JP2003232590A - Refrigerator - Google Patents

Refrigerator

Info

Publication number
JP2003232590A
JP2003232590A JP2003066491A JP2003066491A JP2003232590A JP 2003232590 A JP2003232590 A JP 2003232590A JP 2003066491 A JP2003066491 A JP 2003066491A JP 2003066491 A JP2003066491 A JP 2003066491A JP 2003232590 A JP2003232590 A JP 2003232590A
Authority
JP
Japan
Prior art keywords
defrosting
refrigerator
evaporator
cooler
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003066491A
Other languages
Japanese (ja)
Inventor
Masaaki Tanaka
正昭 田中
Takeshi Shimizu
武 清水
Koichi Nishimura
晃一 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP2003066491A priority Critical patent/JP2003232590A/en
Publication of JP2003232590A publication Critical patent/JP2003232590A/en
Pending legal-status Critical Current

Links

Landscapes

  • Defrosting Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the danger due to combustion in defrosting in the environment where the combustible refrigerant leaks in a refrigerator using combustible refrigerant. <P>SOLUTION: A defrosting means 26 composed of a metal pipe 48, a heater wire 37 and an insulating material 49 is disposed below an evaporator 10, a water catch tray 50 with a heating means is provided on the lower part of the defrosting means 26 to heighten the defrosting efficiency, and the surface temperature during defrosting operation of the defrosting means 26 is held below an ignition point of the flammable refrigerant to reduce the possibility of ignition when the flammable refrigerant leaks. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は冷蔵庫に関するもの
である。 【0002】 【従来の技術】近年、除霜の効率を向上させた冷蔵庫に
関するものとしては、特開平8−54172号公報に記
載されたものが挙げられる。 【0003】以下、図面を参照しながら上記従来の冷蔵
庫を説明する。 【0004】図5は、従来の冷蔵庫の要部の縦断面図で
ある。 【0005】図5において、1は冷蔵庫本体、2は冷蔵
庫本体1の内部にある冷凍室、3は冷蔵庫本体1の内部
にある冷蔵室、4は冷凍室扉、5は冷蔵室扉、6は冷凍
室2と冷蔵室3を仕切る仕切壁、7は冷凍室2内の空気
を吸い込む冷凍室吸込口、8は冷蔵室3内の空気を吸込
む冷蔵室吸込口、9は冷気を吐出する吐出口、10は蒸
発器、11は冷気を循環させるファンである。 【0006】12は蒸発器10と冷凍室2を仕切る蒸発
器仕切壁、13は桶、14は排水口、15はニクロム線
をコイル状にしたものをガラス管で覆った除霜用管ヒー
タ、16は除霜水が除霜用管ヒータ15に直接滴下して
接触するときに発する蒸発音を防止するための屋根、1
7は桶13と除霜用管ヒータ15の間に設置され絶縁保
持された金属製の底板である。 【0007】次に動作について説明する。冷凍室2や冷
蔵室3を冷却する場合は、蒸発器10に冷媒が流通して
蒸発器10が冷却される。これと同じくしてファン11
の作動により、冷凍室吸込口7や冷蔵室吸込口8から冷
凍室2や冷蔵室3の昇温空気を冷却室20に送り、蒸発
器10で熱交換して冷却されて吐出口9から冷却風を冷
凍室2内に送り、冷凍室2から図示していない連通口を
通って冷蔵室に冷気を送る。 【0008】ここで、蒸発器10と熱交換する空気は、
冷凍室扉4及び冷蔵室扉5の開閉による高温外気の流入
や冷凍室2及び冷蔵室3の保存食品の水分の蒸発等によ
り高湿化された空気であることから、その空気より低温
である蒸発器10に空気中の水分が霜となって着霜し、
着霜量が増加するに従って蒸発器10表面と熱交換する
空気との伝熱が阻害されると共に通風抵抗となって風量
が低下するために熱通過率が低下して冷却不足が発生す
る。 【0009】そこで、冷却不足となる以前に除霜用管ヒ
ータ15のニクロム線に通電する。ニクロム線に通電が
開始されるとニクロム線から蒸発器10や周辺部品に熱
線が放射される。このとき、底板17に放射された熱線
は底板17の形状から一部がヒータ線に反射され、その
他は蒸発器10やその他の周辺部品に向けて反射され
る。 【0010】これにより蒸発器10や桶13や排水口1
4付近に着いた霜を水に融解する。また、このようにし
て融解した除霜水は一部は直接に桶13に落ち、その他
は屋根16により除霜用管ヒータ15を避けて桶13に
落ちて排水口14から庫外に排水される。 【0011】 【発明が解決しようとする課題】しかしながら、上記従
来の構成では、一般的に除霜用管ヒータ15のニクロム
線表面は言うまでもなくガラス表面温度は非常に高温度
であり、更に、底板17は管ヒータ15の近傍にあり且
つ管ヒータ15から放射した熱線の一部を管ヒータ15
に再度反射していることから管ヒータ15の温度が異常
に上昇する。また、管ヒータ15の発熱量は管ヒータ1
5の温度上昇に使われる熱量と外部に放熱する熱量の総
和であるので、管ヒータ15の温度が上昇するというこ
とは外部に放熱する熱量が減少することになり、その外
部に放熱する熱量により蒸発器10やその周辺部品の除
霜が行われるので蒸発器10やその周辺部品の除霜に使
用される熱量が減少し、除霜時間が延長し、結果的に管
ヒータ15の発熱時間が延長して電力が増加する。この
ことから、増電となると共に、冷媒に可燃性冷媒を使用
され可燃性冷媒が蒸発器10や庫内と連通している部分
に設置されている配管から漏洩した場合に除霜用管ヒー
タ15の通電により発火温度に達して発火する危険性が
極めて高くなるという課題を有していた。 【0012】本発明は上記課題に鑑み、除霜に使用され
る電力を低減することで冷蔵庫の省エネルギー化を図
り、また、使用され可燃性冷媒が除霜手段の設置雰囲気
に漏洩した環境下で除霜が行われた場合においても可燃
性冷媒の発火の可能性を低下できるので可燃性冷媒が安
全に使用できる冷蔵庫を提供することを目的とする。 【0013】 【課題を解決するための手段】本発明の請求項1に記載
の発明は、圧縮機と凝縮器と減圧機構と蒸発器とを接続
した冷凍サイクルと、前記蒸発器を除霜するための除霜
手段と、前記蒸発器の下方に設置した加熱手段付水受皿
とを備え、前記冷凍サイクルには可燃性冷媒を使用し、
前記除霜手段は、金属パイプと、前記金属パイプ内部に
設置された金属抵抗体からなるヒータ線と、前記ヒータ
線と前記金属パイプとを絶縁するための絶縁材料とから
構成したものであり、除霜手段から蒸発器への熱伝達が
良好であり除霜能力が向上することから、従来同等の除
霜能力を維持した場合は除霜手段の発熱量を低下でき、
除霜手段の表面温度の低温化が可能であり、除霜手段は
可燃性冷媒の発火温度に到達しない。 【0014】さらに、加熱手段付水受皿は加熱されるの
で落ちてきた蒸発器や蒸発器の周辺の除霜水を円滑に外
部へ排出することができることから、除霜水の排出不良
による着霜増加で蒸発器の通風抵抗が増加し冷却不足と
なるのを防止できる。 【0015】このことから、省エネルギーであると同時
に、従来同等の除霜能力を維持しながら可燃性冷媒が除
霜手段の設置雰囲気に漏洩した環境下で除霜が行われた
場合においても可燃性冷媒の発火による危険性を低下で
きるのに加えて、除霜後の冷却不足による食品の劣化を
防止できる。 【0016】 【発明の実施の形態】以下、本発明の実施の形態につい
て、図面を参照しながら説明する。なお、従来と同一構
成については、同一符号を付して詳細な説明を省略す
る。 【0017】(実施の形態1)本発明による実施の形態
1について、図面を参照しながら説明する。 【0018】図1は本発明の実施の形態1による冷蔵庫
の冷凍システム図、図2は本発明の実施の形態1による
冷蔵庫の要部の縦断面図である。 【0019】図1,図2に示すように、18は圧縮機、
19は凝縮器、20は冷媒の流路を切り替える切替弁、
21は低蒸発温度用の減圧量が大きい低蒸発温度用減圧
機構、22は高蒸発温度用の減圧量が小さい高蒸発温度
用減圧機構、23は冷蔵用の高蒸発温度である冷蔵室用
冷却器、24は冷凍用の低蒸発温度である冷凍室用冷却
器、25は圧縮機18や冷蔵室用冷却器23から冷凍室
用冷却器24への冷媒の逆流を防止する逆止弁である。 【0020】26は冷凍室用冷却器の除霜を行う除霜手
段、27は冷凍室2と冷凍室用冷却器を仕切る冷凍室用
冷却器仕切壁、28は冷凍室2の空気を冷凍室用冷却器
24に通風させて循環させるための冷凍室用ファン、2
9は冷凍室用冷却器24で熱交換されて冷却された空気
を冷凍室2へ吐出する冷凍室吐出口、30は冷蔵室3と
冷蔵室用冷却器23を仕切る冷蔵室用冷却器仕切壁、3
1は冷蔵室3の空気を冷蔵室用冷却器23に通風させて
循環させるための冷蔵室用ファン、32は冷蔵室用冷却
