JP2003236371A - Highly selective barium adsorbent and method for the same manufacturing - Google Patents

Highly selective barium adsorbent and method for the same manufacturing

Info

Publication number
JP2003236371A
JP2003236371A JP2002039348A JP2002039348A JP2003236371A JP 2003236371 A JP2003236371 A JP 2003236371A JP 2002039348 A JP2002039348 A JP 2002039348A JP 2002039348 A JP2002039348 A JP 2002039348A JP 2003236371 A JP2003236371 A JP 2003236371A
Authority
JP
Japan
Prior art keywords
barium
adsorbent
earth metal
alkaline earth
mno
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002039348A
Other languages
Japanese (ja)
Other versions
JP3577515B2 (en
Inventor
Yoshiro Onodera
嘉郎 小野寺
Abhijit Chatterjee
アブジット チャテジー
Hitoshi Mimura
均 三村
Takeo Ebina
武雄 蛯名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2002039348A priority Critical patent/JP3577515B2/en
Publication of JP2003236371A publication Critical patent/JP2003236371A/en
Application granted granted Critical
Publication of JP3577515B2 publication Critical patent/JP3577515B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Water Treatment By Sorption (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a barium adsorbent capable of highly selectively separating and recovering a trace amount of harmful Ba<SP>2+</SP>ion dissolved in a solution and to provide a method for simply manufacturing the adsorbent. <P>SOLUTION: The highly selective barium adsorbent having high Ba<SP>2+</SP>ion selectivity is obtained by extracting lithium and alkali earth metal using an acid from a precursor composite oxide which is obtained by substituting alkali earth metal for a portion of lithium in a lithium manganese composite oxide represented by a general formula Li<SB>2</SB>MnO<SB>3</SB>and having a general formula Li(<SB>2-x)</SB>A<SB>x</SB>MnO<SB>3</SB>(wherein the value x is in the range of 0≤x≤1 and A represents an alkali earth metal). The method for manufacturing the barium adsorbent, a barium separating method and a barium adsorbing and separating apparatus are also provided. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高選択性バリウム
吸着材及びその製造方法等に関するものであり、更に詳
しくは、リチウム・マンガン複合酸化物Li2 MnO3
中のリチウムの一部をカルシウムやストロンチウム等の
アルカリ土類金属で置換して合成される前駆体複合マン
ガン酸化物を、更に酸処理することにより当該複合マン
ガン酸化物中のリチウム及びアルカリ土類金属を水素で
再置換する簡便な操作プロセスで水素形マンガン複合酸
化物からなる高選択性バリウム吸着材を合成する方法、
及び該方法により得られる、多種類の陽イオンを含む多
成分処理水系にも適用可能な新しい高選択性バリウム吸
着材に関するものである。本発明の高選択性バリウム吸
着材は、例えば、鉱・工業排水、廃棄物処分場の漏洩水
や海洋、河川、湖沼、地下水等の陸水中に微量に含まれ
る有害なBa2+イオンの分離・除去に有用である。
TECHNICAL FIELD The present invention relates to a highly selective barium adsorbent, a method for producing the same, and more specifically, a lithium manganese composite oxide Li 2 MnO 3
The precursor composite manganese oxide synthesized by substituting a part of the lithium in the composite manganese oxide with an alkaline earth metal such as calcium or strontium, and further subjecting the composite manganese oxide to lithium and alkaline earth metal in the composite manganese oxide. A method for synthesizing a highly selective barium adsorbent composed of hydrogen-type manganese composite oxide by a simple operation process of resubstituting hydrogen with hydrogen,
And a new highly selective barium adsorbent obtained by the method, which can be applied to a multi-component treated water system containing many kinds of cations. The highly selective barium adsorbent of the present invention is used for separating harmful Ba 2+ ions contained in trace amounts in, for example, mineral water and industrial wastewater, leaked water from waste disposal sites, and inland water such as oceans, rivers, lakes and groundwater. -Useful for removal.

【0002】[0002]

【従来の技術】科学技術の進歩は、我々に多くの恩恵を
与えてきたが、その一方で、環境に負荷を与え、人類の
生存をも脅かす地球規模での環境問題をもたらしてい
る。環境改善が求められる分野は、海洋、河川、湖沼、
大気あるいは土壌等、極めて多岐に渡っており、それぞ
れの分野で浄化処理に関わる様々な技術が開発・実用化
されている。それらの中で、排水や陸水中等に微量に含
まれるBa2+イオンの処理技術の開発が重要となってい
る。
2. Description of the Related Art Advances in science and technology have brought us many benefits, but on the other hand, they have brought about environmental problems on a global scale that put a burden on the environment and threaten the survival of mankind. Areas where environmental improvement is required include oceans, rivers, lakes,
The air and soil are extremely diverse, and various technologies related to purification treatment have been developed and put to practical use in their respective fields. Among them, it is important to develop a technology for treating Ba 2+ ions contained in a small amount in drainage water or land water.

【0003】バリウムは、例えば、真空管のゲッター、
合金、ガラス、琺瑯、 薬品等の原料として広く使用され
ている元素であり、その主要鉱石は、重晶石(BaSO
4 )及び毒重土石(BaCO3 )である (大木道則ら編
集、 化学辞典、 p.1098、 東京化学同人 (199
4))。バリウムは、地殻中に390ppm含まれ、海
水中の溶存濃度は0.03ppmである(松井義人ら
訳、 一般地球化学、 pp.234−235、 岩波書店
(1979))。また、バリウムは、種々の生体中にも
含まれ、人体中には0.3ppm含まれている(松井義
人ら訳、 一般地球化学、 p.275、岩波書店(197
9))。その化学的性質は、カルシウム及びストロンチ
ウムに似ているが、それよりも作用は著しく、+2の酸
化状態が安定で、 イオン結合性の強い化合物をつくる。
Ba2+イオンの有毒性は、従来から指摘されており(坂
本哲也監訳、中毒ハンドブック、pp76−77、メデ
ィカル・サイエンス・インターナショナル(200
1))、鉱・工業排水、廃棄物処分場の漏洩水や海洋、
河川、湖沼、地下水等の陸水中に微量に含まれるBa2+
イオンの除去が重要な課題であった。
Barium is, for example, a getter for a vacuum tube,
It is an element widely used as a raw material for alloys, glass, enamel, chemicals, etc. Its main ore is barite (BaSO).
4 ) and poisonous heavy stones (BaCO 3 ) (edited by Michinori Oki et al., Chemical Dictionary, p. 1098, Tokyo Kagaku Dojin (199).
4)). Barium contains 390 ppm in the crust and its dissolved concentration in seawater is 0.03 ppm (Translated by Yoshihito Matsui et al., General Geochemistry, pp.234-235, Iwanami Shoten (1979)). Also, barium is contained in various living bodies, and 0.3 ppm is contained in the human body (Translated by Yoshito Matsui et al., General Geochemistry, p. 275, Iwanami Shoten (197).
9)). Its chemical properties are similar to those of calcium and strontium, but its action is more remarkable, and the +2 oxidation state is stable, and a strong ionic bond is formed.
The toxicity of Ba 2+ ions has been previously pointed out (Translated by Tetsuya Sakamoto, Handbook of Poisoning, pp 76-77, Medical Science International (200
1)), mineral and industrial wastewater, leaked water from waste disposal sites and the ocean,
Ba 2+ contained in trace amounts in land water such as rivers, lakes and groundwater
Removal of ions was an important issue.

【0004】水処理で一般的に用いられる単位操作とし
ては、生物処理、凝集・沈殿処理、ろ過、酸化分解、吸
着等が挙げられる。これらの浄化技術の中で、吸着法の
果たす役割は大きく、吸着材として活性炭、イオン交換
樹脂、生物担体ろ過材、晶析材(除鉄・除マンガンろ過
材等)等が挙げられる。これらの中でも活性炭による吸
着処理が多用されている(例えば、竹内 雍監修、多孔
体の性質とその応用、pp.494−525,フジ・テ
クノシステム(1999))。活性炭は、疎水性吸着材
であり、主に溶剤の回収、脱臭、ガスの精製等、種々の
有機質成分の吸着・分離に用いられており、無機イオン
類の吸着・分離は、脱塩素処理の例(例えば、竹内 雍
監修、多孔体の性質とその応用、pp.504−50
5,フジ・テクノシステム(1999))を除き、専ら
イオン交換樹脂による吸着処理が行われている(黒田六
郎ら共訳、 イオン交換、 pp.37−38、 丸善(19
81))。
The unit operations generally used in water treatment include biological treatment, coagulation / precipitation treatment, filtration, oxidative decomposition, adsorption and the like. Among these purification techniques, the adsorption method plays a large role, and examples of the adsorbent include activated carbon, ion exchange resin, biological carrier filter, crystallization material (iron-removing / manganese-removing filter, etc.) and the like. Among these, adsorption treatment with activated carbon is frequently used (for example, supervision by Takeuchi Shira, properties of porous materials and their applications, pp.494-525, Fuji Techno System (1999)). Activated carbon is a hydrophobic adsorbent and is mainly used for adsorption / separation of various organic components such as solvent recovery, deodorization, gas purification, etc. Adsorption / separation of inorganic ions is a dechlorination treatment. Examples (for example, supervision by Takeuchi Shira, properties of porous materials and their applications, pp.504-50
5, except Fuji Techno System (1999)), the adsorption treatment is carried out exclusively by ion exchange resin (Kuroda Rokuro et al., Co-translation, ion exchange, pp.37-38, Maruzen (19).
81)).

