JP2003230109A - Method of interpolating scanning line, and scanning line converter, and image display - Google Patents

Method of interpolating scanning line, and scanning line converter, and image display

Info

Publication number
JP2003230109A
JP2003230109A JP2002027817A JP2002027817A JP2003230109A JP 2003230109 A JP2003230109 A JP 2003230109A JP 2002027817 A JP2002027817 A JP 2002027817A JP 2002027817 A JP2002027817 A JP 2002027817A JP 2003230109 A JP2003230109 A JP 2003230109A
Authority
JP
Japan
Prior art keywords
pixel
scanning line
interpolated
correlation
diagonal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002027817A
Other languages
Japanese (ja)
Inventor
Hiroyuki Okano
浩之 岡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2002027817A priority Critical patent/JP2003230109A/en
Publication of JP2003230109A publication Critical patent/JP2003230109A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Television Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enable accurate oblique correlation type scanning line interpolation by preventing the erroneous detection of oblique correlation, thereby suppressing the deterioration of image quality. <P>SOLUTION: Using the picture elements A-N and a-n on a total of four actual scanning lines consisting of an actual scanning line (n) on a picture element X to be interpolated, an actual scanning line (n+1) under the above picture element X to be interpolated, an actual scanning line (n-1) on the above actual scanning line (n), and an actual scanning line (n+2) under the above actual scanning line (n+1); the direction where the correlation is the highest is detected from among a vertical direction and a plurality of oblique directions centering upon the picture element X to be interpolated, regarding the above picture element X to be interpolated, and the average value of the two picture elements in the above direction where the correlation is the highest on the above actual scanning line (n) and the actual scanning line (n+1) is made the picture element value of the above picture element X to be interpolated. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、テレビジョン信号
などの映像信号において入力された実走査線の間に補間
走査線を生成する走査線補間方法に関し、特に垂直方向
および斜め方向から画像の相関方向を検出し、その相関
検出方向に従って補間走査線の補間画素を生成する走査
線補間方法に関するものである。さらに、このような走
査線補間技術を用いた走査線変換装置、および走査線変
換装置を備えた画像表示装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a scanning line interpolation method for generating an interpolated scanning line between real scanning lines input in a video signal such as a television signal, and more particularly to a correlation of images from a vertical direction and an oblique direction. The present invention relates to a scanning line interpolation method for detecting a direction and generating an interpolation pixel of an interpolation scanning line according to the correlation detection direction. Further, the present invention relates to a scanning line conversion device using such a scanning line interpolation technique, and an image display device equipped with the scanning line conversion device.

【0002】[0002]

【従来の技術】走査線補間技術は、例えば、NTSC信
号に代表されるインターレース走査のテレビジョン信号
を、倍の走査線数のノンインターレース信号に変換する
走査線変換装置に用いられる。画像表示装置には、この
ような走査線変換装置を備え、ノンインターレース信号
に変換した信号を表示するものがある。
2. Description of the Related Art A scanning line interpolation technique is used, for example, in a scanning line conversion apparatus for converting an interlaced scanning television signal represented by an NTSC signal into a non-interlaced signal having a double scanning line number. Some image display devices include such a scanning line conversion device and display a signal converted into a non-interlaced signal.

【0003】走査線補間方法としては、入力画像の動き
を検出し、静止画の部分についてはフィールドメモリを
用いて1フィールド前の画像から補間走査線を生成し、
動画の部分についてはラインメモリを用いて入力フィー
ルド内の実走査線から補間走査線を生成する動き適応型
が一般的である。
As a scanning line interpolation method, a motion of an input image is detected, and for a still image portion, an interpolated scanning line is generated from an image one field before using a field memory.
For the moving image portion, a motion adaptive type is generally used in which an interpolated scan line is generated from an actual scan line in an input field using a line memory.

【0004】図12はこのような走査線変換装置のブロ
ック構成図である。図12において、1は映像信号の入
力端子、2,3はフィールドメモリ、4は動き検出回
路、5はラインメモリ、6は倍速変換回路、7は倍速変
換回路6を構成する動画部用の補間走査線生成フィル
タ、8は倍速変換回路6を構成する静止画部用の補間走
査線生成フィルタ、9は倍速変換回路6を構成するセレ
クタ回路、10は走査線数が倍に変換された映像信号の
出力端子である。
FIG. 12 is a block diagram of such a scanning line conversion device. In FIG. 12, 1 is an input terminal of a video signal, 2 and 3 are field memories, 4 is a motion detection circuit, 5 is a line memory, 6 is a double speed conversion circuit, and 7 is an interpolation for a moving image portion which constitutes the double speed conversion circuit 6. A scanning line generation filter, 8 is an interpolating scanning line generation filter for the still image portion which constitutes the double speed conversion circuit 6, 9 is a selector circuit which constitutes the double speed conversion circuit 6, and 10 is a video signal whose scanning line number is doubled. Output terminal.

【0005】動き検出回路4において、入力端子1から
入力された映像信号とフィールドメモリ3から出力され
た2フィールド分遅延された映像信号との差分が求めら
れ、この差分信号をもとに動き(動画の部分)が検出さ
れる。
In the motion detection circuit 4, the difference between the video signal input from the input terminal 1 and the video signal delayed by 2 fields output from the field memory 3 is obtained, and the motion ( Part of the video) is detected.

【0006】動画と検出された部分については、動画部
用補間走査線生成フィルタ7において、入力端子1から
入力された映像信号とラインメモリ5から出力された1
ライン分遅延された映像信号、つまり同じフィールド内
の上下の実走査線を用いて、これらの実走査線の間の補
間走査線が生成される。
For the portion detected as a moving image, in the moving image interpolation scanning line generation filter 7, a video signal input from the input terminal 1 and 1 output from the line memory 5 are output.
The video signal delayed by the line, that is, the upper and lower real scan lines in the same field is used to generate the interpolated scan lines between these real scan lines.

【0007】また、静止画と検出された部分では、静止
画部用補間走査線生成フィルタ8において、フィールド
メモリ2から出力された1フィールド分遅延された映像
信号、つまり前フィールドの映像信号がそのまま補間走
査線として出力される。
In the portion detected as a still image, the video signal delayed by one field output from the field memory 2, that is, the video signal of the previous field is output as it is in the still image portion interpolation scanning line generation filter 8. It is output as an interpolation scan line.

【0008】動画部用補間走査線生成フィルタ7および
静止画部用補間走査線生成フィルタ8からは、実走査線
の信号と補間走査ラインの信号とが、それぞれ倍速で出
力される。セレクタ回路9は、動き検出回路4の動き検
出結果に従って、動画の部分では、動画部用補間走査線
生成フィルタ7からの信号を選択して出力端子10し、
静止画の部分では、静止画部用補間走査線生成フィルタ
8からの信号を選択して出力端子10に出力する。
From the interpolation scanning line generation filter 7 for the moving image portion and the interpolation scanning line generation filter 8 for the still image portion, the signal of the actual scanning line and the signal of the interpolation scanning line are output at double speed. According to the motion detection result of the motion detection circuit 4, the selector circuit 9 selects the signal from the moving image interpolation scanning line generation filter 7 in the moving image portion and outputs it to the output terminal 10.
In the still image portion, the signal from the interpolation scanning line generation filter 8 for the still image portion is selected and output to the output terminal 10.

【0009】このように、走査線補間には、動画部用補
間走査線生成フィルタ7での走査線補間のようなフィー
ルド内での補間と、静止画部用補間走査線生成フィルタ
8での走査線補間のようなフィールド間での補間とがあ
るが、以下に説明する従来技術は、フィールド内での走
査線補間である。
As described above, in the scanning line interpolation, interpolation in the field such as scanning line interpolation in the moving image portion interpolation scanning line generation filter 7 and scanning in the still image portion interpolation scanning line generation filter 8 are performed. There is interpolation between fields such as line interpolation, but the conventional technique described below is scan line interpolation within fields.

【0010】図6は上下の実走査線上の真上および真下
の画素を用いた従来の垂直方向補間型の走査線補間方法
を説明する図である。図6において、走査線(n),走
査線(n+1)は実走査線、補間走査線(n)は実走査
線から生成される走査線である。また、a,b,cは実
走査線(n)上の隣り合う画素、d,e,fは実走査線
(n+1)上の隣り合う画素、Xは補間走査線(n)上
の補間すべき画素である。上記の画素bは補間すべき画
素Xの真上の画素、上記の画素eは補間すべき画素Xの
真下の画素である。
FIG. 6 is a diagram for explaining a conventional vertical direction interpolation type scanning line interpolation method using pixels directly above and below the upper and lower actual scanning lines. In FIG. 6, scanning line (n) and scanning line (n + 1) are actual scanning lines, and interpolation scanning line (n) is a scanning line generated from the actual scanning lines. Further, a, b, c are adjacent pixels on the actual scanning line (n), d, e, f are adjacent pixels on the actual scanning line (n + 1), and X is interpolation on the interpolation scanning line (n). It should be a pixel. The pixel b is a pixel directly above the pixel X to be interpolated, and the pixel e is a pixel directly below the pixel X to be interpolated.

【0011】図6の垂直方向補間型の走査線補間方法で
は、補間走査線(n)上の補間すべき画素Xの画素値
を、画素Xの真上にある走査線(n)上の画素bと画素
Xの真下にある走査線(n+1)上の画素eとの平均値
によって求める。
In the vertical interpolation type scanning line interpolation method of FIG. 6, the pixel value of the pixel X to be interpolated on the interpolation scanning line (n) is set to the pixel on the scanning line (n) immediately above the pixel X. It is calculated by the average value of b and the pixel e on the scanning line (n + 1) immediately below the pixel X.

【0012】しかしながら、真上および真下の画素のみ
から補間すべき画素Xの画素値を求める単純な方法で
は、斜め線がギザギザになり、画質劣化の原因となると
いう問題があった。
However, in the simple method of obtaining the pixel value of the pixel X to be interpolated only from the pixels directly above and below, there is a problem that the oblique line becomes jagged and the image quality deteriorates.

【0013】このような斜め線がギザギザになる問題を
解決するための走査線補間方法として、画像の垂直方向
および斜め方向の相関を検出して最も相関の高い方向で
補間走査線を生成する斜め相関適応型の走査線補間方法
がある。
As a scanning line interpolation method for solving such a problem that an oblique line becomes jagged, an oblique scan line in which the correlation between the vertical direction and the oblique direction of the image is detected and the interpolation scan line is generated in the direction having the highest correlation. There is a correlation adaptive scanning line interpolation method.

【0014】図7および図8は従来の斜め相関適応型の
走査線補間方法を示す図である。この図7および図8で
説明する相関適応型の走査線補間方法は、例えば特開2
001−94951号公報に記載されている。図7およ
び図8において、走査線(n),走査線(n+1)は実
走査線、補間走査線(n)は実走査線から生成される走
査線である。また、a,b,c,d,eは実走査線
(n)上の隣り合う画素、f,g,h,i,jは走査線
(n+1)上の隣り合う画素、Xは補間走査線(n)上
の補間すべき画素である。上記画素cは補間すべき画素
Xの真上の画素、上記画素hは補間すべき画素Xの真下
の画素である。
7 and 8 are diagrams showing a conventional diagonal correlation adaptive scanning line interpolation method. The correlation adaptive scanning line interpolation method described with reference to FIGS.
No. 001-94951. 7 and 8, scanning line (n) and scanning line (n + 1) are actual scanning lines, and interpolation scanning line (n) is a scanning line generated from the actual scanning lines. Further, a, b, c, d, and e are adjacent pixels on the actual scanning line (n), f, g, h, i, and j are adjacent pixels on the scanning line (n + 1), and X is an interpolation scanning line. (N) is a pixel to be interpolated. The pixel c is a pixel directly above the pixel X to be interpolated, and the pixel h is a pixel directly below the pixel X to be interpolated.

【0015】図7および図8の従来の斜め相関適応型の
走査線補間方法では、まず、図7に示すように、画素c
と画素hとの差分の絶対値|c−h|、画素aと画素i
との差分の絶対値|a−i|、画素bと画素jとの差分
の絶対値|b−j|、画素dと画素fとの差分の絶対値
|d−f|、画素eと画素gとの差分の絶対値|e−g
|、画素bと画素hとの差分の絶対値|b−h|、画素
cと画素iとの差分の絶対値|c−i|、画素cと画素
gとの差分の絶対値|c−g|、画素dと画素hとの差
分の絶対値|d−h|をそれぞれ算出する。
In the conventional diagonal correlation adaptive scanning line interpolation method shown in FIGS. 7 and 8, first, as shown in FIG.
Absolute value | c−h | of the difference between the pixel a and the pixel h
Absolute value | a−i | of the difference between pixel b and pixel j, absolute value | b−j | of the difference between pixel b and pixel j, absolute value | d−f | of the difference between pixel d and pixel f, and pixel e and pixel absolute value of the difference from g | e−g
|, Absolute value | b−h | of the difference between pixel b and pixel h, absolute value | c−i | of the difference between pixel c and pixel i, absolute value | c− of the difference between pixel c and pixel g g | and the absolute value | d−h | of the difference between the pixel d and the pixel h are calculated.

【0016】そして、垂直方向の相関を{2×|c−h
|}、第1の斜め方向の相関を{|a−i|+|b−j
|}、第2の斜め方向の相関を{|d−f|+|e−g
|}、第3の斜め方向の相関を{|b−h|+|c−i
|},第4の斜め方向の相関を{|c−g|+|d−h
|}とし、値が最も小さい方向を最も相関が高い方向と
する。
Then, the correlation in the vertical direction is {2 × | c−h
|}, The first diagonal correlation is {| a-i | + | b-j
│}, the second diagonal correlation is {| d−f | + | e−g
|, The third diagonal correlation is {| b-h | + | c-i
|}, The correlation in the fourth diagonal direction is {| c-g | + | d-h
|, And the direction with the smallest value is the direction with the highest correlation.

【0017】最も相関が高い方向が垂直方向の場合に
は、図8に示すように画素cと画素hとの平均値を補間
すべき画素Xの画素値とする。
When the direction having the highest correlation is the vertical direction, the average value of the pixels c and h is used as the pixel value of the pixel X to be interpolated, as shown in FIG.

【0018】最も相関が高い方向が第1の斜め方向の場
合には、図8に示すように画素aと画素jとの平均値を
補間すべき画素Xの画素値とする。
When the direction having the highest correlation is the first diagonal direction, the average value of the pixel a and the pixel j is set as the pixel value of the pixel X to be interpolated, as shown in FIG.

【0019】最も相関が高い方向が第2の斜め方向の場
合には、図8に示すように画素eと画素fとの平均値を
補間すべき画素Xの画素値とする。
When the direction having the highest correlation is the second diagonal direction, the average value of the pixel e and the pixel f is set as the pixel value of the pixel X to be interpolated, as shown in FIG.

【0020】最も相関が高い方向が第3の斜め方向の場
合には、図8に示すように画素bと画素iとの平均値を
補間すべき画素Xの画素値とする。
When the direction having the highest correlation is the third diagonal direction, the average value of the pixel b and the pixel i is set as the pixel value of the pixel X to be interpolated, as shown in FIG.

【0021】最も相関が高い方向が第4の斜め方向の場
合には、図8に示すように画素dと画素gとの平均値を
補間すべき画素Xの画素値とする。
When the direction having the highest correlation is the fourth diagonal direction, the average value of the pixel d and the pixel g is set as the pixel value of the pixel X to be interpolated, as shown in FIG.

【0022】このように、従来の斜め相関適応型の走査
線補間方法では、垂直方向および複数の斜め方向から最
も相関が高い方向を検出し、その方向に従って補間すべ
き画素Xの画素値を求めることによって、斜め線を滑ら
かにすることができる。
As described above, in the conventional diagonal correlation adaptive scanning line interpolation method, the direction having the highest correlation is detected from the vertical direction and a plurality of diagonal directions, and the pixel value of the pixel X to be interpolated is obtained according to the direction. As a result, the diagonal line can be smoothed.