器23で熱交換されて冷却された空気を冷蔵室3へ吐出
する冷蔵室吐出口、33は冷凍室用冷却器24を除霜手
段26にて除霜した時の除霜水を貯留する蒸発皿であ
る。 【0021】以上のように構成された冷蔵庫について、
以下にその動作を説明する。 【0022】冷蔵室3を冷却する場合は、冷蔵室3があ
る設定温度以上になると図示していない温度検知手段に
より圧縮機18が作動し、冷凍サイクル内の図示しない
可燃性冷媒の循環が開始され、可燃性冷媒は凝縮器19
で外気との熱交換により凝縮され、切替弁20により高
蒸発温度用減圧機構22を経て冷蔵室用冷却器23へ流
通し、圧縮機18に吸い込まれるという経路の冷蔵室冷
却用冷凍サイクルとなる。 【0023】このとき、圧縮機18の作動と同時に冷蔵
室用ファン31が作動することで冷蔵室3の空気を冷蔵
室吸込口8から吸い込んで冷蔵室用冷却器23に通風さ
せて熱交換し冷却した空気を冷蔵室吐出口32から冷蔵
室3に吐出し、冷蔵室3を冷却する。 【0024】また、圧縮機18が停止中の任意の時間に
おいても、冷蔵室用ファン31を運転させて、冷蔵室3
の0℃を越える温度の空気を冷蔵室用冷却器23に通風
させる。このとき、冷蔵室用冷却器23に着霜した霜は
冷蔵室用冷却器23を通風する空気の絶対湿度を増加さ
せると共に除霜される。 【0025】そして、絶対湿度が増加した空気は冷蔵室
吐出口32から吐出される。 【0026】また、冷凍室2を冷却する場合は、冷凍室
2がある設定温度以上になると圧縮機18が作動し、冷
凍サイクル内の可燃性冷媒の循環が開始され、可燃性冷
媒は凝縮器19で外気との熱交換により凝縮され、切替
弁20により低蒸発温度用減圧機構21を経て冷凍室用
冷却器24へ流通し、圧縮機18に吸い込まれるという
経路の冷凍室冷却用冷凍サイクルとなる。 【0027】そして、圧縮機18の作動と同時に冷凍室
用ファン28が作動することで冷凍室2の空気を冷凍室
吸込口7から吸い込んで冷凍室用冷却器24に通風させ
て熱交換し冷却した空気を冷凍室吐出口29から冷凍室
2に吐出して冷凍室2を冷却する。このとき、冷凍室用
冷却器24を通風する空気は冷凍室2のみの空気である
ことから冷凍室用冷却器24の着霜量は少なくなる。 【0028】そして、任意の時間経過後の圧縮機18が
停止した直後か、もしくは圧縮機18が運転中ならば停
止すると同時に除霜手段26が作動し、冷凍室用ファン
28が停止する。除霜手段26の作動により除霜手段は
発熱し、除霜手段26の発熱が冷凍室用冷却器24へ熱
伝達して除霜を行う。このとき、除霜開始時において、
通常なら冷蔵室用冷却器23に対して蒸発温度が低い冷
凍室用冷却器24には冷蔵室用冷却器23から冷媒が逆
流してくるが本実施の形態では逆止弁25により逆流無
しで除霜が行われる。 【0029】さらに、除霜手段26の冷凍室用冷却器2
4の加熱により冷凍室用冷却器24の配管内部の冷媒も
加熱され、ガス化されて冷凍室用冷却器24より排出さ
れ、排出された冷媒においても逆止弁25により逆流し
てくることは無い。 【0030】そして、冷凍室用冷却器24及びその周辺
が霜の融解する0℃を越えるある温度に達すると除霜は
終了する。このとき、融解して水となった除霜水は蒸発
皿33に適下して貯留され、除霜終了後の冷却に伴う圧
縮機18の運転による廃熱を利用して蒸発し、外気に排
出される。 【0031】このことから、冷凍室用冷却器24の除霜
時において、冷凍室用冷却器24の着霜量の低減により
除霜手段26が除霜する霜量が減少すると共に、逆止弁
25により冷凍室用冷却器24に逆流してくる無駄な冷
媒を加熱しなくてよいことから、従来より除霜手段26
の消費電力量が低減できて省エネルギーであると共に、
除霜手段26の発熱量を可燃性冷媒の発火温度未満とな
る発熱量まで低減できるので、除霜能力を従来同等以上
を維持しながら可燃性冷媒が除霜手段26の設置雰囲気
に漏洩した環境下で除霜が行われた場合においても可燃
性冷媒の発火の可能性を低下できる。 【0032】(実施の形態2)本発明による実施の形態
2について、図面を参照しながら説明する。なお、実施
の形態1と同一構成については、同一符号を付して詳細
な説明を省略する。 【0033】図3は本発明の実施の形態2における冷蔵
庫の要部の断面図であり、図4は除霜手段の要部の断面
図である。 【0034】図3及び図4に示すように、48は除霜手
段26の構成要素である金属パイプ、49は電気絶縁材
料であり、50は加熱手段が付いた加熱手段付水受皿で
ある。 【0035】以上のように構成された冷蔵庫について、
以下にその動作を説明する。 【0036】除霜時は除霜手段26と加熱手段付水受皿
50に付いている加熱手段が発熱し温度が上昇し、除霜
手段26は自らに着霜した霜の除霜を行うと共に蒸発器
10を加熱して蒸発器10の除霜を行う。ここで、加熱
手段付水受皿50には前回の除霜時に排出されずに残っ
た除霜水の一部が冷却時に氷となり残留している。 【0037】そして、除霜手段26及び加熱手段付水受
皿50は霜及び氷と熱伝達が良くなるように設置されて
いることから除霜手段26及び加熱手段付水受皿50の
発熱のほとんどは霜や氷に吸収されるので、表面温度は
霜と氷の融点よりやや高い温度で除霜を行う。除霜が終
了すると除霜手段26と加熱手段付水受皿50の温度も
徐々に上昇してくるが、除霜終了により動作が停止する
ため温度上昇はなくなる。 【0038】また、霜と同時に加熱される蒸発器10内
の冷媒は熱伝導性の良い可燃性冷媒であることから更に
除霜の効率は良くなる。 【0039】このことから、除霜手段26は温度が低下
することに加えて、除霜能力が向上することから低発熱
量化が図れて更に低温化ができるので、省エネルギーで
あると同時に従来同等以上の除霜能力を確保しながら、
ヒータ線37を可燃性冷媒の発火温度未満の温度にでき
可燃性冷媒が除霜手段26の雰囲気に漏洩した場合に除
霜が行われても発火の可能性をより低くできる。 【0040】加えて、加熱手段付水受皿50に落ちてき
た蒸発器10や蒸発器10の周辺の除霜水を円滑に外部
へ排出することができることから、除霜水の排出不良に
よる着霜増加で蒸発器10の通風抵抗が増加し冷却不足
となるのを防止できるので食品の劣化を防止できる。 【0041】 【発明の効果】以上説明したように請求項1に記載の発
明は、圧縮機と凝縮器と減圧機構と蒸発器とを接続した
冷凍サイクルと、前記蒸発器を除霜するための除霜手段
と、前記蒸発器の下方に設置した加熱手段付水受皿とを
備え、前記冷凍サイクルには可燃性冷媒を使用し、前記
除霜手段は、金属パイプと、前記金属パイプ内部に設置
された金属抵抗体からなるヒータ線と、前記ヒータ線と
前記金属パイプとを絶縁するための絶縁材料とから構成
したので、除霜手段は温度が低下することに加えて、除
霜能力が向上することから低発熱量化が図れて更に低温
化ができるので、省エネルギーであると同時に従来同等
以上の除霜能力を確保しながら、ヒータ線を可燃性冷媒
の発火温度未満の温度にでき可燃性冷媒が除霜手段の雰
囲気に漏洩した場合に除霜が行われても発火の可能性を
より低くできる。 【0042】加えて、加熱手段付水受皿に落ちてきた蒸
発器や蒸発器の周辺の除霜水を円滑に外部へ排出するこ
とができることから、除霜水の排出不良による着霜増加
で蒸発器の通風抵抗が増加し冷却不足となるのを防止で
きるので食品の劣化を防止できる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerator. 2. Description of the Related Art In recent years, a refrigerator having improved defrosting efficiency is disclosed in Japanese Patent Application Laid-Open No. 8-54172. Hereinafter, the above-mentioned conventional refrigerator will be described with reference to the drawings. FIG. 5 is a longitudinal sectional view of a main part of a conventional refrigerator. In FIG. 5, 1 is a refrigerator main body, 2 is a freezing room inside the refrigerator main body 1, 3 is a refrigerator room inside the refrigerator main body 1, 4 is a freezing room door, 5 is a refrigerator room door, and 6 is a refrigerator room door. A partition wall separating the freezer compartment 2 and the refrigerator compartment 3, a refrigerator inlet 7 for sucking air in the freezer compartment 2, a refrigerator inlet 8 for sucking air in the refrigerator compartment 3, and a discharge outlet 9 for discharging cool air. Reference numeral 10 denotes an evaporator, and 11 denotes a fan for circulating cool air. Reference numeral 12 denotes an evaporator partition wall for separating the evaporator 10 and the freezing compartment 2, 13 denotes a tub, 14 denotes a drain port, 15 denotes a defrosting tube heater in which a coiled nichrome wire is covered with a glass tube, Reference numeral 16 denotes a roof for preventing the evaporation noise generated when the defrost water directly drops on and contacts the defrost tube heater 15.