【0005】Ba2+イオンのような処理水中の陽イオン
類の除去には、吸着材として陽イオン交換樹脂が広く用
いられている(NEW DEVELOPMENTS I
NION EXCHANGE:Materials,F
undamentals,and Applicati
ons/Proceedings of ICIE’9
1,Tokyo)。イオン交換樹脂の種々のイオンに対
する選択吸着性は、主にイオンの水和の程度とその大き
さや価数など、交換基との静電相互作用を支配する要因
によって支配され、通常の陽イオン交換樹脂のアルカリ
土類金属イオンに対する選択係数はBa2+>Sr2+>C
2+>Mg2+の順に低下し、水和イオン径の小さなイオ
ン種ほど選択性が高い。
Cation exchange resins have been widely used as adsorbents for the removal of cations in treated water such as Ba 2+ ions (NEW DEVELOPMENTS I).
NION EXCHANGE: Materials, F
undamentals, and Applicati
ons / Proceedings of ICIE '9
1, Tokyo). The selective adsorptivity of ion exchange resins for various ions is governed mainly by the factors that govern electrostatic interaction with exchange groups, such as the degree of hydration of ions and their size and valence. The selectivity coefficient of the resin for alkaline earth metal ions is Ba 2+ > Sr 2+ > C
It decreases in the order of a 2+ > Mg 2+ , and the smaller the hydrated ion diameter, the higher the selectivity.

【0006】しかしながら、陽イオン相互間の選択係数
の差はそれほど大きくない(妹尾学ら編、 イオン交換・
高度分離技術の基礎、 pp.9−10、講談社サイエン
ティフィク(1991))ため、Ba2+イオン濃度が低
く多成分が含まれる処理水系では、共存イオンによる陽
イオン交換樹脂の実効イオン交換容量の低下を来たす。
このような問題を解決するものとして、特定のイオン種
に高選択性をもたせたキレート系樹脂が市販されている
が、高価なため、一般廃棄物及び産業廃棄物等の処分場
の漏洩水あるいは河川や湖沼等の陸水等の多成分系への
適用は、経済性の点で不都合である。このため、多成分
処理水系にも適用可能な安価な高選択性バリウム吸着材
の開発が望まれていた。
However, the difference in the selectivity coefficient between cations is not so large (Gaku Senoo et al., Ion Exchange.
Basics of advanced separation technology, pp. 9-10, Kodansha Scientific (1991)), the effective ion exchange capacity of the cation exchange resin decreases due to coexisting ions in a treated water system having a low Ba 2+ ion concentration and containing many components.
As a solution to such a problem, a chelate resin having high selectivity to a specific ionic species is commercially available, but since it is expensive, leakage water from a disposal site such as general waste and industrial waste or Application to multi-component systems such as rivers and lakes such as inland water is inconvenient in terms of economy. Therefore, it has been desired to develop an inexpensive and highly selective barium adsorbent that can be applied to a multi-component treated water system.

【0007】一方、結晶性無機イオン交換体は、イオン
交換樹脂に比べ、一般に特定イオンあるいは基に対する
選択性が高く、かつ耐熱・耐放射線性等の物理化学的特
性が優れていることが知られている(“Topics
in Inorganic& General Che
mistry”,Elesevier,Amsterd
am(1964))。このため、結晶性無機イオン交換
体は、分析化学における分離・濃縮材、原子炉の冷却水
や廃液からの放射性核種の除去及び廃棄物処分(Int
er.Atomic Energy Egency T
echnical Rept.Series No.3
56(1993))等の諸分野における利用が期待され
るため、従来、多種類の無機イオン交換体が合成され、
それらの特性が検討されてきた(例えば、A.Clea
rfield Ed.,“Inorganic Ion
Exchange Materials”,CRCp
ress,Boca Raton,Florida(1
982))。
On the other hand, crystalline inorganic ion exchangers are generally known to have higher selectivity for specific ions or groups and superior physicochemical properties such as heat resistance and radiation resistance as compared with ion exchange resins. I have ("Topics
in Inorganic & General Che
"mistry", Elevivier, Amsterd
am (1964)). Therefore, crystalline inorganic ion exchangers are used as separation / concentration materials in analytical chemistry, removal of radionuclides from reactor cooling water and waste liquid, and waste disposal (Int.
er. Atomic Energy Efficacy T
electrical Rept. Series No. Three
56 (1993)) and other fields are expected to be used, and thus many types of inorganic ion exchangers have been conventionally synthesized,
Their properties have been investigated (eg A. Clea.
rfield Ed. , "Inorganic Ion
Exchange Materials ”, CRCp
less, Boca Raton, Florida (1
982)).

【0008】上記のような無機イオン交換体の諸特性
は、イオン交換樹脂に比べ、リジットな結晶構造を持つ
交換体内の微細孔の立体規制に起因したイオン篩効果の
発現による(妹尾 学ら編、 イオン交換−高度分離技術
の基礎、 pp.73−82、 講談社サイエンティフィク
(1991))。実際、これまでに、Li+ イオン(例
えば、小野寺嘉郎ら, 日本セラミックス協会誌,97,
884−894(1989))、Na+ イオン(M.A
be,“Inorganic Ion Exchang
e Materials”,Ed.A.Clearfi
eld,p.161,CRC Press,Boca
Raton,Florida(1982))、Cs+
オン(例えば、J.F.Jr.Walker et a
l.,Sep.Sci.Technol,34,116
7−1181(1999))、及びSr2+イオン(E.
A.Berens et al.,Microporo
usMater.,11,65−75(1997))に
対し、特異吸着性を示すイオン篩型合成無機イオン交換
体が知られている。
The various characteristics of the inorganic ion exchanger as described above are due to the expression of the ion sieving effect due to the steric regulation of the micropores in the exchanger having a rigid crystal structure as compared with the ion exchange resin (edited by Manobu Senoo et al. , Ion Exchange-Basics of Advanced Separation Technology, pp. 73-82, Kodansha Scientific (1991)). In fact, so far, Li + ions (for example, Yoshiro Onodera et al., The Ceramic Society of Japan, 97,
884-894 (1989)), Na + ion (MA)
be, “Inorganic Ion Exchange
e Materials ", Ed. A. Clearfi
eld, p. 161, CRC Press, Boca
Raton, Florida (1982), Cs + ions (eg JF Jr. Walker et a.
l. , Sep. Sci. Technol, 34, 116
7-1181 (1999)), and Sr 2+ ion (E.
A. Berens et al. , Microporo
usMater. , 11, 65-75 (1997)), there is known an ion sieve type synthetic inorganic ion exchanger exhibiting a specific adsorptivity.

