JP2003234618A - Frequency adjusting method - Google Patents

Frequency adjusting method

Info

Publication number
JP2003234618A
JP2003234618A JP2002030854A JP2002030854A JP2003234618A JP 2003234618 A JP2003234618 A JP 2003234618A JP 2002030854 A JP2002030854 A JP 2002030854A JP 2002030854 A JP2002030854 A JP 2002030854A JP 2003234618 A JP2003234618 A JP 2003234618A
Authority
JP
Japan
Prior art keywords
temperature
ambient temperature
frequency
error
standard value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002030854A
Other languages
Japanese (ja)
Inventor
Shinya Inamori
信也 稲森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Wiring Systems Ltd
Original Assignee
Sumitomo Wiring Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Wiring Systems Ltd filed Critical Sumitomo Wiring Systems Ltd
Priority to JP2002030854A priority Critical patent/JP2003234618A/en
Publication of JP2003234618A publication Critical patent/JP2003234618A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electric Clocks (AREA)
  • Oscillators With Electromechanical Resonators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a frequency adjusting method capable of adjusting the standard value (allowable error) of a clock frequency to be within the standard value at a reference temperature without managing a temperature inside a plant at all. <P>SOLUTION: In the frequency adjusting method, a change rate α (T) of the clock frequency f for a temperature change from the reference temperature T<SB>0</SB>to ambient temperature T is obtained on the basis of the correlation of the clock frequency f of an oscillation circuit and ambient temperature T (steps S1 and S2), the standard value A<SB>0</SB>at the reference temperature T<SB>0</SB>is converted to the standard value A (T=10°C) at actual ambient temperature T (10°C, for instance) on the basis of the change rate α (T) (steps S3 and S4), the daily rate error δf of the clock frequency f is detected under actual ambient temperature T (=10°C) and the characteristic value of the circuit element of the oscillation circuit 3 is adjusted so as to settle the detected daily rate error δf within the standard value A (T=10°C) at the actual ambient temperature T (=10°C) (step S5). <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ユニットに搭載さ
れる時計機能等に用いられるクロック周波数を調整する
周波数調整方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a frequency adjusting method for adjusting a clock frequency used for a timepiece function mounted on a unit.

【0002】[0002]

【従来の技術】通常、時計機能を搭載したユニットを製
造,出荷する際、その時計機能に用いられるクロック周
波数の日差誤差(1日あたりの誤差)を基準温度25℃
に於ける規格値(日差誤差の許容誤差)に収める為に、
そのクロック周波数を調整する必要がある。
2. Description of the Related Art Normally, when manufacturing and shipping a unit equipped with a clock function, a daily error of the clock frequency used for the clock function (error per day) is set at a reference temperature of 25 ° C.
In order to fit within the standard value (tolerance of daily error) in
The clock frequency needs to be adjusted.

【0003】従来、クロック周波数の調整は、基準温度
25℃の下で、クロック周波数を測定して日差誤差を検
出し、その日差誤差が基準温度に於ける規格値内にある
か否かを確認し、規格値内にない場合は、クロック周波
数を発振する発振回路の回路素子の特性値を調整して、
又は、時計機能にソフト的に補正を加えて、クロック周
波数の日差誤差を規格値内に調整していた。
Conventionally, the clock frequency is adjusted by measuring the clock frequency at a reference temperature of 25 ° C. to detect a daily error, and checking whether the daily error is within the standard value at the reference temperature. Check and if it is not within the standard value, adjust the characteristic value of the circuit element of the oscillation circuit that oscillates the clock frequency,
Alternatively, the clock function is corrected by software to adjust the daily error of the clock frequency within the standard value.

【0004】[0004]

【発明が解決しようとする課題】通常、発振回路の回路
素子は温度特性を持つ為、発振回路の発振周波数(クロ
ック周波数)は、周囲温度に応じて変化する。
Since the circuit element of the oscillation circuit usually has temperature characteristics, the oscillation frequency (clock frequency) of the oscillation circuit changes according to the ambient temperature.