Reference numeral 7 denotes a metal bottom plate provided between the tub 13 and the defrosting tube heater 15 and insulated and held. Next, the operation will be described. When cooling the freezer compartment 2 or the refrigerator compartment 3, the refrigerant flows through the evaporator 10 to cool the evaporator 10. Fan 11 in the same way
, The heated air of the freezing room 2 or the refrigeration room 3 is sent from the freezing room suction port 7 or the refrigeration room suction port 8 to the cooling chamber 20, the heat is exchanged by the evaporator 10, and the cooling air is cooled from the discharge port 9. The wind is sent into the freezer compartment 2, and cool air is sent from the freezer compartment 2 to the refrigerator compartment through a communication port (not shown). Here, the air that exchanges heat with the evaporator 10 is:
Since the air is humidified by the inflow of high-temperature outside air due to the opening and closing of the freezer compartment door 4 and the refrigerating compartment door 5 and the evaporation of moisture in the preserved food in the freezer compartment 2 and the refrigerating compartment 3, the temperature is lower than the air. Moisture in the air becomes frost and forms frost on the evaporator 10,
As the amount of frost increases, the heat transfer between the surface of the evaporator 10 and the air that exchanges heat is hindered, and the air flow decreases due to airflow resistance. As a result, the heat transfer rate decreases, resulting in insufficient cooling. Therefore, before the cooling becomes insufficient, the nichrome wire of the defrosting tube heater 15 is energized. When energization of the nichrome wire is started, heat rays are radiated from the nichrome wire to the evaporator 10 and peripheral components. At this time, a part of the heat ray radiated to the bottom plate 17 is reflected by the heater wire from the shape of the bottom plate 17, and the others are reflected toward the evaporator 10 and other peripheral parts. Thus, the evaporator 10, the tub 13, the drain 1
The frost that has arrived near 4 is melted in water. A part of the defrosted water thus melted falls directly into the tub 13, and the other falls into the tub 13 by the roof 16, avoiding the defrosting tube heater 15, and is discharged from the drainage port 14 to the outside of the refrigerator. You. However, in the above-mentioned conventional construction, the temperature of the glass surface is, of course, very high, not to mention the surface of the nichrome wire of the defrosting tube heater 15, and the bottom plate. Reference numeral 17 denotes a portion of the heat ray radiated from the tube heater 15 in the vicinity of the tube heater 15.
, The temperature of the tube heater 15 rises abnormally. The heating value of the tube heater 15 is the same as that of the tube heater 1.
5 is the sum of the amount of heat used to raise the temperature and the amount of heat radiated to the outside. Therefore, an increase in the temperature of the tube heater 15 means a decrease in the amount of heat radiated to the outside. Since the defrosting of the evaporator 10 and its peripheral parts is performed, the amount of heat used for defrosting the evaporator 10 and its peripheral parts is reduced, the defrosting time is extended, and as a result, the heat generation time of the tube heater 15 is reduced. Prolong and increase power. Accordingly, the power is increased, and a flammable refrigerant is used as the refrigerant, and when the flammable refrigerant leaks from a pipe installed in a portion communicating with the evaporator 10 or the inside of the refrigerator, a defrosting pipe heater is used. There is a problem that the risk of ignition by reaching the ignition temperature by the energization of No. 15 becomes extremely high. SUMMARY OF THE INVENTION In view of the above problems, the present invention aims at saving energy of a refrigerator by reducing electric power used for defrosting, and in an environment where used and combustible refrigerant leaks into an installation atmosphere of a defrosting means. An object of the present invention is to provide a refrigerator that can safely use a flammable refrigerant because the possibility of ignition of the flammable refrigerant can be reduced even when defrosting is performed. According to a first aspect of the present invention, there is provided a refrigeration cycle in which a compressor, a condenser, a decompression mechanism, and an evaporator are connected, and the evaporator is defrosted. Defrosting means for, comprising a water tray with heating means installed below the evaporator, using a flammable refrigerant for the refrigeration cycle,