【0009】Ba2+イオンは、多価イオンの一種であ
り、かつアルカリ土類金属イオンの中で水和イオン径が
最小であるため、当該Ba2+イオンに選択性を有する無
機イオン交換体は比較的多い。例えば、X型、A型及び
Y型ゼオライト(D.W.Breck,”ZEOLIT
E MOLECULAR SIEVES/ Struc
ure, Chemistry and Use”,p
p.529−592,John Wiley & So
ns,New York(1974))や粘土鉱物(白
水晴雄," 粘土鉱物学",p.40,朝倉書店(199
8))のアルカリ土類系列の金属イオンに対する選択係
数はBa2+⊇Sr2+⊇Ca2+>Mg2+の順序で減少し、
水和イオン径の大きなイオン種ほど小さい傾向にある。
しかし、いずれもアルカリ土類金属イオン間では、その
差が明瞭でないため、Ba2+イオンの分離・回収を効率
的に行う観点から、当該Ba2+イオンに対し特異吸着性
を有するイオン篩型バリウム吸着材の開発が切望されて
いた。
Ba 2+ ion is a kind of polyvalent ion and has the smallest hydrated ion diameter among alkaline earth metal ions, so that it is an inorganic ion exchanger having selectivity for the Ba 2+ ion. Is relatively large. For example, X-type, A-type, and Y-type zeolite (DW Breck, “ZEOLIT
E MOLECULAR SIEVES / Struc
ure, Chemistry and Use ”, p
p. 529-592, John Wiley & So
ns, New York (1974) and clay minerals (Haruo Shiramizu, "Clay Mineralogy", p.40, Asakura Shoten (199)
The selection coefficient for the alkaline earth metal ion of 8)) decreases in the order of Ba 2+ ⊇Sr 2+ ⊇Ca 2+ > Mg 2+ ,
Ion species having a larger hydrated ion diameter tend to be smaller.
However, between both alkaline earth metal ions, because the difference is not clear, from the viewpoint of the separation and recovery of Ba 2+ ions efficiently, ion sieve type with specificity adsorptive property to the Ba 2+ ions The development of barium adsorbent has been eagerly awaited.

【0010】[0010]

【発明が解決しようとする課題】このような状況の中
で、本発明者らは、上記従来技術に鑑みて、上記Ba2+
イオンの分離・回収の技術的問題を解決することが可能
な新しいバリウム吸着材を開発することを目標として鋭
意研究を積み重ねた結果、一般式Li2 MnO3 で表さ
れるリチウム・マンガン複合酸化物中のリチウムを、カ
ルシウムやストロンチウム等のアルカリ土類金属で部分
置換して合成した前駆体複合マンガン酸化物を酸処理し
て、構造中のリチウムやアルカリ土類金属を水素で置換
して得られる一般式Li(2-x-y)(x-y)y MnO3
(それぞれ、式中のxの値は0≦x≦1であり、yの値
は0<y<1である。また、A及びHは、それぞれアル
カリ土類金属及び水素を示す。)で表される化合物が、
Ba2+イオンを特異的に吸着し、アルカリ土類金属イオ
ン共存溶液中からBa2+イオンを高選択的に吸着・分離
し得ることを見出し、本発明を完成するに至った。すな
わち、本発明は、Ba2+イオンに対し特異吸着性を有す
るイオン篩型高選択性バリウム吸着材及びその簡易な製
造方法を提供することを目的とするものである。また、
本発明は、アルカリ土類金属イオン共存溶液中からBa
2+イオンを高選択的に吸着・分離することが可能な高選
択性バリウム吸着材を提供することを目的とするもので
ある。更に、本発明は、上記高選択性バリウム吸着材を
被処理溶液と接触させて当該被処理溶液中のバリウムを
分離する方法、当該高選択性バリウム吸着材をBa2+
オン分離手段に充填してなるバリウム吸着・分離装置を
提供することを目的とするものである。
[Problems to be Solved by the Invention]
In view of the above-mentioned conventional technology, the inventors of the present invention have2+
It is possible to solve the technical problem of ion separation and recovery
With the goal of developing new new barium adsorbents
As a result of repeated research, the general formula Li2 MnO3 Represented by
The lithium in the lithium-manganese composite oxide
Partial with alkaline earth metals such as lucium and strontium
The precursor composite manganese oxide synthesized by substitution was acid treated.
Replaces lithium and alkaline earth metals in the structure with hydrogen
General formula obtained by(2-xy) A(xy) Hy MnO3 
(Respectively, the value of x in the formula is 0 ≦ x ≦ 1, and the value of y is
Is 0 <y <1. In addition, A and H are
Indicates potash earth metal and hydrogen. ) Is a compound represented by
Ba2+It specifically adsorbs ions and
Ba from the coexisting solution2+Highly selective adsorption / separation of ions
They have found that they can do so and have completed the present invention. sand
That is, the present invention is based on Ba2+Has specific adsorptivity for ions
Ion-sieve type highly selective barium adsorbent and its simple production
It is intended to provide a manufacturing method. Also,
The present invention is directed to Ba from an alkaline earth metal ion coexisting solution.
2+High selection capable of highly selective adsorption and separation of ions
The purpose is to provide a selective barium adsorbent.
is there. Furthermore, the present invention provides the above-mentioned highly selective barium adsorbent.
The barium in the solution to be treated is brought into contact with the solution to be treated.
Separation method, the highly selective barium adsorbent is Ba2+ I
A barium adsorption / separation device filled in the ON separation means
It is intended to be provided.

【0011】[0011]

【課題を解決するための手段】上記課題を解決するため
の本発明は、以下の技術的手段から構成される。 (1)一般式Li(2-x)x MnO3 (式中、xの値は
0≦x≦1であり、Aはアルカリ土類金属を示す。)で
表される前駆体複合マンガン酸化物中のリチウム及びア
ルカリ土類金属を水素で置換して得られる水素形マンガ
ン複合酸化物からなることを特徴とする高選択性バリウ
ム吸着材。 (2)一般式Li(2-x-y)(x-y)y MnO3 (式
中、xの値は0≦x≦1、yの値は0<y<1であり、
A及びHはそれぞれアルカリ土類金属及び水素を示
す。)で表される水素形マンガン複合酸化物からなる、
前記(1)に記載の高選択性バリウム吸着材。 (3)前記(1)に記載の前駆体複合マンガン酸化物中
のリチウム及びアルカリ土類金属を酸処理により水素で
置換して一般式Li(2-x-y)(x-y)y MnO3 (式
中、xの値は0≦x≦1、yの値は0<y<1であり、
A及びHはそれぞれアルカリ土類金属及び水素を示
す。)で表される水素形マンガン複合酸化物に変換する
ことを特徴とする高選択性バリウム吸着材の製造方法。 (4)前記(1)又は(2)に記載の高選択性バリウム
吸着材を被処理溶液と接触させて当該被処理溶液中のB
2+イオンを選択的に吸着、分離することを特徴とする
バリウム分離方法。 (5)前記(1)又は(2)に記載の高選択性バリウム
吸着材をBa2+イオン分離手段に充填したことを特徴と
するバリウム吸着・分離装置。
The present invention for solving the above-mentioned problems comprises the following technical means. (1) Precursor composite manganese oxide represented by the general formula Li (2-x) A x MnO 3 (where the value of x is 0 ≦ x ≦ 1 and A represents an alkaline earth metal). A highly selective barium adsorbent comprising a hydrogen-type manganese composite oxide obtained by substituting lithium and alkaline earth metals in a product with hydrogen. (2) In formula Li in (2-xy) A (xy ) H y MnO 3 ( where the value of x is a value of 0 ≦ x ≦ 1, y is 0 <y <1,
A and H represent alkaline earth metal and hydrogen, respectively. ) Consisting of a hydrogen-type manganese composite oxide represented by
The highly selective barium adsorbent according to (1) above. (3) the general formula Li (2-xy) was replaced with hydrogen by the precursor composite manganese oxide lithium and alkaline earth metal to an acid treatment in the product according to (1) A (xy) H y MnO 3 ( In the formula, the value of x is 0 ≦ x ≦ 1, the value of y is 0 <y <1, and
A and H represent alkaline earth metal and hydrogen, respectively. ) The method for producing a highly selective barium adsorbent, which comprises converting the hydrogen-type manganese composite oxide represented by (4) B in the solution to be treated by bringing the highly selective barium adsorbent according to (1) or (2) into contact with the solution to be treated
A barium separation method characterized by selectively adsorbing and separating a 2+ ions. (5) A barium adsorption / separation device, characterized in that the highly selective barium adsorbent according to (1) or (2) is filled in a Ba 2+ ion separation means.

【0012】[0012]

【発明の実施の形態】次に、本発明について更に詳細に
説明する。本発明では、出発原料としてリチウム・マン
ガン複合酸化物Li2 MnO3 中のリチウムの一部をア
ルカリ土類金属で置換した組成変換リチウム・マンガン
複合酸化物が用いられる。この一般式Li(2-x)x
nO3 (式中のxの値は0≦x≦1であり、Aはアルカ
リ土類金属を示す。)で表される複合マンガン酸化物
は、上記リチウム・マンガン複合酸化物Li2 MnO3
中のリチウムの一部をマグネシウム、カルシウム、スト
ロンチウム、バリウム等のアルカリ土類金属で置換する
ことによって合成される。
BEST MODE FOR CARRYING OUT THE INVENTION Next, the present invention will be described in more detail. In the present invention, a composition-converted lithium-manganese composite oxide in which a part of lithium in lithium-manganese composite oxide Li 2 MnO 3 is replaced with an alkaline earth metal is used as a starting material. This general formula Li (2-x) A x M
The composite manganese oxide represented by nO 3 (where the value of x in the formula is 0 ≦ x ≦ 1 and A represents an alkaline earth metal) is the lithium-manganese composite oxide Li 2 MnO 3 described above.
It is synthesized by substituting a part of lithium in the alkaline earth metal such as magnesium, calcium, strontium, and barium.

