JP2003232829A - Partial discharge detection device of winding equipment - Google Patents

Partial discharge detection device of winding equipment

Info

Publication number
JP2003232829A
JP2003232829A JP2002030544A JP2002030544A JP2003232829A JP 2003232829 A JP2003232829 A JP 2003232829A JP 2002030544 A JP2002030544 A JP 2002030544A JP 2002030544 A JP2002030544 A JP 2002030544A JP 2003232829 A JP2003232829 A JP 2003232829A
Authority
JP
Japan
Prior art keywords
partial discharge
winding
current
electromagnetic wave
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002030544A
Other languages
Japanese (ja)
Inventor
Shigeto Fujita
重人 藤田
Giichi Shibuya
義一 渋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2002030544A priority Critical patent/JP2003232829A/en
Publication of JP2003232829A publication Critical patent/JP2003232829A/en
Withdrawn legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a partial discharge detection device of winding equipment capable of accurate position evaluation of partial discharge. <P>SOLUTION: This detection device is equipped with an electromagnetic wave detector 1 installed in the winding equipment 4, for detecting an electromagnetic wave generated caused by the partial discharge in the winding equipment, a current detector 2 for detecting a current generated caused by the partial discharge and propagated in a winding turn conductor, and an analytical device 3 for identifying the place of the partial discharge in the winding equipment from the time until a current signal of a progressive wave current excited in the winding turn conductor by the partial discharge detected by the current detector is detected, based on the detection time of an electromagnetic wave signal by a capacitive potential distribution in the winding caused by the partial discharge in the winding equipment detected by the electromagnetic wave detector. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、巻線機器の部分
放電検出装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a partial discharge detection device for winding equipment.

【0002】[0002]

【従来の技術】巻線機器内で発生した部分放電による電
流波形から、絶縁物等の劣化の判定が行われてきた。一
方、巻線内の部分放電が発生した場所の評定を行うた
め、部分放電波形の高周波成分が容量性電位分布により
伝播し、低周波成分が巻線を進行波として伝播すること
による到達時間の差より場所を評定する方法が行われて
いた。
2. Description of the Related Art Deterioration of an insulator or the like has been determined from a current waveform due to a partial discharge generated in a winding device. On the other hand, in order to evaluate the location of the partial discharge in the winding, the high frequency component of the partial discharge waveform propagates due to the capacitive potential distribution, and the low frequency component propagates through the winding as a traveling wave. The method of evaluating the place from the difference was performed.

【0003】[0003]

【発明が解決しようとする課題】このような従来の巻線
機器の部分放電検出においては、電流波形からでは、巻
線機器内での部分放電が発生した時間を知るための基準
となる信号がないため、伝播時間を求めることができ
ず、部分放電の発生個所を同定することができないとい
う問題点があった。一方、部分放電の電圧波形により部
分放電発生位置を評定する際、特に巻線ターンの電圧を
伝播する進行波の測定はそのターンから放出される電磁
波を測定することとなる。この測定では、測定しようと
しているターンと近い位置にあるターンからの電磁波も
信号の中に含まれる可能性がある。そのため、伝播時間
が正確には算出できず部分放電の発生場所の位置の評定
を正確に行えない問題点があった。
In such a conventional partial discharge detection of the winding device, the current waveform shows a reference signal for knowing the time when the partial discharge occurs in the winding device. Since it does not exist, there is a problem that the propagation time cannot be obtained and the place where the partial discharge occurs cannot be identified. On the other hand, when evaluating the position where the partial discharge is generated by the voltage waveform of the partial discharge, the measurement of the traveling wave propagating the voltage of the winding turn is to measure the electromagnetic wave emitted from that turn. In this measurement, the electromagnetic waves from a turn close to the turn to be measured may be included in the signal. Therefore, there is a problem that the propagation time cannot be calculated accurately and the position of the place where the partial discharge occurs cannot be evaluated accurately.

【0004】この発明は上述した点を鑑みて、部分放電
の発生場所の正確な位置の評定を可能にする。
In view of the above-mentioned points, the present invention makes it possible to accurately evaluate the position where the partial discharge occurs.

【0005】問題解決の原理について説明すると、巻線
内の高周波電位振動には、コイル間あるいはターン間の
静電容量結合により伝播する電磁波と巻線ターン導体を
進行波として伝播する電流が存在する。静電容量結合に
よる電磁波の伝播距離は、巻線機器の寸法程度(10m
程度)である。一方、部分放電が発生したターン導体に
は、電流が励起され進行波になる。この進行波はターン
導体を伝播し、伝播距離はターン導体の長さ数100m
以上となる。
Explaining the principle of solving the problem, in the high-frequency potential oscillation in the winding, there are an electromagnetic wave propagating by the capacitive coupling between the coils or the turns and a current propagating as a traveling wave in the winding turn conductor. . The propagation distance of electromagnetic waves due to capacitive coupling is about the size of the winding equipment (10 m
Degree). On the other hand, a current is excited in the turn conductor in which the partial discharge has occurred and becomes a traveling wave. This traveling wave propagates through the turn conductor, and the propagation distance is 100 m of the length of the turn conductor.
That is all.