The defrosting means includes a metal pipe, a heater wire made of a metal resistor installed inside the metal pipe, and an insulating material for insulating the heater wire and the metal pipe, Since the heat transfer from the defrosting means to the evaporator is good and the defrosting ability is improved, the calorific value of the defrosting means can be reduced when maintaining the same defrosting ability as before,
The surface temperature of the defrosting means can be lowered, and the defrosting means does not reach the ignition temperature of the combustible refrigerant. Further, since the water receiving pan with heating means is heated, it is possible to smoothly discharge the dropped defrost water around the evaporator and the evaporator to the outside. With the increase, it is possible to prevent the ventilation resistance of the evaporator from increasing and insufficient cooling. From the above, it is possible to save energy and at the same time maintain the same defrosting ability as in the past, while maintaining the same defrosting ability even in the case where the flammable refrigerant leaks into the installation atmosphere of the defrosting means. In addition to reducing the risk of ignition of the refrigerant, it is possible to prevent food deterioration due to insufficient cooling after defrosting. Embodiments of the present invention will be described below with reference to the drawings. In addition, about the same structure as a conventional one, the same code | symbol is attached | subjected and detailed description is abbreviate | omitted. (Embodiment 1) Embodiment 1 according to the present invention will be described with reference to the drawings. FIG. 1 is a refrigeration system diagram of a refrigerator according to the first embodiment of the present invention, and FIG. 2 is a longitudinal sectional view of a main part of the refrigerator according to the first embodiment of the present invention. As shown in FIGS. 1 and 2, reference numeral 18 denotes a compressor,
19 is a condenser, 20 is a switching valve for switching the flow path of the refrigerant,
21 is a low evaporating temperature decompression mechanism having a large decompression amount for the low evaporating temperature, 22 is a high evaporating temperature decompression mechanism having a small decompression amount for the high evaporating temperature, and 23 is a cooling for a refrigerator compartment having a high evaporating temperature for refrigerating. , 24 is a refrigerator for a freezer compartment having a low evaporation temperature for freezing, and 25 is a check valve for preventing a backflow of refrigerant from the compressor 18 or the refrigerator cooler 23 to the refrigerator cooler 24. . 26 is a defrosting means for defrosting the freezer compartment cooler, 27 is a freezer compartment partition wall separating the freezer compartment and the freezer compartment cooler, and 28 is a freezer compartment air. Freezer fan for ventilating and circulating air through the cooler 24,
Reference numeral 9 denotes a freezer compartment discharge port for discharging air cooled by heat exchange in the freezer compartment cooler 24 to the freezer compartment 2, and reference numeral 30 denotes a refrigerator compartment cooler partition wall separating the refrigerator compartment 3 and the refrigerator compartment cooler 23. , 3
Reference numeral 1 denotes a refrigerator compartment fan for ventilating and circulating the air in the refrigerator compartment 3 to the refrigerator compartment cooler 23, and 32 discharges air cooled by the heat exchange in the refrigerator compartment cooler 23 to the refrigerator compartment 3. The refrigerating compartment discharge port 33 is an evaporating dish for storing defrosted water when the defrosting means 26 defrosts the freezer compartment cooler 24. With respect to the refrigerator configured as described above,
The operation will be described below. When the refrigerator compartment 3 is cooled, when the refrigerator compartment 3 reaches a certain set temperature or higher, the compressor 18 is operated by a temperature detecting means (not shown) and circulation of a combustible refrigerant (not shown) in the refrigerating cycle starts. The combustible refrigerant is supplied to the condenser 19
