JP2003234745A - Compound radio equipment and interference avoidance control method to be used therefor - Google Patents

Compound radio equipment and interference avoidance control method to be used therefor

Info

Publication number
JP2003234745A
JP2003234745A JP2002034793A JP2002034793A JP2003234745A JP 2003234745 A JP2003234745 A JP 2003234745A JP 2002034793 A JP2002034793 A JP 2002034793A JP 2002034793 A JP2002034793 A JP 2002034793A JP 2003234745 A JP2003234745 A JP 2003234745A
Authority
JP
Japan
Prior art keywords
wireless lan
wireless
frequency
radio wave
weak radio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002034793A
Other languages
Japanese (ja)
Other versions
JP4122789B2 (en
Inventor
Yusuke Kimata
祐介 木全
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2002034793A priority Critical patent/JP4122789B2/en
Publication of JP2003234745A publication Critical patent/JP2003234745A/en
Application granted granted Critical
Publication of JP4122789B2 publication Critical patent/JP4122789B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compound radio equipment in which the interference of a signal based on IEEE802.11g and a signal based on Bluetooth(R) can be avoided. <P>SOLUTION: In a compound radio equipment 1, a wireless LAN device 20 using the standard of IEEE802.11g to use the same frequency band called ISM band and a weak radio wave wireless device 30 using the Bluetooth(R) are composed. A problem on the mutual interference of the signals to occur when the wireless LAN device 20 and the weak radio wave wireless device 30 are composed is solved by varying the frequency band of the wireless LAN device 20 and adaptively hopping a frequency to a frequency band which is not used for this wireless LAN device 20 by the weak radio wave wireless device 30. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は複合無線装置及びそ
れに用いる干渉回避制御方法に関し、特に2.4GHz
帯における無線LANとBluetooth(R)との
干渉を回避するための干渉回避制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite radio apparatus and an interference avoidance control method used for the same, and particularly to 2.4 GHz.
The present invention relates to an interference avoidance control method for avoiding interference between a wireless LAN and Bluetooth (R) in a band.

【0002】[0002]

【従来の技術】従来、複合無線装置においては、同じI
SM(Industrial Science Med
ical)(2400〜2483.5MHz)バンドと
呼ばれる周波数帯域を用いるIEEE802.11gの
規格を用いる無線LAN(Local Area Ne
twork)装置(2.4GHz帯無線LAN)と、B
luetooth(R)を用いた微弱電波無線装置とを
同じ場所で利用する装置がある。
2. Description of the Related Art Conventionally, in a composite wireless device, the same I
SM (Industrial Science Med)
I.C.) (2400 to 2483.5 MHz) band, and a wireless LAN (Local Area Ne) using the IEEE 802.11g standard.
device) (2.4 GHz band wireless LAN) and B
There is a device that uses a weak radio wave device using Bluetooth (R) at the same place.

【0003】この場合に、無線LAN装置及び微弱電波
無線装置各々の相互の信号が干渉しあい、高速なデータ
転送の妨げになる。それを回避する方法としては、無線
LAN装置が使っていない周波数帯域を微弱電波無線装
置が用いることで、互いの干渉を解決するという適応型
周波数ホッピング方法がある。
In this case, mutual signals of the wireless LAN device and the weak radio wave device interfere with each other, which hinders high-speed data transfer. As a method for avoiding this, there is an adaptive frequency hopping method in which a weak radio wave radio device uses a frequency band that is not used by the wireless LAN device to solve mutual interference.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上述し
た適応型周波数ホッピング方法では、無線LAN装置が
2400〜2483.5MHzという帯域内の大部分を
利用している場合、この方法は通用しない。
However, in the above-mentioned adaptive frequency hopping method, this method does not work when the wireless LAN device uses most of the band of 2400 to 2483.5 MHz.

【0005】したがって、微弱電波無線装置だけが、適
応的に周波数ホッピング帯域を変化させるだけではな
く、無線LAN装置も、周波数帯域を適応的に変化させ
る必要がある。
Therefore, not only the weak radio wave device needs to adaptively change the frequency hopping band, but also the wireless LAN device needs to adaptively change the frequency band.

【0006】そこで、本発明の目的は上記の問題点を解
消し、IEEE802.11gによる信号とBluet
ooth(R)による信号との干渉を回避することがで
きる複合無線装置及びそれに用いる干渉回避制御方法を
提供することにある。
Therefore, an object of the present invention is to solve the above-mentioned problems, and to provide a signal and a Bluetooth according to IEEE 802.11g.
It is an object of the present invention to provide a composite radio apparatus capable of avoiding interference with a signal due to oooth (R) and an interference avoidance control method used for the composite radio apparatus.

【0007】[0007]

【課題を解決するための手段】本発明による複合無線装
置は、同じ周波数帯域を用いる無線LAN(Local
Area Network)装置と微弱電波無線装置
とを複合させた複合無線装置であって、前記無線LAN
装置の周波数帯域を可変制御する手段と、前記微弱電波
無線装置において当該無線LAN装置が利用していない
周波数帯域に適応的に周波数をホッピングさせるよう制
御する手段とを含む無線管理装置を備えている。
A compound radio apparatus according to the present invention is a wireless LAN (Local) using the same frequency band.
An area network device and a weak radio wave device are combined, and the wireless LAN
The radio management apparatus includes means for variably controlling the frequency band of the apparatus, and means for controlling to hop the frequency adaptively to the frequency band not used by the wireless LAN apparatus in the weak radio wave wireless apparatus. .

【0008】本発明による干渉回避制御方法は、同じ周
波数帯域を用いる無線LAN(Local Area
Network)装置と微弱電波無線装置とを複合させ
た複合無線装置の干渉回避制御方法であって、前記無線
LAN装置の周波数帯域を可変制御するステップと、前
記微弱電波無線装置において当該無線LAN装置が利用
していない周波数帯域に適応的に周波数をホッピングさ
せるよう制御するステップとを備えている。
According to the interference avoidance control method of the present invention, a wireless LAN (Local Area) using the same frequency band is used.
A method for controlling interference in a composite wireless device, which is a combination of a network device and a weak radio wave device, comprising: variably controlling a frequency band of the wireless LAN device; And controlling to adaptively hop the frequency to a frequency band that is not being used.

【0009】すなわち、本発明の複合無線装置は、同じ
ISM(Industrial Science Me
dical)(2400〜2483.5MHz)バンド
と呼ばれる周波数帯域を用いるIEEE802.11g
の規格を用いた無線LAN装置(2.4GHz帯無線L
AN)と、Bluetooth(R)を用いた微弱電波
無線装置とを同じ場所で利用する場合に発生する互いの
信号の干渉問題を、無線LAN装置の周波数帯域を可変
させ、一方、微弱電波無線装置がこの無線LAN装置が
利用していない周波数帯域に適応的に周波数をホッピン
グさせることで解決することを特徴としている。
That is, the composite wireless apparatus of the present invention is the same as ISM (Industrial Science Me).
IEEE) 802.11g using a frequency band called the digital (2400 to 2483.5 MHz) band
LAN device using the standard of 2.4 GHz band wireless L
AN) and a weak radio frequency radio device using Bluetooth (R) are used in the same place, the problem of mutual signal interference is caused by varying the frequency band of the wireless LAN device, while the weak radio frequency radio device is used. Is solved by adaptively hopping a frequency to a frequency band not used by this wireless LAN device.

【0010】例えば、無線LAN装置で帯域22MHz
の信号が周波数2401〜2423MHzで送信され、
微弱電波無線装置で帯域1MHzの信号が2400〜2
483.5MHz内をホッピングしながら送信された場
合、無線LAN装置と微弱電波無線装置とがともに互い
の信号によって干渉を受け、正確かつ高速にデータのや
り取りが困難になることが知られている。
For example, a wireless LAN device has a band of 22 MHz
Is transmitted at a frequency of 2401 to 2423 MHz,
Signal of 1MHz band is 2400-2 in the weak radio equipment
It is known that when transmitted while hopping within 483.5 MHz, both the wireless LAN device and the weak radio wave device are interfered with each other's signals, making it difficult to exchange data accurately and at high speed.

【0011】一方、無線LAN装置で帯域22MHzの
信号が周波数2401〜2423MHzで送信している
場合、微弱電波無線装置が帯域1MHzの信号を242
4MHz〜2483.5MHz内に送信するようにし
て、互いの干渉を回避する適応型周波数ホッピング法も
考えられている。
On the other hand, when the wireless LAN device transmits a 22 MHz band signal at a frequency of 2401 to 2423 MHz, the weak radio wave device transmits a 1 MHz band signal to 242.
An adaptive frequency hopping method for avoiding mutual interference by transmitting within 4 MHz to 2483.5 MHz is also considered.

【0012】しかしながら、無線LAN装置が帯域22
MHzの3つの信号を、例えば、それぞれ2401〜2
123MHz、2125〜2147MHz、2150〜
2172MHzで送信した場合、この適応型周波数ホッ
ピング法だと使える帯域が10MHz程度となり、微弱
電波無線装置の干渉波からの耐性が著しく劣化してしま
う。
However, the wireless LAN device has a bandwidth of 22.
The three signals of MHz are, for example, 2401-2
123 MHz, 2125 to 2147 MHz, 2150 to
When transmitting at 2172 MHz, the adaptive frequency hopping method can use a band of about 10 MHz, and the resistance of the weak radio wave radio device to the interference wave is significantly deteriorated.

【0013】そこで、本発明では、無線LAN装置が変
調にOFDM(Orthogonal Frequen
cy Division Multiplexing)
方式を用いて、信号の周波数環境に応じてそのキャリア
の数を可変化させ、微弱電波無線装置がその隙間の周波
数にも周波数をホッピングできるようにして、互いの干
渉を回避する方法をとっている。
Therefore, in the present invention, the wireless LAN device uses OFDM (Orthogonal Frequency) for modulation.
cy Division Multiplexing)
By using the method, the number of carriers is made variable according to the frequency environment of the signal, and the weak radio wave radio device can hop the frequency to the frequency of the gap, thereby avoiding mutual interference. There is.

【0014】因みに、IEEE802.11gとはIE
EE802.11bの拡張版で、IEEE802.11
bの最大転送レートが11MHsであるのに対し、IE
EE802.11gでは最大転送レートを54MHzに
まで上げている。
By the way, IEEE 802.11g is IE
An extended version of IEEE 802.11b, which is IEEE 802.11
b has a maximum transfer rate of 11 MHs, while IE
With EE802.11g, the maximum transfer rate is increased to 54 MHz.

【0015】上記のように、無線LAN装置ではOFD
M変調器のキャリア数を可変させ、微弱電波無線装置を
それに対応する周波数ホッピングさせることで、無線L
AN装置と微弱電波無線装置とにおける信号の干渉を回
避することが可能となる。
As described above, the OFD is used in the wireless LAN device.
By changing the number of carriers of the M modulator and hopping the weak radio wave device to the corresponding frequency, the wireless L
It is possible to avoid signal interference between the AN device and the weak radio wave device.

【0016】[0016]

【発明の実施の形態】次に、本発明の実施例について図
面を参照して説明する。図1は本発明の第1の実施例に
よる複合無線装置の構成を示すブロック図である。図1
において、複合無線装置1は無線管理装置10と、IE
EE802.11gの規格を用いる無線LAN(Loc
al Area Network)装置(2.4GHz
帯無線LAN)20と、Bluetooth(R)を用
いる微弱電波無線装置30と、電源装置40と、メモリ
装置50とから構成されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing the configuration of a composite wireless device according to the first embodiment of the present invention. Figure 1
In the composite wireless device 1, the wireless management device 10 and the IE
Wireless LAN (Loc) that uses the EE 802.11g standard
al Area Network) device (2.4 GHz
Band wireless LAN) 20, a weak radio wave device 30 using Bluetooth (R), a power supply device 40, and a memory device 50.