【0023】[0023]

【発明が解決しようとする課題】しかしながら、上記従
来の斜め相関適応型の走査線補間方法では、十字の一部
を表す入力画像などにおいて、相関が最も高い方向の検
出を誤ることがあり、検出を誤った場合には画質劣化と
なるという問題があった。
However, in the above-mentioned conventional diagonal correlation adaptive scanning line interpolation method, there is a possibility that the direction of the highest correlation may be erroneously detected in the input image representing a part of the cross. There is a problem in that the image quality is deteriorated when is incorrect.

【0024】図9ないし図11は上記従来の斜め相関適
応型の走査線補間方法の課題を説明する図であって、図
9は十字の一部を表す入力画像の図、図10は上記従来
の斜め相関適応型の走査線補間方法によって生成された
図9の画像の補間画像の図、図11は図9の画像の理想
の補間画像の図である。図9ないし図11において、走
査線(n−1),走査線(n),走査線(n+1),走
査線(n+2)は実走査線であり、補間走査線(n−
1),補間走査線(n),補間走査線(n+1)は実走
査線から生成される走査線である。また、a,b,c,
d,eは実走査線(n)上の隣り合う画素、f,g,
h,i,jは走査線(n+1)上の隣り合う画素、Xは
補間すべき画素である。また、白丸、黒丸、および灰色
の四角は、実走査線上または補間走査線上の画素であ
る。白丸と黒丸は互いに画素値が異なる画素であり、白
丸同士、黒丸同士の画素値はほぼ等しい。灰色の四角の
画素値は、白丸の画素値と黒丸の画素値の平均値であ
る。
9 to 11 are views for explaining the problems of the conventional diagonal correlation adaptive scanning line interpolation method. FIG. 9 is a diagram of an input image representing a part of a cross, and FIG. 9 is an interpolated image of the image of FIG. 9 generated by the oblique correlation adaptive scanning line interpolation method of FIG. 11, and FIG. 11 is an ideal interpolated image of the image of FIG. 9 to 11, the scanning line (n-1), the scanning line (n), the scanning line (n + 1), and the scanning line (n + 2) are real scanning lines, and the interpolation scanning line (n-
1), the interpolation scan line (n), and the interpolation scan line (n + 1) are scan lines generated from the actual scan line. Also, a, b, c,
d and e are adjacent pixels on the actual scanning line (n), f, g,
h, i, and j are adjacent pixels on the scanning line (n + 1), and X is a pixel to be interpolated. White circles, black circles, and gray squares are pixels on the actual scanning line or the interpolation scanning line. White circles and black circles are pixels having different pixel values, and white circles and black circles have substantially the same pixel value. The gray square pixel value is the average value of the white circle pixel values and the black circle pixel values.

【0025】図9の十字の一部を表す画像は、例えばク
ロスハッチ信号の縦線と横線が交差する部分などに相当
する。この図9の入力画像について、上記従来の斜め相
関適応型の走査線補間方法によって補間すべき画素Xの
位置の相関を検出すると、図9の矢印のように第2の斜
め方向(画素eと画素fとを結んだ斜め方向)の相関が
最も高いと検出され、画素Xの画素値は黒丸の画素と同
じになる。
The image showing a part of the cross in FIG. 9 corresponds to, for example, a portion where the vertical line and the horizontal line of the crosshatch signal intersect. When the correlation of the position of the pixel X to be interpolated is detected in the input image of FIG. 9 by the conventional diagonal correlation adaptive scanning line interpolation method, as shown by the arrow in FIG. It is detected that the correlation in the diagonal direction connecting the pixel f) is the highest, and the pixel value of the pixel X becomes the same as that of the black circle pixel.

【0026】そして、図9の入力画像について、上記従
来の斜め相関適応型の走査線補間方法によって補間する
と、図10のようになり、十字の横線の先端の部分は、
白丸と黒丸の平均画素値である灰色の四角の画素で補間
され、十字の横線の根元の部分は、黒丸の画素で補間さ
れる。このように、図9の十字の一部を表す入力画像
を、上記従来の斜め相関適応型の走査線補間方法によっ
て補間すると、図10のような不自然な画像になってし
まう。
Then, when the input image of FIG. 9 is interpolated by the above-mentioned conventional diagonal correlation adaptive scanning line interpolation method, the result is as shown in FIG.
Gray square pixels, which are the average pixel values of white circles and black circles, are interpolated, and the root portion of the horizontal line of the cross is interpolated by black circle pixels. As described above, when the input image representing a part of the cross in FIG. 9 is interpolated by the conventional diagonal correlation adaptive scanning line interpolation method, an unnatural image as shown in FIG. 10 is obtained.

【0027】図9のような十字の一部を表す入力画像に
ついては、最も相関が高い方向を垂直方向として、上記
従来の垂直補間型の走査線補間方法のように補間画素の
画素値を真上と真下の画素の平均値とし、図11に示す
ように、十字の横線の先端から根元までを、白丸と黒丸
の画素値を平均した灰色の四角の画素で補間するのが理
想的である。
For an input image representing a part of a cross as shown in FIG. 9, the direction having the highest correlation is set as the vertical direction, and the pixel value of the interpolation pixel is set to the true value as in the conventional vertical interpolation type scanning line interpolation method. Ideally, the average value of the upper and lower pixels is used, and as shown in FIG. 11, it is ideal to interpolate from the tip of the horizontal line of the cross to the root with gray square pixels obtained by averaging the pixel values of the white and black circles. .

【0028】本発明は、このような従来の問題を解決す
るためになされたものであり、斜め相関の誤検出による
画質劣化を抑えて精度の高い斜め相関型走査線補間を可
能にすることを目的とする。
The present invention has been made to solve such a conventional problem, and it is possible to suppress the image quality deterioration due to the false detection of the diagonal correlation and enable the highly accurate diagonal correlation type scanning line interpolation. To aim.

【0029】[0029]

【課題を解決するための手段】本発明の請求項1記載の
走査線補間方法は、斜め相関適応型の走査線補間方法に
おいて、少なくとも、補間すべき画素の上の第1の実走
査線と、上記補間すべき画素の下の第2の実走査線の計
2本の実走査線上の画素を用いて、上記補間すべき画素
を中心とした垂直方向および複数の斜め方向の内から、
垂直方向を最優先とし、垂直方向になるべく近い斜め方
向を順次優先して、上記補間すべき画素について最も相
関が高い方向を検出する相関検出ステップと、上記第1
および第2の実走査線上の上記最も相関が高い方向の2
画素の平均値を上記補間すべき画素の画素値とするステ
ップとを含むことを特徴とするものである。
A scanning line interpolation method according to claim 1 of the present invention is a diagonal interpolation adaptive scanning line interpolation method, wherein at least a first actual scanning line above a pixel to be interpolated is used. , Using a pixel on a total of two actual scanning lines of the second actual scanning line below the pixel to be interpolated, from the vertical direction and a plurality of diagonal directions centering on the pixel to be interpolated,
A correlation detecting step of detecting the direction having the highest correlation among the pixels to be interpolated, by giving priority to the vertical direction first and sequentially giving priority to diagonal directions as close as possible to the vertical direction;
And 2 in the direction with the highest correlation on the second actual scan line.
And a step of setting an average value of pixels as a pixel value of the pixel to be interpolated.

【0030】請求項2記載の走査線補間方法は、請求項
1記載の走査線補間方法において、上記相関検出ステッ
プは、少なくとも上記第1および第2の実走査線につい
てはそれぞれの実走査線上の7個の画素を用い、垂直方
向ならびに右上がりの3種類の斜め方向および左上がり
の3種類の斜め方向の計7種類の方向から、最も相関が
高い方向を検出することを特徴とするものである。
A scanning line interpolation method according to a second aspect is the scanning line interpolation method according to the first aspect, wherein in the correlation detecting step, at least the first and second actual scanning lines are on the respective actual scanning lines. It is characterized by using seven pixels to detect the direction with the highest correlation from a total of seven directions, namely, the vertical direction, three types of diagonal directions to the right and three types of diagonal directions to the left. is there.

【0031】請求項3記載の走査線補間方法は、斜め相
関適応型の走査線補間方法において、少なくとも、補間
すべき画素の上の第1の実走査線と、上記補間すべき画
素の下の第2の実走査線と、上記第1の実走査線の上の
第3の実走査線と、上記第2の実走査線の下の第4の実
走査線の計4本の実走査線上の画素を用いて、上記補間
すべき画素を中心とした垂直方向および複数の斜め方向
の内から、上記補間すべき画素について最も相関が高い
方向を検出する相関検出ステップと、上記第1および第
2の実走査線上の上記最も相関が高い方向の2画素の平
均値を上記補間すべき画素の画素値とするステップとを
含むことを特徴とするものである。
According to a third aspect of the present invention, there is provided an oblique correlation adaptive scanning line interpolation method in which at least a first actual scanning line above a pixel to be interpolated and a pixel below the pixel to be interpolated. On a total of four real scanning lines, a second real scanning line, a third real scanning line above the first real scanning line, and a fourth real scanning line below the second real scanning line. Correlation detection step of detecting the direction having the highest correlation with respect to the pixel to be interpolated from among the vertical direction and a plurality of diagonal directions centering on the pixel to be interpolated, using The step of setting the average value of the two pixels in the direction having the highest correlation on the two actual scanning lines as the pixel value of the pixel to be interpolated.

【0032】請求項4記載の走査線補間方法は、請求項
3記載の走査線補間方法において、上記相関検出ステッ
プは、少なくとも上記第1および第2の実走査線上の画
素を用いて、上記補間すべき画素を中心とした垂直方向
および複数の斜め方向の内から、上記補間すべき画素に
ついて最も相関が高い方向を検出し、少なくとも上記第
1および第3の実走査線上の画素を用いて、上記第1の
実走査線と上記第3の実走査線の間の第1の参照画素を
中心とした垂直方向および複数の斜め方向の内から、上
記第1の参照画素について最も相関が高い方向を検出
し、少なくとも上記第2および第4の実走査線上の画素
を用いて、上記第2の実走査線と上記第4の実走査線の
間の第2の参照画素を中心とした垂直方向および複数の
斜め方向の内から、上記第2の参照画素について最も相
関が高い方向を検出し、上記補間すべき画素ならびに上
記第1および第2の参照画素について最も相関が高いと
してそれぞれ検出されたこれらの方向を参照して、上記
補間すべき画素について最も相関が高い方向を決定する
ことを特徴とするものである。
A scanning line interpolation method according to a fourth aspect is the scanning line interpolation method according to the third aspect, wherein in the correlation detecting step, the interpolation is performed using at least pixels on the first and second actual scanning lines. The direction having the highest correlation with respect to the pixel to be interpolated is detected from the vertical direction and a plurality of diagonal directions centered on the pixel to be interpolated, and at least the pixels on the first and third actual scanning lines are used, The direction having the highest correlation with respect to the first reference pixel from the vertical direction and the plurality of diagonal directions centering on the first reference pixel between the first actual scanning line and the third actual scanning line. In the vertical direction centered on the second reference pixel between the second real scanning line and the fourth real scanning line, using at least the pixels on the second and fourth real scanning lines. And from multiple diagonal directions, The direction having the highest correlation with respect to the second reference pixel is detected, and the direction to be interpolated and the directions detected with the highest correlation with respect to the first and second reference pixels are referred to. The feature is that the direction having the highest correlation is determined for the pixel to be interpolated.

【0033】請求項5記載の走査線補間方法は、請求項
3または4に記載の走査線補間方法において、上記相関
検出ステップは、少なくとも上記第1から第4までの実
走査線についてはそれぞれの実走査線上の7個の画素を
用い、垂直方向ならびに右上がりの3種類の斜め方向お
よび左上がりの3種類の斜め方向の計7種類の方向か
ら、最も相関が高い方向を検出することを特徴とするも
のである。
A scanning line interpolation method according to a fifth aspect is the scanning line interpolation method according to the third or fourth aspect, wherein in the correlation detecting step, at least the actual scanning lines from the first to the fourth are respectively detected. Using 7 pixels on the actual scanning line, the direction with the highest correlation is detected from a total of 7 types of directions including vertical direction, 3 types of diagonal directions to the right and 3 types of diagonal directions to the left. It is what

【0034】また、本発明の請求項6記載の走査線変換
装置は、少なくとも、補間すべき画素の上の第1の実走
査線と、上記補間すべき画素の下の第2の実走査線の計
2本の実走査線上の画素を用いて、上記補間すべき画素
を中心とした垂直方向および複数の斜め方向の内から、
垂直方向を最優先とし、垂直方向になるべく近い斜め方
向を順次優先して、上記補間すべき画素について最も相
関が高い方向を検出する相関検出手段と、上記第1およ
び第2の実走査線上の上記最も相関が高い方向の2画素
の平均値を上記補間すべき画素の画素値として、補間走
査線を生成する補間走査線生成手段とを備えることを特
徴とするものである。
According to a sixth aspect of the present invention, in the scanning line converting apparatus, at least a first actual scanning line above the pixel to be interpolated and a second actual scanning line below the pixel to be interpolated. Using a total of two pixels on the actual scanning line, from the vertical direction and a plurality of diagonal directions centering on the pixel to be interpolated,
On the first and second actual scanning lines, the correlation detection means detects the direction having the highest correlation among the pixels to be interpolated by giving priority to the vertical direction first and sequentially giving priority to diagonal directions as close as possible to the vertical direction. It is characterized by comprising an interpolation scanning line generating means for generating an interpolation scanning line by using an average value of the two pixels in the direction having the highest correlation as a pixel value of the pixel to be interpolated.

【0035】請求項7記載の走査線変換装置は、少なく
とも、補間すべき画素の上の第1の実走査線と、上記補
間すべき画素の下の第2の実走査線と、上記第1の実走
査線の上の第3の実走査線と、上記第2の実走査線の下
の第4の実走査線の計4本の実走査線上の画素を用い
て、上記補間すべき画素を中心とした垂直方向および複
数の斜め方向の内から、上記補間すべき画素について最
も相関が高い方向を検出する相関検出手段と、上記第1
および第2の実走査線上の上記最も相関が高い方向の2
画素の平均値を上記補間すべき画素の画素値として、補
間走査線を生成する補間走査線生成手段とを備えること
を特徴とするものである。
According to a seventh aspect of the present invention, there is provided a scanning line converting apparatus which has at least a first actual scanning line above a pixel to be interpolated, a second actual scanning line below the pixel to be interpolated, and the first actual scanning line. Pixels on a total of four real scanning lines including the third real scanning line above the real scanning line and the fourth real scanning line below the second real scanning line Correlation detecting means for detecting a direction having the highest correlation with respect to the pixel to be interpolated, from among the vertical direction and the plurality of diagonal directions centered on
And 2 in the direction with the highest correlation on the second actual scan line.
Interpolation scanning line generating means for generating an interpolation scanning line using the average value of the pixels as the pixel value of the pixel to be interpolated is provided.

【0036】請求項8記載の走査線変換装置は、請求項
6または7に記載の走査線変換装置において、上記補間
走査線生成手段は、動画用補間走査線生成手段であっ
て、さらに、入力映像信号の動きを検出する動き検出手
段と、静止画用補間走査線生成手段と、上記動き検出手
段によって検出された結果に基づいて、上記動画用補間
走査線生成手段から出力される信号と上記静止画用補間
走査線生成手段から出力される信号のいずれかを選択す
る選択手段とを備えることを特徴とするものである。
The scanning line converting apparatus according to claim 8 is the scanning line converting apparatus according to claim 6 or 7, wherein the interpolation scanning line generating means is a moving image interpolation scanning line generating means, and Motion detection means for detecting the motion of the video signal, still image interpolation scanning line generation means, and a signal output from the moving image interpolation scanning line generation means based on the result detected by the motion detection means and the above It is characterized by further comprising: selecting means for selecting one of the signals output from the still image interpolation scanning line generating means.

【0037】また、本発明の請求項9記載の画像表示装
置は、請求項6ないし8のいずれか1項に記載の走査線
変換装置を備えることを特徴とするものである。
An image display device according to a ninth aspect of the present invention is characterized by including the scanning line conversion device according to any one of the sixth to eighth aspects.