【0013】その合成方法及び条件について具体的に説
明すると、Li2 MnO3 に、例えば、炭酸リチウム、
炭酸マグネシウム、炭酸カルシウム、炭酸マンガン、炭
酸ストロンチウム、炭酸バリウム、塩化リチウム、塩化
マグネシウム、塩化カルシウム、塩化ストロンチウム、
塩化バリウム、塩化マンガン、酸化リチウム、酸化マグ
ネシウム、酸化カルシウム、酸化ストロンチウム、酸化
バリウム、酸化マンガン等を理想化学組成となるように
添加し、磨砕、混合した後、大気下500〜900℃で
1〜24時間加熱し、この加熱生成物を適宜粉砕、整粒
することにより前駆体複合マンガン酸化物を製造する。
The synthesis method and conditions will be specifically described. Li 2 MnO 3 can be used, for example, lithium carbonate,
Magnesium carbonate, calcium carbonate, manganese carbonate, strontium carbonate, barium carbonate, lithium chloride, magnesium chloride, calcium chloride, strontium chloride,
Barium chloride, manganese chloride, lithium oxide, magnesium oxide, calcium oxide, strontium oxide, barium oxide, manganese oxide, etc. are added so as to have an ideal chemical composition, and after grinding and mixing, 1 at 500 to 900 ° C. in the atmosphere. The precursor composite manganese oxide is produced by heating for -24 hours and appropriately pulverizing and sizing this heated product.

【0014】次に、上記合成方法で得られた前駆体複合
マンガン酸化物を酸で処理して構造中のリチウム及びア
ルカリ土類金属を水素で再置換することにより一般式L
(2 -x-y)(x-y)y MnO3 (式中のxの値は0≦
x≦1であり、yの値は0<y<1である。また、A及
びHは、それぞれアルカリ土類金属及び水素を示す。)
で表される水素形マンガン複合酸化物を合成する。その
合成方法及び条件について具体的に説明すると、前駆体
複合マンガン酸化物に塩酸、硝酸、硫酸等の酸を添加
し、室温〜50℃で1〜48時間振とう後、固液を分離
し、固相を蒸留水で洗浄した後、40〜100℃で加熱
乾燥して目的の化合物を製造する。ここで、水素の置換
率に相当する上記一般式Li(2-x-y)(x-y)y Mn
3 におけるyの値は、処理に用いる酸溶液の濃度、処
理温度や処理時間等の条件を変えることにより調整可能
である。
Next, the precursor composite manganese oxide obtained by the above synthesis method is treated with an acid to replace the lithium and alkaline earth metal in the structure with hydrogen again to give the general formula L
i (2- xy ) A (xy) H y MnO 3 (where x is 0 ≦
x ≦ 1, and the value of y is 0 <y <1. A and H represent alkaline earth metal and hydrogen, respectively. )
A hydrogen-type manganese composite oxide represented by is synthesized. Concretely explaining the synthesis method and conditions thereof, acids such as hydrochloric acid, nitric acid, and sulfuric acid are added to the precursor composite manganese oxide, and the mixture is shaken at room temperature to 50 ° C. for 1 to 48 hours, and then solid-liquid is separated, The solid phase is washed with distilled water and then dried by heating at 40 to 100 ° C to produce the target compound. Here, the general formula Li (2-xy) corresponding to the replacement of hydrogen A (xy) H y Mn
The value of y in O 3 can be adjusted by changing the conditions such as the concentration of the acid solution used for the treatment, the treatment temperature and the treatment time.

【0015】このように、本発明は、一般式Li(2-x)
X MnO3 (式中のxの値は0≦x≦1であり、Aは
アルカリ土類金属を示す。)で表される組成変換リチウ
ム・マンガン複合酸化物からなる前駆体複合マンガン化
合物中のリチウム及びアルカリ土類金属を水素で置換し
て得られる水素形マンガン複合酸化物からなることを特
徴とする高選択性バリウム吸着材である。前駆体複合マ
ンガン酸化物としては、上記一般式においてx=0及び
1のLi2 MnO3 、LiMgMnO3 、LiCaMn
3 、LiSrMnO3 、LiBaMnO3 の他、0<
x<1の範囲の種々の値を持つアルカリ土類金属置換体
が例示される。前駆体化合物の生成は、当該試料の粉末
X線回折パターンにおいて、Li2 MnO3 の基本構造
に基づく回折ピーク(d値=4.75,2.02,2.
42,1.42Å)の出現により容易に確認される。
Thus, the present invention provides the general formula Li (2-x)
In a precursor composite manganese compound composed of a composition-converted lithium-manganese composite oxide represented by A X MnO 3 (where the value of x in the formula is 0 ≦ x ≦ 1, and A represents an alkaline earth metal). Is a hydrogen-type manganese composite oxide obtained by substituting hydrogen for lithium and alkaline earth metal, and is a highly selective barium adsorbent. Examples of the precursor composite manganese oxide include Li 2 MnO 3 , LiMgMnO 3 , and LiCaMn in which x = 0 and 1 in the above general formula.
O 3 , LiSrMnO 3 , LiBaMnO 3 , and 0 <
Illustrative are alkaline earth metal substitutes having various values in the range of x <1. Generation of precursor compound in the powder X-ray diffraction pattern of the sample, a diffraction peak based on the basic structure of Li 2 MnO 3 (d value = 4.75,2.02,2.
42, 1.42Å) is easily confirmed.

【0016】また、本発明は、上記前駆体化合物を酸処
理して当該化合物中の金属を水素で部分置換しその化学
組成を多段に変換することによりイオン篩機能を付与す
ることを特徴とする高選択性バリウム吸着材の製造方法
である。これらの水素形マンガン複合酸化物としては、
上記の一般式Li(2-x-y)(x-y)y MnO3 におい
てx=0あるいは1でy=0.5のLi1.50.5 Mn
3 、Li0.5 Mg0. 50.5 MnO3 、Li0.5 Ca
0.50.5 MnO3 、Li0.5 Sr0.50.5 MnO
3 、Li0.5 Ba0.50.5 MnO3 の他、0<x≦1
かつ0<y<1の範囲の値を持つ種々の組成物等が例示
される。
In the present invention, the above precursor compound is treated with an acid.
The metal in the compound is partially replaced by hydrogen
Adds ionic sieving function by converting the composition into multiple stages
A method for producing a highly selective barium adsorbent characterized by comprising:
Is. As these hydrogen-type manganese composite oxides,
The above general formula Li(2-xy) A(xy) Hy MnO3 smell
Li for x = 0 or 1 and y = 0.51.5 H0.5 Mn
O3 , Li0.5 Mg0. Five H0.5 MnO3 , Li0.5 Ca
0.5 H0.5 MnO3 , Li0.5 Sr0.5 H0.5 MnO
3 , Li0.5 Ba0.5 H0.5 MnO3 Other than 0 <x ≦ 1
And various compositions having values within the range of 0 <y <1
To be done.

【0017】高選択性バリウム吸着材の生成は、当該酸
処理試料の粉末X線回折パターンにおいて、Li2 Mn
3 に帰属される回折ピークのうち最強回折ピーク(d
値=4.75Å)の高角度側にショルダーピーク(d値
=約4.6Å)が新たに出現することにより容易に確認
される。このショルダーピークは、前駆体化合物中のリ
チウムやアルカリ土類金属元素がイオン径の小さな水素
で置換されることによりLi2 MnO3 の基本構造に比
べ格子面間隔が僅かに収縮した新しい結晶相の生成によ
ると考えられる。酸処理による複合酸化物の基本構造の
同様な変化は、Li+ イオンの特異吸着性が知られてい
るリチウム・チタン複合酸化物Li2 TiO3 (小野寺
嘉郎ら, 日本セラミックス協会誌, 97,884−89
4(1989))及びリチウム・マンガン複合酸化物L
iMn24 (小野寺嘉郎ら, J.Ceram.So
c.Jap.,100,767−774(1992))
についても確認されている。
The formation of the highly selective barium adsorbent was carried out by using Li 2 Mn in the powder X-ray diffraction pattern of the acid-treated sample.
Of the diffraction peaks assigned to O 3 , the strongest diffraction peak (d
It is easily confirmed that a shoulder peak (d value = about 4.6Å) newly appears on the high angle side of the value = 4.75Å). This shoulder peak is due to the fact that the lithium or alkaline earth metal element in the precursor compound is replaced by hydrogen having a small ionic diameter, resulting in a new crystalline phase in which the lattice spacing is slightly shrunk compared to the basic structure of Li 2 MnO 3 . Probably due to generation. A similar change in the basic structure of the complex oxide due to the acid treatment is due to the fact that the lithium / titanium complex oxide Li 2 TiO 3 (Yoshiro Onodera et al., Journal of the Ceramic Society of Japan, 97, 884, which is known to have a specific adsorption property for Li + ions). -89
4 (1989)) and lithium-manganese composite oxide L
iMn 2 O 4 (K. Onodera et al., J. Ceram. So
c. Jap. , 100, 767-774 (1992)).
Is also confirmed.