【0017】無線管理装置10は無線LAN装置20と
微弱電波無線装置30とで使われる周波数管理を行う。
電源装置40は電源を無線管理装置10と無線LAN装
置20と微弱電波無線装置30とにそれぞれ供給する。
メモリ装置50には無線管理装置10の制御手順(プロ
グラム)が書込まれている。ここで、無線LAN装置2
0は複数の信号の送受信が可能であるとする。
The wireless management device 10 manages the frequencies used by the wireless LAN device 20 and the weak radio wave device 30.
The power supply device 40 supplies power to the wireless management device 10, the wireless LAN device 20, and the weak radio wave device 30, respectively.
A control procedure (program) of the wireless management device 10 is written in the memory device 50. Here, the wireless LAN device 2
0 indicates that a plurality of signals can be transmitted and received.

【0018】複合無線装置1は同じISM(Indus
trial Science Medical)(24
00〜2483.5MHz)バンドと呼ばれる周波数帯
域を用いるIEEE802.11gの規格を用いた無線
LAN装置20と、Bluetooth(R)を用いた
微弱電波無線装置30とを複合させた装置である。
The compound wireless device 1 has the same ISM (Indus).
trial Science Medical (24)
The wireless LAN device 20 uses the IEEE 802.11g standard that uses a frequency band called the "00-2483.5 MHz) band, and the weak radio wave device 30 that uses Bluetooth (R) is combined.

【0019】本実施例では、上記のように、無線LAN
装置20と微弱電波無線装置30とを複合させた場合に
発生する互いの信号の干渉問題を、無線LAN装置20
の周波数帯域を可変させ、一方、微弱電波無線装置30
がこの無線LAN装置20が利用していない周波数帯域
に適応的に周波数をホッピングさせることで解決してい
る。
In this embodiment, as described above, the wireless LAN
The wireless LAN device 20 addresses the problem of mutual signal interference that occurs when the device 20 and the weak radio wave device 30 are combined.
Frequency band of the weak radio wave radio device 30
Solves this problem by adaptively hopping the frequency to a frequency band not used by the wireless LAN device 20.

【0020】例えば、図2に示すように、無線LAN装
置20において帯域22MHzの信号が周波数2401
〜2423MHzで送信され、微弱電波無線装置30に
おいて帯域1MHzの信号が2400〜2483.5M
Hz内をホッピングしながら送信された場合、無線LA
N装置20及び微弱電波無線装置30がともに互いの信
号によって干渉を受け、正確かつ高速にデータのやり取
りが困難になることが知られている。
For example, as shown in FIG. 2, in the wireless LAN device 20, a signal having a band of 22 MHz has a frequency of 2401.
˜2423 MHz, and a signal of 1 MHz band is transmitted by the weak radio wave device 30 from 2400 to 2483.5 M.
If it is transmitted while hopping in Hz, wireless LA
It is known that both the N device 20 and the weak radio wave device 30 are interfered with each other by signals to make it difficult to exchange data accurately and at high speed.

【0021】一方、図3に示すように、無線LAN装置
20において帯域22MHzの信号が周波数2401〜
2423MHzで送信されている場合、微弱電波無線装
置30は帯域1MHzの信号を2424MHz〜248
3.5MHz内に送信するようにし、互いの干渉を回避
する適応型周波数ホッピング法も考えられている。
On the other hand, as shown in FIG. 3, in the wireless LAN device 20, a signal having a band of 22 MHz has a frequency of 2401 to 2401.
When transmitted at 2423 MHz, the weak radio wave device 30 transmits a signal in the band of 1 MHz from 2424 MHz to 248 MHz.
An adaptive frequency hopping method is also considered in which transmission is performed within 3.5 MHz and mutual interference is avoided.

【0022】しかしながら、図4に示すように、無線L
AN装置が帯域22MHzの3つの信号を、例えば、そ
れぞれ2401〜2123MHz、2125〜2147
MHz、2150〜2172MHzで送信した場合、上
記の適応型周波数ホッピング法では使える帯域が10M
Hz程度となり、微弱電波無線装置30の干渉波からの
耐性が著しく劣化してしまう。
However, as shown in FIG.
The AN device transmits three signals in the band of 22 MHz to, for example, 2401 to 2123 MHz and 2125 to 2147, respectively.
MHz, 2150 to 2172 MHz, when the adaptive frequency hopping method described above, the available bandwidth is 10M.
Since the frequency becomes about Hz, the resistance of the weak radio wave device 30 to the interference wave is significantly deteriorated.

【0023】そこで、図5に示すように、本実施例で
は、無線LAN装置20が変調にOFDM(Ortho
gonal Frequency Division
Multiplexing)方式を用いて、信号の周波
数環境に応じてそのキャリアの数を可変させ、微弱電波
無線装置30がその隙間の周波数にも周波数をホッピン
グできるようにして、互いの干渉を回避する方法をとっ
ている。
Therefore, as shown in FIG. 5, in the present embodiment, the wireless LAN device 20 uses OFDM (Ortho) for modulation.
GONAL FREQUENCY DIVISION
Multiplexing) method is used to change the number of the carriers according to the frequency environment of the signal so that the weak radio wave device 30 can hop the frequency to the frequency of the gap to avoid mutual interference. I am taking it.

【0024】因みに、IEEE802.11gとはIE
EE802.11bの拡張版で、IEEE802.11
bの最大転送レートが11MHsであるのに対し、IE
EE802.11gでは最大転送レートを54MHzに
まで上げている。
By the way, IEEE 802.11g is IE
An extended version of IEEE 802.11b, which is IEEE 802.11
b has a maximum transfer rate of 11 MHs, while IE
With EE802.11g, the maximum transfer rate is increased to 54 MHz.

【0025】図6は図1の無線LAN装置20の構成を
示すブロック図である。図6において、無線LAN装置
20はRF(Radio Frequency)部21
と、ベースバンド部22と、メディアアクセスコントロ
ーラ部23と、電源部24と、メモリ部25とから構成
されている。
FIG. 6 is a block diagram showing the configuration of the wireless LAN device 20 of FIG. In FIG. 6, a wireless LAN device 20 includes an RF (Radio Frequency) unit 21.
The base band unit 22, the media access controller unit 23, the power supply unit 24, and the memory unit 25.

【0026】RF部21はアンテナ、送受信用信号増幅
器、フィルタ、変復調器、PLL(Phase Loc
ked Loop)シンセサイザ等によって構成され、
無線信号を変復調する。
The RF unit 21 includes an antenna, a transmission / reception signal amplifier, a filter, a modulator / demodulator, and a PLL (Phase Loc).
Ked Loop) synthesizer etc.,
Modulates and demodulates a wireless signal.

【0027】ベースバンド部22はDSP(Digit
al Signal Processor)等で構成さ
れ、信号のOFDM変復調を行う。メディアアクセスコ
ントローラ(MAC:Media Access Co
ntrol)部23はホストコンピュータ(図示せず)
やベースバンド部22とのインタフェースで、TCP/
IP(Transmission Control P
rotocol/Internet Protoco
l)でのデータリンク層に相当する部分で、DSP等で
構成されている。
The baseband unit 22 is a DSP (Digit).
al Signal Processor) etc., and performs OFDM modulation / demodulation of signals. Media Access Controller (MAC: Media Access Co)
control unit 23 is a host computer (not shown)
And an interface with the baseband unit 22, TCP /
IP (Transmission Control P)
rotocol / Internet Protocol
The part corresponding to the data link layer in 1) is composed of a DSP or the like.

【0028】電源部24はRF部21とベースバンド部
22とメディアアクセスコントローラ部23とメモリ部
25とにそれぞれ電源を供給する。メモリ部25には無
線アクセス方法(プログラム)が書込まれている。
The power supply unit 24 supplies power to the RF unit 21, the baseband unit 22, the media access controller unit 23, and the memory unit 25, respectively. A wireless access method (program) is written in the memory unit 25.

【0029】図7は図6のベースバンド部22の構成を
示すブロック図である。図7において、ベースバンド部
22はシリアル→パラレル変換器22b、複素情報化器
22c、逆フーリエ変換器22d、パラレル→シリアル
変換器22e等からなるOFDM変調器と、シリアル→
パラレル変換器22f、フーリエ変換器22g、判定器
22h、パラレル→シリアル変換器22i等からなるO
FDM復調器とから構成されており、これらで利用する
キャリア数設定をキャリア数設定器22aによって行っ
ている。
FIG. 7 is a block diagram showing the structure of the base band unit 22 of FIG. In FIG. 7, the baseband unit 22 includes an OFDM modulator including a serial-to-parallel converter 22b, a complex information converter 22c, an inverse Fourier transformer 22d, a parallel-to-serial converter 22e, and the like, and a serial->
An O including a parallel converter 22f, a Fourier converter 22g, a judging device 22h, a parallel → serial converter 22i, and the like.
It is composed of an FDM demodulator, and the number of carriers used by them is set by the number-of-carriers setter 22a.

【0030】例えば、最大キャリア設定数をM個とする
と、シリアル→パラレル変換器12では2M個分の信号
の振り分けを行うことができる。しかしながら、キャリ
ア数設定をM−1個と1個分キャリア数を減らすと、シ
リアル→パラレル変換器12では2M−2個分の信号の
振り分けを行うようにキャリア数設定器11が設定を行
う。
For example, assuming that the maximum number of carriers that can be set is M, the serial-to-parallel converter 12 can distribute 2M signals. However, if the number of carriers is reduced by M-1 and the number of carriers is reduced by one, the serial-to-parallel converter 12 sets the carrier number setter 11 so as to distribute signals of 2M-2.

【0031】図8は図1の微弱電波無線装置30の構成
を示すブロック図である。図8において、微弱電波無線
装置30はRF部31と、ベースバンド部32と、リン
ク管理部33と、ホストコントローラインタフェース部
34と、電源部35と、メモリ部36とから構成されて
いる。
FIG. 8 is a block diagram showing the configuration of the weak radio wave radio device 30 of FIG. In FIG. 8, the weak radio wave device 30 includes an RF unit 31, a baseband unit 32, a link management unit 33, a host controller interface unit 34, a power supply unit 35, and a memory unit 36.

【0032】RF部31はアンテナ、送受信用信号増幅
器、フィルタ、変復調器、PLLシンセサイザ等で構成
され、無線信号を変復調する。ベースバンド部32はD
SP等で構成され、データの送受信を行う他の微弱電波
無線装置との接続やデータ転送のやり取り、周波数ホッ
ピングパターンの設定等を行う。
The RF unit 31 is composed of an antenna, a transmission / reception signal amplifier, a filter, a modulator / demodulator, a PLL synthesizer, etc., and modulates / demodulates a radio signal. The baseband portion 32 is D
It is composed of an SP or the like, and performs connection with another weak radio wave radio device that transmits and receives data, exchanges of data transfer, and sets a frequency hopping pattern.

【0033】リンク管理部33はDSP等で構成され、
機器間のリンクの確立とセキュリティの制御とを行う。
ホストコントローラインタフェース部34はアプリケー
ションが微弱電波無線装置30側にアクセスするための
インタフェースである。
The link management unit 33 is composed of a DSP or the like,
Establishes links between devices and controls security.
The host controller interface unit 34 is an interface for an application to access the weak radio wave device 30 side.