【0038】[0038]

【発明の実施の形態】実施の形態1.以下の実施の形態
1では、補間走査線上の補間すべき画素の上の実走査線
上の5画素と、上記補間すべき画素の下の実走査線の5
画素との計10画素を用いて、垂直方向と4種類の斜め
方向の計5種類の方向の内から、最も相関が高い方向を
検出し、検出された相関方向に従って上記補間すべき画
素の画素値を求める方法を説明する。以下の説明におい
て、実施の形態1の斜め相関適応型走査線補間方法は、
図12の動画部用補間走査線生成フィルタ7に適用され
るものとする。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiment 1. In the following first embodiment, 5 pixels on the actual scanning line above the pixel to be interpolated on the interpolation scanning line and 5 pixels on the actual scanning line below the pixel to be interpolated.
Using a total of 10 pixels, the direction with the highest correlation is detected from a total of 5 different directions of the vertical direction and 4 types of diagonal directions, and the pixel of the pixel to be interpolated according to the detected correlation direction. A method for obtaining the value will be described. In the following description, the diagonal correlation adaptive scanning line interpolation method according to the first embodiment will be described.
It shall be applied to the interpolation scanning line generation filter 7 for moving image parts of FIG.

【0039】図2は実施の形態1の斜め相関適応型走査
線補間方法を説明する図である。図2において、走査線
(n),走査線(n+1)は実走査線であり、補間走査
線(n)は実走査線から生成される走査線である。ま
た、B,C,D,E,Fは実走査線(n)上の隣り合う
画素、b,c,d,e,fは実走査線(n+1)上の隣
り合う画素、Xは補間走査線(n)上の補間すべき画素
である。上記の画素Dは補間すべき画素Xの真上の画
素、上記の画素dは補間すべき画素Xの真下の画素であ
る。
FIG. 2 is a diagram for explaining the diagonal correlation adaptive scanning line interpolation method according to the first embodiment. In FIG. 2, scanning line (n) and scanning line (n + 1) are actual scanning lines, and interpolation scanning line (n) is a scanning line generated from the actual scanning lines. B, C, D, E, and F are adjacent pixels on the actual scanning line (n), b, c, d, e, and f are adjacent pixels on the actual scanning line (n + 1), and X is interpolation scanning. Pixels to be interpolated on line (n). The pixel D is a pixel directly above the pixel X to be interpolated, and the pixel d is a pixel directly below the pixel X to be interpolated.

【0040】この実施の形態1では、補間すべき画素X
の画素値を求めるために、垂直方向と4種類の斜め方向
の計5種類の方向の内から、最も相関の高い方向を検出
する。以下に、その検出手順について説明する。
In the first embodiment, the pixel X to be interpolated
In order to obtain the pixel value of, the direction with the highest correlation is detected from a total of 5 types of directions, the vertical direction and the four types of diagonal directions. The detection procedure will be described below.

【0041】以下の実施の形態1の説明において、画素
Bと画素fとを結んだ方向を斜め方向Bf、画素Cと画
素とeを結んだ方向を斜め方向Ce、画素Eと画素cと
を結んだ方向を斜め方向Ec、画素Fと画素bとを結ん
だ方向を斜め方向Fbとする。画素Dと画素dとを結ん
だ方向は垂直方向である。
In the following description of the first embodiment, the direction connecting the pixel B and the pixel f is the oblique direction Bf, the direction connecting the pixel C and the pixel e is the oblique direction Ce, and the pixel E and the pixel c are the same. The connecting direction is an oblique direction Ec, and the connecting direction of the pixel F and the pixel b is an oblique direction Fb. The direction connecting the pixel D and the pixel d is the vertical direction.

【0042】まず、図2に示すように、画素Bと画素f
の差分の絶対値|B−f|、画素Cと画素eの差分の絶
対値|C−e|、画素Dと画素dの差分の絶対値|D−
d|、画素Eと画素cの差分の絶対値|E−c|、画素
Fと画素bの差分の絶対値|F−b|をそれぞれ算出す
る。つまり、補間すべき画素Xを中心として垂直方向と
4種類の斜め方向の画素の差分の絶対値をそれぞれ算出
する。
First, as shown in FIG. 2, pixel B and pixel f
Absolute value | B−f |, absolute value | C−e | of pixel C and pixel e, and absolute value | D− of pixel D and pixel d.
d |, the absolute value | E−c | of the difference between the pixel E and the pixel c, and the absolute value | F−b | of the difference between the pixel F and the pixel b are calculated. That is, the absolute values of the differences between the pixels in the vertical direction and the four types of diagonal directions with the pixel X to be interpolated as the center are calculated.

【0043】次に、左上がり斜め方向の差分の絶対値の
総和 SL={|B−f|+|C−e|}、 および右上がり斜め方向の差分の絶対値の総和 SR={|E−c|+|F−b|} を求め、さらにこれらの総和の差分の絶対値|SL−S
R|を求め、この|SL−SR|を固定値αと比較す
る。
Next, a sum SL of absolute values of the difference in the upward-sloping diagonal direction SL = {| Bf | + | C-e |} and a sum total of absolute values of the difference in the upward-sloping diagonal direction SR = {| E −c | + | F−b |}, and the absolute value of the difference between these sums | SL-S
R | is obtained, and this | SL-SR | is compared with a fixed value α.

【0044】そして、|SL−SR|<αならば、斜め
方向の相関は低いと判断し、垂直方向を最も相関の高い
方向とする。
If | SL-SR | <α, it is determined that the correlation in the diagonal direction is low, and the vertical direction is the direction with the highest correlation.

【0045】また、|SL−SR|≧αならば、総和S
LとSRを比較し、SL<SRならば、2つの左上がり
の斜め方向Bf,Ceの内で差分の絶対値が最も小さい
ものを相関の高い候補Δとし、SL≧SRならば、2つ
の右上がりの斜め方向Ec,Fbの内で差分の絶対値が
最も小さいものを相関の高い候補Δとする。なお、等し
いものがある場合には、垂直方向に近い斜め方向を優先
させる。そして、上記の候補Δと垂直方向の差分の絶対
値|D−d|とを比較し、Δ<|D−d|ならば、上記
の候補Δの斜め方向をそのまま最も相関の高い方向と
し、Δ≧|D−d|ならば、垂直方向を最も相関の高い
方向とする。
If | SL-SR | ≧ α, the sum S
L and SR are compared, and if SL <SR, the one having the smallest absolute value of the difference between the two upward diagonal directions Bf and Ce is set as the highly correlated candidate Δ. The one having the smallest absolute value of the difference between the upwardly inclined directions Ec and Fb is set as the candidate Δ having a high correlation. When there are equal values, the diagonal direction close to the vertical direction is prioritized. Then, the above-mentioned candidate Δ is compared with the absolute value of the vertical difference | D−d |, and if Δ <| D−d |, the diagonal direction of the above-mentioned candidate Δ is directly set as the direction with the highest correlation, If Δ ≧ | D−d |, the vertical direction is the direction with the highest correlation.

【0046】つまり、|SL−SR|≧αかつSL<S
Rならば、斜め方向Bfの差分の絶対値|B−f|と、
斜め方向Ceの差分の絶対値|C−e|の2つの内で小
さいほうを最も相関の高い候補Δとして選出する。な
お、両絶対値が等しい場合には、斜め方向Ceを優先さ
せる。そして、上記の候補Δ1と垂直方向の差分の絶対
値|D−d|とを比較し、Δ<|D−d|ならば、Δに
選出された左上がり斜め方向をそのまま最も相関の高い
方向とし、Δ≧|D−d|ならば、垂直方向を最も相関
の高い方向とする。
That is, | SL-SR | ≧ α and SL <S
If R, the absolute value of the difference in the diagonal direction Bf | B−f |
The smaller of the two absolute values | C−e | of the difference in the oblique direction Ce is selected as the candidate Δ having the highest correlation. When both absolute values are equal, the oblique direction Ce is prioritized. Then, the above-mentioned candidate Δ1 is compared with the absolute value of the vertical difference | D−d |, and if Δ <| D−d |, the diagonally upward-sloping direction selected as Δ is the direction with the highest correlation. If Δ ≧ | D−d |, the vertical direction is the direction with the highest correlation.

【0047】同様にして、|SL−SR|≧αかつSL
≧SRならば、斜め方向Ecの差分の絶対値|E−c|
と、斜め方向Fbの差分の絶対値|F−b|の2つの内
で小さいほうを最も相関の高い候補Δとして選出する。
なお、両絶対値が等しい場合には、斜め方向Ecを優先
させる。そして、上記の候補Δと垂直方向の差分の絶対
値|D−d|とを比較し、Δ<|D−d|ならば、Δに
選出された右上がり斜め方向をそのまま最も相関の高い
方向とし、Δ≧|D−d|ならば、垂直方向を最も相関
の高い方向とする。
Similarly, | SL-SR | ≧ α and SL
If ≧ SR, the absolute value of the difference in the diagonal direction Ec | E−c |
And the smaller absolute value | F−b | of the difference in the diagonal direction Fb, the smaller one is selected as the candidate Δ having the highest correlation.
When both absolute values are equal, the diagonal direction Ec is prioritized. Then, the above-mentioned candidate Δ is compared with the absolute value of the vertical difference | D−d |, and if Δ <| D−d |, the upward-sloping diagonal direction selected as Δ is the direction with the highest correlation. If Δ ≧ | D−d |, the vertical direction is the direction with the highest correlation.

【0048】この実施の形態1では、垂直方向と4種類
の斜め方向の計5種類の方向の内から最も相関の高いと
検出された方向に従って、補間すべき画素Xの画素値を
算出する。以下に、その算出手順について以下に説明す
る。
In the first embodiment, the pixel value of the pixel X to be interpolated is calculated in accordance with the direction detected to have the highest correlation from the total of 5 types of directions including the vertical direction and the four types of diagonal directions. The calculation procedure will be described below.

【0049】最も相関の高い方向として垂直方向が検出
された場合には、図2の画素Dと画素dの平均値{(D
+d)/2}を、補間すべき画素Xの画素値とする。
When the vertical direction is detected as the direction having the highest correlation, the average value {(D
Let + d) / 2} be the pixel value of the pixel X to be interpolated.

【0050】最も相関の高い方向として斜め方向Bfが
検出された場合には、図2の画素Bと画素fの平均値
{(B+f)/2}を、補間すべき画素Xの画素値とす
る。
When the diagonal direction Bf is detected as the direction having the highest correlation, the average value {(B + f) / 2} of the pixel B and the pixel f in FIG. 2 is set as the pixel value of the pixel X to be interpolated. .

【0051】最も相関の高い方向として斜め方向Ceが
検出された場合には、図2の画素Cと画素eの平均値
{(C+e)/2}を、補間すべき画素Xの画素値とす
る。
When the oblique direction Ce is detected as the direction having the highest correlation, the average value {(C + e) / 2} of the pixel C and the pixel e in FIG. 2 is set as the pixel value of the pixel X to be interpolated. .

【0052】最も相関の高い方向として斜め方向Ecが
検出された場合には、図2の画素Eと画素cの平均値
{(E+c)/2}を、補間すべき画素Xの画素値とす
る。
When the diagonal direction Ec is detected as the direction having the highest correlation, the average value {(E + c) / 2} of the pixel E and the pixel c in FIG. 2 is set as the pixel value of the pixel X to be interpolated. .

【0053】最も相関の高い方向として斜め方向Fbが
検出された場合には、図2の画素Fと画素bの平均値
{(F+b)/2}を、補間すべき画素Xの画素値とす
る。
When the diagonal direction Fb is detected as the direction having the highest correlation, the average value {(F + b) / 2} of the pixel F and the pixel b in FIG. 2 is set as the pixel value of the pixel X to be interpolated. .

【0054】以上のように実施の形態1によれば、垂直
方向と4種類の斜め方向の計5種類の方向の内から、垂
直方向を最優先とし、垂直方向になるべく近い斜め方向
を順次優先して、最も相関の高い方向を検出することに
より、斜め相関の誤検出を低減して精度の高い補間がで
きる。
As described above, according to the first embodiment, the vertical direction is given the highest priority out of the total of 5 directions including the vertical direction and the four oblique directions, and the oblique directions that are as close to the vertical direction as possible are sequentially prioritized. Then, by detecting the direction with the highest correlation, it is possible to reduce false detection of diagonal correlation and perform highly accurate interpolation.

【0055】実施の形態2.以下の実施の形態2では、
上記実施の形態1と同様にして、補間走査線上の補間す
べき画素の上の実走査線上の7画素と、上記補間すべき
画素の下の実走査線上の7画素との計14画素を用い
て、垂直方向と6種類の斜め方向の計7種類の方向の内
から、最も相関が高い方向を検出し、検出された相関方
向に従って上記補間すべき画素の画素値を求める方法を
説明する。以下の説明において、実施の形態1の斜め相
関適応型走査線補間方法は、図12の動画部用補間走査
線生成フィルタ7に適用されるものとする。
Embodiment 2. In the following second embodiment,
Similar to the first embodiment, a total of 14 pixels are used, that is, 7 pixels on the actual scanning line above the pixel to be interpolated on the interpolation scanning line and 7 pixels on the actual scanning line below the pixel to be interpolated. Next, a method of detecting the direction having the highest correlation from the total of seven types of directions, namely the vertical direction and the six types of diagonal directions, and obtaining the pixel value of the pixel to be interpolated according to the detected correlation direction will be described. In the following description, the diagonal correlation adaptive scanning line interpolation method of the first embodiment is applied to the moving image portion interpolation scanning line generation filter 7 of FIG.

【0056】図3は実施の形態2の斜め相関適応型走査
線補間方法を説明する図である。図3において、走査線
(n),走査線(n+1)は実走査線であり、補間走査
線(n)は実走査線から生成される走査線である。ま
た、A,B,C,D,E,F,Gは実走査線(n)上の
隣り合う画素、a,b,c,d,e,f,gは実走査線
(n+1)上の隣り合う画素、Xは補間走査線(n)上
の補間すべき画素である。上記の画素Dは補間すべき画
素Xの真上の画素、上記の画素dは補間すべき画素Xの
真下の画素である。
FIG. 3 is a diagram for explaining the diagonal correlation adaptive scanning line interpolation method according to the second embodiment. In FIG. 3, scanning line (n) and scanning line (n + 1) are actual scanning lines, and interpolation scanning line (n) is a scanning line generated from the actual scanning lines. Further, A, B, C, D, E, F, and G are adjacent pixels on the actual scanning line (n), and a, b, c, d, e, f, and g are on the actual scanning line (n + 1). Adjacent pixels, X, are pixels to be interpolated on the interpolation scanning line (n). The pixel D is a pixel directly above the pixel X to be interpolated, and the pixel d is a pixel directly below the pixel X to be interpolated.

【0057】この実施の形態2では、補間すべき画素X
の画素値を求めるために、垂直方向と6種類の斜め方向
の計7種類の方向の内から、最も相関の高い方向を検出
する。以下に、その検出手順について説明する。
In the second embodiment, the pixel X to be interpolated
In order to obtain the pixel value of, the direction with the highest correlation is detected from the total of 7 types of directions including the vertical direction and 6 types of diagonal directions. The detection procedure will be described below.

【0058】以下の実施の形態2の説明において、画素
Aと画素gとを結んだ方向を斜め方向Ag、画素Bと画
素fとを結んだ方向を斜め方向Bf、画素Cと画素eと
を結んだ方向を斜め方向Ce、画素Eと画素cとを結ん
だ方向を斜め方向Ec、画素Fと画素bとを結んだ方向
を斜め方向Fb、画素Gと画素aとを結んだ方向を斜め
方向Gaとする。画素Dと画素dとを結んだ方向は垂直
方向である。
In the following description of the second embodiment, the direction connecting the pixel A and the pixel g is the oblique direction Ag, the direction connecting the pixel B and the pixel f is the oblique direction Bf, and the pixel C and the pixel e are the same. The connecting direction is oblique direction Ce, the direction connecting pixel E and pixel c is oblique direction Ec, the direction connecting pixel F and pixel b is oblique direction Fb, and the direction connecting pixel G and pixel a is oblique. The direction is Ga. The direction connecting the pixel D and the pixel d is the vertical direction.

【0059】まず、図3に示すように、画素Aと画素g
の差分の絶対値|A−g|、画素Bと画素fの差分の絶
対値|B−f|、画素Cと画素eの差分の絶対値|C−
e|、画素Dと画素dの差分の絶対値|D−d|、画素
Eと画素cの差分の絶対値|E−c|、画素Fと画素b
の差分の絶対値|F−b|、画素Gと画素aの差分の絶
対値|G−a|をそれぞれ算出する。つまり、補間すべ
き画素Xを中心として垂直方向と6種類の斜め方向の画
素の差分の絶対値をそれぞれ算出する。
First, as shown in FIG. 3, pixel A and pixel g
Absolute value | A−g |, absolute value of difference between pixel B and pixel f | B−f |, absolute value of difference between pixel C and pixel e | C−
e |, absolute value | D−d | of the difference between pixel D and pixel d, absolute value | E−c | of the difference between pixel E and pixel c, pixel F and pixel b
The absolute value | F−b | of the difference and the absolute value | G−a | of the difference between the pixel G and the pixel a are calculated. That is, the absolute values of the differences between the pixels in the vertical direction and the six types of diagonal directions with the pixel X to be interpolated as the center are calculated.

【0060】次に、左上がり斜め方向の差分の絶対値の
総和 SL={|A−g|+|B−f|+|C−e|}、 および右上がり斜め方向の差分の絶対値の総和 SR={|E−c|+|F−b|+|G−a|} を求め、さらにこれらの総和の差分の絶対値|SL−S
R|を求め、この|SL−SR|を固定値αと比較す
る。
Next, the sum SL of absolute values of the difference in the upward-sloping diagonal direction SL = {| A-g | + | B-f | + | C-e |} and the absolute value of the difference in the upward-sloping diagonal direction Sum SR = {| E-c | + | F-b | + | G-a |} is obtained, and the absolute value of the difference between these sums | SL-S
R | is obtained, and this | SL-SR | is compared with a fixed value α.

【0061】そして、|SL−SR|<αならば、斜め
方向の相関は低いと判断し、垂直方向を最も相関の高い
方向とする。
If | SL-SR | <α, it is determined that the correlation in the diagonal direction is low, and the vertical direction is the direction with the highest correlation.

【0062】また、|SL−SR|≧αならば、総和S
LとSRを比較し、SL<SRならば、3つの左上がり
斜め方向Ag,Bf,Ceの内で差分の絶対値が最も小
さいものを相関の高い候補Δとし、SL≧SRならば、
3つの右上がり斜め方向Ec,Fb,Gaの内で差分の
絶対値が最も小さいものを相関の高い候補Δとする。な
お、等しいものがある場合には、垂直方向に近い斜め方
向を優先させる。そして、上記の候補Δと垂直方向の差
分の絶対値|D−d|とを比較し、Δ<|D−d|なら
ば、上記の候補Δの斜め方向をそのまま最も相関の高い
方向とし、Δ≧|D−d|ならば、垂直方向を最も相関
の高い方向とする。
If | SL-SR | ≧ α, the sum S
L and SR are compared, and if SL <SR, the one having the smallest absolute value of the difference among the three upward-sloping diagonal directions Ag, Bf, Ce is set as the highly correlated candidate Δ, and if SL ≧ SR,
The one having the smallest absolute value of the difference among the three upward-sloping diagonal directions Ec, Fb, and Ga is set as the candidate Δ having a high correlation. When there are equal values, the diagonal direction close to the vertical direction is prioritized. Then, the above-mentioned candidate Δ is compared with the absolute value of the vertical difference | D−d |, and if Δ <| D−d |, the diagonal direction of the above-mentioned candidate Δ is directly set as the direction with the highest correlation, If Δ ≧ | D−d |, the vertical direction is the direction with the highest correlation.

【0063】つまり、|SL−SR|≧αかつSL<S
Rならば、斜め方向Agの差分の絶対値|A−g|と、
斜め方向Bfの差分の絶対値|B−f|と、斜め方向C
eの差分の絶対値|C−e|の3つの内で最小のものを
最も相関の高い候補Δとして選出する。なお、等しいも
のがある場合には、斜め方向Ce、斜め方向Bg、斜め
方向Agの順で優先させる。そして、上記の候補Δと垂
直方向の差分の絶対値|D−d|とを比較し、Δ<|D
−d|ならば、Δに選出された斜め方向をそのまま最も
相関の高い候補とし、Δ≧|D−d|ならば、垂直方向
を最も相関の高い方向とする。
That is, | SL-SR | ≧ α and SL <S
If R, the absolute value of the difference in the diagonal direction Ag | A−g |
Absolute value | B−f | of the difference in diagonal direction Bf and diagonal direction C
Among the three absolute values | C−e | of the difference of e, the smallest one is selected as the candidate Δ having the highest correlation. When there are equal values, the diagonal direction Ce, the diagonal direction Bg, and the diagonal direction Ag are given priority in this order. Then, the above candidate Δ is compared with the absolute value of the vertical difference | D−d |, and Δ <| D
If -d |, the diagonal direction selected as Δ is directly regarded as the candidate with the highest correlation, and if Δ ≧ | D−d |, the vertical direction is determined as the direction with the highest correlation.

【0064】同様に、|SL−SR|≧αかつSL≧S
Rならば、斜め方向Ecの差分の絶対値|E−c|と、
斜め方向Fbの差分の絶対値|F−b|と、斜め方向G
aの差分の絶対値|G−a|の3つの内で最小のものを
最も相関の高い候補Δとして選出する。なお、等しいも
のがある場合には、斜め方向Ec、斜め方向Fb、斜め
方向Gaの順で優先させる。そして、上記の候補Δと垂
直方向の差分の絶対値|D−d|とを比較し、Δ<|D
−d|ならば、Δに選出された斜め方向をそのまま最も
相関の高い候補とし、Δ≧|D−d|ならば、垂直方向
を最も相関の高い方向とする。
Similarly, | SL-SR | ≧ α and SL ≧ S
If R, the absolute value of the difference in the diagonal direction Ec | E-c |
Absolute value | F−b | of the difference in diagonal direction Fb and diagonal direction G
The smallest of the absolute values | G−a | of the difference of a is selected as the candidate Δ having the highest correlation. If there are equal values, the diagonal direction Ec, the diagonal direction Fb, and the diagonal direction Ga are given priority in this order. Then, the above candidate Δ is compared with the absolute value of the vertical difference | D−d |, and Δ <| D
If -d |, the diagonal direction selected as Δ is directly regarded as the candidate with the highest correlation, and if Δ ≧ | D−d |, the vertical direction is determined as the direction with the highest correlation.

【0065】この実施の形態2では、垂直方向と6種類
の斜め方向の計7種類の方向の内から最も相関の高いと
検出された方向に従って、補間すべき画素Xの画素値を
算出する。以下に、その算出手順について以下に説明す
る。
In the second embodiment, the pixel value of the pixel X to be interpolated is calculated in accordance with the direction detected to have the highest correlation from the total of 7 types of directions including the vertical direction and the 6 types of diagonal directions. The calculation procedure will be described below.

【0066】最も相関の高い方向として垂直方向が選択
された場合には、図3の画素Dと画素dの平均値{(D
+d)/2}を、補間すべき画素Xの画素値とする。
When the vertical direction is selected as the direction having the highest correlation, the average value {(D
Let + d) / 2} be the pixel value of the pixel X to be interpolated.

【0067】最も相関の高い方向として斜め方向Agが
検出された場合には、図3の画素Aと画素gの平均値
{(A+g)/2}を、補間すべき画素Xの画素値とす
る。
When the diagonal direction Ag is detected as the direction having the highest correlation, the average value {(A + g) / 2} of the pixel A and the pixel g in FIG. 3 is set as the pixel value of the pixel X to be interpolated. .

【0068】最も相関の高い方向として斜め方向Bfが
検出された場合には、図3の画素Bと画素fの平均値
{(B+f)/2}を、補間すべき画素Xの画素値とす
る。
When the diagonal direction Bf is detected as the direction having the highest correlation, the average value {(B + f) / 2} of the pixel B and the pixel f in FIG. 3 is set as the pixel value of the pixel X to be interpolated. .

【0069】最も相関の高い方向として斜め方向Ceが
検出された場合には、図3の画素Cと画素eの平均値
{(C+e)/2}を、補間すべき画素Xの画素値とす
る。
When the oblique direction Ce is detected as the direction having the highest correlation, the average value {(C + e) / 2} of the pixel C and the pixel e in FIG. 3 is set as the pixel value of the pixel X to be interpolated. .

【0070】最も相関の高い方向として斜め方向Ecが
検出された場合には、図3の画素Eと画素cの平均値
{(E+c)/2}を、補間すべき画素Xの画素値とす
る。
When the diagonal direction Ec is detected as the direction having the highest correlation, the average value {(E + c) / 2} of the pixel E and the pixel c in FIG. 3 is set as the pixel value of the pixel X to be interpolated. .

【0071】最も相関の高い方向として斜め方向Fbが
検出された場合には、図3の画素Fと画素bとの平均値
{(F+b)/2}を補間すべき画素Xの画素値とす
る。
When the diagonal direction Fb is detected as the direction having the highest correlation, the average value {(F + b) / 2} of the pixel F and the pixel b in FIG. 3 is set as the pixel value of the pixel X to be interpolated. .

【0072】最も相関の高い方向として斜め方向Gaが
検出された場合には、図3の画素Gと画素aの平均値
{(G+a)/2}を、補間すべき画素Xの画素値とす
る。
When the diagonal direction Ga is detected as the direction having the highest correlation, the average value {(G + a) / 2} of the pixel G and the pixel a in FIG. 3 is set as the pixel value of the pixel X to be interpolated. .

【0073】以上のように実施の形態2によれば、垂直
方向と6種類の斜め方向の計7種類の方向の内から、垂
直方向を最優先とし、次に垂直方向になるべく近い斜め
方向を順次優先して、最も相関が高い方向を検出するこ
とにより、斜め相関の誤検出を低減して、上記実施の形
態1よりもさらに精度の高い補間ができる。
As described above, according to the second embodiment, the vertical direction is given the highest priority from the total of 7 kinds of directions including the vertical direction and 6 kinds of oblique directions, and the oblique direction which is next as close to the vertical direction as possible is selected. By sequentially prioritizing and detecting the direction with the highest correlation, it is possible to reduce false detection of diagonal correlation and perform interpolation with higher accuracy than in the first embodiment.

【0074】実施の形態3.以下の実施の形態3では、
補間走査線上の補間すべき画素の上の2本の実走査線
と、上記補間すべき画素の下の2本の実走査線の計4本
の実走査線上の画素を用いて、垂直方向と6種類の斜め
方向の計7種類の方向の内から、最も相関が高い方向を
検出し、検出された相関方向に従って上記補間すべき画
素画素値を求める方法を説明する。
Third Embodiment In the following third embodiment,
By using two real scanning lines above the pixel to be interpolated on the interpolation scanning line and two real scanning lines below the pixel to be interpolated, a total of four pixels on the real scanning line, A method of detecting the direction with the highest correlation from the total of 7 types of 6 types of diagonal directions and obtaining the pixel pixel value to be interpolated according to the detected correlation direction will be described.

【0075】このように実施の形態3では4本の実走査
線を用いるので、実施の形態3が適用される走査線変換
装置の動画部用補間走査線生成フィルタには、4本の実
走査線の信号が入力され、これら4本の実走査線の画素
を用いて、最も相関が高い方向が検出され、補間画素を
生成される。
As described above, since four real scanning lines are used in the third embodiment, four real scanning lines are used in the interpolation scanning line generation filter for the moving image section of the scanning line conversion apparatus to which the third embodiment is applied. The signal of the line is input, the direction having the highest correlation is detected using the pixels of these four actual scanning lines, and the interpolated pixel is generated.

【0076】図13は実施の形態3の斜め相関適応型走
査線補間方法が適用される走査線変換装置のブロック構
成図である。図13において、図12と同じものあるい
は相当するものには同じ符号を付してあり、1は映像信
号の入力端子、2,3はフィールドメモリ、4は動き検
出回路、5,11,12はラインメモリ、6は倍速変換
回路、7は倍速変換回路6を構成する動画部用の補間走
査線生成フィルタ、8は倍速変換回路6を構成する静止
画部用の補間走査線生成フィルタ、9は倍速変換回路6
を構成するセレクタ回路、10は走査線数が倍に変換さ
れた映像信号の出力端子である。
FIG. 13 is a block diagram of a scanning line conversion apparatus to which the diagonal correlation adaptive scanning line interpolation method of the third embodiment is applied. In FIG. 13, the same or corresponding parts as those in FIG. 12 are designated by the same reference numerals, 1 is a video signal input terminal, 2 and 3 are field memories, 4 is a motion detection circuit, and 5, 11 and 12 are A line memory, 6 is a double speed conversion circuit, 7 is an interpolation scanning line generation filter for a moving image portion which constitutes the double speed conversion circuit 6, 8 is an interpolation scanning line generation filter for a still image portion which constitutes the double speed conversion circuit 6, and 9 is Double speed conversion circuit 6
The selector circuit 10 and 10 are output terminals for a video signal whose number of scanning lines is doubled.

【0077】図13の走査線変換装置は、図12の走査
線変換装置において、ラインメモリ11,12を設け、
これらラインメモリ11,12の出力信号を動画部用補
間フィルタ7に入力する構成としたものである。従っ
て、図13の走査線変換装置では、入力端子1に入力さ
れた映像信号と、入力信号を1ライン分遅延したライン
メモリ5からの出力信号と、入力信号を2ライン分遅延
したラインメモリ11からの出力信号と、入力信号を3
ライン分遅延したラインメモリ12からの出力信号の計
4本の実走査線の信号が動画部用補間フィルタ7に入力
される。以下の説明において、実施の形態3の斜め相関
適応型走査線補間方法は、図13の動画部用補間走査線
生成フィルタ7に適用されるものとする。
The scanning line converting apparatus of FIG. 13 is different from the scanning line converting apparatus of FIG. 12 in that line memories 11 and 12 are provided.
The output signals of the line memories 11 and 12 are input to the moving image interpolation filter 7. Therefore, in the scanning line conversion apparatus of FIG. 13, the video signal input to the input terminal 1, the output signal from the line memory 5 which is the input signal delayed by one line, and the line memory 11 which is the input signal delayed by two lines. Output signal from and input signal 3
The signals of a total of four actual scanning lines, which are the output signals from the line memory 12 delayed by the line, are input to the moving image interpolation filter 7. In the following description, the diagonal correlation adaptive scanning line interpolation method of the third embodiment is applied to the moving image portion interpolation scanning line generation filter 7 of FIG.

【0078】図1は実施の形態3の斜め相関適応型走査
線補間方法を説明する図である。図1において、走査線
(n−1),走査線(n),走査線(n+1),走査線
(n+2)は実走査線であり、補間走査線(n−1),
補間走査線(n),補間走査線(n+1)は実走査線か
ら生成される走査線である。また、A,B,C,D,
E,F,Gは実走査線(n)上の隣り合う画素、a,
b,c,d,e,f,gは実走査線(n+1)上の隣り
合う画素、H,I,J,K,L,M,Nは実走査線(n
−1)上の隣り合う画素、h,i,j,k,l,m,n
は実走査線(n+2)上の隣り合う画素、Xは補間走査
線(n)上の補間すべき画素、X1は補間走査線(n−
1)上の参照画素、X2は補間走査線(n+1)上の参
照画素である。上記の画素Dは補間すべき画素Xの真上
の画素、上記の参照画素X1は画素Dの真上の画素、上
記の画素Kは参照画素X1の真上の画素である。また、
上記画素dは補間すべき画素Xの真下の画素、上記の参
照画素X2は画素dの真下の画素、上記の画素kは参照
画素X2の真下の画素である。
FIG. 1 is a diagram for explaining the diagonal correlation adaptive scanning line interpolation method according to the third embodiment. In FIG. 1, scanning line (n-1), scanning line (n), scanning line (n + 1), scanning line (n + 2) are real scanning lines, and interpolation scanning line (n-1),
The interpolation scanning line (n) and the interpolation scanning line (n + 1) are scanning lines generated from the actual scanning line. Also, A, B, C, D,
E, F, and G are adjacent pixels on the actual scanning line (n), a,
b, c, d, e, f, g are adjacent pixels on the real scanning line (n + 1), and H, I, J, K, L, M, N are real scanning lines (n + 1).
-1) Adjacent pixels on h, i, j, k, l, m, n
Is an adjacent pixel on the actual scanning line (n + 2), X is a pixel to be interpolated on the interpolation scanning line (n), and X1 is an interpolation scanning line (n−).
The reference pixel on 1) and X2 are the reference pixels on the interpolation scanning line (n + 1). The pixel D is a pixel directly above the pixel X to be interpolated, the reference pixel X1 is a pixel directly above the pixel D, and the pixel K is a pixel directly above the reference pixel X1. Also,
The pixel d is a pixel directly below the pixel X to be interpolated, the reference pixel X2 is a pixel directly below the pixel d, and the pixel k is a pixel directly below the reference pixel X2.

【0079】この実施の形態3では、補間すべき画素X
の画素値を求めるために、補間すべき画素Xならびに参
照画素X1およびX2においての最も相関の高い方向
を、垂直方向と6種類の斜め方向の計7種類の方向の内
からそれぞれ検出し、補間すべき画素Xならびに参照画
素X1およびX2について最も相関の高いと検出した方
向を参照して、補間すべき画素Xについての最も相関の
高い方向を決定する。以下に、その検出手順について説
明する。
In the third embodiment, the pixel X to be interpolated
In order to obtain the pixel value of, the direction with the highest correlation in the pixel X to be interpolated and the reference pixels X1 and X2 is detected from each of the total of seven types of directions including the vertical direction and six types of diagonal directions, and interpolation is performed. The direction with the highest correlation for the pixel X to be interpolated and the reference pixels X1 and X2 is referred to, and the direction with the highest correlation for the pixel X to be interpolated is determined. The detection procedure will be described below.

【0080】以下の実施の形態3の説明において、画素
Aと画素gとを結んだ方向を斜め方向Ag、画素Bと画
素fとを結んだ方向を斜め方向Bf、画素Cと画素eと
を結んだ方向を斜め方向Ce、画素Eと画素cとを結ん
だ方向を斜め方向Ec、画素Fと画素bとを結んだ方向
を斜め方向Fb、画素Gと画素aとを結んだ方向を斜め
方向Gaとし、画素Hと画素Gとを結んだ方向を斜め方
向HG、画素Iと画素Fとを結んだ方向を斜め方向I
F、画素Jと画素Eとを結んだ方向を斜め方向JE、画
素Lと画素Cとを結んだ方向を斜め方向LC、画素Mと
画素Bとを結んだ方向を斜め方向MB、画素Nと画素A
とを結んだ方向を斜め方向NAとし、画素aと画素nと
を結んだ方向を斜め方向an、画素bと画素mとを結ん
だ方向を斜め方向bm、画素cと画素lとを結んだ方向
を斜め方向cl、画素eと画素jとを結んだ方向を斜め
方向ej、画素fと画素iとを結んだ方向を斜め方向f
i、画素gと画素hとを結んだ方向を斜め方向ghとす
る。また、斜め方向Ag,HG,anを第1の斜め方
向、斜め方向Bf,IF,bmを第2の斜め方向、斜め
方向Ce,JE,clを第3の斜め方向、斜め方向E
c,LC,ejを第4の斜め方向、斜め方向Fb,M
B,fiを第5の斜め方向、斜め方向Ga,NA,gh
を第6の斜め方向とする。画素Dと画素dとを結んだ方
向、画素Kと画素Dとを結んだ方向、および画素dと画
素kとを結んだ方向は、垂直方向である。
In the following description of the third embodiment, the direction connecting the pixel A and the pixel g is the oblique direction Ag, the direction connecting the pixel B and the pixel f is the oblique direction Bf, and the pixel C and the pixel e are the same. The connecting direction is oblique direction Ce, the direction connecting pixel E and pixel c is oblique direction Ec, the direction connecting pixel F and pixel b is oblique direction Fb, and the direction connecting pixel G and pixel a is oblique. Let Ga be the direction Ga, the direction connecting the pixels H and G is the diagonal direction HG, and the direction connecting the pixels I and F is the diagonal direction I.
F, the direction connecting the pixels J and E is a diagonal direction JE, the direction connecting the pixels L and C is a diagonal direction LC, the direction connecting the pixels M and B is a diagonal direction MB, and the pixel N. Pixel A
Is a diagonal direction NA, a direction connecting the pixel a and the pixel n is a diagonal direction an, a direction connecting the pixel b and the pixel m is a diagonal direction bm, and a direction connecting the pixel c and the pixel l. The direction is diagonal direction cl, the direction connecting pixel e and pixel j is diagonal direction ej, and the direction connecting pixel f and pixel i is diagonal direction f.
i, the direction connecting the pixel g and the pixel h is defined as an oblique direction gh. Further, the oblique directions Ag, HG, an are the first oblique direction, the oblique directions Bf, IF, bm are the second oblique directions, and the oblique directions Ce, JE, cl are the third oblique direction, and the oblique direction E.
c, LC, ej in the fourth diagonal direction, diagonal direction Fb, M
B, fi in the fifth diagonal direction, diagonal directions Ga, NA, gh
Is the sixth diagonal direction. The direction connecting the pixel D and the pixel d, the direction connecting the pixel K and the pixel D, and the direction connecting the pixel d and the pixel k are vertical directions.

【0081】まず、上記実施の形態2と同様に、補間す
べき画素Xの上下の実走査線上の画素を用いて、補間す
べき画素Xについて垂直方向と第1〜第6の斜め方向の
計7種類の方向の内で最も相関が高い方向を検出する。
First, similarly to the second embodiment, the pixels on the actual scanning lines above and below the pixel X to be interpolated are used to measure the pixel X to be interpolated in the vertical direction and the first to sixth diagonal directions. The direction with the highest correlation is detected among the seven types of directions.

【0082】同様に、補間走査線(n−1)の上下の実
走査線上の画素を用いて、参照画素X1について垂直方
向と第1〜第6の斜め方向の計7種類の方向の内で最も
相関が高い方向を検出する。
Similarly, by using the pixels on the actual scanning lines above and below the interpolation scanning line (n-1), the reference pixel X1 can be selected from the vertical direction and the first to sixth diagonal directions in a total of seven directions. The direction with the highest correlation is detected.

【0083】また同様に、補間走査線(n+1)の上下
の実走査線上の画素を用いて、参照画素X2について垂
直方向と第1〜第6の斜め方向の計7種類の方向の内で
最も相関が高い方向を検出する。
Similarly, using the pixels on the actual scanning lines above and below the interpolation scanning line (n + 1), the reference pixel X2 is the most vertical direction and the first to sixth oblique directions among the total of seven kinds of directions. Detect the direction with high correlation.

【0084】つまり、補間すべき画素Xについては、実
走査線(n)上の画素A,B,C,D,E,F,Gと実
走査線(n+1)上の画素a,b,c,d,e,f,g
とを用いて、差分の絶対値|A−g|,|B−f|,|
C−e|,|D−d|,|E−c|,|F−b|,|G
−a|をそれぞれ算出し、左上がり斜め方向の差分の絶
対値の総和 SL={|A−g|+|B−f|+|C−e|}、 および右上がり斜め方向の差分の絶対値の総和 SR={|E−c|+|F−b|+|G−a|} を求め、さらにこれらの総和の差分の絶対値|SL−S
R|を求め、この|SL−SR|を固定値αと比較す
る。
That is, for the pixel X to be interpolated, the pixels A, B, C, D, E, F, G on the actual scanning line (n) and the pixels a, b, c on the actual scanning line (n + 1). , D, e, f, g
And the absolute value of the difference | A−g |, | B−f |, |
C-e |, | D-d |, | E-c |, | F-b |, | G
−a | is calculated respectively, and the sum SL of absolute values of the difference in the upward-sloping diagonal direction SL = {| A−g | + | B−f | + | C−e |} and the absolute difference in the upward-sloping diagonal direction are calculated. The sum of the values SR = {| E−c | + | F−b | + | G−a |} is obtained, and the absolute value of the difference between these sums | SL−S
R | is obtained, and this | SL-SR | is compared with a fixed value α.

【0085】そして、|SL−SR|<αならば、斜め
方向の相関は低いと判断し、垂直方向を、補間すべき画
素Xについての最も相関の高い方向とする。
If | SL-SR | <α, it is determined that the correlation in the diagonal direction is low, and the vertical direction is set as the direction having the highest correlation for the pixel X to be interpolated.

【0086】また、|SL−SR|≧αかつSL<SR
ならば、斜め方向Agの差分の絶対値|A−g|と、斜
め方向Bfの差分の絶対値|B−f|と、斜め方向Ce
の差分の絶対値|C−e|の3つの内で最小のものを最
も相関の高い候補Δとして選出する。なお、等しいもの
がある場合には、斜め方向Ce、斜め方向Bg、斜め方
向Agの順で優先させる。そして、上記の候補Δと垂直
方向の差分の絶対値|D−d|とを比較し、Δ<|D−
d|ならば、Δに選出された斜め方向を、補間すべき画
素Xについての最も相関の高い方向とし、Δ≧|D−d
|ならば、垂直方向を、補間すべき画素Xについての最
も相関の高い方向とする。
Also, | SL-SR | ≧ α and SL <SR
Then, the absolute value | A−g | of the difference in the diagonal direction Ag, the absolute value | B−f | of the difference in the diagonal direction Bf, and the diagonal direction Ce
The smallest of the absolute values | C−e | of the difference of 3 is selected as the candidate Δ having the highest correlation. When there are equal values, the diagonal direction Ce, the diagonal direction Bg, and the diagonal direction Ag are given priority in this order. Then, the above candidate Δ is compared with the absolute value of the vertical difference | D−d |, and Δ <| D−
If d |, the diagonal direction selected for Δ is the direction with the highest correlation for the pixel X to be interpolated, and Δ ≧ | D−d
If |, the vertical direction is the direction with the highest correlation for the pixel X to be interpolated.

【0087】また、|SL−SR|≧αかつSL≧SR
ならば、斜め方向Ecの差分の絶対値|E−c|と、斜
め方向Fbの差分の絶対値|F−b|と、斜め方向Ga
の差分の絶対値|G−a|の3つの内で最小のものを最
も相関の高い候補Δとして選出する。なお、等しいもの
がある場合には、斜め方向Ec、斜め方向Fb、斜め方
向Gaの順で優先させる。そして、上記の候補Δと垂直
方向の差分の絶対値|D−d|とを比較し、Δ<|D−
d|ならば、Δに選出された斜め方向を、補間すべき画
素Xについての最も相関の高い方向とし、Δ≧|D−d
|ならば、垂直方向を、補間すべき画素Xについての最
も相関の高い方向とする。
Further, | SL-SR | ≧ α and SL ≧ SR
Then, the absolute value | E−c | of the difference in the diagonal direction Ec, the absolute value | F−b | of the difference in the diagonal direction Fb, and the diagonal direction Ga
The smallest one among the three absolute values | G−a | of the difference is selected as the candidate Δ having the highest correlation. If there are equal values, the diagonal direction Ec, the diagonal direction Fb, and the diagonal direction Ga are given priority in this order. Then, the above candidate Δ is compared with the absolute value of the vertical difference | D−d |, and Δ <| D−
If d |, the diagonal direction selected for Δ is the direction with the highest correlation for the pixel X to be interpolated, and Δ ≧ | D−d
If |, the vertical direction is the direction with the highest correlation for the pixel X to be interpolated.

【0088】参照画素X1については、実走査線(n−
1)上の画素H,I,J,K,L,M,Nと実走査線
(n)上の画素A,B,C,D,E,F,Gとを用い
て、差分の絶対値|H−G|,|I−F|,|J−E
|,|K−D|,|L−C|,|M−B|,|N−A|
をそれぞれ算出し、左上がり斜め方向の差分の絶対値の
総和 SL1={|H−G|+|I−F|+|J−E|}、 および右上がり斜め方向の差分の絶対値の総和 SR1={|L−C|+|M−B|+|N−A|} を求め、さらにこれらの総和の差分の絶対値|SL1−
SR1|を求め、この|SL1−SR1|を固定値αと
比較する。
For the reference pixel X1, the actual scanning line (n-
1) Using the pixels H, I, J, K, L, M, N on the real scanning line and the pixels A, B, C, D, E, F, G on the actual scanning line (n), the absolute value of the difference | H-G |, | I-F |, | J-E
|, | K-D |, | L-C |, | M-B |, | NA- |
Is calculated, and the sum of absolute values of the difference in the leftward diagonal direction SL1 = {| HG | + | IF | + | J-E |}, and the sum of the absolute value of the difference in the diagonal direction to the right. SR1 = {| LC | + | MB | + | NA |}, and the absolute value of the difference between these sums | SL1-
SR1 | is obtained, and this | SL1-SR1 | is compared with the fixed value α.

【0089】そして、|SL1−SR1|<αならば、
斜め方向の相関は低いと判断し、垂直方向を、参照画素
X1についての最も相関の高い方向とする。
If | SL1-SR1 | <α,
It is determined that the correlation in the diagonal direction is low, and the vertical direction is set as the direction having the highest correlation with respect to the reference pixel X1.

【0090】また、|SL1−SR1|≧αかつSL1
<SR1ならば、斜め方向HGの差分の絶対値|H−G
|と、斜め方向IFの差分の絶対値|I−F|と、斜め
方向JEの差分の絶対値|J−E|の3つの内で最小の
ものを最も相関の高い候補Δ1として選出する。なお、
等しいものがある場合には、垂直方向に近い斜め方向を
優先とする。つまり、斜め方向JE、斜め方向IF、斜
め方向HGの順で優先させる。そして、上記の候補Δ1
と垂直方向の差分の絶対値|K−D|とを比較し、Δ1
<|K−D|ならば、Δ1に選出された斜め方向を、参
照画素X1についての最も相関の高い方向とし、Δ1≧
|K−D|ならば、垂直方向を、参照画素X1について
の最も相関の高い方向とする。
Also, | SL1-SR1 | ≧ α and SL1
<If SR1, absolute value of difference in diagonal direction HG | HG
|, The absolute value | I−F | of the difference in the diagonal direction IF, and the absolute value | J−E | of the difference in the diagonal direction JE are selected as the candidate Δ1 having the highest correlation. In addition,
If they are equal, the diagonal direction close to the vertical direction is given priority. That is, the diagonal direction JE, the diagonal direction IF, and the diagonal direction HG are prioritized in this order. Then, the above candidate Δ1
And the absolute value of the vertical difference | K−D |
<| K−D |, the diagonal direction selected as Δ1 is set as the direction having the highest correlation with respect to the reference pixel X1, and Δ1 ≧
If | K−D |, the vertical direction is the direction having the highest correlation with respect to the reference pixel X1.

【0091】また、|SL1−SR1|≧αかつSL1
≧SR1ならば、斜め方向LCの差分の絶対値|L−C
|と、斜め方向MBの差分の絶対値|M−B|と、斜め
方向NAの差分の絶対値|N−A|の3つの内で最小の
ものを最も相関の高い候補Δ1として選出する。なお、
等しいものがある場合には、垂直方向に近い斜め方向を
優先とする。つまり、斜め方向LC、斜め方向MB、斜
め方向NAの順で優先させる。そして、上記の候補Δ1
と垂直方向の差分の絶対値|K−D|とを比較し、Δ1
<|K−D|ならば、Δ1に選出された斜め方向を、参
照画素X1についての最も相関の高い方向とし、Δ1≧
|K−D|ならば、垂直方向を、参照画素X1について
の最も相関の高い方向とする。
Also, | SL1-SR1 | ≧ α and SL1
If ≧ SR1, the absolute value of the difference in the diagonal direction LC | LC
|, The absolute value | MB of the difference in the diagonal direction MB, and the absolute value | NA of the difference in the diagonal direction NA | NA, the smallest one is selected as the candidate Δ1 having the highest correlation. In addition,
If they are equal, the diagonal direction close to the vertical direction is given priority. That is, the oblique direction LC, the oblique direction MB, and the oblique direction NA are prioritized in this order. Then, the above candidate Δ1
And the absolute value of the vertical difference | K−D |
<| K−D |, the diagonal direction selected as Δ1 is set as the direction having the highest correlation with respect to the reference pixel X1, and Δ1 ≧
If | K−D |, the vertical direction is the direction having the highest correlation with respect to the reference pixel X1.

【0092】参照画素X2については、実走査線(n+
1)上の画素a,b,c,d,e,f,gと実走査線
(n+2)上の画素h,i,j,k,l,m,nとを用
いて、差分の絶対値|a−n|,|b−m|,|c−l
|,|d−k|,|e−j|,|f−i|,|g−h|
をそれぞれ算出し、左上がり斜め方向の差分の絶対値の
総和 SL2={|a−n|+|b−m|+|c−l|}、 および右上がり斜め方向の差分の絶対値の総和 SR2={|e−j|+|f−i|+|g−h|} を求め、さらにこれらの総和の差分の絶対値|SL2−
SR2|を求め、この|SL2−SR2|を固定値αと
比較する。
For the reference pixel X2, the actual scanning line (n +
1) Using pixels a, b, c, d, e, f, and g on the pixels and pixels h, i, j, k, l, m, and n on the actual scanning line (n + 2), the absolute value of the difference | A-n |, | b-m |, | c-l
|, | D-k |, | e-j |, | f-i |, | g-h |
Respectively, the sum of absolute values of the difference in the leftward diagonal direction SL2 = {| a−n | + | b−m | + | c−1 |}, and the sum of absolute values of the difference in the upward diagonal direction. SR2 = {| e−j | + | f−i | + | g−h |}, and the absolute value of the difference between these sums | SL2-
SR2 | is obtained, and this | SL2-SR2 | is compared with the fixed value α.

【0093】そして、|SL2−SR2|<αならば、
斜め方向の相関は低いと判断し、垂直方向を、参照画素
X2についての最も相関の高い方向とする。
If | SL2-SR2 | <α,
It is determined that the correlation in the diagonal direction is low, and the vertical direction is the direction having the highest correlation with respect to the reference pixel X2.

【0094】また、|SL2−SR2|≧αかつSL2
<SR2ならば、斜め方向anの差分の絶対値|a−n
|と、斜め方向bmの差分の絶対値|b−m|と、斜め
方向clの差分の絶対値|c−l|の3つの内で最小の
ものを最も相関の高い候補Δ2として選出する。なお、
等しいものがある場合には、垂直方向に近い斜め方向を
優先とする。つまり、斜め方向cl、斜め方向bm、斜
め方向anの順で優先させる。そして、上記の候補Δ2
と垂直方向の差分の絶対値|d−k|とを比較し、Δ2
<|d−k|ならば、Δ2に選出された斜め方向を、参
照画素X2についての最も相関の高い方向とし、Δ2≧
|d−k|ならば、垂直方向を、参照画素X2について
の最も相関の高い方向とする。
Also, | SL2-SR2 | ≧ α and SL2
<SR2, absolute value of difference in diagonal direction an | a−n
|, The absolute value | b−m | of the difference in the diagonal direction bm, and the absolute value | c−l | of the difference in the diagonal direction cl, the smallest one is selected as the candidate Δ2 having the highest correlation. In addition,
If they are equal, the diagonal direction close to the vertical direction is given priority. That is, the slanting direction cl, the slanting direction bm, and the slanting direction an are given priority in this order. Then, the above candidate Δ2
And the absolute value of the vertical difference | d−k | are compared, and Δ2
<| D−k |, the diagonal direction selected as Δ2 is set as the direction having the highest correlation with respect to the reference pixel X2, and Δ2 ≧
If | d−k |, the vertical direction is the direction having the highest correlation with respect to the reference pixel X2.

【0095】また、|SL2−SR2|≧αかつSL2
≧SR2ならば、斜め方向ejの差分の絶対値|e−j
|と、斜め方向fiの差分の絶対値|f−i|と、斜め
方向ghの差分の絶対値|g−h|の3つの内で最小の
ものを最も相関の高い候補Δ2として選出する。なお、
等しいものがある場合には、垂直方向に近い斜め方向を
優先とする。つまり、斜め方向ej、斜め方向fi、斜
め方向ghの順で優先させる。そして、上記の候補Δ2
と垂直方向の差分の絶対値|d−k|とを比較し、Δ2
<|d−k|ならば、Δ2に選出された斜め方向を、参
照画素X2についての最も相関の高い方向とし、Δ2≧
|d−k|ならば、垂直方向を、参照画素X2について
の最も相関の高い方向とする。
Also, | SL2-SR2 | ≧ α and SL2
If ≧ SR2, the absolute value of the difference in the diagonal direction ej | e−j
|, The absolute value | f−i | of the difference in the diagonal direction fi and the absolute value | g−h | of the difference in the diagonal direction gh are selected as the candidate Δ2 having the highest correlation. In addition,
If they are equal, the diagonal direction close to the vertical direction is given priority. That is, the oblique direction ej, the oblique direction fi, and the oblique direction gh are prioritized in this order. Then, the above candidate Δ2
And the absolute value of the vertical difference | d−k | are compared, and Δ2
<| D−k |, the diagonal direction selected as Δ2 is set as the direction having the highest correlation with respect to the reference pixel X2, and Δ2 ≧
If | d−k |, the vertical direction is the direction having the highest correlation with respect to the reference pixel X2.

【0096】この実施の形態3では、垂直方向と6種類
の斜め方向の計7種類の方向の内から最も相関の高いと
検出された方向に従って、補間すべき画素Xの画素値を
算出する。以下に、その算出手順について以下に説明す
る。
In the third embodiment, the pixel value of the pixel X to be interpolated is calculated in accordance with the direction detected to have the highest correlation from the total of 7 types of directions including the vertical direction and the 6 types of diagonal directions. The calculation procedure will be described below.

【0097】補間すべき画素Xについて最も相関が高い
と検出された方向が、垂直方向の場合には、補間すべき
画素Xの補間方向を垂直方向とし、画素Xの画素値を上
下の画素Dとdの平均値{(D+d)/2}とする。
If the direction in which the pixel X to be interpolated has the highest correlation is the vertical direction, the interpolation direction of the pixel X to be interpolated is the vertical direction, and the pixel value of the pixel X is the upper and lower pixels D. And the average value of d is {(D + d) / 2}.

【0098】また、補間すべき画素Xについて最も相関
が高いと検出された方向が、いずれかの左上がり斜め方
向(斜め方向Ag、斜め方向Bf、または斜め方向C
e)の場合、またはいずれかの右上がり斜め方向(斜め
方向Ec、斜め方向Fb、または斜め方向Ga)の場合
には、参照画素X1,X2について最も相関が高いと検
出された方向を参照して、補間すべき画素Xの補間方向
を決定する。
The direction in which the pixel X to be interpolated is detected to have the highest correlation is any one of the upward-sloping diagonal directions (diagonal direction Ag, diagonal direction Bf, or diagonal direction C).
In the case of e), or in the case of any one of the upward-sloping diagonal directions (diagonal direction Ec, diagonal direction Fb, or diagonal direction Ga), the direction detected as having the highest correlation with reference pixels X1 and X2 is referred to. Thus, the interpolation direction of the pixel X to be interpolated is determined.

【0099】つまり、補間すべき画素Xについて最も相
関が高いと検出された方向が、いずれかの左上がり斜め
方向(斜め方向Ag、斜め方向Bf、または斜め方向C
e)の場合において、参照画素X1について最も相関が
高いと検出された方向が、補間すべき画素Xについて最
も相関が高いと検出された方向とは逆のいずれかの右上
がり斜め方向(斜め方向LC、斜め方向MB、または斜
め方向NA)であるか、または参照画素X2について最
も相関が高いと検出された方向が、補間すべき画素Xに
ついて最も相関が高いと検出された方向とは逆のいずれ
かの右上がり斜め方向(斜め方向ej、斜め方向fi、
または斜め方向gh)であれば、補間すべき画素Xの補
間方向を垂直方向とし、補間すべき画素Xの画素値を上
下の画素Dとdの平均値{(D+d)/2}とする。
That is, the direction detected as having the highest correlation with respect to the pixel X to be interpolated is one of the diagonally upward left directions (oblique direction Ag, oblique direction Bf, or oblique direction C).
In the case of e), the direction in which the highest correlation is detected for the reference pixel X1 is opposite to the direction in which the highest correlation is detected for the pixel X to be interpolated. LC, diagonal direction MB, or diagonal direction NA), or the direction detected as having the highest correlation for the reference pixel X2 is opposite to the direction detected for the pixel X to be interpolated as the highest correlation. Any one of the upward slanting directions (diagonal direction ej, diagonal direction fi,
Alternatively, in the diagonal direction gh), the interpolation direction of the pixel X to be interpolated is the vertical direction, and the pixel value of the pixel X to be interpolated is the average value {(D + d) / 2} of the upper and lower pixels D and d.

【0100】また、補間すべき画素Xについて最も相関
が高いと検出された方向が、いずれかの左上がり斜め方
向(斜め方向Ag、斜め方向Bf、または斜め方向C
e)の場合において、参照画素X1について最も相関が
高いと検出された方向が、補間すべき画素Xについて最
も相関が高いと検出された方向と同様のいずれかの左上
がり斜め方向(斜め方向HG、斜め方向IF、または斜
め方向JE)、または垂直方向であり、かつ参照画素X
2について最も相関が高いと検出された方向が、補間す
べき画素Xについて最も相関が高いと検出された方向と
同様のいずれかの左上がり斜め方向(斜め方向an、斜
め方向bm、または斜め方向cl)、または垂直方向で
あれば、補間すべき画素Xの補間方向を、補間すべき画
素Xについて最も相関が高いと検出された斜め方向とす
る。補間方向が斜め方向Agであれば、補間すべき画素
Xの画素値を画素Aとgの平均値{(A+g)/2}と
し、補間方向が斜め方向Bfであれば、補間すべき画素
Xの画素値を画素Bとfの平均値{(B+f)/2}と
し、補間方向が斜め方向Ceであれば、補間すべき画素
Xの画素値を画素Cとeの平均値{(C+e)/2}と
する。
The direction in which the pixel X to be interpolated is detected to have the highest correlation is any one of the upward-sloping diagonal directions (diagonal direction Ag, diagonal direction Bf, or diagonal direction C).
In the case of e), the direction in which the highest correlation is detected for the reference pixel X1 is the same as the direction in which the highest correlation is detected for the pixel X to be interpolated. , Diagonal direction IF, or diagonal direction JE), or the vertical direction and reference pixel X
The direction in which the highest correlation is detected for 2 is the same as the direction in which the highest correlation is detected for the pixel X to be interpolated, which is one of the diagonal directions to the left (oblique direction an, oblique direction bm, or oblique direction). cl), or if it is the vertical direction, the interpolation direction of the pixel X to be interpolated is the diagonal direction in which it is detected that the pixel X to be interpolated has the highest correlation. If the interpolation direction is the diagonal direction Ag, the pixel value of the pixel X to be interpolated is the average value {(A + g) / 2} of the pixels A and g, and if the interpolation direction is the diagonal direction Bf, the pixel X to be interpolated. Is the average value {(B + f) / 2} of the pixels B and f, and if the interpolation direction is the oblique direction Ce, the pixel value of the pixel X to be interpolated is the average value {(C + e) of the pixels C and e. / 2}.

【0101】同様に、補間すべき画素Xについて最も相
関が高い方向が、いずれかの右上がり斜め方向(斜め方
向Ec、斜め方向Fb、または斜め方向Ga)の場合に
おいて、参照画素X1について最も相関が高いと検出さ
れた方向が、補間すべき画素Xについて最も相関が高い
と検出された方向とは逆のいずれかの左上がり斜め方向
(斜め方向HG、斜め方向IF、または斜め方向JE)
であるか、または参照画素X2について最も相関が高い
と検出された方向が、補間すべき画素Xについて最も相
関が高いと検出された方向とは逆のいずれかの左上がり
斜め方向(斜め方向an、斜め方向bm、または斜め方
向cl)であれば、補間すべき画素Xの補間方向を垂直
方向とし、補間すべき画素Xの画素値を上下の画素Dと
dの平均値{(D+d)/2}とする。
Similarly, in the case where the direction having the highest correlation with respect to the pixel X to be interpolated is any of the upward-sloping oblique directions (the oblique direction Ec, the oblique direction Fb, or the oblique direction Ga), the correlation with the reference pixel X1 is the highest. Is higher than the direction detected to have the highest correlation for the pixel X to be interpolated, whichever diagonal direction to the left (oblique direction HG, oblique direction IF, or oblique direction JE).
Or the direction in which the correlation is detected highest for the reference pixel X2 is opposite to the direction in which the correlation is detected highest for the pixel X to be interpolated. , Diagonal direction bm or diagonal direction cl), the interpolation direction of the pixel X to be interpolated is the vertical direction, and the pixel value of the pixel X to be interpolated is the average value of upper and lower pixels D and d {(D + d) / 2}.

【0102】また、補間すべき画素Xについて最も相関
が高いと検出された方向が、いずれかの右上がり斜め方
向(斜め方向Ec、斜め方向Fb、または斜め方向G
a)の場合において、参照画素X1について最も相関が
高いと検出された方向が、補間すべき画素Xについて最
も相関が高いと検出された方向と同様のいずれかの右上
がり斜め方向(斜め方向LC、斜め方向MB、または斜
め方向NA)、または垂直方向であり、かつ参照画素X
2について最も相関が高いと検出された方向が、補間す
べき画素Xについて最も相関が高いと検出された方向と
同様のいずれかの右上がり斜め方向(斜め方向ej、斜
め方向fi、または斜め方向gh)、または垂直方向で
あれば、補間すべき画素Xの補間方向を、補間すべき画
素Xについて最も相関が高いと検出された斜め方向とす
る。補間方向が斜め方向Ecであれば、補間すべき画素
Xの画素値を画素Eとcの平均値{(E+c)/2}と
し、補間方向が斜め方向Fbであれば、補間すべき画素
Xの画素値を画素Fとbの平均値{(F+b)/2}と
し、補間方向が斜め方向Gaであれば、補間すべき画素
Xの画素値を画素Gとaの平均値{(G+a)/2}と
する。
The direction in which the pixel X to be interpolated is detected to have the highest correlation is any one of the upward-sloping diagonal directions (diagonal direction Ec, diagonal direction Fb, or diagonal direction G).
In the case of a), the direction in which the highest correlation is detected for the reference pixel X1 is the same as the direction in which the highest correlation is detected for the pixel X to be interpolated. , Diagonal direction MB, or diagonal direction NA), or the vertical direction and reference pixel X
The direction in which the highest correlation is detected for 2 is the same as the direction in which the highest correlation is detected for the pixel X to be interpolated, which is one of the upward-sloping diagonal directions (diagonal direction ej, diagonal direction fi, or diagonal direction). gh), or in the vertical direction, the interpolation direction of the pixel X to be interpolated is the diagonal direction in which the pixel X to be interpolated has the highest correlation. If the interpolation direction is the diagonal direction Ec, the pixel value of the pixel X to be interpolated is the average value {(E + c) / 2} of the pixels E and c, and if the interpolation direction is the diagonal direction Fb, the pixel X to be interpolated. Is the average value {(F + b) / 2} of the pixels F and b, and if the interpolation direction is the diagonal direction Ga, the pixel value of the pixel X to be interpolated is the average value {(G + a) of the pixels G and a. / 2}.

