compound having 7% by mass of ferrous sulfate was used. A carbon fiber was produced in the same manner as in 1. Results Carbon fiber yield 0.74 g / min. (Yield 8%) Carbon fiber shape Thickness 0.03 μm, length 15 μm (all average)

【0016】[0016]

【発明の効果】本発明によれば遷移金属化合物の選択肢
が多くなり、安価な無機化合物の使用も可能となる。ま
た従来の方法と比較して、遷移金属化合物および原料の
有機化合物の収率も向上する。さらに従来より一層細く
径の揃った炭素繊維の製造も可能となる。
EFFECTS OF THE INVENTION According to the present invention, the number of choices of transition metal compounds increases, and inexpensive inorganic compounds can be used. Further, the yields of the transition metal compound and the organic compound as a raw material are also improved as compared with the conventional method. Further, it becomes possible to manufacture carbon fibers which are thinner and have a uniform diameter.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は本発明方法の実施に用いられる装置の一
例を示す概略断面図である。
FIG. 1 is a schematic sectional view showing an example of an apparatus used for carrying out the method of the present invention.

【符号の説明】[Explanation of symbols]

1 キャリアガス加熱炉 2 有機化合物加熱炉 3 反応炉(反応管) 4 捕集器 5 液滴発生装置 6 遷移金属化合物溶液槽 7 ラインミキサー 11,21,31 ヒーター 12 キャリアガス送入口 22 原料送入口 31 整流板 32 拡大管 41 フィルター 42 炭素繊維 43 ガス排出口 1 Carrier gas heating furnace 2 Organic compound heating furnace 3 Reactor (reaction tube) 4 collector 5 Droplet generator 6 Transition metal compound solution tank 7 line mixer 11,21,31 heater 12 Carrier gas inlet 22 Raw material inlet 31 Current plate 32 Expansion tube 41 Filter 42 carbon fiber 43 gas outlet

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 遷移金属化合物を溶媒に溶解し、その溶
液から微細な液滴を発生させ、次いで液滴中の溶媒を蒸
発させて遷移金属化合物の微粒子とし、該微粒子を浮遊
状態で有機化合物のガスと共に炭素繊維生成炉に供給す
ることを特徴とする気相法炭素繊維の製造方法。
1. A transition metal compound is dissolved in a solvent, fine droplets are generated from the solution, and then the solvent in the droplets is evaporated to form fine particles of the transition metal compound. The fine particles are suspended in an organic compound. A method for producing a vapor grown carbon fiber, which comprises supplying the carbon fiber together with the gas to a carbon fiber production furnace.
【請求項2】 遷移金属化合物を溶媒に溶解し、その溶
液から微細な液滴を発生させ、次いで液滴中の溶媒を蒸
発させて遷移金属化合物の微粒子とし、該微粒子を浮遊
状態で有機化合物のガス及び遷移金属化合物のガスと共
に炭素繊維生成炉に供給することを特徴とする気相法炭
素繊維の製造方法。
2. A transition metal compound is dissolved in a solvent, fine droplets are generated from the solution, and then the solvent in the droplets is evaporated to form fine particles of the transition metal compound, and the fine particles are suspended in an organic compound. And a gas of a transition metal compound are supplied to a carbon fiber production furnace, and a method for producing a vapor grown carbon fiber.
【請求項3】 液滴中に熱分解温度あるいは水素による
還元温度が異なる2種以上の遷移金属化合物を含む請求
項1または2に記載の気相法炭素繊維の製造方法。
3. The method for producing a vapor grown carbon fiber according to claim 1, wherein the droplets contain two or more kinds of transition metal compounds having different thermal decomposition temperatures or reduction temperatures with hydrogen.
【請求項4】 液滴が2種以上であり、それぞれの液滴
に熱分解温度あるいは水素による還元温度が異なる遷移
金属化合物を含む請求項1または2に記載の気相法炭素
繊維の製造方法。
4. The method for producing a vapor grown carbon fiber according to claim 1, wherein there are two or more kinds of liquid droplets, and each liquid droplet contains a transition metal compound having a different thermal decomposition temperature or reduction temperature with hydrogen. .
【請求項5】 液滴中の遷移金属化合物の濃度(2種以
上の場合はその合計量)が0.01〜40質量%である
請求項1〜4のいずれか1項に記載の気相法炭素繊維の
製造方法。
5. The vapor phase according to claim 1, wherein the concentration of the transition metal compound in the liquid droplet (the total amount of two or more kinds) is 0.01 to 40 mass%. Method of producing carbon fiber.
【請求項6】 遷移金属化合物が、鉄、ニッケル、コバ
ルト、モリブデン、白金、パラジウム、ロジウム、ルテ
ニウム、チタン、バナジウムのそれぞれの酸化物、水酸
化物、硫化物、フッ化物、フルオロ錯体、塩化物、クロ
ロ錯体、臭化物、ヨウ化物、過塩素酸塩、硝酸塩、硫酸
複塩、炭酸塩、シアノ錯体、メタロセンから選ばれた少
なくとも1種である請求項1〜5のいずれか1項に記載
の気相法炭素繊維の製造方法。
6. The transition metal compound is an oxide, hydroxide, sulfide, fluoride, fluoro complex or chloride of iron, nickel, cobalt, molybdenum, platinum, palladium, rhodium, ruthenium, titanium or vanadium. 6. The gas according to claim 1, which is at least one selected from the group consisting of a chloro complex, a bromide, an iodide, a perchlorate, a nitrate, a double sulfate, a carbonate, a cyano complex and a metallocene. Phased carbon fiber manufacturing method.
【請求項7】 遷移金属化合物が、その熱分解温度が蒸
発温度より低いものである請求項1〜6のいずれか1項
に記載の気相法炭素繊維の製造方法。
7. The method for producing a vapor grown carbon fiber according to claim 1, wherein the transition metal compound has a thermal decomposition temperature lower than an evaporation temperature.
【請求項8】 遷移金属化合物溶液の液滴を発生させる
方法が、圧力微粒化法、二流体式微粒化法、遠心式微粒
化法、振動法、超音波法、音響微粒化法、電気力微粒化
法から選ばれた少なくとも1種である請求項1〜7のい
ずれか1項に記載の気相法炭素繊維の製造方法。
8. A method for generating droplets of a transition metal compound solution is a pressure atomization method, a two-fluid atomization method, a centrifugal atomization method, a vibration method, an ultrasonic method, an acoustic atomization method, or an electric force. The method for producing a vapor grown carbon fiber according to any one of claims 1 to 7, wherein the method is at least one selected from atomization methods.
【請求項9】 遷移金属化合物の溶媒が、水、有機溶
媒、含水有機溶媒である請求項1〜8のいずれ1項に記
載の炭素繊維の製造方法。
9. The method for producing carbon fiber according to claim 1, wherein the solvent of the transition metal compound is water, an organic solvent, or a water-containing organic solvent.
【請求項10】 遷移金属化合物の溶媒が、水、メタノ
ール、エタノール、プロパノール、ベンゼン、トルエ
ン、キシレン、アセトン、エーテル、ヘキサンから選ば
れた少なくとも1種である請求項1〜9のいずれか1項
に記載の炭素繊維の製造方法。
10. The solvent of the transition metal compound is at least one selected from water, methanol, ethanol, propanol, benzene, toluene, xylene, acetone, ether, and hexane. The method for producing carbon fiber according to 1.
【請求項11】 請求項1〜10に記載の製造方法で製
造された気相法炭素繊維。
11. A vapor grown carbon fiber produced by the production method according to claim 1.
【請求項12】 繊維外径が1〜500nm、繊維長さ
が0.5〜100μmである請求項11に記載の気相法
炭素繊維。
12. The vapor grown carbon fiber according to claim 11, wherein the fiber outer diameter is 1 to 500 nm and the fiber length is 0.5 to 100 μm.
【請求項13】 樹脂に請求項11に記載の気相法炭素
繊維を含有する樹脂組成物。
13. A resin composition containing a vapor grown carbon fiber according to claim 11 in a resin.
JP2002034883A 2001-06-28 2002-02-13 Vapor grown carbon fiber and method for producing the same Expired - Lifetime JP3868824B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2002034883A JP3868824B2 (en) 2002-02-13 2002-02-13 Vapor grown carbon fiber and method for producing the same
DE60230514T DE60230514D1 (en) 2001-06-28 2002-06-26 PROCESS FOR PREPARING CARBON FIBERS BY DIRECT DEPASTING FROM ONE GAS (VGCF)
PCT/JP2002/006402 WO2003002789A1 (en) 2001-06-28 2002-06-26 Method and apparatus for producing vapor grown carbon fiber
AT02743727T ATE418632T1 (en) 2001-06-28 2002-06-26 METHOD FOR PRODUCING CARBON FIBERS BY DIRECT DEPOSITION FROM A GAS (VGCF)
US10/475,777 US7524479B2 (en) 2001-06-28 2002-06-26 Method for producing vapor grown carbon fiber
EP02743727A EP1407064B1 (en) 2001-06-28 2002-06-26 Method for producing vapor grown carbon fiber
CN02812912A CN100585037C (en) 2001-06-28 2002-06-26 Produce the method and apparatus of vapor-grown carbon fibers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002034883A JP3868824B2 (en) 2002-02-13 2002-02-13 Vapor grown carbon fiber and method for producing the same

Publications (2)

Publication Number Publication Date
JP2003239142A true JP2003239142A (en) 2003-08-27
JP3868824B2 JP3868824B2 (en) 2007-01-17

Family

ID=27777231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002034883A Expired - Lifetime JP3868824B2 (en) 2001-06-28 2002-02-13 Vapor grown carbon fiber and method for producing the same

Country Status (1)

Country Link
JP (1) JP3868824B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005138204A (en) * 2003-11-05 2005-06-02 Kaken:Kk Ultrafine particle carrying carbon material, its manufacturing method, and carrying processor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005138204A (en) * 2003-11-05 2005-06-02 Kaken:Kk Ultrafine particle carrying carbon material, its manufacturing method, and carrying processor

Also Published As

Publication number Publication date
JP3868824B2 (en) 2007-01-17

Similar Documents

Publication Publication Date Title
Pham-Huu et al. About the octopus-like growth mechanism of carbon nanofibers over graphite supported nickel catalyst
US7485600B2 (en) Catalyst for synthesis of carbon single-walled nanotubes
JP4968643B2 (en) Method for producing single-walled carbon nanotube
JP3945586B2 (en) Method for producing carbon nanocage
JP4434730B2 (en) Method for producing carbon nanotube
US10179739B2 (en) Catalytic method for multi-wall carbon nanotubes
JPH07150419A (en) Production of carbon fiber according to vapor process
KR20070001220A (en) Single, multi-walled, functionalized and doped carbon nanotubes and composites thereof
JP2004525853A (en) Synthesis of nanoscale carbon materials
JP2004339676A (en) Method for producing carbon fiber from vapor phase
JP2011148689A (en) Method for producing aggregate composed of carbon nanotube, and method for producing filament
EP2785636A2 (en) Method and apparatus for producing long carbon nanotubes
US7524479B2 (en) Method for producing vapor grown carbon fiber
JP4693105B2 (en) Method and apparatus for producing vapor grown carbon fiber
JP6403144B2 (en) Process for producing vapor-deposited fine carbon fiber
JP3868824B2 (en) Vapor grown carbon fiber and method for producing the same
WO2004043855A2 (en) Process for producing carbonaceous materials
Park et al. Parametric study on synthesis of carbon nanotubes by the vertical spray pyrolysis method
JP2003306835A (en) Vapor-grown carbon fiber and method for producing the same
JPS6134221A (en) Manufacture of ultra-fine carbon fiber by vapor-phase process
KR20050016640A (en) Method and device for depositing carbon nanotubes or nitrogen-doped carbon nanotubes by pyrolysis
JP2012246590A (en) Method for producing fibrous carbon
Khairurrijal et al. Structural characteristics of carbon nanotubes fabricated using simple spray pyrolysis method
JP2021059493A (en) Method and apparatus for producing carbon nano-structures
JPS6392726A (en) Production of carbon fiber by vapor process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040409

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20050411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061011

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3868824

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091020

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151020

Year of fee payment: 9

EXPY Cancellation because of completion of term