【0006】巻線機器の大きさは、電磁波が伝播する速
度と比較すると十分に小さく、検出器が巻線機器内のど
こにあっても、静電容量による電磁波の伝播距離は短い
ため、検出器までの到達時間の遅れは無視できる。静電
容量による電磁波を検出した時間は、部分放電が発生し
た時間と考えてよい。そのため、この電磁波を信号の基
準とするとコイルターン導体を伝播する進行波の電流の
検出時間tは、ターン導体を伝播する進行波が部分放電
を起こした場所から検出器まで、ターン導体を伝播して
いく時間となる。
The size of the winding device is sufficiently smaller than the speed at which the electromagnetic wave propagates, and no matter where the detector is in the winding device, the propagation distance of the electromagnetic wave due to the capacitance is short, so that the detector The delay of arrival time can be ignored. The time when the electromagnetic wave due to the capacitance is detected may be considered as the time when the partial discharge occurs. Therefore, when this electromagnetic wave is used as a signal reference, the detection time t of the current of the traveling wave propagating in the coil turn conductor propagates through the turn conductor from the place where the traveling wave propagating in the turn conductor causes partial discharge to the detector. It's time to go.

【0007】また、この電流の伝播速度vは、ターン間
の絶縁物の比誘電率をεとすると
The current propagation velocity v is ε, where ε is the relative permittivity of the insulator between turns.

【0008】v=c/√(ε)V = c / √ (ε)

【0009】から得られる。ここでcは真空中の電磁波
(光)の伝播速度である。よって、部分放電を起こした場
所はターン導体に沿って、
Obtained from Where c is an electromagnetic wave in a vacuum
The propagation velocity of (light). Therefore, the place where the partial discharge occurs is along the turn conductor,

【0010】l=vt=(c/√(ε))tL = vt = (c / √ (ε)) t

【0011】の長さの場所である。ここで、ターン導体
を流れる電流の測定は、他のターン導体を流れる電流の
影響を受けにくい。これらの電磁波の波形と電流波形
は、電気回路、例えば多導体伝送線路モデルにより解析
できる。
Is a place of length. Here, the measurement of the current flowing through the turn conductor is not easily affected by the current flowing through other turn conductors. These electromagnetic wave waveforms and current waveforms can be analyzed by an electric circuit, for example, a multiconductor transmission line model.

【0012】本発明は上記のような課題を解決するため
になされたもので、先に述べた原理をもとにして、部分
放電の発生場所を正確に評定する巻線機器の部分放電検
出装置を得ることを目的とする。
The present invention has been made to solve the above problems, and based on the above-mentioned principle, a partial discharge detecting device for a winding device that accurately evaluates the location of occurrence of partial discharge. Aim to get.

【0013】[0013]

【課題を解決するための手段】上記の目的に鑑み、この
発明は、巻線機器に設置されて巻線機器内の部分放電に
起因して発生する電磁波を検出する電磁波検出器と、前
記部分放電に起因して発生する巻線ターン導体を伝播す
る電流を検出する電流検出器と、前記電磁波検出器で検
出される巻線機器の部分放電による巻線内の容量性電位
分布による電磁波信号の検出時間を基準として、前記電
流検出器で検出される部分放電により巻線ターン導体に
励起された進行波電流の電流信号が検出されるまでの時
間から巻線機器内の部分放電の場所を同定する解析装置
と、を備えたことを特徴とする巻線機器の部分放電検出
装置にある。
In view of the above object, the present invention provides an electromagnetic wave detector installed in a winding device for detecting an electromagnetic wave generated due to partial discharge in the winding device; A current detector for detecting a current propagating through a winding turn conductor caused by discharge, and an electromagnetic wave signal due to a capacitive potential distribution in the winding due to partial discharge of the winding device detected by the electromagnetic wave detector. The location of the partial discharge in the winding equipment is identified from the time until the current signal of the traveling wave current excited in the winding turn conductor is detected by the partial discharge detected by the current detector with reference to the detection time. And an analysis device for performing a partial discharge detection device for a winding device.

【0014】また、前記解析装置が、前記電磁波信号を
基準としてのトリガーとして用い、前記電流検出器で検
出される前記進行波電流の電流信号のみを測定すること
を特徴とする請求項1に記載の巻線機器の部分放電検出
装置。
Further, the analysis device uses only the electromagnetic wave signal as a trigger to measure only the current signal of the traveling wave current detected by the current detector. Partial discharge detection device for wire winding equipment.

【0015】また、前記解析装置は、前記電磁波検出器
および電流検出器により検出された電磁波および電流の
少なくとも一方の信号の大きさから巻線機器の絶縁劣化
を診断することを特徴とする。
Further, the analysis device is characterized by diagnosing insulation deterioration of the winding device from the magnitude of a signal of at least one of the electromagnetic wave and the current detected by the electromagnetic wave detector and the current detector.

【0016】また、前記解析装置は、巻線機器の回路解
析により得られた電磁波および電流波形より部分放電の
発生個所を評定することを特徴とする。
Further, the analyzing apparatus is characterized in that the place where the partial discharge is generated is evaluated from the electromagnetic wave and the current waveform obtained by the circuit analysis of the winding device.

【0017】また、前記巻線機器が変圧器、回転機およ
び電動機のいずれかからなることを特徴とする。
Further, the winding device is characterized by comprising any one of a transformer, a rotating machine and an electric motor.

【0018】[0018]

【発明の実施の形態】実施の形態1.BEST MODE FOR CARRYING OUT THE INVENTION Embodiment 1.

【0019】図1はこの発明による巻線機器の部分放電
検出装置の構成の一例を示す図である。図1に示すよう
に、本発明による巻線機器の部分放電検出装置は例え
ば、巻線機器4の印加端付近に設置された電波検出のた
めのアンテナ等からなる電磁波検出器1と、巻線機器4
の接地部付近のターン導体に設けられた電流検出のため
のロゴスキーコイル等からなる電流検出器2と、電磁波
検出器1および電流検出器2の波形の解析を行う機能に
応じてマイクロコンピュータやコンピュータ等からなる
解析装置3から構成される。
FIG. 1 is a diagram showing an example of the structure of a partial discharge detection device for winding equipment according to the present invention. As shown in FIG. 1, a partial discharge detection device for a winding device according to the present invention includes, for example, an electromagnetic wave detector 1 including an antenna for detecting a radio wave installed near an application end of the winding device 4, and a winding. Equipment 4
A current detector 2 including a Rogowski coil for detecting current provided in a turn conductor near the grounding part of the computer, a microcomputer according to a function of analyzing waveforms of the electromagnetic wave detector 1 and the current detector 2, The analysis device 3 includes a computer and the like.

【0020】本発明によれば、容量性電位分布による電
磁波が、部分放電が発生した時間とほぼ同時に電磁波検
出器1であるアンテナにより検出される。一方、この部
分放電を起こした巻線機器4の巻線ターン導体には電流
が励起される。この電流は進行波となり巻線ターン導体
を伝播する。この電流がターン導体を伝播する時間遅れ
て電流検出器2であるロゴスキーコイルにて検出され
る。
According to the present invention, the electromagnetic wave due to the capacitive potential distribution is detected by the antenna, which is the electromagnetic wave detector 1, almost at the time when the partial discharge occurs. On the other hand, a current is excited in the winding turn conductor of the winding device 4 that has caused this partial discharge. This current becomes a traveling wave and propagates through the winding turn conductor. This current is detected by the Rogowski coil, which is the current detector 2, with a time delay after propagating through the turn conductor.

【0021】部分放電の大きさは、巻線機器4の絶縁劣
化に依存する。また、本発明の検出装置で得られる電磁
波の大きさと電流の大きさは部分放電の大きさに依存す
る。よって、本発明の部分放電検出装置を用いて絶縁劣
化の診断も可能である。
The magnitude of the partial discharge depends on the insulation deterioration of the winding device 4. The magnitude of the electromagnetic wave and the magnitude of the current obtained by the detection device of the present invention depend on the magnitude of the partial discharge. Therefore, it is possible to diagnose insulation deterioration using the partial discharge detection device of the present invention.

【0022】図2に部分放電波形が1周期の正弦波形か
らなるパルスである場合の、コイル間またはターン間の
静電容量結合による容量性電位分布による電磁波と巻線
ターン導体を伝播する電流の伝播の様子とこれら電磁波
と電流により得られる信号を示す。(a)は巻線機器4の
巻軸4aに沿った縦断面図(片側部分のみを示す)、(b)
は巻線機器4を巻軸4a方向に見た場合の部分放電波形
と信号波電流を示す図、(c)は部分放電による電磁波検
出器1で検出される電磁波の信号と、部分放電による電
流検出器2で検出される進行波電流の電流信号を示す。
進行波電流の伝搬速度をv、部分放電発生場所から電流
検出器2までの巻線ターン導体の長さをlとすると、進
行波電流の電流検出器2までの到達時間はt=l/vと
表せる。
FIG. 2 shows an electromagnetic wave and a current propagating through a winding turn conductor due to capacitive potential distribution due to capacitive coupling between coils or turns in the case where the partial discharge waveform is a pulse having a sinusoidal waveform of one cycle. The state of propagation and the signals obtained by these electromagnetic waves and currents are shown. (a) is a longitudinal sectional view of the winding device 4 along the winding shaft 4a (only one side is shown), (b)
Is a diagram showing a partial discharge waveform and a signal wave current when the winding device 4 is viewed in the direction of the winding axis 4a, and (c) is a signal of an electromagnetic wave detected by the electromagnetic wave detector 1 by the partial discharge and a current by the partial discharge. 2 shows a current signal of a traveling wave current detected by the detector 2.
Assuming that the propagation speed of the traveling wave current is v and the length of the winding turn conductor from the partial discharge occurrence location to the current detector 2 is l, the arrival time of the traveling wave current to the current detector 2 is t = 1 / v. Can be expressed as

【0023】コイル4c間の静電結合による容量性電位
分布による電磁波は、図に示すように巻線機器4の巻軸
4aに沿った方向に伝播していく。そのため電磁波検出
器1が巻線機器4の内部にある限り、伝播距離は最大で
も巻線機器4の大きさ程度となる。一方、巻線ターン導
体を伝播する進行波電流はターンに沿って巻軸4aの周
りを回転しながら伝播していく。そのため、伝播距離は
巻線機器4の巻線ターン導体の長さ程度でその長さは数
百m程度となる。
The electromagnetic waves due to the capacitive potential distribution due to the electrostatic coupling between the coils 4c propagate in the direction along the winding axis 4a of the winding device 4 as shown in the figure. Therefore, as long as the electromagnetic wave detector 1 is inside the winding device 4, the maximum propagation distance is about the size of the winding device 4. On the other hand, the traveling wave current propagating through the winding turn conductor propagates along the turn while rotating around the winding shaft 4a. Therefore, the propagation distance is about the length of the winding turn conductor of the winding device 4, and the length is about several hundreds of meters.

【0024】巻線機器4内部を伝播する電磁波の伝播速
度および巻線ターン導体を伝播する電流の伝播速度は、
巻線機器4内の比誘電率をεとすると真空中の電磁波の
伝播速度の1/√(ε)となる(巻線ターン導体を絶縁す
る油浸紙のε=4程度)。電磁波の伝播速度を考慮する
と、容量性電位分布により部分放電が発生した場所か
ら、電磁波検出器1まで電磁波が伝播する時間は無視で
きる。そのため、容量性電位分布による電磁波をトリガ
ーとした巻線ターン導体を伝播する電流を検出した時間
tは、部分放電が発生した場所から電流検出器2まで、
電流が巻線ターン導体を伝播する時間となる。
The propagation speed of the electromagnetic wave propagating inside the winding device 4 and the propagation speed of the current propagating through the winding turn conductor are
When the relative permittivity in the winding device 4 is ε, it becomes 1 / √ (ε) of the propagation speed of the electromagnetic wave in vacuum (about ε = 4 of oil-impregnated paper that insulates the winding turn conductor). Considering the propagation speed of the electromagnetic wave, the time taken for the electromagnetic wave to propagate from the place where the partial discharge occurs due to the capacitive potential distribution to the electromagnetic wave detector 1 can be ignored. Therefore, the time t when the current propagating in the winding turn conductor triggered by the electromagnetic wave due to the capacitive potential distribution is detected is from the place where the partial discharge occurs to the current detector 2.
It is the time for the current to propagate through the winding turn conductors.

【0025】図2の(a)(b)ではもとの部分放電の波形
が一周期の正弦波パルスである場合に得られる容量性電
位分布による電磁波の信号と、巻線ターン導体を伝播し
てきた電流の信号を示す。更に図2の(c)では、これら
2つの信号の時間遅れの関係を示す。また、図3では電
磁波を基準のトリガーとし、電流信号のみを検出した場
合の信号を示す。
In FIGS. 2 (a) and 2 (b), the signal of the electromagnetic wave due to the capacitive potential distribution obtained when the original partial discharge waveform is a sinusoidal pulse of one cycle, and propagates through the winding turn conductor. It shows the signal of the electric current. Further, FIG. 2C shows the relationship between the time delays of these two signals. Further, FIG. 3 shows a signal when only a current signal is detected by using an electromagnetic wave as a reference trigger.

【0026】従って解析装置3では、巻線機器4の部分
放電による巻線内の容量性電位分布により伝播する電磁
波検出器1で検出される電磁波信号の検出時間を基準と
して、部分放電により巻線ターン導体に励起された電流
検出器2で検出される進行波電流の電流信号が検出され
るまでの時間から、巻線機器4内の部分放電の場所を同
定する。進行波電流の伝搬速度v、進行波電流の電流検
出器2までの到達時間をtとすると、部分放電発生場所
から電流検出器2までの巻線ターン導体の長さは、l=
vtと表せ、これから巻線機器4内の部分放電の場所を
同定できる。
Therefore, in the analysis device 3, the winding is caused by the partial discharge with reference to the detection time of the electromagnetic wave signal detected by the electromagnetic wave detector 1 propagating due to the capacitive potential distribution in the winding due to the partial discharge of the winding device 4. The location of the partial discharge in the winding device 4 is identified from the time until the current signal of the traveling wave current detected by the current detector 2 excited in the turn conductor is detected. Assuming that the traveling velocity of the traveling wave current is v and the arrival time of the traveling wave current to the current detector 2 is t, the length of the winding turn conductor from the partial discharge occurrence location to the current detector 2 is l =
vt, from which the location of the partial discharge in the winding device 4 can be identified.

【0027】実施の形態2.また、容量性電位分布によ
る電磁波と巻線ターン導体を伝播する電流は回路解析に
よりシミュレーションが可能であるため、回路解析によ
り得られた信号から部分放電の発生場所を評定する機能
を解析装置4にもたせることもできる。すなわち検出さ
れた信号が、回路解析において部分放電として電圧を印
加する位置を変えて得られた結果のどれと一致するかに
基づき、放電の場所を同定する。
Embodiment 2. Further, since the electromagnetic wave due to the capacitive potential distribution and the current propagating through the winding turn conductor can be simulated by the circuit analysis, the analysis device 4 has a function of evaluating the place where the partial discharge is generated from the signal obtained by the circuit analysis. It can also be held. That is, the location of the discharge is identified based on which of the results obtained by changing the position where the voltage is applied as the partial discharge in the circuit analysis matches the detected signal.

【0028】巻線機器4として外鉄形変圧器巻線につい
て、巻線内の部分放電による容量性電位分布による電磁
波と巻線ターン導体を伝播する電流波形の解析回路を、
電磁波検出器1が電圧印加端付近にあり、巻線ターン導
体の電流検出のための電流検出器2であるロゴスキーコ
イルが接地端付近に設置した場合を一例として図4と図
5に示す。
Regarding the outer iron type transformer winding as the winding device 4, an analysis circuit of an electromagnetic wave due to a capacitive potential distribution due to partial discharge in the winding and a current waveform propagating through the winding turn conductor,
4 and 5 show an example in which the electromagnetic wave detector 1 is located near the voltage application end and the Rogowski coil, which is the current detector 2 for detecting the current of the winding turn conductor, is installed near the ground end.

【0029】図4は、この発明による容量性電位分布に
よる電磁波の波形を求める解析回路の一例を示す図であ
る。これは巻線内のコイル間の静電結合を考慮した容量
性電位分布を計算する回路である。図4でCm(1)は静
電板とコイル1の間の静電容量、Cm(i)(i>1)はコ
イル間の静電容量、Cg(i)はi番目のコイルの対地静
電容量である。また、Vは、部分放電により巻線ターン
導体に印加される電圧をあらわす。Zは、巻線と接続す
る負荷などのインピーダンス(外部インピーダンス)であ
る。電磁波検出器1は図2に示すように高電圧コイルの
電圧印加部にあるとする。このモデルでは、容量性電位
分布による波形はxの部分の電圧から得られる。
FIG. 4 is a diagram showing an example of an analysis circuit for obtaining the waveform of an electromagnetic wave according to the capacitive potential distribution according to the present invention. This is a circuit that calculates the capacitive potential distribution in consideration of the electrostatic coupling between the coils in the winding. In FIG. 4, Cm (1) is the capacitance between the electrostatic plate and the coil 1, Cm (i) (i> 1) is the capacitance between the coils, and Cg (i) is the ground of the i-th coil. It is the electric capacity. Further, V represents the voltage applied to the winding turn conductor by the partial discharge. Z is an impedance (external impedance) of a load or the like connected to the winding. It is assumed that the electromagnetic wave detector 1 is in the voltage application section of the high voltage coil as shown in FIG. In this model, the waveform due to the capacitive potential distribution is obtained from the voltage in the x part.

【0030】図5は、この発明による巻線ターン導体を
伝播する電流の波形を求める解析回路の一例を示す図で
ある。これは巻線ターン導体間の電圧を計算する回路と
して一枚一枚のコイルをそれぞれ1つの単導体伝送線路
であらわすモデルを示す。Eiはi番目のコイルに容量
性電位分布分でかかる電圧で、図4の回路から得られ
る。この電圧をそれぞれの単導体伝送線路のシースに印
加する。
FIG. 5 is a diagram showing an example of an analysis circuit for obtaining the waveform of the current propagating through the winding turn conductor according to the present invention. This shows a model in which each coil is represented by one single conductor transmission line as a circuit for calculating the voltage between the winding turn conductors. Ei is the voltage applied to the i-th coil by the capacitive potential distribution, and is obtained from the circuit of FIG. This voltage is applied to the sheath of each single conductor transmission line.

【0031】接地端のコイルnのシース導体のアース側
の出口に電流検出のためのロゴスキーコイル(電流検出
器2)を設置していることより、解析ではyの電流波形
がロゴスキーコイルで得られる信号となる。
Since the Rogowski coil (current detector 2) for current detection is installed at the ground-side outlet of the sheath conductor of the coil n at the ground end, the analysis shows that the current waveform of y is Rogowski coil. It becomes the obtained signal.

【0032】Vの印加の場所等をパラメータとして変え
ることにより、ここで得られた波形が検出器で検出され
た波形と一致するケースを見つけることにより、部分放
電の発生場所を同定する。
The place where the partial discharge is generated is identified by finding a case where the waveform obtained here matches the waveform detected by the detector by changing the place where V is applied as a parameter.

【0033】これらの解析はコンピュータで構成される
解析装置3によりプログラム制御に基づき行われる。
These analyzes are performed by the analysis device 3 composed of a computer under program control.

【0034】なお、この発明による上記各実施の形態に
よる巻線機器の部分放電検出装置は、変圧器のみならず
回転機や電動機等の各種電気機器に適用可能である。
The partial discharge detection device for winding equipment according to each of the above-described embodiments of the present invention can be applied not only to transformers but also to various electric equipment such as rotating machines and electric motors.

【0035】[0035]

【発明の効果】以上のようにこの発明によれば、巻線機
器に設置されて巻線機器内の部分放電に起因して発生す
る電磁波を検出する電磁波検出器と、前記部分放電に起
因して発生する巻線ターン導体を伝播する電流を検出す
る電流検出器と、前記電磁波検出器で検出される巻線機
器の部分放電による巻線内の容量性電位分布による電磁
波信号の検出時間を基準として、前記電流検出器で検出
される部分放電により巻線ターン導体に励起された進行
波電流の電流信号が検出されるまでの時間から巻線機器
内の部分放電の場所を同定する解析装置と、を備えたこ
とを特徴とする巻線機器の部分放電検出装置としたの
で、正確な部分放電の位置評定が可能となる。
As described above, according to the present invention, an electromagnetic wave detector installed in a winding device for detecting an electromagnetic wave generated due to a partial discharge in the winding device, and an electromagnetic wave detector caused by the partial discharge. The current detector that detects the current propagating through the winding turn conductor that is generated and the detection time of the electromagnetic wave signal due to the capacitive potential distribution in the winding due to the partial discharge of the winding equipment detected by the electromagnetic wave detector As an analysis device for identifying the location of the partial discharge in the winding equipment from the time until the current signal of the traveling wave current excited in the winding turn conductor by the partial discharge detected by the current detector is detected. Since the partial discharge detection device for a winding device is characterized by being provided with, the position of the partial discharge can be accurately evaluated.

【0036】また、前記解析装置が、前記電磁波信号を
基準としてのトリガーとして用い、前記電流検出器で検
出される前記進行波電流の電流信号のみを測定すること
を特徴としたので、検出がより容易に行える。
Further, the analysis device is characterized in that it uses only the electromagnetic wave signal as a trigger and measures only the current signal of the traveling wave current detected by the current detector. Easy to do.

【0037】また、前記解析装置は、前記電磁波検出器
および電流検出器により検出された電磁波および電流の
少なくとも一方の信号の大きさから巻線機器の絶縁劣化
を診断することを特徴としたので、巻線機器の絶縁劣化
診断も行える。
Further, since the analysis device is characterized by diagnosing the insulation deterioration of the winding device from the magnitude of the signal of at least one of the electromagnetic wave and the current detected by the electromagnetic wave detector and the current detector, Insulation deterioration diagnosis of winding equipment can also be performed.

【0038】また、前記解析装置は、巻線機器の回路解
析により得られた電磁波および電流波形より部分放電の
発生個所を評定することを特徴としたので、回路解析の
結果と検出結果との比較により巻線機器内の部分放電の
場所の同定が行える。
Further, since the analysis device is characterized in that the place where the partial discharge is generated is evaluated from the electromagnetic wave and the current waveform obtained by the circuit analysis of the winding equipment, the result of the circuit analysis is compared with the detection result. Can identify the location of the partial discharge in the winding equipment.

【0039】また、前記巻線機器が変圧器、回転機およ
び電動機のいずれかからなることを特徴とするので、各
種電気機器において内部部分放電の場所の同定が行え
る。
Further, since the winding device is composed of any one of a transformer, a rotating machine and an electric motor, the location of the internal partial discharge can be identified in various electric machines.

【図面の簡単な説明】[Brief description of drawings]

【図1】 この発明の一実施の形態による巻線機器の部
分放電検出装置の構成の概略を示す図である。
FIG. 1 is a diagram showing a schematic configuration of a partial discharge detection device for a winding device according to an embodiment of the present invention.

【図2】 この発明による容量性電位分布による電磁波
の信号と巻線ターン導体を伝播する進行波電流の信号か
ら部分放電の場所を求める原理を説明するための図であ
る。
FIG. 2 is a diagram for explaining the principle of determining the location of partial discharge from a signal of an electromagnetic wave due to capacitive potential distribution and a signal of a traveling wave current propagating in a winding turn conductor according to the present invention.

【図3】 この発明による容量性電位分布による電磁波
を基準トリガーとして電流波形を検出して得られる信号
の一例を示す図である。
FIG. 3 is a diagram showing an example of a signal obtained by detecting a current waveform using an electromagnetic wave due to a capacitive potential distribution according to the present invention as a reference trigger.

【図4】 この発明による容量性電位分布による電磁波
の波形を求める解析回路の一例を示す図である。
FIG. 4 is a diagram showing an example of an analysis circuit for obtaining a waveform of an electromagnetic wave due to a capacitive potential distribution according to the present invention.

【図5】 この発明による巻線ターン導体を伝播する電
流の波形を求める解析回路の一例を示す図である。
FIG. 5 is a diagram showing an example of an analysis circuit for obtaining a waveform of a current propagating through a winding turn conductor according to the present invention.

【符号の説明】[Explanation of symbols]

1 電磁波検出器、2 電流検出器、3 解析装置、4
巻線機器。
1 electromagnetic wave detector, 2 current detector, 3 analyzer, 4
Winding equipment.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 巻線機器に設置されて巻線機器内の部分
放電に起因して発生する電磁波を検出する電磁波検出器
と、 前記部分放電に起因して発生する巻線ターン導体を伝播
する電流を検出する電流検出器と、 前記電磁波検出器で検出される巻線機器の部分放電によ
る巻線内の容量性電位分布による電磁波信号の検出時間
を基準として、前記電流検出器で検出される部分放電に
より巻線ターン導体に励起された進行波電流の電流信号
が検出されるまでの時間から巻線機器内の部分放電の場
所を同定する解析装置と、 を備えたことを特徴とする巻線機器の部分放電検出装
置。
1. An electromagnetic wave detector installed in a winding device for detecting an electromagnetic wave generated due to a partial discharge in the winding device, and a winding turn conductor generated due to the partial discharge. A current detector for detecting a current, and detected by the current detector with reference to the detection time of the electromagnetic wave signal due to the capacitive potential distribution in the winding due to the partial discharge of the winding equipment detected by the electromagnetic wave detector. The winding device is characterized by including an analysis device for identifying the location of the partial discharge in the winding equipment from the time until the current signal of the traveling wave current excited in the winding turn conductor by the partial discharge is detected. Partial discharge detection device for wire equipment.
【請求項2】 前記解析装置が、前記電磁波信号を基準
としてのトリガーとして用い、前記電流検出器で検出さ
れる前記進行波電流の電流信号のみを測定することを特
徴とする請求項1に記載の巻線機器の部分放電検出装
置。
2. The analysis device uses only the electromagnetic wave signal as a trigger to measure a current signal of the traveling wave current detected by the current detector. Partial discharge detection device for wire winding equipment.
【請求項3】 前記解析装置は、前記電磁波検出器およ
び電流検出器により検出された電磁波および電流の少な
くとも一方の信号の大きさから巻線機器の絶縁劣化を診
断することを特徴とする請求項1または2に記載の巻線
機器の部分放電検出装置。
3. The analysis device diagnoses insulation deterioration of a winding device based on a magnitude of a signal of at least one of an electromagnetic wave and a current detected by the electromagnetic wave detector and the current detector. 1. The partial discharge detection device for a winding device as described in 1 or 2.
【請求項4】 前記解析装置は、巻線機器の回路解析に
より得られた電磁波および電流波形より部分放電の発生
個所を評定することを特徴とする請求項1ないし3のい
ずれかに記載の巻線機器の部分放電検出装置。
4. The winding device according to claim 1, wherein the analysis device evaluates a location where the partial discharge occurs based on the electromagnetic wave and the current waveform obtained by the circuit analysis of the winding device. Partial discharge detection device for wire equipment.
【請求項5】 前記巻線機器が変圧器、回転機および電
動機のいずれかからなることを特徴とする請求項1ない
し4のいずれかに記載の巻線機器の部分放電検出装置。
5. The partial discharge detection device for a winding device according to claim 1, wherein the winding device comprises any one of a transformer, a rotating machine and an electric motor.
JP2002030544A 2002-02-07 2002-02-07 Partial discharge detection device of winding equipment Withdrawn JP2003232829A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002030544A JP2003232829A (en) 2002-02-07 2002-02-07 Partial discharge detection device of winding equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002030544A JP2003232829A (en) 2002-02-07 2002-02-07 Partial discharge detection device of winding equipment

Publications (1)

Publication Number Publication Date
JP2003232829A true JP2003232829A (en) 2003-08-22

Family

ID=27774267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002030544A Withdrawn JP2003232829A (en) 2002-02-07 2002-02-07 Partial discharge detection device of winding equipment

Country Status (1)

Country Link
JP (1) JP2003232829A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010117298A (en) * 2008-11-14 2010-05-27 Toyota Motor Corp Sensor for detecting partial discharge of stator winding, and device and method for inspecting stator winding
CN103123382A (en) * 2013-01-31 2013-05-29 云南电力试验研究院(集团)有限公司电力研究院 Photoelectric combined detection method aiming at mutual inductor of distribution network
CN103592584A (en) * 2013-11-19 2014-02-19 国家电网公司 Substation discharging source locating method based on electromagnetic wave detection
CN105510669A (en) * 2015-11-16 2016-04-20 王爱玲 Electronic current transformer
CN105699730A (en) * 2015-11-16 2016-06-22 王爱玲 Electronic voltage transformer
CN105759100A (en) * 2015-11-16 2016-07-13 彭冬青 Intelligent electronic current transformer
CN105785094A (en) * 2015-11-16 2016-07-20 彭冬青 Self-inspection electronic voltage transformer
CN105527479B (en) * 2015-11-16 2016-09-07 国网山东省电力公司沂水县供电公司 Self-check type electronic type voltage transformer
EP3098609A1 (en) * 2015-05-29 2016-11-30 Thomson Licensing Electrical activity sensor device for detecting electrical activity and electrical activity monitoring apparatus

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010117298A (en) * 2008-11-14 2010-05-27 Toyota Motor Corp Sensor for detecting partial discharge of stator winding, and device and method for inspecting stator winding
CN103123382A (en) * 2013-01-31 2013-05-29 云南电力试验研究院(集团)有限公司电力研究院 Photoelectric combined detection method aiming at mutual inductor of distribution network
CN103592584A (en) * 2013-11-19 2014-02-19 国家电网公司 Substation discharging source locating method based on electromagnetic wave detection
EP3098609A1 (en) * 2015-05-29 2016-11-30 Thomson Licensing Electrical activity sensor device for detecting electrical activity and electrical activity monitoring apparatus
US9893411B2 (en) 2015-05-29 2018-02-13 Thomson Licensing Electrical activity sensor device for detecting electrical activity and electrical activity monitoring apparatus
CN105510669A (en) * 2015-11-16 2016-04-20 王爱玲 Electronic current transformer
CN105699730A (en) * 2015-11-16 2016-06-22 王爱玲 Electronic voltage transformer
CN105759100A (en) * 2015-11-16 2016-07-13 彭冬青 Intelligent electronic current transformer
CN105785094A (en) * 2015-11-16 2016-07-20 彭冬青 Self-inspection electronic voltage transformer
CN105527479B (en) * 2015-11-16 2016-09-07 国网山东省电力公司沂水县供电公司 Self-check type electronic type voltage transformer

Similar Documents

Publication Publication Date Title
Ahmed et al. On-line partial discharge detection in cables
Li et al. Investigation on the placement effect of UHF sensor and propagation characteristics of PD-induced electromagnetic wave in GIS based on FDTD method
CN105334433B (en) The detection method and device of cable local discharge
AU2005273202B2 (en) Device and method for detecting partial discharge of rotary electric machine
Hikita et al. Electromagnetic (EM) wave characteristics in GIS and measuring the EM wave leakage at the spacer aperture for partial discharge diagnosis
Kaneko et al. Detecting characteristics of various type antennas on partial discharge electromagnetic wave radiating through insulating spacer in gas insulated switchgear
JP2006242855A (en) Noncontact-type voltage detection method and noncontact-type voltage detection device
Hoshino et al. Comparison of sensitivity between UHF method and IEC 60270 for onsite calibration in various GIS
ZA200701428B (en) Partial discharge detection apparatus and detection method of electrical rotating machine
CN101655536A (en) Method for detecting partial discharge of gas insulated switchgear
JPH08503297A (en) Method and apparatus for measuring partial discharge in a cable
Hikita et al. Recent trend of the partial discharge measurement technique using the UHF electromagnetic wave detection method
Okabe et al. Partial discharge diagnosis method using electromagnetic wave mode transformation in gas insulated switchgear
Sharifinia et al. A new application of Rogowski coil sensor for partial discharge localization in power transformers
JP2003232829A (en) Partial discharge detection device of winding equipment
Hoshino et al. Frequency characteristics of electromagnetic wave radiated from GIS apertures
Kaneko et al. Partial discharge diagnosis method using electromagnetic wave mode transformation in actual GIS structure
Morriello et al. Surface transfer impedance measurement: A comparison between current probe and pull-on braid methods for coaxial cables
KR100632078B1 (en) Noise discriminating device and method for detect the partial discharge in underground power cable
Rong et al. Investigation on propagation characteristics of PD-induced electromagnetic wave in T-shaped GIS based on FDTD method
Okabe et al. Electromagnetic wave propagation in a coaxial pipe GIS model
Kumar et al. Development and validation of rogowski coil with commercial high frequency current transformer for partial discharge detection
JP2003107122A (en) Partial discharge detection device for winding apparatus
Mutakamihigashi et al. Relationship between AE waveform frequency and the charges caused by partial discharge in mineral oil
JP5950396B2 (en) Method and system for evaluating partial discharge occurrence position

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050510