【0034】電源部35はRF部31とベースバンド部
32とリンク管理部33とホストコントローラインタフ
ェース部34とメモリ部36とにそれぞれ電源を供給す
る。メモリ部36はフラッシュメモリ等で構成され、ベ
ースバンド部32やリンク管理部33等の接続手順等が
書込まれている。
The power supply unit 35 supplies power to the RF unit 31, the baseband unit 32, the link management unit 33, the host controller interface unit 34, and the memory unit 36, respectively. The memory section 36 is composed of a flash memory or the like, and the connection procedure of the baseband section 32, the link management section 33, etc. is written therein.

【0035】図9は図8の微弱電波無線装置30のベー
スバンド部32の機能の一つである周波数ホッピングパ
ターン設定器(Selection Box)を示す図
である。図9において、周波数ホッピングパターン設定
器32aは利用可能な周波数が入力されると、その周波
数範囲内での周波数ホッピングパターンの設定を行い、
ホッピング周波数を出力する。ここで、周波数ホッピン
グする帯域が79MHz方式と23MHz方式とがあ
る。以下、79MHz方式の通常のホッピングパターン
設定方法について説明する。
FIG. 9 is a diagram showing a frequency hopping pattern setting unit (Selection Box) which is one of the functions of the baseband unit 32 of the weak radio wave radio device 30 of FIG. In FIG. 9, when the available frequency is input, the frequency hopping pattern setter 32a sets the frequency hopping pattern within the frequency range,
Output hopping frequency. Here, there are a 79 MHz system and a 23 MHz system for frequency hopping. Hereinafter, a normal 79 MHz hopping pattern setting method will be described.

【0036】図10は図9の周波数ホッピングパターン
設定器32aによる通常のホッピングパターン設定方法
を示す図である。図10を参照すると、まず1MHz毎
に番号を「0」から「78」まで付けていき、それを偶
数から「0」,「2」,「4」,「6」,・・・,「7
8」と並べ、次に奇数を「1」,「3」,「5」,
「7」,・・・,「77」と並べる。すなわち、
「0」,「2」,「4」,「6」,・・・,「78」,
「1」,「3」,「5」,「7」,・・・,「77」と
並べる。
FIG. 10 is a diagram showing a normal hopping pattern setting method by the frequency hopping pattern setting device 32a of FIG. Referring to FIG. 10, first, numbers are assigned from 1 to every 1 MHz from “0” to “78”, and the numbers are assigned from even numbers to “0”, “2”, “4”, “6”, ..., “7”.
"8", then odd numbers "1", "3", "5",
Lined up with "7", ..., "77". That is,
"0", "2", "4", "6", ..., "78",
"1", "3", "5", "7", ..., "77" are arranged.

【0037】次に、そのうちの32個分を先頭から順番
に選ぶ、例えば、「0」から選ぶとすると、「0」,
「2」,「4」,・・・,「62」が選ばれる。続い
て、これをランダムな順番に並び替え、これを最初のホ
ッピングパターンとする。
Next, 32 of them are sequentially selected from the beginning, for example, if "0" is selected, "0",
“2”, “4”, ..., “62” are selected. Then, this is rearranged in a random order, and this is used as the first hopping pattern.

【0038】また、オフセットが16個分与えられ、
「32」,「18」,「20」,・・・,「1」,
「3」,・・・,「15」となり、これをまたランダム
な順番に並び替え、それが次のホッピングパターンとな
る。この後、さらにオフセットが16個分与えられてい
き、上記の処理が繰返し行われる。
Also, 16 offsets are given,
"32", "18", "20", ..., "1",
"3", ..., "15", which are rearranged in a random order again and become the next hopping pattern. After that, 16 offsets are further provided, and the above processing is repeated.

【0039】図11は図9の周波数ホッピングパターン
設定器32aによる帯域制限された場合のホッピングパ
ターン設定方法を示す図である。図11を参照すると、
全ての帯域が使えない場合、例えば、4〜20(帯域1
7MHz)までが使えないとすると、「0」,「2」,
「22」,「24」,・・・,「78」,「1」と32
個分並べ、これをランダムな順番に並び替え、それがホ
ッピングパターンとなる。
FIG. 11 is a diagram showing a hopping pattern setting method when the band is limited by the frequency hopping pattern setting unit 32a shown in FIG. Referring to FIG.
When all bands cannot be used, for example, 4 to 20 (band 1
If you cannot use up to 7MHz), "0", "2",
"22", "24", ..., "78", "1" and 32
The pieces are arranged and rearranged in a random order, which becomes the hopping pattern.

【0040】次に、オフセットが16個分与えられるの
で、「52」,「54」,「56」,・・・,「7
8」,「1」,「3」,「21」,・・・,「49」,
「51」となり、これをまたランダムな順番に並び替
え、それが次のホッピングパターンとなる。この場合に
は、常に、4〜20を用いないで、順番に並べられ、こ
れをランダムに並べ替え、次のホッピングパターンを決
定する。
Next, since 16 offsets are given, "52", "54", "56", ..., "7"
8 ”,“ 1 ”,“ 3 ”,“ 21 ”, ...,“ 49 ”,
It becomes "51" and is rearranged in a random order again, which becomes the next hopping pattern. In this case, 4 to 20 are not always used, but they are arranged in order and rearranged at random to determine the next hopping pattern.

【0041】続いて、23MHz方式の場合のホッピン
グパターン設定方法を示す。通常の帯域制限がない場合
には上記の79MHz方式との違いはない。また、23
MHz方式の場合では帯域制限があっても、必要な16
個分の周波数帯域、あるいは微弱電波無線装置30が必
要とする帯域を確保することができる場合、図11に示
す79MHz方式との違いはない。
Next, a hopping pattern setting method for the 23 MHz system will be described. If there is no normal band limitation, there is no difference from the above 79 MHz system. Also, 23
In the case of the MHz system, even if there is a band limitation, the required 16
When it is possible to secure the frequency band for each piece or the band required by the weak radio wave radio device 30, there is no difference from the 79 MHz system shown in FIG.

【0042】しかしながら、帯域制限のために必要な1
6個分の周波数帯域、あるいは微弱電波無線装置30が
必要とする帯域を確保することができない場合がある。
例えば、4〜16(帯域13MHz)まで使えない場
合、帯域を、例えば37MHzと拡張し、「0」,
「2」,「18」,「20」,「22」,「24」,
「26」,「28」,「30」,「32」,「34」,
「36」,「1」,「3」,「17」,「19」と並
べ、必要な16個分の周波数帯域を確保するようにす
る。これをランダムな順番に並び替え、それがホッピン
グパターンとなる。
However, 1 required for band limitation
In some cases, it is not possible to secure the six frequency bands or the band required by the weak radio wave radio device 30.
For example, when 4 to 16 (band 13 MHz) cannot be used, the band is expanded to, for example, 37 MHz, and “0”,
"2", "18", "20", "22", "24",
"26", "28", "30", "32", "34",
It is arranged with "36", "1", "3", "17", and "19" so as to secure the necessary 16 frequency bands. This is rearranged in a random order, which becomes the hopping pattern.

【0043】また、23MHz方式の時にはオフセット
を8個分与え、「30」,「32」,「34」,「3
6」,「1」,「3」,「17」,「19」,「2
1」,「23」,「29」,「31」,「33」,「3
5」,「0」,「2」,「18」となり、これをまたラ
ンダムな順番に並び替え、それが次のホッピングパター
ンとなる。上記の処理を繰返し行う。
When the 23 MHz system is used, eight offsets are given, and "30", "32", "34", "3" are given.
6 ”,“ 1 ”,“ 3 ”,“ 17 ”,“ 19 ”,“ 2 ”
1 ”,“ 23 ”,“ 29 ”,“ 31 ”,“ 33 ”,“ 3 ”
5 ”,“ 0 ”,“ 2 ”,“ 18 ”, which are rearranged in a random order again, which becomes the next hopping pattern. The above process is repeated.

【0044】図12は図1の無線管理装置10による無
線LAN装置20と微弱電波無線装置30とに対する制
御を示すシーケンスチャートであり、図13は図1の無
線管理装置10によるベースバンド部22のOFDM変
調器で利用されるキャリア数や微弱電波無線装置30の
占有周波数帯域の決定処理を示すフローチャートであ
る。これら図1と図6〜図9と図12と図13とを参照
して参照して本発明の第1の実施例の動作について説明
する。
FIG. 12 is a sequence chart showing the control of the wireless LAN device 20 and the weak radio wave device 30 by the wireless management device 10 of FIG. 1. FIG. 13 shows the baseband section 22 of the wireless management device 10 of FIG. 7 is a flowchart showing a process of determining the number of carriers used in the OFDM modulator and the occupied frequency band of the weak radio wave device 30. The operation of the first embodiment of the present invention will be described with reference to FIGS. 1, 6 to 9, 12 and 13.

【0045】図12を参照すると、無線LAN装置20
及び微弱電波無線装置30の電源がオンで、無線LAN
装置20だけがある周波数で一つ、あるいは複数の22
MHz帯域を利用してデータ転送を行っている状況下
で、微弱電波無線装置30から無線管理装置10へ利用
要求が出される(図12のa1)。
Referring to FIG. 12, the wireless LAN device 20
And the power of the weak radio wave device 30 is on, and the wireless LAN
Device 20 only has one or more 22 at a frequency
In the situation where data transfer is performed using the MHz band, the weak radio wave radio device 30 issues a use request to the radio management device 10 (a1 in FIG. 12).

【0046】無線管理装置10は無線LAN装置20
へ、無線LAN装置20が現在占有している周波数帯等
を問い合わせる(図12のa2)。これに対し、無線L
AN装置20は無線管理装置10へ占有周波数帯を回答
する(図12のa3)。
The wireless management device 10 is a wireless LAN device 20.
Is inquired about the frequency band currently occupied by the wireless LAN device 20 (a2 in FIG. 12). On the other hand, wireless L
The AN device 20 returns the occupied frequency band to the wireless management device 10 (a3 in FIG. 12).

【0047】無線管理装置10は図13に示すフローに
したがって、無線LAN装置20のベースバンド部22
のOFDM変調器で利用されるキャリア数を決定し、無
線LAN装置20にベースバンド部22のOFDM変調
器で利用されるキャリア数の変更要求を出す(図12の
a4)。
The radio management apparatus 10 follows the flow shown in FIG. 13 and the baseband section 22 of the radio LAN apparatus 20.
The number of carriers used by the OFDM modulator is determined, and a request for changing the number of carriers used by the OFDM modulator of the baseband unit 22 is issued to the wireless LAN device 20 (a4 in FIG. 12).