【0018】また、本発明は、上記方法により作製され
る水素形マンガン複合酸化物からなる高選択性バリウム
吸着材をBa2+イオンを含む被処理溶液と接触させて当
該被処理溶液中のBa2+イオンを選択的に吸着、分離す
るバリウム分離方法を提供する。本発明の方法は、例え
ば、鉱・工業排水、廃棄物処分場の漏洩水や海洋、河
川、湖沼、地下水等の陸水中に微量に含まれるBa2+
オンの分離、除去に好適に適用され、また、多種類の陽
イオンを含む多成分処理水系にも適用可能である。更
に、本発明は、上記高選択性バリウム吸着材をBa2+
オン分離手段に充填したバリウム吸着・分離装置を提供
する。上記Ba2+イオン分離手段及び分離装置は、例え
ば、上記高選択性バリウム吸着材を分離管等に充填した
ものが例示されるが、その形状、構造、システム等は使
用目的に応じて適宜設計すればよく、特に制限されるも
のではない。
In the present invention, the highly selective barium adsorbent made of the hydrogen-type manganese composite oxide produced by the above method is brought into contact with a solution to be treated containing Ba 2+ ions, and the Ba in the solution to be treated is brought into contact therewith. Provided is a barium separation method for selectively adsorbing and separating 2+ ions. INDUSTRIAL APPLICABILITY The method of the present invention is suitably applied to, for example, separation and removal of minute amounts of Ba 2+ ions contained in mine / industrial wastewater, leaked water from waste disposal sites, and inland water such as the ocean, rivers, lakes and groundwater. Also, it is applicable to a multi-component treated water system containing many kinds of cations. Further, the present invention provides a barium adsorption / separation device in which the Ba 2+ ion separation means is filled with the above-mentioned highly selective barium adsorbent. The Ba 2+ ion separation means and the separation device are exemplified by, for example, those obtained by filling the separation tube or the like with the highly selective barium adsorbent, and the shape, structure, system, etc. are designed as appropriate according to the purpose of use. It does not have to be particularly limited.

【0019】[0019]

【作用】本発明の高選択性バリウム吸着材は、第1段階
として一般式Li(2-x)x MnO3 (式中のxの値は
0≦x≦1であり、Aはアルカリ土類金属を示す。)で
表される前駆体化合物を得たのち、第2段階としてこの
前駆体化合物を酸溶液で処理して当該前駆体化合物中の
金属イオンを水素イオンで部分置換したLi2 MnO3
の基本構造を保持した水素型無機イオン吸着材である。
この水素型無機イオン吸着材中に形成されたイオン篩機
能をもった微細孔の、バリウムに対する高選択吸着性に
よりBa2+イオンが被処理溶液中より吸着・ 分離され
る。本発明の高選択性バリウム吸着材は、 共存陽イオン
濃度の高い各種被処理溶液中の微量Ba2+イオンに対し
高い吸着・分離効果を有している。従って、本発明に係
わる高選択性バリウム吸着材を用いることにより、簡単
に、しかも高効率で各種被処理溶液中からBa2+イオン
の選択的吸着・分離を行うことができる。本発明の高選
択性バリウム吸着材は、アルカリ土類金属イオン共存溶
液中からBa2+イオンを高選択的に吸着・分離すること
を可能とする。
The highly selective barium adsorbent of the present invention has a general formula Li (2-x) A x MnO 3 (where x is 0 ≦ x ≦ 1 and A is alkaline earth ) as the first step. shows a metalloid. After obtaining a precursor compound represented by), Li 2 which processes the precursor compound with an acid solution as the second stage of metal ions of the precursor compound in the partially substituted with hydrogen ion MnO 3
It is a hydrogen-type inorganic ion adsorbent that retains the basic structure of.
Ba 2+ ions are adsorbed and separated from the solution to be treated by the high selective adsorption of barium by the fine pores having an ion sieving function formed in the hydrogen-type inorganic ion adsorbent. The highly selective barium adsorbent of the present invention has a high adsorption / separation effect for a trace amount of Ba 2+ ions in various solutions to be treated having a high coexisting cation concentration. Therefore, by using the highly selective barium adsorbent according to the present invention, the selective adsorption / separation of Ba 2+ ions from various solutions to be treated can be easily performed with high efficiency. The highly selective barium adsorbent of the present invention makes it possible to highly selectively adsorb and separate Ba 2+ ions from an alkaline earth metal ion coexisting solution.

【0020】[0020]

【実施例】次に、実施例に基づいて本発明を具体的に説
明するが、本発明は、以下の実施例によって何ら限定さ
れるものではない。 1.高選択性バリウム吸着材試料の合成 (1)前駆体化合物試料の調製 前駆体複合マンガン酸化物の合成には、5種類の市販特
級試薬粉末(炭酸リチウム、炭酸カルシウム、炭酸マン
ガン、炭酸ストロンチウム、及び炭酸バリウム)を出発
原料として用いた。表1に示す前駆体化合物の理想化学
組成となるように、それぞれ、所定量の試薬粉末を秤取
した。表1中の秤取量は、試薬の純度補正後の値であ
る。この秤取試薬粉末をメノウ乳鉢付きの自動乳鉢にて
30分間摩砕・混合した後、その4gづつを30ml内
容量の磁製ルツボに分取した。このルツボを大気下、5
50℃、650℃、750℃及び850℃の各温度の電
気マッフル炉中で8時間加熱した。しかる後、ルツボを
室温まで徐冷後、内容物を取り出しメノウ乳鉢にて再度
摩砕・混合した。この摩砕・混合物を先の磁性ルツボに
移し、同一温度にて更に4時間加熱した。この再加熱生
成物をメノウ乳鉢にて摩砕した後、100メッシュの篩
を全通させたものを前駆体化合物試料とした。
EXAMPLES Next, the present invention will be specifically described based on examples, but the present invention is not limited to the following examples. 1. Synthesis of highly selective barium adsorbent sample (1) Preparation of precursor compound sample For synthesis of precursor composite manganese oxide, five kinds of commercially available special grade reagent powders (lithium carbonate, calcium carbonate, manganese carbonate, strontium carbonate, and Barium carbonate) was used as the starting material. A predetermined amount of each reagent powder was weighed so that the precursor compound shown in Table 1 had the ideal chemical composition. The weighed amount in Table 1 is a value after the purity of the reagent is corrected. The weighing reagent powder was ground and mixed in an automatic mortar equipped with an agate mortar for 30 minutes, and 4 g of each powder was dispensed into a porcelain crucible having a content of 30 ml. Place this crucible in the atmosphere for 5
It heated in the electric muffle furnace of each temperature of 50 degreeC, 650 degreeC, 750 degreeC, and 850 degreeC for 8 hours. Then, the crucible was gradually cooled to room temperature, the contents were taken out, and the crucible was ground and mixed again in an agate mortar. The milled mixture was transferred to the magnetic crucible and heated at the same temperature for 4 hours. The reheated product was ground in an agate mortar and then passed through a 100-mesh sieve to give a precursor compound sample.

【0021】[0021]

【表1】 [Table 1]

【0022】(2)前駆体化合物試料の酸処理 上記(1)で得られた種々の前駆体化合物試料の1.5
gづつを50ml容量の密栓付きガラス製サンプル管に
取り、これに2M(M=mol/dm3 )塩酸20ml
を添加し、40℃のドライオーブン中で24時間緩やか
に振とうした。しかる後、塩酸溶液を新鮮なものに代え
て、更に24時間振とう後、吸引ろ過により固液を分離
した。濾紙上の固相を洗液中に塩化物イオンが認められ
なくなるまで蒸留水で繰り返し洗浄した後、50℃のド
ライオーブン中で24時間加熱乾燥して目的のバリウム
吸着材試料を得た。
(2) Acid Treatment of Precursor Compound Samples 1.5 of various precursor compound samples obtained in (1) above
Take each g in a glass sample tube with a sealed capacity of 50 ml and add 20 ml of 2M (M = mol / dm 3 ) hydrochloric acid.
Was added, and the mixture was gently shaken in a dry oven at 40 ° C. for 24 hours. After that, the hydrochloric acid solution was replaced with a fresh one, and the mixture was further shaken for 24 hours, and then the solid-liquid was separated by suction filtration. The solid phase on the filter paper was repeatedly washed with distilled water until no chloride ions were found in the washing liquid, and then dried by heating in a dry oven at 50 ° C. for 24 hours to obtain a target barium adsorbent sample.