【0103】図4および図5は実施の形態3の斜め相関
適応型の走査線補間方法によって実現される精度の高い
補間を説明する図である。図4は従来技術においてギザ
ギザになっていた斜め線の入力画像を滑らかに表現でき
ることを説明する図であり、図5は従来技術において斜
め方向の相関が誤検出されていた十字の一部を表す入力
画像を誤検出なく理想的に補間できることを説明する図
である。
FIGS. 4 and 5 are diagrams for explaining highly accurate interpolation realized by the diagonal correlation adaptive scanning line interpolation method of the third embodiment. FIG. 4 is a diagram for explaining that an input image of an oblique line which is jagged in the prior art can be smoothly expressed, and FIG. 5 shows a part of a cross in which an oblique correlation is erroneously detected in the prior art. It is a figure explaining that an input image can be ideally interpolated without erroneous detection.

【0104】図4および図5において、走査線(n−
1),走査線(n),走査線(n+1),走査線(n+
2)は実走査線である。また、A,B,C,D,E,
F,Gは実走査線(n)上の隣り合う画素、a,b,
c,d,e,f,gは実走査線(n+1)上の隣り合う
画素、H,I,J,K,L,M,Nは実走査線(n−
1)上の隣り合う画素、h,i,j,k,l,m,nは
実走査線(n+2)上の隣り合う画素、Xは補間すべき
画素、X1,X2は参照画素である。上記の画素Dは補
間すべき画素Xの真上の画素、上記の参照画素X1は画
素Dの真上の画素、上記の画素Kは参照画素X1の真上
の画素である。また、上記画素dは補間すべき画素Xの
真下の画素、上記の参照画素X2は画素dの真下の画
素、上記の画素kは参照画素X2の真下の画素である。
また、白丸と黒丸は互いに画素値が異なる画素であり、
白丸同士、黒丸同士の画素値はほぼ等しい。
In FIGS. 4 and 5, the scan line (n-
1), scan line (n), scan line (n + 1), scan line (n +
2) is an actual scanning line. Also, A, B, C, D, E,
F and G are adjacent pixels on the actual scanning line (n), a, b,
c, d, e, f, g are adjacent pixels on the real scanning line (n + 1), and H, I, J, K, L, M, N are real scanning lines (n-).
1) Adjacent pixels on the top, h, i, j, k, l, m, n are adjoining pixels on the actual scanning line (n + 2), X is a pixel to be interpolated, and X1 and X2 are reference pixels. The pixel D is a pixel directly above the pixel X to be interpolated, the reference pixel X1 is a pixel directly above the pixel D, and the pixel K is a pixel directly above the reference pixel X1. The pixel d is a pixel directly below the pixel X to be interpolated, the reference pixel X2 is a pixel directly below the pixel d, and the pixel k is a pixel directly below the reference pixel X2.
Also, the white circles and black circles are pixels with different pixel values,
The pixel values of white circles and black circles are almost equal.

【0105】図4の斜め線の画像において、この実施の
形態3の補間方法によって、補間すべき画素Xにおいて
最も相関が高いとして検出される方向は、右上がり斜め
方向Ecとなる。また、参照画素X1において最も相関
が高いとして検出される方向、および参照画素X2にお
いて最も相関が高いとして検出される方向は、いずれも
垂直方向となる。参照画素X1およびX2においての最
も相関が高い方向が、いずれも垂直方向なので、補間す
べき画素Xの補間方向は、最も相関が高い右上がり斜め
方向Ecとなり、補間すべき画素Xの画素値は、右上が
り斜め方向Ecの画素Eとeの平均値{(E+c)/
2}となる。このようにして生成した補間走査線によっ
て、斜め線を滑らかに表現することができる。
In the diagonal line image of FIG. 4, the direction detected as having the highest correlation in the pixel X to be interpolated by the interpolation method of the third embodiment is the diagonally upward right direction Ec. Further, the direction detected as having the highest correlation in the reference pixel X1 and the direction detected as having the highest correlation in the reference pixel X2 are both vertical directions. Since the direction with the highest correlation in the reference pixels X1 and X2 is the vertical direction, the interpolation direction of the pixel X to be interpolated is the upward-sloping diagonal direction Ec with the highest correlation, and the pixel value of the pixel X to be interpolated is , The average value of the pixels E and e in the diagonally upward right direction Ec {(E + c) /
2}. The interpolated scan lines generated in this way can smoothly represent diagonal lines.

【0106】また、図5の十字の一部の画像において、
この実施の形態3の補間方法によって、補間すべき画素
Xにおいて最も相関の高いとして検出される方向は、右
上がり斜め方向Fbとなる。また、参照画素X1におい
て最も相関の高いとして検出される方向は、垂直方向と
なり、参照画素X2において最も相関の高いとして検出
される方向は、左上がり斜め方向bmとなる。参照画素
X2においての最も相関の高い方向が、補間すべき画素
Xにおいての最も相関の高い方向とは逆の斜め方向であ
るので、補間すべき画素Xの補間方向は垂直方向とな
り、補間すべき画素Xの画素値は、垂直方向の画素Dと
dの平均値{(D+d)/2}となる。従って、従来技
術において生じていた誤検出を防ぐことができ、このよ
うにして生成した補間走査線によって、十字の画像を図
11のように理想的に補間できる。
Further, in the partial image of the cross in FIG.
The direction detected as having the highest correlation in the pixel X to be interpolated by the interpolation method of the third embodiment is the upward-sloping diagonal direction Fb. Further, the direction detected as having the highest correlation in the reference pixel X1 is the vertical direction, and the direction detected as having the highest correlation in the reference pixel X2 is the diagonally upward left direction bm. Since the direction having the highest correlation in the reference pixel X2 is the diagonal direction opposite to the direction having the highest correlation in the pixel X to be interpolated, the interpolation direction of the pixel X to be interpolated is the vertical direction and should be interpolated. The pixel value of the pixel X is the average value {(D + d) / 2} of the pixels D and d in the vertical direction. Therefore, it is possible to prevent the erroneous detection that has occurred in the conventional technique, and the interpolated scanning line thus generated can ideally interpolate the cross image as shown in FIG.

【0107】以上のように実施の形態3によれば、補間
すべき画素Xの上下2本ずつ合計4本の実走査線上の画
素を7個ずつ用いて、垂直方向と6種類の斜め方向の計
7種類の方向の内から、補間すべき画素Xについて最も
相関が高い方向を検出することにより、斜め相関の誤検
出を防いで画質劣化を抑え、精度の高い補間ができる。
As described above, according to the third embodiment, two pixels above and below the pixel X to be interpolated, that is, seven pixels on a total of four actual scanning lines are used, and the vertical direction and the six kinds of diagonal directions are used. By detecting the direction having the highest correlation for the pixel X to be interpolated from the total of seven types of directions, it is possible to prevent erroneous detection of diagonal correlation, suppress image quality deterioration, and perform highly accurate interpolation.

【0108】なお、上記実施の形態3では、参照画素X
1,X2についての相関を、その参照画素の上下の実走
査線上の画素7個ずつ計14個を用いて検出したが、参
照画素X1,X2については、最も相関の高い方向が、
垂直方向であるか、左上がり斜め方向か、右上がり斜め
方向かであるかさえ判ればよいので、参照画素X1,X
2についての相関を検出するための上下の実走査線上の
画素の数を最低で3ずつに減らすことが可能である。例
えば、上記実施の形態1と同様に、実走査線(n−1)
上の画素I,J,K,L,Mと、実走査線(n)上の画
素B,C,D,E,Fと用いて、参照画素X1について
の相関を求めればよい。このようにすれば、より簡単に
参照画素についての相関を求めることができる。
In the third embodiment, the reference pixel X
The correlation for 1 and X2 was detected using 7 pixels on the actual scanning line above and below the reference pixel, for a total of 14 pixels, but for the reference pixels X1 and X2, the direction with the highest correlation is
Since it suffices to know whether it is the vertical direction, the diagonal direction to the left, or the diagonal direction to the right, the reference pixels X1, X
It is possible to reduce the number of pixels on the upper and lower actual scanning lines for detecting the correlation for 2 to 3 at the minimum. For example, as in the first embodiment, the actual scanning line (n-1)
The pixels I, J, K, L, and M above and the pixels B, C, D, E, and F on the actual scanning line (n) may be used to find the correlation for the reference pixel X1. By doing so, the correlation for the reference pixel can be obtained more easily.

【0109】また、上記実施の形態3では、補間すべき
画素Xについての相関を、その補間すべき画素Xの上下
の実走査線上の画素7個ずつ計14個を用いて検出した
が、本発明では、補間すべき画素Xについての相関を検
出するための上下の実走査線上の画素の数を最低で3ず
つに減らすことが可能である。例えば、垂直方向と2つ
の斜め方向(左上がり斜め方向および右上がり斜め方
向)の計3つの方向のいずれか最も相関が高い方向を補
間方向とすれば足りる場合には、実走査線(n)上の画
素C,D,Eと、実走査線(n+1)上の画素c,d,
eとを用いて、補間すべき画素Xについての相関を求め
ればよい。このようにすれば、より簡単に補間すべき画
素についての相関を求めることができる。
In the third embodiment, the correlation for the pixel X to be interpolated is detected using seven pixels on the actual scanning line above and below the pixel X to be interpolated, that is, a total of 14 pixels. According to the invention, it is possible to reduce the number of pixels on the upper and lower actual scanning lines for detecting the correlation for the pixel X to be interpolated to at least three. For example, if it is sufficient to set the interpolation direction to the direction having the highest correlation of the three directions in total, that is, the vertical direction and the two diagonal directions (upward leftward diagonal direction and upward rightward diagonal direction), the actual scanning line (n) Pixels C, D, and E on the top and pixels c, d, and
The correlation for the pixel X to be interpolated may be obtained using e and e. By doing so, the correlation for the pixel to be interpolated can be obtained more easily.

【0110】[0110]

【発明の効果】以上説明したように本発明の請求項1記
載の走査線補間方法ならびに請求項6,8記載の走査線
変換装置および請求項9記載の画像表示装置によれば、
垂直方向と複数の斜め方向の内から、垂直方向を最優先
とし、垂直方向になるべく近い斜め方向を順次優先し
て、最も相関の高い方向を検出することにより、斜め相
関の誤検出を低減して精度の高い補間ができるという効
果がある。
As described above, according to the scanning line interpolation method according to the first aspect of the present invention, the scanning line conversion device according to the sixth and eighth aspects, and the image display device according to the ninth aspect,
From the vertical direction and multiple diagonal directions, the vertical direction is given the highest priority, the diagonal directions that are as close to the vertical direction as possible are sequentially prioritized, and the direction with the highest correlation is detected to reduce false detection of diagonal correlation. There is an effect that highly accurate interpolation can be performed.

【0111】請求項2記載の走査線補間方法によれば、
第1および第2の実走査線についてはそれぞれの実走査
線上の7個の画素を用い、垂直方向ならびに右上がりの
3種類の斜め方向および左上がりの3種類の斜め方向の
計7種類の方向から、垂直方向を最優先とし、垂直方向
になるべく近い斜め方向を順次優先して、最も相関が高
い方向を検出することにより、斜め相関の誤検出を低減
して精度の高い補間ができるという効果がある。
According to the scanning line interpolation method of the second aspect,
Seven pixels on each real scanning line are used for the first and second real scanning lines, and there are a total of seven directions in the vertical direction, three kinds of oblique directions rising to the right and three kinds of oblique directions rising to the left. Therefore, the vertical direction is given the highest priority, the diagonal directions that are as close to the vertical direction as possible are sequentially prioritized, and the direction with the highest correlation is detected. There is.

【0112】請求項3記載の走査線補間方法ならびに請
求項7,8記載の走査線変換装置および請求項9記載の
画像表示装置によれば、少なくとも補間すべき画素の上
下2本ずつ合計4本の実走査線上の画素を用いて、垂直
方向と複数の斜め方向の内から、上記補間すべき画素に
ついて最も相関が高い方向を検出することにより、斜め
相関の誤検出を防いで画質劣化を抑え、精度の高い補間
ができるという効果がある。
According to the scanning line interpolation method of the third aspect, the scanning line conversion device of the seventh and eighth aspects, and the image display device of the ninth aspect, at least two pixels above and below the pixel to be interpolated, a total of four pixels. By detecting the direction with the highest correlation for the pixel to be interpolated from among the vertical direction and multiple diagonal directions using the pixels on the actual scanning line, false detection of diagonal correlation is prevented and image quality deterioration is suppressed. The effect is that highly accurate interpolation can be performed.

【0113】請求項4記載の走査線補間方法によれば、
補間すべき画素ならびに第1および第2の参照画素のそ
れぞれについて最も相関が高い方向を検出し、これらの
検出された方向を参照して、補間すべき画素について最
も相関が高い方向を決定することにより、斜め相関の誤
検出を防いで画質劣化を抑え、精度の高い補間ができる
という効果がある。
According to the scanning line interpolation method of claim 4,
Detecting the direction with the highest correlation for the pixel to be interpolated and each of the first and second reference pixels, and referring to these detected directions to determine the direction with the highest correlation for the pixel to be interpolated. Thus, there is an effect that false detection of diagonal correlation can be prevented, image quality deterioration can be suppressed, and highly accurate interpolation can be performed.

【0114】請求項5記載の走査線補間方法によれば、
第1から第4までの実走査線についてはそれぞれの実走
査線上の7個の画素を用い、垂直方向ならびに右上がり
の3種類の斜め方向および左上がりの3種類の斜め方向
の計7種類の方向から、最も相関が高い方向を検出する
ことにより、斜め相関の誤検出を防いで画質劣化を抑
え、精度の高い補間ができるという効果がある。
According to the scanning line interpolation method of claim 5,
For the first to fourth actual scanning lines, seven pixels on each actual scanning line are used, and there are a total of seven types in the vertical direction, three types of diagonal directions to the right and three types of diagonal directions to the left. By detecting the direction with the highest correlation from the directions, it is possible to prevent erroneous detection of diagonal correlation, suppress image quality deterioration, and perform highly accurate interpolation.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施の形態3の斜め相関適応型の走
査線補間方法を説明する図である。
FIG. 1 is a diagram illustrating an oblique correlation adaptive scanning line interpolation method according to a third embodiment of the present invention.

【図2】 本発明の実施の形態1の斜め相関適応型の走
査線補間方法を説明する図である。
FIG. 2 is a diagram illustrating an oblique correlation adaptive scanning line interpolation method according to the first embodiment of the present invention.

【図3】 本発明の実施の形態2の斜め相関適応型の走
査線補間方法を説明する図である。
FIG. 3 is a diagram illustrating an oblique correlation adaptive scanning line interpolation method according to a second embodiment of the present invention.

【図4】 本発明の実施の形態3の斜め相関適応型の走
査線補間方法によって実現される精度の高い補間を説明
する図であって、従来技術においてギザギザになってい
た斜め線の入力画像を滑らかに表現できることを説明す
る図である。
FIG. 4 is a diagram for explaining highly accurate interpolation realized by the diagonal correlation adaptive scanning line interpolation method according to the third embodiment of the present invention, which is an input image of a diagonal line which is jagged in the prior art. It is a figure explaining that can be expressed smoothly.

【図5】 本発明の実施の形態3の斜め相関適応型の走
査線補間方法によって実現される精度の高い補間を説明
する図であって、従来技術において斜め方向の相関が誤
検出されていた十字の一部を表す入力画像を誤検出なく
理想的に補間できることを説明する図である。
FIG. 5 is a diagram for explaining highly accurate interpolation realized by the diagonal correlation adaptive scanning line interpolation method according to the third embodiment of the present invention, in which diagonal correlation was erroneously detected in the conventional technique. It is a figure explaining that the input image showing a part of crosses can be ideally interpolated without erroneous detection.

【図6】 従来の垂直方向補間型の走査線補間方法を説
明する図である。
FIG. 6 is a diagram for explaining a conventional vertical interpolation type scanning line interpolation method.

【図7】 従来の斜め相関適応型の走査線補間方法を説
明する図である。
FIG. 7 is a diagram illustrating a conventional diagonal correlation adaptive scanning line interpolation method.

【図8】 従来の斜め相関適応型の走査線補間方法を説
明する図である。
FIG. 8 is a diagram illustrating a conventional diagonal correlation adaptive scanning line interpolation method.

【図9】 従来の斜め相関適応型の走査線補間方法の課
題を説明する図であって、十字の一部を表す入力画像の
図である。
FIG. 9 is a diagram illustrating a problem of a conventional diagonal correlation adaptive scanning line interpolation method, and is a diagram of an input image representing a part of a cross.

【図10】 従来の斜め相関適応型の走査線補間方法の
課題を説明する図であって、従来の斜め相関適応型の走
査線補間方法によって生成された図9の画像の補間画像
の図である。
10 is a diagram illustrating a problem of a conventional diagonal correlation adaptive scanning line interpolation method, which is a diagram of an interpolated image of the image of FIG. 9 generated by the conventional diagonal correlation adaptive scanning line interpolation method. is there.

【図11】 従来の斜め相関適応型の走査線補間方法の
課題を説明する図であって、図9の画像の理想の補間画
像の図である。
11 is a diagram for explaining the problems of the conventional diagonal correlation adaptive scanning line interpolation method, and is a diagram of an ideal interpolated image of the image of FIG. 9;

【図12】 走査線変換装置のブロック構成図である。FIG. 12 is a block configuration diagram of a scanning line conversion device.

【図13】 本発明の実施の形態3の走査線補間方法が
適用される走査線変換装置のブロック構成図である。
FIG. 13 is a block configuration diagram of a scanning line conversion device to which a scanning line interpolation method according to a third embodiment of the present invention is applied.

【符号の説明】[Explanation of symbols]

1 入力端子、 2,3 フィールドメモリ、 4 動
き検出回路、 5,11,12 ラインメモリ、 6
倍速変換回路、 7 動画部用補間走査線生成フィル
タ、 8 静止画部用補間走査線生成フィルタ、 9
セレクタ回路、10 出力端子。
1 input terminal, 2,3 field memory, 4 motion detection circuit, 5,11,12 line memory, 6
Double speed conversion circuit, 7 Moving image part interpolation scanning line generation filter, 8 Still image part interpolation scanning line generation filter, 9
Selector circuit, 10 output terminals.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 斜め相関適応型の走査線補間方法におい
て、 少なくとも、補間すべき画素の上の第1の実走査線と、
上記補間すべき画素の下の第2の実走査線の計2本の実
走査線上の画素を用いて、上記補間すべき画素を中心と
した垂直方向および複数の斜め方向の内から、垂直方向
を最優先とし、垂直方向になるべく近い斜め方向を順次
優先して、上記補間すべき画素について最も相関が高い
方向を検出する相関検出ステップと、 上記第1および第2の実走査線上の上記最も相関が高い
方向の2画素の平均値を上記補間すべき画素の画素値と
するステップとを含むことを特徴とする走査線補間方
法。
1. A diagonal-correlation-adaptive scanning line interpolation method, at least a first actual scanning line above a pixel to be interpolated,
By using the pixels on a total of two actual scanning lines of the second actual scanning line below the pixel to be interpolated, the vertical direction from the vertical direction and the plurality of diagonal directions centering on the pixel to be interpolated Is the highest priority, the diagonal direction as close as possible to the vertical direction is sequentially prioritized, and the correlation detection step of detecting the direction having the highest correlation among the pixels to be interpolated; and the correlation detection step on the first and second actual scanning lines. And a step of setting an average value of two pixels in a direction having a high correlation as a pixel value of the pixel to be interpolated, the scanning line interpolation method.
【請求項2】 請求項1記載の走査線補間方法におい
て、 上記相関検出ステップは、少なくとも上記第1および第
2の実走査線についてはそれぞれの実走査線上の7個の
画素を用い、垂直方向ならびに右上がりの3種類の斜め
方向および左上がりの3種類の斜め方向の計7種類の方
向から、最も相関が高い方向を検出することを特徴とす
る走査線補間方法。
2. The scanning line interpolation method according to claim 1, wherein the correlation detecting step uses at least seven pixels on each of the first and second actual scanning lines in the vertical direction. In addition, a scanning line interpolation method is characterized in that the direction having the highest correlation is detected from a total of seven types of directions, namely, three types of diagonal directions to the right and three types of diagonal directions to the left.
【請求項3】 斜め相関適応型の走査線補間方法におい
て、 少なくとも、補間すべき画素の上の第1の実走査線と、
上記補間すべき画素の下の第2の実走査線と、上記第1
の実走査線の上の第3の実走査線と、上記第2の実走査
線の下の第4の実走査線の計4本の実走査線上の画素を
用いて、上記補間すべき画素を中心とした垂直方向およ
び複数の斜め方向の内から、上記補間すべき画素につい
て最も相関が高い方向を検出する相関検出ステップと、 上記第1および第2の実走査線上の上記最も相関が高い
方向の2画素の平均値を上記補間すべき画素の画素値と
するステップとを含むことを特徴とする走査線補間方
法。
3. A diagonal-correlation adaptive scanning line interpolation method, comprising: at least a first actual scanning line above a pixel to be interpolated;
The second real scan line below the pixel to be interpolated;
Pixels on a total of four real scanning lines including the third real scanning line above the real scanning line and the fourth real scanning line below the second real scanning line A correlation detecting step of detecting a direction having the highest correlation with respect to the pixel to be interpolated from the vertical direction and a plurality of diagonal directions centering on the center, and the highest correlation on the first and second actual scanning lines. And a step of setting an average value of two pixels in a direction as a pixel value of the pixel to be interpolated, the scanning line interpolation method.
【請求項4】 請求項3記載の走査線補間方法におい
て、 上記相関検出ステップは、 少なくとも上記第1および第2の実走査線上の画素を用
いて、上記補間すべき画素を中心とした垂直方向および
複数の斜め方向の内から、上記補間すべき画素について
最も相関が高い方向を検出し、 少なくとも上記第1および第3の実走査線上の画素を用
いて、上記第1の実走査線と上記第3の実走査線の間の
第1の参照画素を中心とした垂直方向および複数の斜め
方向の内から、上記第1の参照画素について最も相関が
高い方向を検出し、 少なくとも上記第2および第4の実走査線上の画素を用
いて、上記第2の実走査線と上記第4の実走査線の間の
第2の参照画素を中心とした垂直方向および複数の斜め
方向の内から、上記第2の参照画素について最も相関が
高い方向を検出し、 上記補間すべき画素ならびに上記第1および第2の参照
画素について最も相関が高いとしてそれぞれ検出された
これらの方向を参照して、上記補間すべき画素について
最も相関が高い方向を決定することを特徴とする走査線
補間方法。
4. The scanning line interpolation method according to claim 3, wherein the correlation detection step uses at least pixels on the first and second actual scanning lines in a vertical direction centered on the pixel to be interpolated. And a direction having the highest correlation with respect to the pixel to be interpolated from among a plurality of diagonal directions, and using at least the pixels on the first and third actual scanning lines, the first actual scanning line and the above The direction having the highest correlation with respect to the first reference pixel is detected from the vertical direction and the plurality of oblique directions centering on the first reference pixel between the third actual scanning lines, and at least the second and Using the pixels on the fourth actual scan line, from the vertical direction and a plurality of diagonal directions centered on the second reference pixel between the second actual scan line and the fourth actual scan line, About the second reference pixel The direction having a high correlation is detected, and the direction to which the pixel to be interpolated and the direction to which the pixel to be interpolated is detected are determined to have the highest correlation with respect to the pixel to be interpolated. A scanning line interpolation method characterized by determining a high direction.
【請求項5】 請求項3または4に記載の走査線補間方
法において、 上記相関検出ステップは、少なくとも上記第1から第4
までの実走査線についてはそれぞれの実走査線上の7個
の画素を用い、垂直方向ならびに右上がりの3種類の斜
め方向および左上がりの3種類の斜め方向の計7種類の
方向から、最も相関が高い方向を検出することを特徴と
する走査線補間方法。
5. The scanning line interpolation method according to claim 3, wherein the correlation detection step is at least the first to fourth steps.
Up to 7 actual scanning lines, 7 pixels on each actual scanning line are used, and the most correlation is obtained from the total of 7 vertical directions, 3 upward diagonal directions and 3 upward diagonal directions. A scanning line interpolation method, which is characterized by detecting a direction having a high value.
【請求項6】 少なくとも、補間すべき画素の上の第1
の実走査線と、上記補間すべき画素の下の第2の実走査
線の計2本の実走査線上の画素を用いて、上記補間すべ
き画素を中心とした垂直方向および複数の斜め方向の内
から、垂直方向を最優先とし、垂直方向になるべく近い
斜め方向を順次優先して、上記補間すべき画素について
最も相関が高い方向を検出する相関検出手段と、 上記第1および第2の実走査線上の上記最も相関が高い
方向の2画素の平均値を上記補間すべき画素の画素値と
して、補間走査線を生成する補間走査線生成手段とを備
えることを特徴とする走査線変換装置。
6. At least a first above the pixel to be interpolated
, And a second real scanning line below the pixel to be interpolated, a total of two pixels on the real scanning line in the vertical direction and a plurality of diagonal directions centered on the pixel to be interpolated. From among the above, the vertical direction is given the highest priority, the diagonal directions which are as close to the vertical direction as possible are sequentially given priority, and the correlation detection means for detecting the direction with the highest correlation for the pixel to be interpolated; A scanning line conversion device comprising: an interpolating scanning line generating means for generating an interpolating scanning line by using an average value of two pixels in the direction having the highest correlation on the actual scanning line as a pixel value of the pixel to be interpolated. .
【請求項7】 少なくとも、補間すべき画素の上の第1
の実走査線と、上記補間すべき画素の下の第2の実走査
線と、上記第1の実走査線の上の第3の実走査線と、上
記第2の実走査線の下の第4の実走査線の計4本の実走
査線上の画素を用いて、上記補間すべき画素を中心とし
た垂直方向および複数の斜め方向の内から、上記補間す
べき画素について最も相関が高い方向を検出する相関検
出手段と、 上記第1および第2の実走査線上の上記最も相関が高い
方向の2画素の平均値を上記補間すべき画素の画素値と
して、補間走査線を生成する補間走査線生成手段とを備
えることを特徴とする走査線変換装置。
7. At least a first above pixel to be interpolated
Real scan line, a second real scan line below the pixel to be interpolated, a third real scan line above the first real scan line, and a second real scan line below the second real scan line. Using the pixels on a total of four real scanning lines of the fourth real scanning line, the correlation is highest for the pixel to be interpolated from the vertical direction and a plurality of diagonal directions centering on the pixel to be interpolated. Correlation detection means for detecting a direction, and interpolation for generating an interpolated scan line by using an average value of two pixels in the direction having the highest correlation on the first and second actual scan lines as a pixel value of the pixel to be interpolated. A scanning line conversion device comprising: scanning line generation means.
【請求項8】 請求項6または7に記載の走査線変換装
置において、 上記補間走査線生成手段は、動画用補間走査線生成手段
であって、 さらに、入力映像信号の動きを検出する動き検出手段
と、 静止画用補間走査線生成手段と、 上記動き検出手段によって検出された結果に基づいて、
上記動画用補間走査線生成手段から出力される信号と上
記静止画用補間走査線生成手段から出力される信号のい
ずれかを選択する選択手段とを備えることを特徴とする
走査線変換装置。
8. The scanning line conversion device according to claim 6 or 7, wherein the interpolation scanning line generating means is a moving image interpolation scanning line generating means, and further, motion detection for detecting a motion of an input video signal. Means, a still image interpolation scanning line generation means, and based on the result detected by the motion detection means,
A scanning line conversion apparatus comprising: a selection unit that selects one of a signal output from the moving image interpolation scanning line generation unit and a signal output from the still image interpolation scanning line generation unit.
【請求項9】 請求項6ないし8のいずれか1項に記載
の走査線変換装置を備えることを特徴とする画像表示装
置。
9. An image display device, comprising the scanning line conversion device according to claim 6.
JP2002027817A 2002-02-05 2002-02-05 Method of interpolating scanning line, and scanning line converter, and image display Withdrawn JP2003230109A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002027817A JP2003230109A (en) 2002-02-05 2002-02-05 Method of interpolating scanning line, and scanning line converter, and image display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002027817A JP2003230109A (en) 2002-02-05 2002-02-05 Method of interpolating scanning line, and scanning line converter, and image display

Publications (1)

Publication Number Publication Date
JP2003230109A true JP2003230109A (en) 2003-08-15

Family

ID=27749221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002027817A Withdrawn JP2003230109A (en) 2002-02-05 2002-02-05 Method of interpolating scanning line, and scanning line converter, and image display

Country Status (1)

Country Link
JP (1) JP2003230109A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008166872A (en) * 2006-12-26 2008-07-17 Fujitsu Ltd Program, apparatus and method for determining interpolation method
US8107773B2 (en) 2006-09-27 2012-01-31 Kabushiki Kaisha Toshiba Video signal processing apparatus and video signal processing method
JP2022049817A (en) * 2020-09-17 2022-03-30 Tvs Regza株式会社 Receiving device and program

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8107773B2 (en) 2006-09-27 2012-01-31 Kabushiki Kaisha Toshiba Video signal processing apparatus and video signal processing method
JP2008166872A (en) * 2006-12-26 2008-07-17 Fujitsu Ltd Program, apparatus and method for determining interpolation method
US8290308B2 (en) 2006-12-26 2012-10-16 Fujitsu Limited Program, apparatus and method for determining interpolation method
JP2022049817A (en) * 2020-09-17 2022-03-30 Tvs Regza株式会社 Receiving device and program
JP7248631B2 (en) 2020-09-17 2023-03-29 Tvs Regza株式会社 Receiving device and program

Similar Documents

Publication Publication Date Title
KR100505663B1 (en) Progressive scan method of the display by adaptive edge dependent interpolation
US7423691B2 (en) Method of low latency interlace to progressive video format conversion
US6396543B1 (en) Deinterlacing apparatus of digital image data
KR100335862B1 (en) System for conversion of interlaced video to progressive video using edge correlation
KR100561477B1 (en) An edge direction based image interpolation method
KR100495549B1 (en) Scanning line interpolating device
US6999128B2 (en) Stillness judging device and scanning line interpolating device having it
JP3962876B2 (en) Interpolation filter for video signal
KR100457517B1 (en) An apparatus and method for frame rate conversion
US20060018564A1 (en) Interpolation pixel generation circuit
KR20030091777A (en) Method and system for edge-adaptive interpolation for interlace-to-progressive conversion
JPH08163573A (en) Motion vector detector and successive scanning converter using the detector
JP2012213136A (en) Video processing apparatus and video processing method
JPH11146346A (en) Noninterlace scanning conversion method and noninterlace scanning converter
JP2003230109A (en) Method of interpolating scanning line, and scanning line converter, and image display
JP2001094951A (en) Scanning line interpolation method
KR20060030724A (en) Image processing apparatus capable of selecting field and method the same
JP2009212851A (en) Scanning line interpolator and its control method
WO2004002148A1 (en) Motion vector detection device, detection method, motion compensation device, and motion compensation method
JP4371907B2 (en) Pixel feature determination device, pixel interpolation device, and video signal processing device
KR100437101B1 (en) Method and circuit for converting interlaced scanning signal to progressive scanning signal using motion compensation
US20090231486A1 (en) Method and Device for De-Interlacing a Video Signal Having a Field of Interlaced Scan Lines
JP2006148827A (en) Scanning line interpolating device, and scanning line interpolating method
KR100285597B1 (en) Field Format Scan Format Converter and Method
JP2001024987A (en) Successive scanning converting circuit

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050405