【0048】ここで、無線LAN装置20で利用されて
いる信号数をi、キャリア数をfc1_carrier
_number,fc2_carrier_numbe
r,・・・,fci_carrier_number
(以下、それぞれFc1,Fc2,・・・,Fciとす
る)、合計キャリア数をcarrier_number
(以下、Cnとする)とした場合、それぞれのキャリア
数計算の一般式は、 Fck=(Cn×Fck)/(Fc1+Fc2+・・・+Fci) あるいは、 Fck=Fck (k=0,1,・・・,i) となる。
Here, the number of signals used in the wireless LAN device 20 is i, and the number of carriers is fc1_carrier.
_Number, fc2_carrier_number
r, ..., fci_carrier_number
(Hereinafter, referred to as Fc1, Fc2, ..., Fci), and the total number of carriers is carrier_number.
(Hereinafter referred to as Cn), the general formula for calculating the number of carriers is Fck = (Cn × Fck) / (Fc1 + Fc2 + ... + Fci) or Fck = Fck (k = 0, 1, ...・, I)

【0049】同様に、利用可能周波数帯域をavail
able_BW(以下、Abwとする)、キャリア帯域
をcarrier_BW(以下、Cbwとする)とした
場合、微弱電波無線装置30の占有周波数帯域BTbw
は、 BTbw=Abw―(Fc1+Fc2+・・・+Fci)×Cbw となる。
Similarly, the available frequency band is available
When the available_BW (hereinafter, referred to as Abw) and the carrier band are carrier_BW (hereinafter, referred to as Cbw), the occupied frequency band BTbw of the weak radio wave wireless device 30.
Is BTbw = Abw− (Fc1 + Fc2 + ... + Fci) × Cbw.

【0050】無線LAN装置20は要求にしたがって、
変更キャリア数に基づき、キャリア数の変更を行った
後、キャリア数fc1,fc2等のパラメータととも
に、変更完了回答を出す(図12のa5)。
According to the request, the wireless LAN device 20
After changing the number of carriers based on the changed number of carriers, a change completion reply is issued together with parameters such as the numbers of carriers fc1 and fc2 (a5 in FIG. 12).

【0051】無線管理装置10は微弱電波無線装置30
へホッピング可能な周波数帯域等のパラメータ、無線L
AN装置20で利用されている信号の中心周波数fc
1,fc2、キャリア数Fc1,Fc2、占有周波数帯
域BTbwを送信する(図12のa6)。
The radio management device 10 is a weak radio wave radio device 30.
Parameters such as frequency band capable of hopping, wireless L
Center frequency fc of signal used in AN device 20
1, fc2, the number of carriers Fc1, Fc2, and the occupied frequency band BTbw are transmitted (a6 in FIG. 12).

【0052】微弱電波無線装置30はホッピング可能な
周波数帯域に基づき、微弱電波無線装置30でのベース
バンド部32の周波数ホッピングパターン設定器32a
で周波数ホッピングパターンを決定し、周波数ホッピン
グパターン決定回答を出す(図12のa7)。微弱電波
無線装置30は設定された周波数内で周波数をホッピン
グさせてデータ転送を開始する。
The weak radio frequency radio device 30 is based on the frequency band capable of hopping, and the frequency hopping pattern setter 32a of the base band section 32 of the weak radio frequency radio device 30 is used.
The frequency hopping pattern is determined by and the frequency hopping pattern determination response is issued (a7 in FIG. 12). The weak radio wave wireless device 30 starts the data transfer by hopping the frequency within the set frequency.

【0053】ここで、図13を参照して無線管理装置1
0によるベースバンド部22のOFDM変調器で利用さ
れるキャリア数や微弱電波無線装置30の占有周波数帯
域の決定処理について説明する。
Here, referring to FIG. 13, the radio management apparatus 1
A process of determining the number of carriers used in the OFDM modulator of the baseband unit 22 and the occupied frequency band of the weak radio wave device 30 by 0 will be described.

【0054】無線管理装置10は微弱電波無線装置30
からの利用要求後、無線LAN装置20のパラメータ
(中心周波数:fc1,fc2、キャリア数:Fc1,
Fc2、キャリア帯域:Cbw)を入手する(図13ス
テップS1)。
The radio management device 10 is a weak radio wave device 30.
After the usage request from the wireless LAN device 20, parameters of the wireless LAN device 20 (center frequency: fc1, fc2, number of carriers: Fc1,
Fc2, carrier band: Cbw) is obtained (step S1 in FIG. 13).

【0055】無線管理装置10は入手したパラメータを
基に、「(Fc1+Fc2)×Cbw>Abw−Mi
n」であるかどうかを判定する(図13ステップS
2)。ここで、Minは最小Bluetooth(R)
周波数帯域(mini_BW)である。
The radio management device 10 uses "(Fc1 + Fc2) x Cbw>Abw-Mi" based on the obtained parameters.
n ”is determined (step S in FIG. 13).
2). Here, Min is the minimum Bluetooth (R)
It is a frequency band (mini_BW).

【0056】無線管理装置10は「(Fc1+Fc2)
×Cbw>Abw−Min」であれば、 Cn=(Abw−Min)/Cbw Fc1=Cn×Fc1/(Fc1+Fc2) Fc2=Cn×Fc2/(Fc1+Fc2) BTbw=Min を計算する(図13ステップS3)。
The radio management device 10 displays "(Fc1 + Fc2)
XCbw> Abw-Min ", Cn = (Abw-Min) / Cbw Fc1 = CnxFc1 / (Fc1 + Fc2) Fc2 = CnxFc2 / (Fc1 + Fc2) BTbw = Min is calculated (step S3 in FIG. 13). .

【0057】また、無線管理装置10は「(Fc1+F
c2)×Cbw>Abw−Min」でなければ、 BTbw=Abw−(Fc1+Fc2)×Cbw を計算する(図13ステップS4)。
Further, the radio management device 10 displays "(Fc1 + F
c2) × Cbw> Abw-Min ”, BTbw = Abw− (Fc1 + Fc2) × Cbw is calculated (step S4 in FIG. 13).

【0058】無線管理装置10は上記の計算から得たパ
ラメータ(中心周波数:fc1,fc2、キャリア数:
Fc1,Fc2、Bluetooth(R)占有帯域:
BTbw等)の変更要求を無線LAN装置20や微弱電
波無線装置30に送信する(図13ステップS5)。
The radio management device 10 has parameters (center frequency: fc1, fc2, number of carriers :) obtained from the above calculation.
Fc1, Fc2, Bluetooth (R) occupied band:
BTbw etc.) change request is transmitted to the wireless LAN device 20 or the weak radio wave device 30 (step S5 in FIG. 13).

【0059】図14は本発明の第2の実施例による無線
管理装置の無線LAN装置及び微弱電波無線装置に対す
る制御動作を示すシーケンスチャートであり、図15は
本発明の第2の実施例による無線管理装置の無線LAN
装置のベースバンド部のOFDM変調器で利用されるキ
ャリア数や微弱電波無線装置の占有周波数帯域の決定処
理を示すフローチャートである。尚、本発明の第2の実
施例による複合無線装置及びその内部の各部の構成は上
述した本発明の第1の実施例と同様であるので、以下、
本発明の第1の実施例と同様の構成を用いて説明する。
FIG. 14 is a sequence chart showing the control operation for the wireless LAN device and the weak radio wave device of the wireless management device according to the second embodiment of the present invention, and FIG. 15 is the wireless communication according to the second embodiment of the present invention. Wireless LAN of management device
7 is a flowchart showing a process of determining the number of carriers used in the OFDM modulator of the baseband unit of the device and the occupied frequency band of the weak radio wave device. The configuration of the compound wireless device according to the second embodiment of the present invention and the internal parts thereof is the same as that of the first embodiment of the present invention described above.
Description will be made using the same configuration as that of the first embodiment of the present invention.

【0060】これら図14及び図15を参照して、本発
明の第2の実施例において無線LAN装置20と微弱電
波無線装置30とが送信している状況下で無線LAN装
置20が新たに信号を送信する時の動作について説明す
る。
With reference to these FIGS. 14 and 15, in the second embodiment of the present invention, when the wireless LAN device 20 and the weak radio wave device 30 are transmitting, the wireless LAN device 20 newly sends a signal. The operation when transmitting is described.

【0061】本発明の第2の実施例は、無線LAN装置
20と微弱電波無線装置30との電源がオンで、微弱電
波無線装置30のデータ転送を行い、無線LAN装置2
0が一つ、あるいは複数信号を用いてデータ転送を行っ
ている状況下で、新たに無線LAN装置20がデータ転
送しようとする点で、上記の本発明の第1の実施例とは
異なる。
In the second embodiment of the present invention, the wireless LAN device 20 and the feeble radio wave device 30 are powered on, the weak radio wave device 30 transfers data, and the wireless LAN device 2
This is different from the above-described first embodiment of the present invention in that the wireless LAN device 20 newly tries to transfer data under the situation where data is transferred by using one signal or a plurality of signals.

【0062】図14を参照すると、無線LAN装置20
及び微弱電波無線装置30の電源がオンで、微弱電波無
線装置30がデータ転送を行い、無線LAN装置20が
一つ、あるいは複数信号を用いてデータ転送を行ってい
る状況下で、新たに無線LAN装置20が無線管理装置
10へ利用要求と現在占有周波数帯域とを送信する(図
14のa11)。
Referring to FIG. 14, the wireless LAN device 20
In addition, when the power of the weak radio wave wireless device 30 is turned on, the weak radio wave wireless device 30 transfers data, and the wireless LAN device 20 transfers data using one or a plurality of signals, a new wireless communication is performed. The LAN device 20 transmits the usage request and the currently occupied frequency band to the wireless management device 10 (a11 in FIG. 14).

【0063】すると、無線管理装置10は図15に示す
フローにしたがって、無線LAN装置20のベースバン
ド部22のOFDM変調器で利用されるキャリア数を計
算し、まず微弱電波無線装置30へホッピング可能な周
波数帯域等のパラメータ、無線LAN装置20で利用さ
れる信号の中心周波数fc1,fc2、キャリア数Fc
1,Fc2、占有周波数帯域BTbwを送信する(ステ
ップB2)。
Then, the radio management device 10 calculates the number of carriers used in the OFDM modulator of the baseband unit 22 of the wireless LAN device 20 according to the flow shown in FIG. 15, and can first hop to the weak radio wave device 30. Parameters such as various frequency bands, center frequencies fc1 and fc2 of signals used in the wireless LAN device 20, the number of carriers Fc
1, Fc2, and occupied frequency band BTbw are transmitted (step B2).

【0064】ここで、無線LAN装置20で利用されて
いる信号数がi、キャリア数がFc1,Fc2,・・
・,Fciとする時、新たに追加されるキャリア数Fc
(i+1)は、 Fc(i+1)=(Abw―Min)/Cbw―(Fc
1+Fc2+・・・+Fci) あるいは、 Fc(i+1)=Max/Cbw となる。但し、Maxは最大キャリア数(Mac_ca
rrier_number)である。
Here, the number of signals used in the wireless LAN device 20 is i, and the number of carriers is Fc1, Fc2, ...
., Fci, the number of newly added carriers Fc
(I + 1) is Fc (i + 1) = (Abw-Min) / Cbw- (Fc
1 + Fc2 + ... + Fci) Alternatively, Fc (i + 1) = Max / Cbw. However, Max is the maximum number of carriers (Mac_ca
rlier_number).

【0065】微弱電波無線装置30はホッピング可能な
周波数帯域に基づき、微弱電波無線装置30でのベース
バンド部32にある周波数ホッピングパターン設定器3
2aで周波数ホッピングパターンを決定し、周波数ホッ
ピングパターン決定回答を出し(図14のa13)、設
定された周波数内で周波数をホッピングさせてデータ転
送する。
The weak radio wave radio device 30 is based on the frequency band capable of hopping, and the frequency hopping pattern setter 3 in the base band section 32 of the weak radio wave radio device 30 is used.
The frequency hopping pattern is determined in 2a, a frequency hopping pattern determination response is issued (a13 in FIG. 14), the frequency is hopped within the set frequency, and data is transferred.