【0023】2.吸着試験法 (1)吸着試験用被処理溶液 それぞれの陽イオン濃度が10ppmとなるように、蒸
留水に市販特級試薬の硝酸マグネシウム、硝酸カルシウ
ム、硝酸ストロンチウム及び硝酸バリウムの所定量を添
加、溶解して調製した混合アルカリ土類金属イオン溶液
を被処理溶液(以下、被処理溶液と呼ぶ。)として用い
た。
2. Adsorption test method (1) Add predetermined amounts of commercially available special grade reagents magnesium nitrate, calcium nitrate, strontium nitrate and barium nitrate to distilled water and dissolve them so that the cation concentration of each solution for adsorption test becomes 10 ppm. The mixed alkaline earth metal ion solution prepared as above was used as a solution to be treated (hereinafter referred to as a solution to be treated).

【0024】(2)吸着性の評価 10ml容量の密栓付きポリプロピレン製遠沈管に、そ
れぞれ上記1.(2)記載のバリウム吸着材試料100
mgをとり、これに上記2.(1)記載の被処理溶液1
0mlを加えて25℃の恒温槽内で24時間振とうし
た。振とう後の固液を遠心分離(10,000r.p.
m.,10分間)し、上澄液中のそれぞれの陽イオン
(Mg2+、Ca2+、Sr2+、Ba2+)濃度をICP法で
測定し、振とう前後の濃度差より次式により分配係数及
び分離係数を算出し、それらの値よりバリウム吸着材試
料の吸着性を評価した。分配係数Kdは Kd=Ai /Af (ml/g)、 で与えられ、ここでAi 及びAf は、それぞれ振とう後
の固相中の吸着イオン濃度(mg/g)及び液相中の吸
着イオン濃度(mg/ml)である。上式から明らかな
ように、反応後のAf 値が小さい、すなわち、バリウム
吸着材試料への吸着量の多いイオン種ほどそのKd値は
大きく、選択性が高いことになる。一方、2種の陽イオ
ンM1とM2間の吸着・分離性の目安となる分離係数α
は αM1/M2 =KdM1/KdM2、 で与えられ、M1とM2イオンの分配係数の比として表
される。従って、αM1/M 2 値が大きいほどM1とM2イ
オン共存系からのM1イオンの吸着・分離性が良いこと
になる。
(2) Evaluation of adsorptivity A polypropylene centrifuge tube with a sealed stopper having a capacity of 10 ml was added to each of the above 1. (2) Barium adsorbent sample 100 described in
Take mg and add to 2. Solution to be treated 1 described in (1)
0 ml was added and the mixture was shaken in a constant temperature bath at 25 ° C. for 24 hours. The solid-liquid after shaking was centrifuged (10,000 rp.
m. , 10 minutes), and the concentration of each cation (Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ ) in the supernatant was measured by the ICP method, and the concentration difference before and after shaking was calculated by the following formula. The partition coefficient and the separation coefficient were calculated, and the adsorbability of the barium adsorbent sample was evaluated from these values. The partition coefficient Kd is given by Kd = A i / A f (ml / g), where A i and A f are the adsorbed ion concentration (mg / g) and liquid phase in the solid phase after shaking, respectively. It is the adsorbed ion concentration (mg / ml). As is clear from the above equation, the smaller the A f value after the reaction, that is, the larger the amount of adsorption to the barium adsorbent sample, the larger the Kd value, and the higher the selectivity. On the other hand, the separation coefficient α which is a measure of the adsorption / separation property between the two cations M1 and M2.
Is given by α M1 / M2 = Kd M1 / Kd M2 , and is expressed as a ratio of partition coefficients of M1 and M2 ions. Therefore, the larger the α M1 / M 2 value, the better the adsorption / separation of M1 ions from the M1 and M2 ion coexisting system.

【0025】3.吸着結果 3.1 酸処理後の各種前駆体化合物試料の吸着性 (1)Li2 MnO3 系前駆体化合物試料 Li2 MnO3 系前駆体化合物試料について得られた吸
着結果を表2に示す。アルカリ土類金属イオンのKd値
は、Ba2+>>Sr2+>Ca2+,Mgの順に低下し、水
和イオン半径の小さなイオン種ほど大きい傾向にある。
しかし、Sr2+ 、Ca2+及びMg2+イオンのKd値は、
いずれも20ml/g以下と小さく、これらイオン種間
の選択性の差はそれほど明瞭ではない。これに対し、B
2+イオンのKd値は、他のそれに比較して著しく高
い。このため、Ba2+イオンと他のイオン種との分離の
目安となるαBa/Sr,Ca,Mg 値は、2〜3桁の大きな値を
示し、アルカリ土類金属イオン共存系からのBa2+イオ
ンの選択分離が可能なことを示している。一方、前駆体
化合物試料の合成温度とBa2+イオンのKd値との関係
を見ると、Kd値は、合成温度650〜750℃で最大
となった。
3. Adsorption result 3.1 Adsorption of various precursor compound samples after acid treatment (1) Li2 MnO3 System precursor compound sample Li2 MnO3 The absorption obtained for the system precursor compound sample
The wearing results are shown in Table 2. Kd value of alkaline earth metal ion
Is Ba2+>> Sr2+> Ca2+, Mg, then water
Ion species having a smaller sum ion radius tend to be larger.
But Sr2+ , Ca2+And Mg2+The Kd value of the ion is
Both are small at 20 ml / g or less,
The difference in selectivity of is not so clear. On the other hand, B
a2+The Kd value of ions is significantly higher than that of other ions.
Yes. Therefore, Ba2+Separation of ions from other ionic species
Α as a guideBa / Sr, Ca, Mg The value should be a large number of 2-3 digits.
Shown, Ba from alkaline earth metal ion coexisting system2+Io
It is possible to selectively separate the components. On the other hand, the precursor
Compound sample synthesis temperature and Ba2+Relation with Kd value of ion
, The Kd value is maximum at the synthesis temperature of 650-750 ℃.
Became.

【0026】[0026]

【表2】 [Table 2]

【0027】(2)LiCaMnO3 前駆体化合物試料 表3に、LiCaMnO3 系複合酸化物試料について得
られた吸着結果を示す。550℃合成試料のKd値が、
上記3.1(1)記載のLi2 MnO3 系前駆体化合物
試料よりも若干低いこと、及びKdが合成温度750℃
で最大値を示した他は、Li2 MnO3 系前駆体化合物
試料の場合とほぼ同様の吸着結果が得られた。LiCa
MnO3 系前駆体化合物試料についても、アルカリ土類
金属イオンの中でBa2+イオンのKdが他のイオン類の
それに比較して著しく高く、Ba2+イオンに対する特異
吸着性がみられた。
(2) LiCaMnO 3 precursor compound sample Table 3 shows the adsorption results obtained for the LiCaMnO 3 composite oxide sample. The Kd value of the 550 ° C synthetic sample is
It is slightly lower than that of the Li 2 MnO 3 precursor compound sample described in 3.1 (1) above, and the Kd is at a synthesis temperature of 750 ° C.
The adsorption results were almost the same as in the case of the Li 2 MnO 3 -based precursor compound sample, except that the maximum value was shown in FIG. LiCa
Also in the MnO 3 -based precursor compound sample, among the alkaline earth metal ions, the Kd of Ba 2+ ions was remarkably higher than that of the other ions, and the specific adsorptivity for Ba 2+ ions was observed.