The refrigerant is condensed by heat exchange with the outside air, passes through the high evaporating temperature decompression mechanism 22 by the switching valve 20, flows to the refrigerator cooler 23, and is sucked into the compressor 18 to form a refrigerating room cooling refrigerating cycle. . At this time, by operating the refrigerating compartment fan 31 simultaneously with the operation of the compressor 18, the air in the refrigerating compartment 3 is sucked in from the refrigerating compartment suction port 8 and passed through the refrigerating compartment cooler 23 to exchange heat. The cooled air is discharged from the refrigerator outlet 32 to the refrigerator 3 to cool the refrigerator 3. Also, at any time during which the compressor 18 is stopped, the refrigerating room fan 31 is operated, and the refrigerating room 3 is operated.
The air having a temperature exceeding 0 ° C. is passed through the refrigerator cooler 23. At this time, the frost formed on the refrigerator cooler 23 is defrosted while increasing the absolute humidity of the air passing through the refrigerator cooler 23. The air having the increased absolute humidity is discharged from the refrigerator outlet 32. When the freezing compartment 2 is cooled, when the freezing compartment 2 reaches a certain set temperature or higher, the compressor 18 is activated to start circulation of the flammable refrigerant in the refrigeration cycle, and the flammable refrigerant is discharged from the condenser. The refrigerant is condensed by heat exchange with the outside air at 19, flows through the low evaporating temperature reducing mechanism 21 through the switching valve 20 to the freezing room cooler 24, and is sucked into the compressor 18. Become. When the freezing room fan 28 is operated at the same time as the operation of the compressor 18, the air in the freezing room 2 is sucked from the freezing room suction port 7 and is passed through the freezing room cooler 24 to exchange heat and cool. The cooled air is discharged from the freezer compartment outlet 29 into the freezer compartment 2 to cool the freezer compartment 2. At this time, since the air flowing through the freezer compartment cooler 24 is air only in the freezer compartment 2, the amount of frost on the freezer compartment cooler 24 is reduced. Immediately after the compressor 18 stops after an elapse of an arbitrary time, or when the compressor 18 is in operation, the compressor 18 is stopped, and at the same time, the defrosting means 26 is operated, and the freezing room fan 28 is stopped. The operation of the defrosting means 26 causes the defrosting means to generate heat, and the heat generated by the defrosting means 26 is transferred to the freezer compartment cooler 24 to perform defrosting. At this time, at the start of defrosting,
Normally, the refrigerant flows backward from the refrigerator cooler 23 to the refrigerator cooler 24 whose evaporation temperature is lower than that of the refrigerator cooler 23, but in the present embodiment, the check valve 25 prevents the refrigerant from flowing back. Defrosting is performed. Further, the freezer compartment cooler 2 of the defrosting means 26
The refrigerant in the pipe of the freezer compartment cooler 24 is also heated by the heating of 4, and is gasified and discharged from the freezer compartment cooler 24. Even the discharged refrigerant may flow backward by the check valve 25. There is no. When the temperature of the freezer compartment cooler 24 and its surroundings reaches a certain temperature exceeding 0 ° C. at which the frost melts, the defrosting is completed. At this time, the defrosted water that has melted and becomes water is appropriately dropped and stored in the evaporating dish 33, and is evaporated using the waste heat generated by the operation of the compressor 18 accompanying the cooling after the completion of the defrosting, and is evaporated to the outside air. Is discharged. Accordingly, when the freezer compartment cooler 24 is being defrosted, the amount of frost to be removed by the defrosting means 26 is reduced by reducing the amount of frost formed in the freezer compartment cooler 24, and the check valve 25, it is not necessary to heat the wasteful refrigerant flowing backward to the freezer compartment cooler 24.
Energy consumption by reducing the power consumption of