【0066】無線管理装置10は無線LAN装置20へ
計算したパラメータ、キャリア数Fc1,Fc2等とと
もにキャリア数変更要求を出す(図14のA14)。無
線LAN装置20は信号毎の変更キャリア数に基づき、
キャリア数の変更を行った後、変更完了回答を出す(図
14のa15)。
The wireless management device 10 issues a request for changing the number of carriers to the wireless LAN device 20, together with the calculated parameters, the numbers of carriers Fc1, Fc2, etc. (A14 in FIG. 14). The wireless LAN device 20 is based on the number of changed carriers for each signal,
After changing the number of carriers, a change completion reply is issued (a15 in FIG. 14).

【0067】ここで、図15を参照して無線管理装置1
0によるベースバンド部22のOFDM変調器で利用さ
れるキャリア数や微弱電波無線装置30の占有周波数帯
域の決定処理について説明する。
Here, with reference to FIG. 15, the radio management apparatus 1
A process of determining the number of carriers used in the OFDM modulator of the baseband unit 22 and the occupied frequency band of the weak radio wave device 30 by 0 will be described.

【0068】無線管理装置10は無線LAN装置20か
らの利用要求後、無線LAN装置20のパラメータ(中
心周波数:fc1,fc2、キャリア数:Fc1,Fc
2、キャリア帯域:Cbw)、微弱電波無線装置30の
パラメータ(Bluetooth(R)占有帯域:BT
bw)を入手する(図15ステップS11)。
After the usage request from the wireless LAN device 20, the wireless management device 10 has parameters (center frequency: fc1, fc2, number of carriers: Fc1, Fc) of the wireless LAN device 20.
2, carrier band: Cbw), parameters of the weak radio wave device 30 (Bluetooth (R) occupied band: BT
bw) is obtained (step S11 in FIG. 15).

【0069】無線管理装置10は入手したパラメータを
基に、「(Fc1+Max)×Cbw>Abw−BTb
w」であるかどうかを判定する(図15ステップS1
2)。無線管理装置10は「(Fc1+Max)×Cb
w>Abw−BTbw」であれば、 Fc2=(Abw−Min)/(Cbw−Fc1) BTbw=Min を計算する(図15ステップS13)。
The radio management device 10 uses "(Fc1 + Max) * Cbw> Abw-BTb based on the obtained parameters.
w ”is determined (step S1 in FIG. 15).
2). The wireless management device 10 displays “(Fc1 + Max) × Cb
If w> Abw-BTbw ", then Fc2 = (Abw-Min) / (Cbw-Fc1) BTbw = Min is calculated (FIG. 15, step S13).

【0070】また、無線管理装置10は「(Fc1+M
ax)×Cbw>Abw−BTbw」でなければ、 Fc2=Max/Cbw を計算する(図15ステップS14)。
Further, the radio management device 10 displays "(Fc1 + M
ax) × Cbw> Abw-BTbw ”, Fc2 = Max / Cbw is calculated (step S14 in FIG. 15).

【0071】無線管理装置10は上記の計算から得たパ
ラメータ(中心周波数:fc1,fc2、キャリア数:
Fc1,Fc2、Bluetooth(R)占有帯域:
BTbw等)の変更要求を無線LAN装置20や微弱電
波無線装置30に送信する(図15ステップS15)。
The radio management device 10 has parameters (center frequency: fc1, fc2, number of carriers :) obtained from the above calculation.
Fc1, Fc2, Bluetooth (R) occupied band:
BTbw) change request is transmitted to the wireless LAN device 20 or the weak radio wave wireless device 30 (step S15 in FIG. 15).

【0072】図16及び図17は本発明の第3の実施例
による無線管理装置の無線LAN装置及び微弱電波無線
装置に対する制御動作を示すシーケンスチャートであ
り、図18は本発明の第3の実施例による無線管理装置
の無線LAN装置のベースバンド部のOFDM変調器で
利用されるキャリア数や微弱電波無線装置の占有周波数
帯域の決定処理を示すフローチャートである。尚、本発
明の第3の実施例による複合無線装置及びその内部の各
部の構成は上述した本発明の第1の実施例と同様である
ので、以下、本発明の第1の実施例と同様の構成を用い
て説明する。
16 and 17 are sequence charts showing the control operation for the wireless LAN device and the weak radio wave device of the wireless management device according to the third embodiment of the present invention, and FIG. 18 is the third embodiment of the present invention. 9 is a flowchart showing a process of determining the number of carriers used in the OFDM modulator of the baseband part of the wireless LAN device of the wireless management device and the occupied frequency band of the weak radio wave device according to the example. The configuration of the compound wireless device and the internal parts thereof according to the third embodiment of the present invention is the same as that of the first embodiment of the present invention described above, and therefore, the same as the first embodiment of the present invention. The configuration will be described.

【0073】これら図16〜図18を参照して、例え
ば、無線LAN装置20と微弱電波無線装置30とが送
信している状況下で無線LAN装置20が一つの信号の
送信を終了する時の動作について説明する。
With reference to FIGS. 16 to 18, for example, when the wireless LAN device 20 ends the transmission of one signal under the situation where the wireless LAN device 20 and the weak radio wave device 30 are transmitting. The operation will be described.

【0074】本発明の第3の実施例は、無線LAN装置
20及び微弱電波無線装置30の電源がオンで、微弱電
波無線装置30がデータ転送を行い、無線LAN装置2
0が一つ、あるいは複数信号を用いてデータ転送を行っ
ている状況下で、無線LAN装置20が一つの信号のデ
ータ転送を終了した時、解放された周波数帯域を他の無
線LAN装置20の信号に、あるいは微弱電波無線装置
30の信号に割当てる点で本発明の第1の実施例とは異
なる。
In the third embodiment of the present invention, the wireless LAN device 20 and the weak radio wave device 30 are powered on, and the weak radio wave device 30 performs data transfer.
When the wireless LAN device 20 completes the data transfer of one signal under the condition that data is transferred by using one signal or a plurality of signals, the released frequency band is set to the other wireless LAN device 20. It is different from the first embodiment of the present invention in that it is assigned to a signal or a signal of the weak radio wave device 30.

【0075】図16を参照すると、無線LAN装置20
及び微弱電波無線装置30の電源がオンで、微弱電波無
線装置30がデータ転送を行い、無線LAN装置20が
一つ、あるいは複数信号を用いてデータ転送を行ってい
る状況下で、無線LAN装置20が無線管理装置10へ
一つの信号の送信終了とともに、その信号の中心周波
数、利用キャリア数等のパラメータを送信する(図16
のa21)。
Referring to FIG. 16, the wireless LAN device 20
In a situation where the power of the weak radio wave wireless device 30 is turned on, the weak radio wave wireless device 30 transfers data, and the wireless LAN device 20 transfers data using one or a plurality of signals, the wireless LAN device 20 terminates the transmission of one signal to the wireless management device 10 and transmits parameters such as the center frequency of the signal and the number of carriers used (FIG. 16).
A21).

【0076】無線管理装置10において無線LAN装置
20に優先的に周波数帯域を割当てるように設定されて
いる場合、無線管理装置10は図18に示すフローにし
たがって、無線LAN装置20のベースバンド部22の
OFDM変調器で利用されるキャリア数を計算し、無線
LAN装置20にベースバンド部22のOFDM変調器
で利用されるキャリア数の変更要求を出す(図16のa
22)。
When the wireless management apparatus 10 is set to preferentially allocate the frequency band to the wireless LAN apparatus 20, the wireless management apparatus 10 follows the flow shown in FIG. The number of carriers used in the OFDM modulator of No. 4 is calculated, and the wireless LAN device 20 is requested to change the number of carriers used in the OFDM modulator of the baseband unit 22 (a in FIG. 16).
22).

【0077】ここで、無線LAN装置20で利用されて
いる信号数がi、キャリア数がFc1,Fc2,・・
・,Fc(i−1)、送信を終了する信号のキャリア数
Fciである時、無線LAN装置20の他の信号への周
波数帯域の割当て計算の一般式は、 Fck=(Fc3×Fck) /(Fc1+Fc2+・・・+Fc(i−1)) あるいは、 Fck=Max (k=0,1,・・・,i−1) となる。
Here, the number of signals used in the wireless LAN device 20 is i, and the number of carriers is Fc1, Fc2, ...
, Fc (i-1), where Fci is the number of carriers of the signal for ending transmission, the general formula of the frequency band allocation calculation to other signals of the wireless LAN device 20 is: Fck = (Fc3 × Fck) / (Fc1 + Fc2 + ... + Fc (i-1)) Alternatively, Fck = Max (k = 0, 1, ..., i-1).

【0078】無線LAN装置20は要求にしたがって、
変更キャリア数に基づいてキャリア数の変更を行った
後、キャリア数Fc1等のパラメータとともに、変更完
了回答を出す(図16のa23)。
The wireless LAN device 20 follows the request,
After changing the number of carriers based on the changed number of carriers, a change completion reply is issued together with parameters such as the number of carriers Fc1 (a23 in FIG. 16).

【0079】無線管理装置10は微弱電波無線装置30
へホッピング可能な周波数帯域等のパラメータ、無線L
AN装置20で利用されている信号の中心周波数fc
1、キャリア数Fc1を送信する(図16のa24)。
微弱電波無線装置30はホッピング可能な周波数帯域に
基づいて、微弱電波無線装置30でのベースバンド部3
2にある周波数ホッピングパターン設定器32で周波数
ホッピングパターンを決定し、周波数ホッピングパター
ン決定回答を出し(図16のa25)、設定された周波
数内で周波数をホッピングさせてデータ転送を開始す
る。
The radio management device 10 is a weak radio wave device 30.
Parameters such as frequency band capable of hopping, wireless L
Center frequency fc of signal used in AN device 20
1, the number of carriers Fc1 is transmitted (a24 in FIG. 16).
The weak radio wave device 30 uses the baseband unit 3 in the weak radio wave device 30 based on the frequency band capable of hopping.
The frequency hopping pattern setter 32 in 2 determines the frequency hopping pattern, issues a frequency hopping pattern determination response (a25 in FIG. 16), hops the frequency within the set frequency, and starts data transfer.

【0080】ここで、図18を参照して無線管理装置1
0によるベースバンド部22のOFDM変調器で利用さ
れるキャリア数や微弱電波無線装置30の占有周波数帯
域の決定処理について説明する。
Here, referring to FIG. 18, the radio management apparatus 1
A process of determining the number of carriers used in the OFDM modulator of the baseband unit 22 and the occupied frequency band of the weak radio wave device 30 by 0 will be described.

【0081】無線管理装置10は微弱電波無線装置30
からの周波数fc3利用終了後、無線LAN装置20の
パラメータ(中心周波数:fc1,fc2,fc3、キ
ャリア数:Fc1,Fc2,Fc3、キャリア帯域:C
bw)を入手する(図18ステップS21)。
The radio management apparatus 10 is a weak radio wave radio apparatus 30.
After the end of using the frequency fc3 from the wireless LAN device 20, parameters of the wireless LAN device 20 (center frequency: fc1, fc2, fc3, number of carriers: Fc1, Fc2, Fc3, carrier band: C
bw) is obtained (step S21 in FIG. 18).

【0082】無線管理装置10は入手したパラメータを
基に、「Fc3−(Max−Fc1)−(Max−Fc
2)<0」であるかどうかを判定する(図18ステップ
S22)。
The radio management apparatus 10 determines "Fc3- (Max-Fc1)-(Max-Fc) based on the obtained parameters.
2) It is determined whether or not <0 ”(step S22 in FIG. 18).