【0028】[0028]

【表3】 [Table 3]

【0029】(3)LiSrMnO3 系前駆体化合物試
料 LiSrMnO3 系前駆体化合物試料について得られた
吸着結果を表4に示す。550℃合成試料のKd値が、
上記3.1(1)記載のLi2 MnO3 系前駆体化合物
試料よりも若干低いものの、合成温度650℃以上の試
料ではいずれもKd値はLi2 MnO3 系前駆体化合物
試料よりも増大し、合成温度750℃で最大となった。
中でもBa2+イオンのKd値の増大が他のイオンに比べ
顕著であり、αBa/Sr,Ca,Mg 値は、LiCaMnO3
前駆体化合物試料の場合よりも更に増大した。このよう
に、LiSrMnO3 系前駆体化合物試料では、Ba2+
イオンの選択性が一段と向上していることが分かる。
(3) LiSrMnO 3 -based precursor compound sample The adsorption results obtained for the LiSrMnO 3 -based precursor compound sample are shown in Table 4. The Kd value of the 550 ° C synthetic sample is
Although slightly lower than the Li 2 MnO 3 -based precursor compound sample described in 3.1 (1) above, the Kd value was higher than that of the Li 2 MnO 3 -based precursor compound sample in all of the samples at a synthesis temperature of 650 ° C. or higher. The maximum was at the synthesis temperature of 750 ° C.
Among them, the increase in the Kd value of Ba 2+ ions was more remarkable than that of the other ions, and the α Ba / Sr, Ca, Mg values were further increased as compared with the case of the LiCaMnO 3 precursor compound sample. Thus, in the LiSrMnO 3 -based precursor compound sample, Ba 2+
It can be seen that the ion selectivity is further improved.

【0030】[0030]

【表4】 [Table 4]

【0031】(4)LiBaMnO3 系前駆体化合物試
料 LiBaMnO3 系前駆体化合物試料について得られた
吸着結果を表5に示す。550℃合成試料のKd値は、
上記3.1(1)記載のLi2 MnO3 系前駆体化合物
試料よりも低いものの、合成温度650℃以上の試料で
はいずれもKd値はLi2 MnO3 系前駆体化合物試料
よりもかなり増大し、合成温度750℃で最大値を示し
た。Ba2+イオンのKd値の増大は他のイオンのそれに
比べ顕著であり、αBa/Sr,Ca,Mg 値は、LiSrMnO
3 系前駆体化合物試料の場合よりも更に増大した。この
ように、LiBaMnO3 系前駆体化合物試料では、B
2+イオンの選択性が更に一段と向上していることは明
らかである。
(4) LiBaMnO 3 type precursor compound sample Table 5 shows the adsorption results obtained for the LiBaMnO 3 type precursor compound sample. The Kd value of the 550 ° C synthetic sample is
Although lower than the Li 2 MnO 3 -based precursor compound sample described in 3.1 (1) above, the Kd value of each of the samples at a synthesis temperature of 650 ° C. or higher was much higher than that of the Li 2 MnO 3 -based precursor compound sample. Showed the maximum value at a synthesis temperature of 750 ° C. The increase of Kd value of Ba 2+ ion is more remarkable than that of other ions, and α Ba / Sr, Ca, Mg values are LiSrMnO
It was further increased than in the case of the 3 type precursor compound sample. Thus, in the LiBaMnO 3 -based precursor compound sample, B
It is clear that the selectivity of a 2+ ion is further improved.

【0032】[0032]

【表5】 [Table 5]

【0033】3.2 前駆体化合物試料の最適合成温度
及び導入アルカリ土類金属イオン種とBa2+イオンの選
択吸着性 上記3.1(1)〜(4)記載の各種前駆体化合物試料
の吸着結果から明らかなように、いずれの試料について
もKdの合成温度依存性が見られ、650〜750℃合
成試料で最大値を示し、最適合成温度が存在することが
分かる。一方、酸処理後の前駆体化合物試料の粉末X線
回折パターンにおいて、Li2 MnO3 に帰属される最
強回折ピーク(d値 =4.75Å)の高角度側に出現す
るショルダーピーク(d値 =約4.6Å)の回折強度に
ついてもKdの場合と同じ傾向の合成温度依存性が見ら
れた。これらのことは、1)上記ショルダーピーク(d
値=約4.6Å)を与えた結晶相がアルカリ土類金属イ
オン類の吸着に関与していること、また、2)合成温度
の上昇とともにLi(2-X)X MnO3 の生成量が増加
する一方、結晶性も増大するため、格子イオンのリチウ
ムやアルカリ土類金属イオンA2+のH+ イオン置換が難
しくなり、吸着に関与する結晶相の生成量が減少するこ
とを示していると推察される。
3.2 Optimum synthesis temperature of precursor compound sample
And introduced alkaline earth metal ion species and Ba2+Aeon selection
Selective adsorption Various precursor compound samples described in 3.1 (1) to (4) above
As is clear from the adsorption results of
Also shows the dependence of Kd on the synthesis temperature.
The maximum value is shown in the synthetic sample, and the optimum synthesis temperature may exist.
I understand. On the other hand, powder X-ray of precursor compound sample after acid treatment
In the diffraction pattern, Li2 MnO3 Belonged to
Appears on the high angle side of the strong diffraction peak (d value = 4.75Å)
To the diffraction intensity of the shoulder peak (d value = about 4.6Å)
As for Kd, the same tendency as in the case of Kd was found.
It was These are as follows: 1) Shoulder peak (d)
Value = about 4.6Å)
Being involved in adsorption of ons, 2) Synthesis temperature
As Li rises(2-X) AX MnO3 Increase the amount of
However, since the crystallinity also increases,
Mu or alkaline earth metal ion A2+H+ Ion substitution is difficult
And the amount of crystalline phase involved in adsorption decreases.
It is presumed to indicate

【0034】最適温度で合成した前駆体化合物試料中の
導入アルカリ土類金属イオン種、それらの結晶イオン半
径と酸処理試料のKdBa及びαBa/Sr 値を表6にまとめ
て示す。表6から明らかなように、KdBa及びαBa/Sr
ともにLi2 MnO3 中のリチウムをアルカリ土類金属
で部分置換することにより増大する。また、導入金属イ
オンのサイズが大きいほどその効果が大きいことが分か
る。特に、バリウムの導入により酸処理試料のBa2+
オン選択性が著しく向上することが明らかである。
Table 6 summarizes the introduced alkaline earth metal ion species in the precursor compound sample synthesized at the optimum temperature, their crystal ion radii, and the Kd Ba and α Ba / Sr values of the acid-treated sample. As is clear from Table 6, Kd Ba and α Ba / Sr
Both are increased by partial substitution of lithium in Li 2 MnO 3 with an alkaline earth metal. Further, it can be seen that the larger the size of the introduced metal ion, the greater the effect. In particular, it is clear that the introduction of barium significantly improves the Ba 2+ ion selectivity of the acid-treated sample.

【0035】[0035]

【表6】 [Table 6]

【0036】[0036]

【発明の効果】以上詳述したように、本発明は、高選択
性バリウム吸着材及びその製造方法等に係るものであ
り、本発明により、1)アルカリ土類金属イオン共存溶
液中からBa2+イオンを選択的に分離・除去できる、
2)多種類の陽イオンを含む多成分処理水系にも適用可
能な新しい高選択性バリウム吸着材を提供することがで
きる、3)上記高選択性バリウム吸着材をBa2+イオン
が含まれる種々の被処理溶液と接触させると、これらの
吸着材の表面特性、すなわち、吸着材中に形成される微
細孔のイオン篩作用により、Ba2+イオンが溶液中より
高選択的に吸着、分離される、4)従って、この吸着材
を用いることにより、簡単に、しかも効率的に水及び種
々の廃水(各種鉱・工業からの有害廃水、放射性廃水
等)及び塩水(イオン交換膜食塩電解工場の塩水等)中
に微量に溶存する有害なBa2+イオンの選択的分離が可
能となる、5)また、本吸着材はその表面が酸性を呈す
る固体酸の一種でもあり、酸塩基触媒としての利用も期
待される、という格別の効果が奏される。
As described above in detail, the present invention relates to a highly selective barium adsorbent, a method for producing the same, and the like. According to the present invention, 1) Ba 2 is added from an alkaline earth metal ion coexisting solution. + Ions can be selectively separated and removed,
2) It is possible to provide a new highly selective barium adsorbent that can be applied to a multi-component treated water system containing many kinds of cations. 3) Various high selective barium adsorbents containing Ba 2+ ions When brought into contact with the solution to be treated, the surface characteristics of these adsorbents, that is, the ion sieving action of the fine pores formed in the adsorbents, cause the Ba 2+ ions to be adsorbed and separated more selectively than in the solution. 4) Therefore, by using this adsorbent, water and various wastewater (harmful wastewater from various mines and industries, radioactive wastewater, etc.) and salt water (ion exchange membrane salt electrolysis plant) can be easily and efficiently used. This enables selective separation of harmful Ba 2+ ions dissolved in a trace amount in salt water, etc.) 5) Moreover, this adsorbent is also a kind of solid acid whose surface exhibits acidity, and is used as an acid-base catalyst. It is expected to be used Effect can be exhibited.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 三村 均 宮城県仙台市青葉区米ヶ袋2丁目1−17− 404号 (72)発明者 蛯名 武雄 宮城県仙台市青葉区中江2丁目15−1− 108 Fターム(参考) 4D024 AA04 AA05 AB15 BA05 BC01 CA01 4G048 AA04 AA05 AB02 AC08 AE05 4G066 AA13B AA16B AA26B CA45 DA07 DA08 FA11 FA37    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Hitoshi Mimura             2-17-17 Yonegabukuro, Aoba-ku, Sendai City, Miyagi Prefecture             No. 404 (72) Inventor Takeo Ebina             2-15-1 Nakae, Aoba-ku, Sendai City, Miyagi Prefecture             108 F-term (reference) 4D024 AA04 AA05 AB15 BA05 BC01                       CA01                 4G048 AA04 AA05 AB02 AC08 AE05                 4G066 AA13B AA16B AA26B CA45                       DA07 DA08 FA11 FA37