Since the calorific value of the defrosting means 26 can be reduced to a calorific value that is lower than the ignition temperature of the flammable refrigerant, the environment in which the flammable refrigerant leaks into the installation atmosphere of the defrosting means 26 while maintaining the defrosting ability at or above the conventional level. Even when defrosting is performed below, the possibility of ignition of the combustible refrigerant can be reduced. (Embodiment 2) Embodiment 2 according to the present invention will be described with reference to the drawings. The same components as those in the first embodiment are denoted by the same reference numerals, and detailed description is omitted. FIG. 3 is a cross-sectional view of a main part of a refrigerator according to a second embodiment of the present invention, and FIG. 4 is a cross-sectional view of a main part of a defrosting means. As shown in FIGS. 3 and 4, reference numeral 48 denotes a metal pipe which is a component of the defrosting means 26, reference numeral 49 denotes an electrically insulating material, and reference numeral 50 denotes a water tray provided with heating means. Regarding the refrigerator configured as described above,
The operation will be described below. At the time of defrosting, the defrosting means 26 and the heating means attached to the water pan 50 with heating means generate heat and the temperature rises, and the defrosting means 26 defrosts the frost formed on itself and evaporates. The evaporator 10 is defrosted by heating the evaporator 10. Here, a part of the defrosting water that has not been discharged during the previous defrosting and remains in the water receiving tray with heating means 50 becomes ice during cooling and remains. Since the defrosting means 26 and the water tray 50 with heating means are installed so that heat transfer with frost and ice is improved, most of the heat generated by the defrosting means 26 and water tray 50 with heating means is reduced. Since it is absorbed by frost and ice, defrosting is performed at a surface temperature slightly higher than the melting point of frost and ice. When the defrosting is completed, the temperatures of the defrosting means 26 and the water receiving tray with heating means 50 also gradually rise, but the operation is stopped by the end of the defrosting, so that the temperature rise is eliminated. Further, since the refrigerant in the evaporator 10 heated simultaneously with the frost is a flammable refrigerant having good heat conductivity, the defrosting efficiency is further improved. From this, the defrosting means 26 can reduce the heat generation and the temperature can be further lowered by improving the defrosting ability in addition to lowering the temperature. While ensuring the defrosting ability of
The heater wire 37 can be set at a temperature lower than the ignition temperature of the flammable refrigerant, and the possibility of ignition can be reduced even if defrosting is performed when the flammable refrigerant leaks into the atmosphere of the defrosting means 26. In addition, since the evaporator 10 and the defrost water in the vicinity of the evaporator 10 that have fallen into the water tray 50 with heating means can be smoothly discharged to the outside, frost formation due to poor discharge of the defrost water can be achieved. With the increase, it is possible to prevent the ventilation resistance of the evaporator 10 from increasing and insufficient cooling, so that deterioration of food can be prevented. As described above, the first aspect of the present invention provides a refrigeration cycle in which a compressor, a condenser, a pressure reducing mechanism, and an evaporator are connected, and a method for defrosting the evaporator. A defrosting means, and a water tray with heating means installed below the evaporator; a flammable refrigerant is used for the refrigeration cycle; and the defrosting means is installed inside a metal pipe and the metal pipe. Since the heater wire made of a metal resistor and the insulating material for insulating the heater wire and the metal pipe are formed, the defrosting means improves the defrosting ability in addition to the temperature decrease. As a result, the heating value can be reduced and the temperature can be further reduced, so that the heater wire can be set at a temperature lower than the ignition temperature of the flammable refrigerant while saving energy and at the same time maintaining the same or higher defrosting capacity as before. Is the atmosphere of the defrosting means The possibility of ignition can be reduced even if defrosting is performed in the event of leakage. In addition, since the evaporator and the defrosted water around the evaporator that have fallen into the water pan with the heating means can be smoothly discharged to the outside, evaporation due to increased frost formation due to defective discharge of the defrosted water. As a result, it is possible to prevent the ventilation resistance of the vessel from increasing and insufficient cooling, thereby preventing the food from deteriorating.