【0083】無線管理装置10は「Fc3−(Max−
Fc1)−(Max−Fc2)<0」であれば、 Fc1=(Fc3×Fc1)/(Fc1+Fc2) Fc2=(Fc3×Fc2)/(Fc1+Fc2) を計算する(図18ステップS23)。
The radio management device 10 displays "Fc3- (Max-
If Fc1) − (Max−Fc2) <0 ”, then Fc1 = (Fc3 × Fc1) / (Fc1 + Fc2) Fc2 = (Fc3 × Fc2) / (Fc1 + Fc2) is calculated (FIG. 18, step S23).

【0084】また、無線管理装置10は「Fc3−(M
ax−Fc1)−(Max−Fc2)<0」でなけれ
ば、 Fc1=Max Fc2=Max を計算する(図18ステップS24)。
Further, the radio management device 10 displays "Fc3- (M
If not "ax-Fc1)-(Max-Fc2) <0", Fc1 = Max Fc2 = Max is calculated (step S24 in FIG. 18).

【0085】無線管理装置10は上記の計算から得たパ
ラメータ(中心周波数:fc1,fc2、キャリア数:
Fc1,Fc2等)の変更要求を無線LAN装置20や
微弱電波無線装置30に送信する(図18ステップS2
5)。
The radio management device 10 has parameters (center frequency: fc1, fc2, number of carriers :) obtained from the above calculation.
(Fc1, Fc2, etc.) change request is transmitted to the wireless LAN device 20 and the weak radio wave device 30 (step S2 in FIG. 18).
5).

【0086】また、図17を参照すると、無線LAN装
置20及び微弱電波無線装置30の電源がオンで、微弱
電波無線装置30がデータ転送を行い、無線LAN装置
20が一つ、あるいは複数信号を用いてデータ転送を行
っている状況下で、無線LAN装置20が無線管理装置
10へ一つの信号の送信終了とともに、その信号の中心
周波数、利用キャリア数等のパラメータを送信する(図
17のa31)。
Further, referring to FIG. 17, when the power supplies of the wireless LAN device 20 and the weak radio wave device 30 are turned on, the weak radio wave device 30 transfers data, and the wireless LAN device 20 sends one or a plurality of signals. Under the situation that data is being transferred using the wireless LAN device 20, the wireless LAN device 20 completes the transmission of one signal to the wireless management device 10, and transmits parameters such as the center frequency of the signal and the number of carriers used (a31 in FIG. 17). ).

【0087】、無線管理装置10において微弱電波無線
装置30に優先的に周波数帯域を割当てるように設定さ
れている場合、無線管理装置10は微弱電波無線装置3
0へホッピング可能な周波数帯域等のパラメータ、無線
LAN装置20で利用されている信号の中心周波数fc
1,fc2、キャリア数Fc1,Fc2を送信する(図
17のa32)。
When the radio management apparatus 10 is set to preferentially allocate the frequency band to the weak radio wave radio apparatus 30, the radio management apparatus 10 is set to the weak radio wave radio apparatus 3
Parameters such as frequency band capable of hopping to 0, center frequency fc of signal used in the wireless LAN device 20
1, fc2 and carrier numbers Fc1 and Fc2 are transmitted (a32 in FIG. 17).

【0088】微弱電波無線装置30はホッピング可能な
周波数帯域に基づき、微弱電波無線装置30でのベース
バンド部32にある周波数ホッピングパターン設定器3
2aで周波数ホッピングパターンを決定し、周波数ホッ
ピングパターン決定回答を出し(図17のa33)、設
定された周波数内で周波数をホッピングさせてデータ転
送を開始する。
The weak radio frequency radio device 30 is based on the frequency band capable of hopping, and the frequency hopping pattern setter 3 in the base band section 32 of the weak radio frequency radio device 30 is used.
The frequency hopping pattern is determined in 2a, a frequency hopping pattern determination response is issued (a33 in FIG. 17), the frequency is hopped within the set frequency, and data transfer is started.

【0089】図19は本発明の第4の実施例による無線
管理装置の無線LAN装置及び微弱電波無線装置に対す
る制御動作を示すシーケンスチャートである。この図1
9を参照して本発明の第4の実施例による無線管理装置
の無線LAN装置及び微弱電波無線装置に対する制御動
作について説明する。
FIG. 19 is a sequence chart showing the control operation for the wireless LAN device and the weak radio wave device of the wireless management device according to the fourth embodiment of the present invention. This Figure 1
Referring to FIG. 9, a control operation of the wireless management device for the wireless LAN device and the weak radio wave device according to the fourth embodiment of the present invention will be described.

【0090】本発明の第4の実施例は、無線LAN装置
(#1)及び微弱電波無線装置の電源がオンで、微弱電
波無線装置が送信、無線LAN装置(#1)が受信して
いる状況下で、無線LAN装置(#1)で他の無線LA
N装置(#2)が送信している信号を感知し、その信号
状態が報知された時、自らの微弱電波無線装置の周波数
ホッピング帯域を適応化させ、必要であるならば、その
無線LAN装置(#2)のベースバンド部のOFDM変
調器で利用されるキャリア数の変更要求を送信する点で
本発明の第1の実施例とは異なる。
In the fourth embodiment of the present invention, the power of the wireless LAN device (# 1) and the weak radio wave wireless device is on, the weak radio wave wireless device transmits and the wireless LAN device (# 1) receives. Under the circumstance, the wireless LAN device (# 1) may be used by another wireless LA device.
When the N device (# 2) senses the signal being transmitted and the signal state is notified, the frequency hopping band of its own weak radio wave radio device is adapted, and if necessary, the wireless LAN device This is different from the first embodiment of the present invention in that a request for changing the number of carriers used in the OFDM modulator of the baseband unit of (# 2) is transmitted.

【0091】図19を参照すると、無線LAN装置(#
1)及び微弱電波無線装置の電源がオンで、微弱電波無
線装置が送信、無線LAN装置(#1)が受信している
状況下で、無線LAN装置(#1)が他の無線LAN装
置(#2)が送信している信号を感知し、その信号状態
のパラメータ信号の中心周波数fc、キャリア数Fc等
が報知される(図19のa41)。
Referring to FIG. 19, the wireless LAN device (#
1) and the weak radio wave wireless device are turned on, and the wireless LAN device (# 1) receives another wireless LAN device (# 1) while the weak radio wave wireless device is transmitting and the wireless LAN device (# 1) is receiving. # 2) senses the signal being transmitted, and the center frequency fc of the parameter signal in that signal state, the number of carriers Fc, etc. are reported (a41 in FIG. 19).

【0092】無線LAN装置(#1)は入手したパラメ
ータを無線管理装置に送信する(図19のa42)。無
線管理装置は図13に示すフローにしたがって、それら
パラメータに基づき、他の無線LAN装置(#2)のベ
ースバンド部のOFDM変調器で利用されるキャリア数
を決定し、ベースバンド部のOFDM変調器で利用され
るキャリア数の変更要求を無線LAN装置(#1)に出
す(図19のa43)。無線LAN装置(#1)はこれ
らパラメータを他の無線LAN装置(#2)に送信する
(図19のa44)。
The wireless LAN device (# 1) transmits the obtained parameters to the wireless management device (a42 in FIG. 19). According to the flow shown in FIG. 13, the wireless management device determines the number of carriers used in the OFDM modulator of the baseband part of the other wireless LAN device (# 2) based on the parameters, and performs OFDM modulation of the baseband part. A request for changing the number of carriers used in the container is issued to the wireless LAN device (# 1) (a43 in FIG. 19). The wireless LAN device (# 1) transmits these parameters to the other wireless LAN device (# 2) (a44 in FIG. 19).

【0093】他の無線LAN装置(#2)はその要求に
したがって、変更キャリア数に基づいてキャリア数の変
更を行った後、キャリア数Fc1,Fc2等のパラメー
タとともに、変更完了回答を無線LAN装置(#1)に
出す(図19のa45)。無線LAN装置(#1)はこ
れらパラメータとともに、変更完了回答を無線管理装置
に送信する(図19のa46)。
According to the request, the other wireless LAN apparatus (# 2) changes the number of carriers based on the changed number of carriers, and then sends a change completion reply together with parameters such as the number of carriers Fc1 and Fc2. It is taken out to (# 1) (a45 in FIG. 19). The wireless LAN device (# 1) transmits a change completion reply to the wireless management device together with these parameters (a46 in FIG. 19).

【0094】無線管理装置は既に計算して出した微弱電
波無線装置へホッピング可能な周波数帯域等のパラメー
タ、無線LAN装置(#2)で利用されている信号の中
心周波数fc、キャリア数Fc、占有周波数帯域BTb
wを送信する(図19のa47)。
The radio management device calculates parameters such as frequency bands that can be hopped to the weak radio wave radio device, the center frequency fc of the signal used in the radio LAN device (# 2), the number of carriers Fc, and occupation. Frequency band BTb
W is transmitted (a47 in FIG. 19).

【0095】微弱電波無線装置はホッピング可能な周波
数帯域に基づき、微弱電波無線装置でのベースバンド部
にある周波数ホッピングパターン設定器で周波数ホッピ
ングパターンを決定し、周波数ホッピングパターン決定
回答を出し(図19のa48)、設定された周波数内で
周波数をホッピングさせてデータを送信する。
The weak radio frequency radio device determines the frequency hopping pattern by the frequency hopping pattern setter in the base band section of the weak radio frequency radio device based on the hopping frequency band, and issues a frequency hopping pattern determination reply (FIG. 19). A48), hopping the frequency within the set frequency and transmitting the data.

【0096】この後、無線LAN装置(#2)は無線L
AN装置(#1)へ送信終了を報知する(図19のa4
9)。無線LAN装置(#1)はその送信終了を無線管
理装置へ送信する(図19のa50)。無線管理装置は
占有周波数帯域BTbwの値を最大利用可能周波数Ab
wにするように送信する(図19のa51)。
After this, the wireless LAN device (# 2) is connected to the wireless L
The AN device (# 1) is notified of the end of transmission (a4 in FIG. 19).
9). The wireless LAN device (# 1) sends the end of transmission to the wireless management device (a50 in FIG. 19). The wireless management device uses the value of the occupied frequency band BTbw as the maximum available frequency Ab.
It is transmitted so that it is set to w (a51 in FIG. 19).

【0097】微弱電波無線装置はホッピング可能な周波
数帯域に基づき、微弱電波無線装置でのベースバンド部
にある周波数ホッピングパターン設定器で周波数ホッピ
ングパターンを決定し、周波数ホッピングパターン決定
回答を出し(図19のa52)、設定された周波数内で
周波数をホッピングさせデータを送信する。
The weak radio frequency radio device determines the frequency hopping pattern by the frequency hopping pattern setter in the baseband part of the weak radio frequency radio device based on the frequency band capable of hopping, and issues a frequency hopping pattern decision reply (FIG. 19). A52), hopping the frequency within the set frequency and transmitting the data.

【0098】このように、本実施例では、無線LAN装
置と微弱電波無線装置とを複合させた端末において、無
線LAN装置で使うOFDM変調器の帯域を可変し、微
弱電波無線装置がそれに対応した周波数ホッピングさせ
ることで、無線LAN装置と微弱電波無線装置との信号
の干渉を回避することができる。
As described above, in this embodiment, the band of the OFDM modulator used in the wireless LAN device is changed in the terminal in which the wireless LAN device and the weak radio wave device are combined, and the weak radio wave device corresponds thereto. By frequency hopping, signal interference between the wireless LAN device and the weak radio wave device can be avoided.