【0005】一般に、クロック周波数の調整を工場内で
行う場合、工場内の温度を基準温度25℃に設定して
も、工場内の温度は、工場内の場所や季節により基準温
度25℃からのばらつきを生じる。この温度のばらつき
により発振回路の発振周波数が変化し、この変化によ
り、クロック周波数の調整の精度が影響されることを防
止する為、通常、クロック周波数の調整を工場内で行う
場合は、工場内の温度を厳重に管理し、温度のばらつき
を極力無くし、クロック周波数の調整の精度を十分に確
保する必要がある。
Generally, when the clock frequency is adjusted in a factory, even if the temperature in the factory is set to a reference temperature of 25 ° C., the temperature in the factory will be different from the reference temperature of 25 ° C. depending on the place in the factory and the season. Variation occurs. The oscillation frequency of the oscillation circuit changes due to this temperature variation, and in order to prevent this change from affecting the accuracy of the clock frequency adjustment, normally when adjusting the clock frequency in the factory, It is necessary to strictly control the temperature of the above, to eliminate the temperature variation as much as possible, and to sufficiently secure the accuracy of the clock frequency adjustment.

【0006】しかしながら、工場内の温度を厳重に管理
して温度のばらつきを極力無くす為には、工場内に温度
管理装置を設置する必要がありコストがかかる欠点があ
る。更に、かかる場合、クロック周波数の調整の精度が
工場内の温度管理により制約される欠点もある。
However, in order to strictly control the temperature in the factory and eliminate variations in the temperature as much as possible, it is necessary to install a temperature management device in the factory, which is disadvantageous in terms of cost. Further, in such a case, there is a drawback that the accuracy of adjusting the clock frequency is restricted by the temperature control in the factory.

【0007】そこで、この発明の課題は、工場内の温度
を全く管理すること無く、クロック周波数の日差誤差を
基準温度に於ける規格値内に調整できて、高い日差精度
を得ることができる周波数調整方法を提供することにあ
る。
Therefore, the object of the present invention is to adjust the daily error of the clock frequency within the standard value at the reference temperature without controlling the temperature in the factory at all, and to obtain a high day error accuracy. It is to provide a frequency adjustment method that can be performed.

【0008】[0008]

【課題を解決するための手段】本発明者は、上記課題を
解決するためには、クロック周波数を決定する回路素
子の温度特性(即ち発振回路の発信周波数と周囲温度と
の相関関係)が分かっていること、周囲温度は容易に
温度センサー等で検出できること、に着目し、,を
原クロックの調整に利用できないかの検討を進め、本発
明に到達した。
In order to solve the above-mentioned problems, the present inventor found out the temperature characteristic of the circuit element that determines the clock frequency (that is, the correlation between the oscillation frequency of the oscillation circuit and the ambient temperature). That is, the ambient temperature can be easily detected by a temperature sensor or the like, and the inventors have proceeded with a study on whether or not can be used for adjusting the original clock, and arrived at the present invention.

【0009】即ち、請求項1に記載の発明は、周囲温度
の温度変化に対する発振回路の発振周波数の変化特性を
求め、この変化特性に基づき、基準温度に於ける許容誤
差を所定の周囲温度に於ける許容誤差に換算し、前記所
定の周囲温度の下で、前記発信周波数の日差誤差を検出
し、検出した日差誤差を前記所定の周囲温度に於ける許
容誤差内に収める様に、前記発振回路の回路素子の特性
値を調整するものである。
That is, according to the first aspect of the invention, the change characteristic of the oscillation frequency of the oscillation circuit with respect to the temperature change of the ambient temperature is obtained, and the allowable error at the reference temperature is set to the predetermined ambient temperature based on the change characteristic. Converted to a permissible error at the predetermined ambient temperature, to detect the day difference error of the transmission frequency, so that the detected day difference error falls within the permissible error at the predetermined ambient temperature, The characteristic value of the circuit element of the oscillation circuit is adjusted.

【0010】請求項2に記載の発明は、前記所定の周囲
温度に於ける許容誤差は、前記基準温度から前記所定の
周囲温度への温度変化に対する前記発振周波数の変化率
と前記基準温度に於ける許容誤差との積で与えられるも
のである。
According to a second aspect of the present invention, the allowable error at the predetermined ambient temperature is the rate of change of the oscillation frequency with respect to the temperature change from the reference temperature to the predetermined ambient temperature and the reference temperature. It is given by the product of the tolerance.

【0011】[0011]

【発明の実施の形態】図1は、時計機能を搭載したユニ
ットの要部の構成概略図、図2は、本発明の実施の形態
に係る周波数調整方法の手順を説明する図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a schematic configuration diagram of a main part of a unit equipped with a timepiece function, and FIG. 2 is a diagram explaining a procedure of a frequency adjusting method according to an embodiment of the present invention.

【0012】この実施の形態に係る周波数調整方法は、
図1を参照して、ユニット1内の発振回路3の発振周波
数fと周囲温度Tとの相関関係に基づき、基準温度T0
(例えば25℃)から所定の周囲温度(ここでは実際の
周囲温度)Tへの温度変化に対する発振周波数fの変化
率α(T)を求め、この変化率α(T)に基づき、基準
温度T0 に於ける規格値A0 を所定の周囲温度Tに於け
る規格値A(T)に換算し、所定の周囲温度Tの下で、
発振周波数fの日差誤差δfを検出し、検出した日差誤
差δfを所定の周囲温度Tに於ける規格値A(T)内に
収める様に、発振回路3の回路素子の特性値を調整する
ものである。
The frequency adjusting method according to this embodiment is
Referring to FIG. 1, based on the correlation between the oscillation frequency f of the oscillation circuit 3 in the unit 1 and the ambient temperature T, the reference temperature T0
The rate of change α (T) of the oscillation frequency f with respect to the temperature change from (for example, 25 ° C.) to a predetermined ambient temperature (here, the actual ambient temperature) T is calculated, and the reference temperature T0 is calculated based on the rate of change α (T). The standard value A0 at the specified ambient temperature T is converted into the standard value A (T) at the predetermined ambient temperature T, and
The daily difference error δf of the oscillation frequency f is detected, and the characteristic value of the circuit element of the oscillation circuit 3 is adjusted so that the detected daily difference error δf falls within the standard value A (T) at a predetermined ambient temperature T. To do.

【0013】先ず、一例として用いられるユニット1に
ついて説明する。ユニット1は、時計機能を搭載した機
器等であり、時計機能として、例えば、クロック周波数
fを発信する発振回路3と、発振回路3の発信するクロ
ック周波数fに基づき時刻を刻む時計CPU5と、時計
CPU5で刻まれた時刻が表示されるLCD等の表示部
7とを備えて構成される。
First, the unit 1 used as an example will be described. The unit 1 is, for example, a device equipped with a clock function, and as the clock function, for example, an oscillation circuit 3 that transmits a clock frequency f, a clock CPU 5 that keeps time based on the clock frequency f that the oscillation circuit 3 transmits, and a clock. The CPU 5 includes a display unit 7 such as an LCD for displaying the time engraved by the CPU 5.

【0014】発信回路3は、例えば、固有周波数frの
水晶片9を備えた水晶振動子X1と、トリマ等の可変コ
ンデンサCvと、セラミック等の固定コンデンサC2,
C3とを備えて構成される。固定コンデンサC2,C3
はそれぞれ、水晶振動子X1の各端と接地点との間に介
装される。可変コンデンサCvは、固定コンデンサC2
に並列に接続される。水晶振動子X1の両端は、時計C
PU5に接続されており、この接続を介して時計CPU
5からの電圧の供給及び時計CPUへのクロック周波数
fの発振が行われる。
The oscillator circuit 3 includes, for example, a crystal oscillator X1 having a crystal piece 9 having a natural frequency fr, a variable capacitor Cv such as a trimmer, and a fixed capacitor C2 such as ceramic.
And C3. Fixed capacitors C2 and C3
Are respectively interposed between the respective ends of the crystal unit X1 and the ground point. The variable capacitor Cv is the fixed capacitor C2.
Are connected in parallel. Both ends of the crystal unit X1 have a clock C
It is connected to PU5 and the clock CPU is connected through this connection.
The voltage is supplied from 5 and the clock frequency f is oscillated to the clock CPU.

【0015】この発振回路3では、コンデンサCv,C
2,C3により式1の負荷容量CLが構成される。この
負荷容量CLにより、水晶片9の固有周波数frは式2
に従ってクロック周波数fに変調されて時計CPU5に
発振される。
In this oscillator circuit 3, capacitors Cv and C are used.
2, 2 and C3 form the load capacitance CL of Expression 1. Due to this load capacitance CL, the natural frequency fr of the crystal blank 9 is calculated by the formula 2
According to the above, the clock frequency f is modulated and the clock CPU 5 oscillates.

【0016】[0016]

【数1】 [Equation 1]

【0017】[0017]

【数2】 [Equation 2]

【0018】尚、式2中のC0 ,C1はそれぞれ、水晶
振動子X1の等価定数である並列容量,等価直列容量を
表す。
Incidentally, C0 and C1 in the equation 2 respectively represent a parallel capacitance and an equivalent series capacitance which are equivalent constants of the crystal unit X1.

【0019】一般に、Cv,C2,C3,frは温度特
性を持つ。例えば、Cvは、トリマの場合、−数百pp
m/℃の容量温度特性を持ち、C2,C3は、セラミッ
クの場合、±数十ppm/℃の容量温度特性を持ち、f
rは、音叉型の場合、−0 .0 数ppm/(℃)2の周
波数温度特性を持つ。その為、一般にfは周波数温度特
性を持つ。
Generally, Cv, C2, C3 and fr have temperature characteristics. For example, Cv is a few hundred pp in the case of a trimmer.
m / ° C has a capacity-temperature characteristic, and C2 and C3, in the case of ceramic, have a capacity-temperature characteristic of ± several tens ppm / ° C, and f
r is −0. It has a frequency-temperature characteristic of 0 ppm / (° C) 2 . Therefore, f generally has a frequency temperature characteristic.

【0020】尚、この発振回路3では、式1及び式2か
ら分かる様に、可変コンデンサCvの容量が調整される
ことで、発振回路3の発振するクロック周波数fが調整
される。
In this oscillator circuit 3, as can be seen from equations 1 and 2, the clock frequency f oscillated by the oscillator circuit 3 is adjusted by adjusting the capacitance of the variable capacitor Cv.

【0021】時計CPU5は、クロック出力用ピン10
を備えており、発振回路3からのクロック周波数fをN
(例えばN=512)分周(即ちf/N)にしてクロッ
ク出力用ピン10 から出力する。
The clock CPU 5 has a clock output pin 10
The clock frequency f from the oscillator circuit 3 is set to N
The frequency is divided (for example, N = 512) (that is, f / N) and output from the clock output pin 10.

【0022】次に、図2に基づき、本発明に係る周波数
調整方法により、上記ユニット1の時計機能に用いられ
るクロック周波数fの日差誤差δfを、周囲温度Tの下
で、基準温度T0 (=25℃)に於ける期待値A0 内に
調整する手順を説明する。
Next, based on FIG. 2, by the frequency adjusting method according to the present invention, the daily difference error δf of the clock frequency f used for the timepiece function of the unit 1 is set under the ambient temperature T at the reference temperature T0 ( = 25 ° C), the procedure for adjusting the value within the expected value A0 will be described.

【0023】ステップS1では、式1及び式2に基づ
き、発振回路3の発振周波数(クロック周波数)fと周
囲温度Tとの相関関係の式f=f(T)を求める。具体
的には、式1及び式2に対し、等価定数C0 ,C1に
は、それらの測定値を代入し、コンデンサCv,C2,
C3には、それらの容量温度特性の相関図等から求めた
容量温度特性の相関式Cv=Cv(T),C2=C2
(T),C3=C3(T)を代入し、水晶片9の固有周
波数frには、その周波数温度特性の相関等から求めた
周波数温度特性の相関式fr=fr(T)を代入して、
f=f(T)を求める。
In step S1, the equation f = f (T) of the correlation between the oscillation frequency (clock frequency) f of the oscillation circuit 3 and the ambient temperature T is obtained based on the equations 1 and 2. Specifically, for Eqs. 1 and 2, the measured values are substituted into the equivalent constants C0 and C1, and the capacitors Cv, C2 and
C3 is a correlation expression Cv = Cv (T), C2 = C2 of the capacity-temperature characteristic obtained from the correlation diagram of the capacity-temperature characteristics.
(T), C3 = C3 (T) are substituted, and the correlation frequency fr = fr (T) of the frequency temperature characteristic obtained from the correlation of the frequency temperature characteristic is substituted for the natural frequency fr of the crystal blank 9. ,
Find f = f (T).

【0024】ステップS2では、ステップS1で求めた
発振周波数fと周囲温度Tとの相関関係の式f=f
(T)に基づき、式3より、基準温度T0 から周囲温度
Tへの温度変化に対する発振周波数fの変化率α(T)
を求める。
In step S2, the equation f = f for the correlation between the oscillation frequency f obtained in step S1 and the ambient temperature T
Based on (T), the rate of change α (T) of the oscillation frequency f with respect to the temperature change from the reference temperature T0 to the ambient temperature T is calculated from the equation (3).
Ask for.

【0025】[0025]

【数3】 [Equation 3]

【0026】尚、コンデンサCv,C2,C3が周囲温
度Tに対して不変である場合、又は不変と近似できる場
合は、変化率α(T)は、式4の如く、水晶片9の固有
振動数frの周波数温度特性の相関式fr(T)で表さ
れる。
When the capacitors Cv, C2 and C3 are invariant with respect to the ambient temperature T, or can be approximated to invariant, the rate of change α (T) is expressed by Equation 4, and the natural vibration of the crystal piece 9 is expressed by It is represented by the correlation expression fr (T) of the frequency temperature characteristic of several fr.

【0027】[0027]

【数4】 [Equation 4]

【0028】この場合の変化率α(T)は、製造元から
公開されている水晶片9の固有周波数frの周波数偏差
Δfr/frと一致する為、かかる場合は、ステップS
1を省略し、変化率α(T)として周波数偏差Δfr/
frを用いてもよい。因みに、水晶片9が音叉型の場合
の周波数偏差Δfr/frは、一例として式5で与えら
れる。
Since the rate of change α (T) in this case coincides with the frequency deviation Δfr / fr of the natural frequency fr of the crystal blank 9 disclosed by the manufacturer, in such a case, step S
1 is omitted, and the frequency deviation Δfr /
You may use fr. Incidentally, the frequency deviation Δfr / fr when the crystal piece 9 is a tuning fork type is given by Equation 5 as an example.

【0029】[0029]

【数5】 [Equation 5]

【0030】ステップS3では、ステップS2で求めた
変化率α(T)に基づき、基準温度T0 に於ける規格値
A0 を周囲温度Tに於ける規格値A(T)に換算する。
ここでは、式6の如く、基準温度T0 に於ける規格値A
0 と変化率α(T)との積により、周囲温度Tに於ける
規格値A(T)が与えられる。
In step S3, the standard value A0 at the reference temperature T0 is converted into the standard value A (T) at the ambient temperature T based on the rate of change α (T) obtained in step S2.
Here, as shown in Equation 6, the standard value A at the reference temperature T0
The product of 0 and the rate of change α (T) gives the standard value A (T) at the ambient temperature T.

【0031】[0031]

【数6】 [Equation 6]

【0032】従って、変化率α(T)が式5で与えられ
る場合、規格値A(T)は式7となる。
Therefore, when the change rate α (T) is given by the equation 5, the standard value A (T) is given by the equation 7.

【0033】[0033]

【数7】 [Equation 7]

【0034】ステップS4では、実際の周囲温度Tを測
定し、その測定値をステップS3で求めた式6の規格値
A(T)に代入し、実際の周囲温度Tに於ける規格値A
(T)を算出する。例えば、実際の周囲温度T=10
℃,基準温度T0 =25℃,基準値A0 =32.768
kHz/512分周=64Hzの場合、式7の場合の規
格値A(T)は、A(T=10 ℃)=63.99991
Hz±5ppmとなる。ここで、±5ppmは、その他
の誤差を表す。尚、基準値A0 は、時計CPU5のクロ
ック出力用ピン10 の出力(N分周されたクロック周波
数f)に合わせてN(N=512)分周で割った値とな
っている。
In step S4, the actual ambient temperature T is measured, and the measured value is substituted into the standard value A (T) of the equation 6 obtained in step S3 to obtain the standard value A at the actual ambient temperature T.
Calculate (T). For example, the actual ambient temperature T = 10
° C, reference temperature T0 = 25 ° C, reference value A0 = 32.768
In the case of kHz / 512 frequency division = 64 Hz, the standard value A (T) in the case of Formula 7 is A (T = 10 ° C.) = 63.99991.
Hz ± 5 ppm. Here, ± 5 ppm represents other errors. The reference value A0 is a value divided by N (N = 512) division in accordance with the output (clock frequency f divided by N) of the clock output pin 10 of the clock CPU 5.

【0035】この周波数調整方法では、実際の周囲温度
T(=10℃)の下で検出されるクロック周波数fの日
差誤差δfを実際の周囲温度T(=10℃)に於ける規
格値A(T)内に収めることで、基準温度T0 (=25
℃)の下で検出されるクロック周波数fの日差誤差δf
が基準温度T0 に於ける規格値A0 内に収まる様にな
る。
In this frequency adjustment method, the daily difference error δf of the clock frequency f detected under the actual ambient temperature T (= 10 ° C.) is defined as the standard value A at the actual ambient temperature T (= 10 ° C.). By keeping the temperature within (T), the reference temperature T0 (= 25
Error of the clock frequency f detected under
Becomes within the standard value A0 at the reference temperature T0.

【0036】ステップS5では、実際の周囲温度T(=
10 ℃)の下で、クロック周波数fの調整を行う。即
ち、実際の周囲温度T(=10 ℃)の下で、時計CPU
5のクロック出力用ピン10 の出力を測定してクロック
周波数fの日差誤差δfを検出し、その日差誤差δfが
周囲温度T(=10 ℃)に於ける規格値A(T=10
℃)内にあるか否かを確認し、規格値A(T=10 ℃)
内にない場合、即ちδf>A(T=10 ℃)の場合は、
発振回路3の可変コンデンサCvを調整し、検出される
クロック周波数fの日差誤差δfが規格値A(T=10
℃)内に収まる様に、即ちδf≦A(T=10 ℃)とな
る様に調整する。
In step S5, the actual ambient temperature T (=
The clock frequency f is adjusted under 10 ° C. That is, under the actual ambient temperature T (= 10 ° C), the clock CPU
The output of the clock output pin 10 of No. 5 is measured to detect the daily difference error δf of the clock frequency f.
Check whether it is within the temperature range), and specify the standard value A (T = 10 ℃)
If it is not within the range, that is, if δf> A (T = 10 ° C),
By adjusting the variable capacitor Cv of the oscillator circuit 3, the daily difference error δf of the detected clock frequency f becomes the standard value A (T = 10
C.), that is, .delta.f.ltoreq.A (T = 10.degree. C.).

【0037】これにより、基準温度T0 (=25℃)の
下でのクロック周波数fの日差誤差δfが基準温度T0
に於ける規格値A0 内に収められる。
As a result, the daily difference error δf of the clock frequency f under the reference temperature T0 (= 25 ° C.) becomes the reference temperature T0.
It falls within the standard value A0 in.

【0038】以上の様に、この周波数調整方法によれ
ば、基準温度T0に於ける規格値A0を所定の周囲温度
(ここでは実際の周囲温度)Tに於ける規格値A(T)
に換算し、所定の周囲温度Tの下で検出されるクロック
周波数fの日差誤差δfを所定の周囲温度Tに於ける規
格値A(T)内に収めることで、基準温度T0 の下で検
出されるクロック周波数fの日差誤差δfが基準温度T
0 に於ける規格値A0 内に収まる様になっている為、工
場内の温度管理を行うこと無く、所定の周囲温度Tの下
で、クロック周波数fの日差誤差δfを基準温度T0 に
於ける規格値A0 内に調整できる。
As described above, according to this frequency adjusting method, the standard value A0 at the reference temperature T0 is changed to the standard value A (T) at the predetermined ambient temperature (here, the actual ambient temperature) T.
And the daily difference error δf of the clock frequency f detected under the predetermined ambient temperature T is kept within the standard value A (T) at the predetermined ambient temperature T. The daily error δf of the detected clock frequency f is the reference temperature T
Since it falls within the standard value A0 at 0, the temperature error in the factory is not controlled, and the daily difference error δf of the clock frequency f is set at the reference temperature T0 under a predetermined ambient temperature T. It can be adjusted within the standard value A0.

【0039】更に、クロック周波数の調整の精度が工場
内の温度管理により制約されない為、工場内の温度に制
約されること無く高い日差精度を実現できる。
Further, since the accuracy of adjusting the clock frequency is not restricted by the temperature management in the factory, it is possible to realize a high day difference accuracy without being restricted by the temperature in the factory.

【0040】更に、基準温度T0 から所定の周囲温度T
への温度変化に対する発振周波数fの変化率α(T)と
基準温度T0 に於ける規格値A0 との積により、所定の
周囲温度Tに於ける規格値A(T)を与える為、簡単に
規格値A(T)を求めることができる。
Further, from the reference temperature T0 to the predetermined ambient temperature T
Since the standard value A (T) at the predetermined ambient temperature T is given by the product of the rate of change α (T) of the oscillation frequency f with respect to the temperature change and the standard value A0 at the reference temperature T0, The standard value A (T) can be obtained.

【0041】尚、この実施の形態では、ステップS1
で、発振回路3の発振周波数fと周囲温度Tとの相関関
係の式f=f(T)を求める場合で説明したが、相関関
係の式f=f(T)を求めることが困難な場合はグラフ
として求め、ステップS2では、このグラフに基づいて
変化率α(T)を求める様にしてもよい。
In this embodiment, step S1
In the above, the case where the equation f = f (T) for the correlation between the oscillation frequency f of the oscillator circuit 3 and the ambient temperature T is obtained has been described, but when it is difficult to obtain the equation f = f (T) for the correlation. May be obtained as a graph, and in step S2, the rate of change α (T) may be obtained based on this graph.

【0042】[0042]

【発明の効果】請求項1に記載の発明によれば、基準温
度に於ける許容誤差を所定の周囲温度に於ける許容誤差
に換算し、前記所定の周囲温度の下で検出される発振周
波数の日差誤差を前記所定の周囲温度に於ける許容誤差
内に収めることで、基準温度の下で検出される発振周波
数の日差誤差が基準温度に於ける許容誤差内に収まる様
になっている為、工場内の温度管理を行うこと無く、所
定の周囲温度の下で、発振周波数の日差誤差を基準温度
に於ける許容誤差内に調整できる。
According to the first aspect of the present invention, the oscillating frequency detected under the predetermined ambient temperature is calculated by converting the permissible error at the reference temperature into the permissible error at the predetermined ambient temperature. By keeping the daily error of the error within the permissible error at the specified ambient temperature, the daily error of the oscillation frequency detected under the reference temperature can be within the permissible error at the reference temperature. Therefore, the daily error of the oscillation frequency can be adjusted within the allowable error of the reference temperature under a predetermined ambient temperature without controlling the temperature in the factory.

【0043】更に、発振周波数の調整の精度が工場内の
温度管理により制約されない為、工場内の温度に制約さ
れること無く高い日差精度を実現できる。
Further, since the precision of the adjustment of the oscillation frequency is not restricted by the temperature control in the factory, it is possible to realize a high day difference accuracy without being restricted by the temperature in the factory.

【0044】請求項2に記載の発明によれば、基準温度
から所定の周囲温度への温度変化に対する発振周波数の
変化率と基準温度に於ける許容誤差との積により、所定
の周囲温度に於ける許容誤差が与えられる為、簡単に所
定の周囲温度に於ける許容誤差を求めることができる。
According to the second aspect of the present invention, the product of the rate of change of the oscillation frequency with respect to the temperature change from the reference temperature to the predetermined ambient temperature and the allowable error in the reference temperature is used to determine the predetermined ambient temperature. Since the tolerance is given, the tolerance at a predetermined ambient temperature can be easily obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施の形態に係る時計機能を搭載し
たユニットの要部の構成概略図である。
FIG. 1 is a schematic configuration diagram of a main part of a unit equipped with a timepiece function according to an embodiment of the present invention.

【図2】この発明の実施の形態に係る周波数調整方法を
説明する図である。
FIG. 2 is a diagram illustrating a frequency adjusting method according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

3 発信回路 α(T) 変化率 A(T) 周囲温度Tに於ける規格値 A0 基準温度T0に於ける規格値 Cv 可変コンデンサ f 発振回路の発振周波数 T 周囲温度 T0 基準温度 3 oscillator circuits α (T) change rate A (T) Standard value at ambient temperature T Standard value at A0 reference temperature T0 Cv variable capacitor f Oscillation frequency of oscillation circuit T Ambient temperature T0 reference temperature

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 周囲温度の温度変化に対する発振回路の
発振周波数の変化特性を求め、この変化特性に基づき、
基準温度に於ける許容誤差を所定の周囲温度に於ける許
容誤差に換算し、前記所定の周囲温度の下で、前記発信
周波数の日差誤差を検出し、検出した日差誤差を前記所
定の周囲温度に於ける許容誤差内に収める様に、前記発
振回路の回路素子の特性値を調整することを特徴とする
周波数調整方法。
1. A change characteristic of an oscillation frequency of an oscillation circuit with respect to a change in ambient temperature is obtained, and based on the change characteristic,
The permissible error at the reference temperature is converted into the permissible error at the predetermined ambient temperature, the daily difference error of the transmission frequency is detected under the predetermined ambient temperature, and the detected daily difference error is determined by the predetermined error. A frequency adjusting method characterized in that the characteristic value of a circuit element of the oscillation circuit is adjusted so as to be within an allowable error in ambient temperature.
【請求項2】 前記所定の周囲温度に於ける許容誤差
は、前記基準温度から前記所定の周囲温度への温度変化
に対する前記発振周波数の変化率と前記基準温度に於け
る許容誤差との積で与えられることを特徴とする請求項
1に記載の周波数調整方法。
2. The allowable error at the predetermined ambient temperature is the product of the rate of change of the oscillation frequency and the allowable error at the reference temperature with respect to the temperature change from the reference temperature to the predetermined ambient temperature. The frequency adjusting method according to claim 1, wherein the frequency adjusting method is provided.
JP2002030854A 2002-02-07 2002-02-07 Frequency adjusting method Pending JP2003234618A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002030854A JP2003234618A (en) 2002-02-07 2002-02-07 Frequency adjusting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002030854A JP2003234618A (en) 2002-02-07 2002-02-07 Frequency adjusting method

Publications (1)

Publication Number Publication Date
JP2003234618A true JP2003234618A (en) 2003-08-22

Family

ID=27774445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002030854A Pending JP2003234618A (en) 2002-02-07 2002-02-07 Frequency adjusting method

Country Status (1)

Country Link
JP (1) JP2003234618A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190124628A (en) * 2018-04-26 2019-11-05 삼성전자주식회사 System and method for modeling and correcting frequency of quartz crystal oscillator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190124628A (en) * 2018-04-26 2019-11-05 삼성전자주식회사 System and method for modeling and correcting frequency of quartz crystal oscillator
US10823623B2 (en) 2018-04-26 2020-11-03 Samsung Electronics Co., Ltd System and method for modeling and correcting frequency of quartz crystal oscillator
US10914643B2 (en) 2018-04-26 2021-02-09 Samsung Electronics Co., Ltd System and method for modeling and correcting frequency of quartz crystal oscillator
KR102629170B1 (en) 2018-04-26 2024-01-24 삼성전자주식회사 System and method for modeling and correcting frequency of quartz crystal oscillator

Similar Documents

Publication Publication Date Title
US7816993B2 (en) Temperature compensated crystal oscillator
EP2157690B1 (en) Method, system and apparatus for accurate and stable LC-based reference oscillators
US5546810A (en) Pressure measuring device and method using quartz resonators
US8427244B2 (en) Oscillation circuit and frequency-correcting oscillation circuit
EP2482458B1 (en) Oscillation device
US20020005765A1 (en) Digital indirectly compensated crystal oscillators
CN106292839A (en) Real-time clock compensates circuit and calibration steps, device
US20070075797A1 (en) Method of manufacturing crystal oscillator and the crystal oscillator manufactured by the method
EP2525265B1 (en) Method of operation of a timepiece device
JP2003234618A (en) Frequency adjusting method
JP5673044B2 (en) Temperature compensated piezoelectric oscillator, frequency correction system, frequency drift correction method
CN110198155A (en) A kind of digital temperature compensation crystal oscillator
JP4353868B2 (en) Crystal oscillator
JP2975386B2 (en) Digital temperature compensated oscillator
JP3673406B2 (en) Digitally controlled oscillator
JP2002204127A (en) Method and device for adjusting temperature compensating crystal oscillator
JP2003270369A (en) Time correction method and time correction device for real time clock
CN111628835B (en) Communication module correcting method
RU2300739C2 (en) Method for compensating additive temperature error of indicator with vibrating element
JP7393744B2 (en) Oscillator, temperature compensation circuit, and temperature compensation method
WO2024057606A1 (en) Mechanical resonator-based oscillators and related methods for generation of a phase used to compensate for temperature-dependent frequency errors
RU2322652C1 (en) Method for compensating for temperature error of sensor with vibrating element
JP2002299957A (en) Method for correcting temperature characteristics of crystal oscillator
JP3243680B2 (en) Frequency correction method for digitally controlled oscillator
RU2333500C1 (en) Method of temperature error compensation of vibration element pickup