【図面の簡単な説明】 【図1】本発明の実施の形態1における冷蔵庫の冷凍シ
ステム図 【図2】本発明の実施の形態1における冷蔵庫の要部の
断面図 【図3】本発明の実施の形態2における冷蔵庫の要部の
断面図 【図4】本発明の実施の形態2における冷蔵庫の除霜手
段の断面図 【図5】従来の冷蔵庫の要部の縦断面図 【符号の説明】 1 冷蔵庫本体 2 冷凍室 3 冷蔵室 10 蒸発器 14 排水口 16 屋根 18 圧縮機 19 凝縮器 20 切替弁 21 低蒸発温度用減圧機構 22 高蒸発温度用減圧機構 23 冷蔵室用冷却器 24 冷凍室用冷却器 25 逆止弁 26 除霜手段 37 ヒータ線 48 金属パイプ 49 絶縁材料 50 加熱手段付水受皿
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a refrigeration system diagram of a refrigerator according to the first embodiment of the present invention. FIG. 2 is a cross-sectional view of a main part of the refrigerator according to the first embodiment of the present invention. FIG. 4 is a cross-sectional view of a main part of a refrigerator according to a second embodiment. FIG. 4 is a cross-sectional view of a defrosting means of the refrigerator according to a second embodiment of the present invention. 1 Refrigerator body 2 Freezer compartment 3 Refrigerator compartment 10 Evaporator 14 Drain outlet 16 Roof 18 Compressor 19 Condenser 20 Switching valve 21 Low evaporating temperature decompression mechanism 22 High evaporating temperature decompression mechanism 23 Refrigerating room cooler 24 Freezing room Cooler 25 Check valve 26 Defrosting means 37 Heater wire 48 Metal pipe 49 Insulating material 50 Water pan with heating means

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西村 晃一 滋賀県草津市野路東2丁目3番1−2号 松下冷機株式会社内 Fターム(参考) 3L046 AA05 BA04 CA06    ────────────────────────────────────────────────── ─── Continuation of front page    (72) Inventor Koichi Nishimura             2-3-1, Nojihigashi, Kusatsu-shi, Shiga Prefecture             Matsushita Refrigeration Co., Ltd. F term (reference) 3L046 AA05 BA04 CA06

Claims (1)

【特許請求の範囲】 【請求項1】 圧縮機と凝縮器と減圧機構と蒸発器とを
接続した冷凍サイクルと、前記蒸発器を除霜するための
除霜手段と、前記蒸発器の下方に設置した加熱手段付水
受皿とを備え、前記冷凍サイクルには可燃性冷媒を使用
し、前記除霜手段は、金属パイプと、前記金属パイプ内
部に設置された金属抵抗体からなるヒータ線と、前記ヒ
ータ線と前記金属パイプとを絶縁するための絶縁材料と
から構成した冷蔵庫。
Claims: 1. A refrigeration cycle in which a compressor, a condenser, a decompression mechanism, and an evaporator are connected, a defrosting means for defrosting the evaporator, Provided with a water tray with heating means installed, using a flammable refrigerant for the refrigeration cycle, the defrosting means, a metal pipe, a heater wire consisting of a metal resistor installed inside the metal pipe, A refrigerator comprising an insulating material for insulating the heater wire and the metal pipe.
JP2003066491A 2003-03-12 2003-03-12 Refrigerator Pending JP2003232590A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003066491A JP2003232590A (en) 2003-03-12 2003-03-12 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003066491A JP2003232590A (en) 2003-03-12 2003-03-12 Refrigerator

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP31923299A Division JP3626890B2 (en) 1999-11-10 1999-11-10 refrigerator

Publications (1)

Publication Number Publication Date
JP2003232590A true JP2003232590A (en) 2003-08-22

Family

ID=27785863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003066491A Pending JP2003232590A (en) 2003-03-12 2003-03-12 Refrigerator

Country Status (1)

Country Link
JP (1) JP2003232590A (en)

Similar Documents

Publication Publication Date Title
KR100459276B1 (en) Refrigerator and defrosting heater
JP3933613B2 (en) Refrigerator and defroster
JP5178771B2 (en) Freezer refrigerator
WO2019129243A1 (en) Control method for improving evaporation capacity of refrigerator, and refrigerator
RU2472082C2 (en) Refrigerating device
JP2010133590A (en) Refrigerator-freezer
KR20200105298A (en) Control method for refrigerator
JP2019138513A (en) refrigerator
JP3626890B2 (en) refrigerator
JP5031045B2 (en) Freezer refrigerator
JP3507736B2 (en) refrigerator
JP2002267332A (en) Refrigerator
JP3404299B2 (en) refrigerator
JP2000283626A (en) Refrigerator
JP2003232590A (en) Refrigerator
JP2019027649A (en) refrigerator
JP3482406B2 (en) Freezer refrigerator
JP3482405B2 (en) refrigerator
JP2001091139A (en) Refrigerator
JP2004144364A (en) Refrigerator
JP2003227673A (en) Refrigerator
KR100866874B1 (en) Method for defrosting in refrigerator
JP2007040666A (en) Control device of refrigerator
JP4837068B2 (en) Freezer refrigerator
JPH05302780A (en) Refrigerating device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040803

A02 Decision of refusal

Effective date: 20041214

Free format text: JAPANESE INTERMEDIATE CODE: A02