【0099】また、本実施例では、無線LAN装置と微
弱電波無線装置とを複合させた端末内だけでの信号の干
渉の回避をするだけでなく、他の無線LAN装置の利用
帯域を知ることで、微弱電波無線装置の信号の周波数帯
域の変更させ、他の無線LAN装置との信号の干渉を回
避することができる。
In addition, in the present embodiment, not only avoiding signal interference only in the terminal in which the wireless LAN device and the weak radio wave device are combined, but also the band used by another wireless LAN device is known. Thus, the frequency band of the signal of the weak radio wave wireless device can be changed to avoid the signal interference with other wireless LAN devices.

【0100】[0100]

【発明の効果】以上説明したように本発明は、同じ周波
数帯域を用いる無線LAN装置と微弱電波無線装置とを
複合させた複合無線装置において、無線LAN装置の周
波数帯域を可変制御し、微弱電波無線装置において当該
無線LAN装置が利用していない周波数帯域に適応的に
周波数をホッピングさせるよう制御することによって、
IEEE802.11gによる信号とBluetoot
h(R)による信号との干渉を回避することができると
いう効果が得られる。
As described above, according to the present invention, in a compound wireless device in which a wireless LAN device and a weak radio wave wireless device that use the same frequency band are combined, the frequency band of the wireless LAN device is variably controlled and a weak radio wave is used. By controlling the wireless device to hop the frequency adaptively to a frequency band not used by the wireless LAN device,
Signaling and Bluetooth according to IEEE 802.11g
The effect that it is possible to avoid interference with the signal due to h (R) is obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例による複合無線装置の構
成を示すブロック図である。
FIG. 1 is a block diagram showing a configuration of a composite wireless device according to a first embodiment of the present invention.

【図2】本発明の第1の実施例による複合無線装置の動
作概念を示す図である。
FIG. 2 is a diagram showing an operation concept of the compound wireless device according to the first embodiment of the present invention.

【図3】本発明の第1の実施例による複合無線装置の動
作概念を示す図である。
FIG. 3 is a diagram showing an operation concept of the compound wireless device according to the first embodiment of the present invention.

【図4】本発明の第1の実施例による複合無線装置の動
作概念を示す図である。
FIG. 4 is a diagram showing an operation concept of the compound wireless device according to the first embodiment of the present invention.

【図5】本発明の第1の実施例による複合無線装置の動
作概念を示す図である。
FIG. 5 is a diagram showing an operation concept of the compound wireless device according to the first embodiment of the present invention.

【図6】図1の無線LAN装置の構成を示すブロック図
である。
FIG. 6 is a block diagram showing a configuration of the wireless LAN device of FIG.

【図7】図6のベースバンド部の構成を示すブロック図
である。
7 is a block diagram showing a configuration of a baseband unit shown in FIG.

【図8】図1の微弱電波無線装置の構成を示すブロック
図である。
FIG. 8 is a block diagram showing a configuration of the weak radio frequency radio device of FIG.

【図9】図8の微弱電波無線装置のベースバンド部の機
能の一つである周波数ホッピングパターン設定器を示す
図である。
9 is a diagram showing a frequency hopping pattern setting device which is one of the functions of the baseband unit of the feeble radio wave device of FIG.

【図10】図9の周波数ホッピングパターン設定器によ
る通常のホッピングパターン設定方法を示す図である。
10 is a diagram showing a normal hopping pattern setting method by the frequency hopping pattern setting device of FIG.

【図11】図9の周波数ホッピングパターン設定器によ
る帯域制限された場合のホッピングパターン設定方法を
示す図である。
11 is a diagram showing a hopping pattern setting method when the frequency hopping pattern setting device of FIG. 9 is band-limited.

【図12】図1の無線管理装置による無線LAN装置と
微弱電波無線装置とに対する制御を示すシーケンスチャ
ートである。
12 is a sequence chart showing control by the wireless management device of FIG. 1 for a wireless LAN device and a weak radio wave device.

【図13】図1の無線管理装置によるベースバンド部の
OFDM変調器で利用されるキャリア数や微弱電波無線
装置の占有周波数帯域の決定処理を示すフローチャート
である。
13 is a flowchart showing a process of determining the number of carriers used in the OFDM modulator of the baseband unit and the occupied frequency band of the weak radio wave radio device by the radio management device of FIG.

【図14】本発明の第2の実施例による無線管理装置の
無線LAN装置及び微弱電波無線装置に対する制御動作
を示すシーケンスチャートである。
FIG. 14 is a sequence chart showing a control operation for the wireless LAN device and the weak radio wave device of the wireless management device according to the second embodiment of the present invention.

【図15】本発明の第2の実施例による無線管理装置の
無線LAN装置のベースバンド部のOFDM変調器で利
用されるキャリア数や微弱電波無線装置の占有周波数帯
域の決定処理を示すフローチャートである。
FIG. 15 is a flowchart showing a process of determining the number of carriers used in the OFDM modulator of the baseband part of the wireless LAN device of the wireless management device and the occupied frequency band of the weak radio wave device according to the second embodiment of the present invention. is there.

【図16】本発明の第3の実施例による無線管理装置の
無線LAN装置及び微弱電波無線装置に対する制御動作
を示すシーケンスチャートである。
FIG. 16 is a sequence chart showing a control operation for the wireless LAN device and the weak radio wave device of the wireless management device according to the third embodiment of the present invention.

【図17】本発明の第3の実施例による無線管理装置の
無線LAN装置及び微弱電波無線装置に対する制御動作
を示すシーケンスチャートである。
FIG. 17 is a sequence chart showing a control operation for the wireless LAN device and the weak radio wave device of the wireless management device according to the third embodiment of the present invention.

【図18】本発明の第3の実施例による無線管理装置の
無線LAN装置のベースバンド部のOFDM変調器で利
用されるキャリア数や微弱電波無線装置の占有周波数帯
域の決定処理を示すフローチャートである。
FIG. 18 is a flowchart showing a process of determining the number of carriers used in the OFDM modulator of the baseband unit of the wireless LAN device of the wireless management device and the occupied frequency band of the weak radio wave device according to the third embodiment of the present invention. is there.

【図19】本発明の第4の実施例による無線管理装置の
無線LAN装置及び微弱電波無線装置に対する制御動作
を示すシーケンスチャートである。
FIG. 19 is a sequence chart showing a control operation for the wireless LAN device and the weak radio wave device of the wireless management device according to the fourth example of the present invention.

【符号の説明】[Explanation of symbols]

1 複合無線装置 10 無線管理装置 20 IEEE802.11gの規格を用いる無線LA
N装置 21,31 RF部 22,32 ベースバンド部 22a キャリア数設定器 22b,22f シリアル→パラレル変換器 22c 複素情報化器 22d 逆フーリエ変換器 22e,22i パラレル→シリアル変換器 22g フーリエ変換器 22h 判定器 23 メディアアクセスコントローラ部 24,35 電源部 25,36 メモリ部 30 Bluetooth(R)を用いる微弱電波無線
装置 32a 周波数ホッピングパターン設定器 33 リンク管理部 34 ホストコントローラインタフェース部 40 電源装置 50 メモリ装置
1 Compound Wireless Device 10 Wireless Management Device 20 Wireless LA Using IEEE 802.11g Standard
N device 21, 31 RF unit 22, 32 Baseband unit 22a Carrier number setting device 22b, 22f Serial to parallel converter 22c Complex information device 22d Inverse Fourier transformer 22e, 22i Parallel to serial converter 22g Fourier transformer 22h Judgment Device 23 Media access controller unit 24, 35 Power supply unit 25, 36 Memory unit 30 Weak radio wave device 32a using Bluetooth (R) Frequency hopping pattern setter 33 Link management unit 34 Host controller interface unit 40 Power supply device 50 Memory device

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 同じ周波数帯域を用いる無線LAN(L
ocal AreaNetwork)装置と微弱電波無
線装置とを複合させた複合無線装置であって、前記無線
LAN装置の周波数帯域を可変制御する手段と、前記微
弱電波無線装置において当該無線LAN装置が利用して
いない周波数帯域に適応的に周波数をホッピングさせる
よう制御する手段とを含む無線管理装置を有することを
特徴とする複合無線装置。
1. A wireless LAN (L that uses the same frequency band
A composite wireless device in which a wireless local area network device and a weak radio wave wireless device are combined, and means for variably controlling the frequency band of the wireless LAN device, and the wireless LAN device not being used in the weak wireless radio device. A composite radio apparatus comprising: a radio management apparatus including means for controlling to hop the frequency adaptively to a frequency band.
【請求項2】 前記無線管理装置は、前記無線LAN装
置における変調にOFDM(Orthogonal F
requency Division Multipl
exing)方式を用いて信号の周波数環境に応じてそ
のキャリアの数を可変させ、前記微弱電波無線装置にお
いてその隙間の周波数にも周波数をホッピング可能とす
るよう制御することを特徴とする請求項1記載の複合無
線装置。
2. The wireless management apparatus uses OFDM (Orthogonal F) for modulation in the wireless LAN apparatus.
requisition division multipl
The number of carriers is varied according to the frequency environment of the signal by using the (ex. A compound wireless device as described.
【請求項3】 前記無線LAN装置及び前記微弱電波無
線装置は、ISM(Industrial Scien
ce Medical)バンドの2400〜2483.
5MHzの周波数帯域を用いることを特徴とする請求項
1または請求項2記載の複合無線装置。
3. The wireless LAN device and the weak radio wave device are ISM (Industrial Science).
ce Medical) band 2400-2483.
The composite radio apparatus according to claim 1, wherein a frequency band of 5 MHz is used.
【請求項4】 同じ周波数帯域を用いる無線LAN(L
ocal AreaNetwork)装置と微弱電波無
線装置とを複合させた複合無線装置の干渉回避制御方法
であって、前記無線LAN装置の周波数帯域を可変制御
するステップと、前記微弱電波無線装置において当該無
線LAN装置が利用していない周波数帯域に適応的に周
波数をホッピングさせるよう制御するステップとを有す
ることを特徴とする干渉回避制御方法。
4. A wireless LAN (L that uses the same frequency band
an interference avoidance control method for a composite wireless device in which a wireless local area network device and a weak radio wireless device are combined, the method comprising: variably controlling a frequency band of the wireless LAN device; and the wireless LAN device in the weak radio wireless device. And a method of adaptively hopping a frequency in a frequency band not used by the interference avoidance control method.
【請求項5】 前記無線LAN装置における変調にOF
DM(Orthogonal Frequency D
ivision Multiplexing)方式を用
いて信号の周波数環境に応じてそのキャリアの数を可変
させ、前記微弱電波無線装置においてその隙間の周波数
にも周波数をホッピング可能とするよう制御することを
特徴とする請求項4記載の干渉回避制御方法。
5. The OF in the modulation in the wireless LAN device
DM (Orthogonal Frequency D
The number of carriers is varied according to the frequency environment of a signal by using the division multiplex method, and the weak radio wave radio device is controlled so that the frequency can be hopped to the frequency of the gap. 4. The interference avoidance control method described in 4.
【請求項6】 前記無線LAN装置及び前記微弱電波無
線装置は、ISM(Industrial Scien
ce Medical)バンドの2400〜2483.
5MHzの周波数帯域を用いることを特徴とする請求項
4または請求項5記載の干渉回避制御方法。
6. The wireless LAN device and the weak radio wave device are ISM (Industrial Science).
ce Medical) band 2400-2483.
The interference avoidance control method according to claim 4 or 5, wherein a frequency band of 5 MHz is used.
JP2002034793A 2002-02-13 2002-02-13 Composite radio apparatus and interference avoidance control method used therefor Expired - Fee Related JP4122789B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002034793A JP4122789B2 (en) 2002-02-13 2002-02-13 Composite radio apparatus and interference avoidance control method used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002034793A JP4122789B2 (en) 2002-02-13 2002-02-13 Composite radio apparatus and interference avoidance control method used therefor