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 一般式Li(2-x)x MnO3 (式中、
xの値は0≦x≦1であり、Aはアルカリ土類金属を示
す。)で表される前駆体複合マンガン酸化物中のリチウ
ム及びアルカリ土類金属を水素で置換して得られる水素
形マンガン複合酸化物からなることを特徴とする高選択
性バリウム吸着材。
1. The general formula Li (2-x) A x MnO 3 (wherein
The value of x is 0 ≦ x ≦ 1, and A represents an alkaline earth metal. ) A highly selective barium adsorbent comprising a hydrogen-type manganese composite oxide obtained by substituting hydrogen for lithium and alkaline earth metal in the precursor composite manganese oxide represented by the formula (1).
【請求項2】 一般式Li(2-x-y)(x-y)y MnO
3 (式中、xの値は0≦x≦1、yの値は0<y<1で
あり、A及びHはそれぞれアルカリ土類金属及び水素を
示す。)で表される水素形マンガン複合酸化物からな
る、請求項1に記載の高選択性バリウム吸着材。
2. A general formula Li (2-xy) A ( xy) H y MnO
3 (in the formula, the value of x is 0 ≦ x ≦ 1, the value of y is 0 <y <1, and A and H represent alkaline earth metal and hydrogen, respectively). The highly selective barium adsorbent according to claim 1, which comprises an oxide.
【請求項3】 請求項1に記載の前駆体複合マンガン酸
化物中のリチウム及びアルカリ土類金属を酸処理により
水素で置換して一般式Li(2-x-y)(x-y) y MnO3
(式中、xの値は0≦x≦1、yの値は0<y<1で
あり、A及びHはそれぞれアルカリ土類金属及び水素を
示す。)で表される水素形マンガン複合酸化物に変換す
ることを特徴とする高選択性バリウム吸着材の製造方
法。
3. The precursor composite manganate according to claim 1.
Acid treatment of lithium and alkaline earth metals in compounds
Substitute with hydrogen for general formula Li(2-xy) A(xy) Hy MnO3
 (Where x is 0 ≦ x ≦ 1, y is 0 <y <1
Yes, A and H represent alkaline earth metal and hydrogen, respectively.
Show. ) Is converted to a hydrogen-type manganese composite oxide represented by
Of high selectivity barium adsorbent characterized by
Law.
【請求項4】 請求項1又は2に記載の高選択性バリウ
ム吸着材を被処理溶液と接触させて当該被処理溶液中の
Ba2+イオンを選択的に吸着、分離することを特徴とす
るバリウム分離方法。
4. The high selectivity barium adsorbent according to claim 1 or 2 is brought into contact with a solution to be treated to selectively adsorb and separate Ba 2+ ions in the solution to be treated. Barium separation method.
【請求項5】 請求項1又は2に記載の高選択性バリウ
ム吸着材をBa2+イオン分離手段に充填したことを特徴
とするバリウム吸着・分離装置。
5. A barium adsorption / separation device comprising the Ba 2+ ion separation means filled with the highly selective barium adsorbent according to claim 1.
JP2002039348A 2002-02-15 2002-02-15 Highly selective barium adsorbent and method for producing the same Expired - Lifetime JP3577515B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002039348A JP3577515B2 (en) 2002-02-15 2002-02-15 Highly selective barium adsorbent and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002039348A JP3577515B2 (en) 2002-02-15 2002-02-15 Highly selective barium adsorbent and method for producing the same

Publications (2)

Publication Number Publication Date
JP2003236371A true JP2003236371A (en) 2003-08-26
JP3577515B2 JP3577515B2 (en) 2004-10-13

Family

ID=27780383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002039348A Expired - Lifetime JP3577515B2 (en) 2002-02-15 2002-02-15 Highly selective barium adsorbent and method for producing the same

Country Status (1)

Country Link
JP (1) JP3577515B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102935299A (en) * 2012-09-29 2013-02-20 上海空间电源研究所 Method for extracting lithium ions by manganese oxide adsorbing material
CN114832775A (en) * 2022-05-10 2022-08-02 扬州大学 Carbon-based selenium material for removing barium from brine and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102935299A (en) * 2012-09-29 2013-02-20 上海空间电源研究所 Method for extracting lithium ions by manganese oxide adsorbing material
CN102935299B (en) * 2012-09-29 2015-09-30 上海空间电源研究所 A kind of method using manganese oxide sorbing material to extract lithium ion
CN114832775A (en) * 2022-05-10 2022-08-02 扬州大学 Carbon-based selenium material for removing barium from brine and preparation method thereof
CN114832775B (en) * 2022-05-10 2024-05-03 扬州大学 Carbon-based selenium material for barium removal of brine and preparation method thereof

Also Published As

Publication number Publication date
JP3577515B2 (en) 2004-10-13

Similar Documents

Publication Publication Date Title
Hamdi et al. Removal of phosphate ions from aqueous solution using Tunisian clays minerals and synthetic zeolite
Xu et al. Removal of fluoride by nature diatomite from high-fluorine water: an appropriate pretreatment for nanofiltration process
Mandal et al. Adsorption studies of arsenic (III) removal from water by zirconium polyacrylamide hybrid material (ZrPACM-43)
Tomar et al. Adsorptive removal of fluoride from water samples using Zr–Mn composite material
Lu et al. Sorption of Cu 2+ and Co 2+ using zeolite synthesized from coal gangue: isotherm and kinetic studies
Harja et al. Removal of heavy metal ions from aqueous solutions using low-cost sorbents obtained from ash
Kapoor et al. Use of immobilized bentonite in removal of heavy metals from wastewater
Metwally et al. Utilization of low-cost sorbent for removal and separation of 134 Cs, 60 Co and 152+ 154 Eu radionuclides from aqueous solution
KR101415656B1 (en) adsorbent for adsorption treatment of anion in waste water, and method for manufacturing the adsorbent
CN103303996B (en) Application of activated aluminum oxide defluorination adsorbing material with different surface features
Hassan et al. Removal of barium and strontium from wastewater and radioactive wastes using a green bioadsorbent, Salvadora persica (Miswak)
Li et al. A hydrolytically stable anionic layered indium–organic framework for the efficient removal of 90 Sr from seawater
JP2003236371A (en) Highly selective barium adsorbent and method for the same manufacturing
Puziy Cesium and strontium exchange by the framework potassium titanium silicate K 3 HTi 4 O 4 (SiO 4) 3· 4H 2 O
JP3227517B2 (en) Treatment method for phosphorus-containing wastewater
JP5548956B2 (en) Arsenic sorbent and arsenic contaminant purification method
JP2013248555A (en) Cesium adsorbing material, and method for manufacturing the same
JP4052859B2 (en) Arsenic adsorbent and arsenic adsorption removal method in aqueous solution
Xie et al. Study on an effective industrial waste-based adsorbent for the adsorptive removal of phosphorus from wastewater: equilibrium and kinetics studies
Bouchmila et al. Optimization and modeling of solid-phase extraction of rare earth elements with chert using design methodology
Esfandian et al. Removal of strontium ions by synthetic nano sodalite zeolite from aqueous solution
JP2020093251A (en) Heavy metal ion adsorbent and method for producing the same
JP3557461B2 (en) Environmentally friendly synthetic inorganic ion adsorbent and method for producing the same
JP3291994B2 (en) How to remove arsenate ions
RU2613519C1 (en) Method for arsenic sorbent production

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040506

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040611

R150 Certificate of patent or registration of utility model

Ref document number: 3577515

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term