Publications (2)

Publication Number Publication Date
JP2003234745A true JP2003234745A (en) 2003-08-22
JP4122789B2 JP4122789B2 (en) 2008-07-23

Family

ID=27777162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002034793A Expired - Fee Related JP4122789B2 (en) 2002-02-13 2002-02-13 Composite radio apparatus and interference avoidance control method used therefor

Country Status (1)

Country Link
JP (1) JP4122789B2 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003258752A (en) * 2002-02-27 2003-09-12 Nippon Telegr & Teleph Corp <Ntt> Multirate group modem, multirate group transmitter and receiver, and transmitter/receiver
JP2006041591A (en) * 2004-07-22 2006-02-09 Matsushita Electric Ind Co Ltd Transmitter and communication system employing the same
EP1764963A2 (en) * 2005-09-20 2007-03-21 Alps Electric Co., Ltd. Wireless communication method and information processing apparatus storing different wireless modules
JP2008508774A (en) * 2004-07-30 2008-03-21 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Method and apparatus for providing fair spectrum sharing in wireless systems with multiple physical transmission rates
KR100826160B1 (en) 2006-07-07 2008-04-30 주식회사 옥타컴 A Scheme and a device to avoid collision with wireless LAN in a ZigBee / Internet Gateway
JP2008521309A (en) * 2004-11-22 2008-06-19 ノキア コーポレイション Method and apparatus for controlling wireless access
JP2008535332A (en) * 2005-03-31 2008-08-28 ベイジン レノボ ソフトウェア リミテッド Multimode coexistence method of multimode communication apparatus
JP2008252554A (en) * 2007-03-30 2008-10-16 Brother Ind Ltd Wireless device
JP2009510870A (en) * 2005-11-24 2009-03-12 ノキア コーポレイション Radio frequency identification (RFID) communication subsystem and method, module, terminal and system for enabling scheduled operation of a radio communication subsystem
JP2010278764A (en) * 2009-05-28 2010-12-09 Mitsubishi Electric Corp Wireless communication apparatus and band controlling method
JP2010283503A (en) * 2009-06-03 2010-12-16 Alps Electric Co Ltd Radio communication apparatus and radio communication method
KR101010841B1 (en) 2008-12-17 2011-01-25 서울대학교산학협력단 Efficient channel selection method of zigbee in ism-band using normal and emergency mode and apparatus for executing the method
JP2013509822A (en) * 2009-10-29 2013-03-14 クゥアルコム・インコーポレイテッド Bluetooth introduction sequence that exchanges frequencies that cannot be used by other wireless technologies coexisting on Bluetooth enabled devices
WO2013150647A1 (en) * 2012-04-06 2013-10-10 三菱電機株式会社 Wireless communication apparatus and wireless communication method
DE112012000992T5 (en) 2011-02-24 2013-12-05 Mitsubishi Electric Corporation Radio communication device, radio communication system and frequency allocation method
US8855570B2 (en) 2009-02-05 2014-10-07 Telefonaktiebolaget L M Ericsson (Publ) Coexistence of plural wireless communication transceivers in close proximity
US9130656B2 (en) 2010-10-13 2015-09-08 Qualcomm Incorporated Multi-radio coexistence
US9135197B2 (en) 2009-07-29 2015-09-15 Qualcomm Incorporated Asynchronous interface for multi-radio coexistence manager
US9148889B2 (en) 2009-06-01 2015-09-29 Qualcomm Incorporated Control of multiple radios using a database of interference-related information
US9161232B2 (en) 2009-06-29 2015-10-13 Qualcomm Incorporated Decentralized coexistence manager for controlling operation of multiple radios
US9185719B2 (en) 2009-08-18 2015-11-10 Qualcomm Incorporated Method and apparatus for mapping applications to radios in a wireless communication device
US9185718B2 (en) 2009-06-29 2015-11-10 Qualcomm Incorporated Centralized coexistence manager for controlling operation of multiple radios

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003258752A (en) * 2002-02-27 2003-09-12 Nippon Telegr & Teleph Corp <Ntt> Multirate group modem, multirate group transmitter and receiver, and transmitter/receiver
JP2006041591A (en) * 2004-07-22 2006-02-09 Matsushita Electric Ind Co Ltd Transmitter and communication system employing the same
JP2008508774A (en) * 2004-07-30 2008-03-21 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Method and apparatus for providing fair spectrum sharing in wireless systems with multiple physical transmission rates
US7991413B2 (en) 2004-11-11 2011-08-02 Nokia Corporation Method and device for controlling radio access
JP4753950B2 (en) * 2004-11-22 2011-08-24 ノキア コーポレイション Method and apparatus for controlling wireless access
JP2008521309A (en) * 2004-11-22 2008-06-19 ノキア コーポレイション Method and apparatus for controlling wireless access
US8077755B2 (en) 2005-03-31 2011-12-13 Beijing Lenovo Software Ltd. Multi-mode coexistence method for a multi-mode communication device
JP4733175B2 (en) * 2005-03-31 2011-07-27 ベイジン レノボ ソフトウェア リミテッド Multimode coexistence method of multimode communication apparatus
JP2008535332A (en) * 2005-03-31 2008-08-28 ベイジン レノボ ソフトウェア リミテッド Multimode coexistence method of multimode communication apparatus
EP1764963A3 (en) * 2005-09-20 2007-09-19 Alps Electric Co., Ltd. Wireless communication method and information processing apparatus storing different wireless modules
EP1764963A2 (en) * 2005-09-20 2007-03-21 Alps Electric Co., Ltd. Wireless communication method and information processing apparatus storing different wireless modules
JP2009510870A (en) * 2005-11-24 2009-03-12 ノキア コーポレイション Radio frequency identification (RFID) communication subsystem and method, module, terminal and system for enabling scheduled operation of a radio communication subsystem
KR100826160B1 (en) 2006-07-07 2008-04-30 주식회사 옥타컴 A Scheme and a device to avoid collision with wireless LAN in a ZigBee / Internet Gateway
JP2008252554A (en) * 2007-03-30 2008-10-16 Brother Ind Ltd Wireless device
US8040816B2 (en) 2007-03-30 2011-10-18 Brother Kogyo Kabushiki Kaisha Wireless communication apparatus that successively change communication frequency band
JP4491796B2 (en) * 2007-03-30 2010-06-30 ブラザー工業株式会社 Wireless device
KR101010841B1 (en) 2008-12-17 2011-01-25 서울대학교산학협력단 Efficient channel selection method of zigbee in ism-band using normal and emergency mode and apparatus for executing the method
US8855570B2 (en) 2009-02-05 2014-10-07 Telefonaktiebolaget L M Ericsson (Publ) Coexistence of plural wireless communication transceivers in close proximity
JP2010278764A (en) * 2009-05-28 2010-12-09 Mitsubishi Electric Corp Wireless communication apparatus and band controlling method
US9148889B2 (en) 2009-06-01 2015-09-29 Qualcomm Incorporated Control of multiple radios using a database of interference-related information
US9155103B2 (en) 2009-06-01 2015-10-06 Qualcomm Incorporated Coexistence manager for controlling operation of multiple radios
JP2010283503A (en) * 2009-06-03 2010-12-16 Alps Electric Co Ltd Radio communication apparatus and radio communication method
US9161232B2 (en) 2009-06-29 2015-10-13 Qualcomm Incorporated Decentralized coexistence manager for controlling operation of multiple radios
US9185718B2 (en) 2009-06-29 2015-11-10 Qualcomm Incorporated Centralized coexistence manager for controlling operation of multiple radios
US9135197B2 (en) 2009-07-29 2015-09-15 Qualcomm Incorporated Asynchronous interface for multi-radio coexistence manager
US9185719B2 (en) 2009-08-18 2015-11-10 Qualcomm Incorporated Method and apparatus for mapping applications to radios in a wireless communication device
JP2013509822A (en) * 2009-10-29 2013-03-14 クゥアルコム・インコーポレイテッド Bluetooth introduction sequence that exchanges frequencies that cannot be used by other wireless technologies coexisting on Bluetooth enabled devices
US8903314B2 (en) 2009-10-29 2014-12-02 Qualcomm Incorporated Bluetooth introduction sequence that replaces frequencies unusable due to other wireless technology co-resident on a bluetooth-capable device
US9130656B2 (en) 2010-10-13 2015-09-08 Qualcomm Incorporated Multi-radio coexistence
DE112012000992T5 (en) 2011-02-24 2013-12-05 Mitsubishi Electric Corporation Radio communication device, radio communication system and frequency allocation method
US8958456B2 (en) 2011-02-24 2015-02-17 Mitsubishi Electric Corporation Wireless communication device, wireless communication system, and frequency allocation method
DE112012000992B4 (en) 2011-02-24 2018-05-09 Mitsubishi Electric Corporation Radio communication device, radio communication system and frequency allocation method
WO2013150647A1 (en) * 2012-04-06 2013-10-10 三菱電機株式会社 Wireless communication apparatus and wireless communication method

Also Published As

Publication number Publication date
JP4122789B2 (en) 2008-07-23

Similar Documents

Publication Publication Date Title
JP4122789B2 (en) Composite radio apparatus and interference avoidance control method used therefor
US20210282229A1 (en) Multi-link discovery signaling in extremely high throughput (eht) systems
EP1797740B1 (en) Method and apparatuses for reconfiguring a transceiver of a wireless communications device
US20070149123A1 (en) Multiple radio usage in a wireless communications device
US6519460B1 (en) Resource management in uncoordinated frequency hopping system
JP5198247B2 (en) Method and apparatus for operating a wireless PAN network using an overlay protocol that enhances coexistence with the wireless LAN network
US7643811B2 (en) Method and system for interference detection
US20230328548A1 (en) Methods and apparatus to generate and process management frames
CN101809884B (en) Wireless ethernet adapter
CN102440020A (en) MAC architectures for wireless communications using multiple physical layers
CN110034836A (en) Method and wireless data communication system for allowing to wirelessly communicate
JP2010278764A (en) Wireless communication apparatus and band controlling method
WO2017135221A1 (en) Communication device and communication method
US20230164634A1 (en) Transmission of capability information about link
TW202209840A (en) Duplicated data sequence transmissions with reduced peak to average power ratio
CN114245980A (en) Method and apparatus for receiving PPDU through broadband in wireless LAN system
JP2002223479A (en) Wireless data communication system, base station, mobile station and program
CN107040962B (en) A kind of adaptive wireless channel negotiation method
JP2003101506A (en) Wireless communication apparatus and wireless communication method, wireless communication system, and channel assignment system
WO2019212503A1 (en) System, methods, and apparatus to facilitate channelization
US8275390B1 (en) System and method for detecting adjacent channel devices or interference
WO2009056899A1 (en) Channel change decision based on connection priority
JP2011135397A (en) Radio communication system and interference prevention method
KR20070012901A (en) Wireless communication apparatus and national communication radio-frequency protocol sellecting method using thereof
WO2020005195A1 (en) Methods and apparatus to facilitate semi-static scheduling and/or low-overhead acknowledgement protocols in a local area network

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070416

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071227

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080408

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080421

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4122789

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140516

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees