JP2003228426A - Control apparatus for elastic mode vibration of structure - Google Patents

Control apparatus for elastic mode vibration of structure

Info

Publication number
JP2003228426A
JP2003228426A JP2002026676A JP2002026676A JP2003228426A JP 2003228426 A JP2003228426 A JP 2003228426A JP 2002026676 A JP2002026676 A JP 2002026676A JP 2002026676 A JP2002026676 A JP 2002026676A JP 2003228426 A JP2003228426 A JP 2003228426A
Authority
JP
Japan
Prior art keywords
mode vibration
elastic mode
measuring
vibration
driving means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002026676A
Other languages
Japanese (ja)
Other versions
JP2003228426A5 (en
JP3977091B2 (en
Inventor
Akira Nawata
亮 縄田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2002026676A priority Critical patent/JP3977091B2/en
Publication of JP2003228426A publication Critical patent/JP2003228426A/en
Publication of JP2003228426A5 publication Critical patent/JP2003228426A5/ja
Application granted granted Critical
Publication of JP3977091B2 publication Critical patent/JP3977091B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a control apparatus for elastic mode vibration of structures, which can realize high-precise control for elastic mode vibration of structures. <P>SOLUTION: The control apparatus for structures has a measurement means 1 for measuring elastic mode vibration of a surface of a structure, a driving means 1 for controlling elastic mode vibration of the structure surface, and a compensation device 1 for determining power to be generated by the driving means 1. In addition, the control apparatus also has a measurement means 2 for measuring elastic mode vibration of the reverse side of the structure surface, a drive means 2 for controlling the elastic mode vibration of the reverse side of the structure surface, and a compensation device 2 for determining power to be generated by the drive means 2. The measurement means 1 and 2, drive means 1 and 2, and compensation devices 1 and 2 are placed almost symmetrically at the portion of the belly of elastic mode vibration of the structure. The measurement means 1 and 2 have a means of measuring at least velocity components among the position, velocity and acceleration components of elastic mode vibration, and the compensation devices 1 and 2 control elastic mode vibration of the structure using the velocity information. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、構造物の弾性モー
ド振動を制御する制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control device for controlling elastic mode vibration of a structure.

【0002】[0002]

【従来の技術】構造物の弾性モード振動を制御する方法
としては、制御対象である構造物の弾性モード振動の速
度を計測して、その速度に応じた制御力を駆動装置に出
力することにより、構造物の弾性モード振動を制御する
速度フィードバック制御則が知られている。
2. Description of the Related Art A method of controlling elastic mode vibration of a structure is to measure the speed of elastic mode vibration of a structure to be controlled and output a control force corresponding to the speed to a drive device. A velocity feedback control law for controlling elastic mode vibration of a structure is known.

【0003】例えば、特開2001−148341号公
報(以下文献1)には、図12に示すように、フランジ
の両面のほぼ同じ位置に駆動手段として圧電素子3a,
3bを備え、圧電素子3a,3bをそれぞれ逆相で同時
に作動させることで、フランジの振動を制御することが
可能であると報告されている。
For example, in Japanese Unexamined Patent Publication No. 2001-148341 (hereinafter, referred to as Document 1), as shown in FIG.
It has been reported that it is possible to control the vibration of the flange by including the piezoelectric element 3b and operating the piezoelectric elements 3a and 3b simultaneously in the opposite phases.

【0004】又、圧電フィルムセンサ/アクチュエータ
による梁の振動制御(日本機会学会論文集(C編)65
巻633号)(以下文献2)では、図13に示すよう
に、構造物を片持ち梁とし、片持ち梁の表面に弾性モー
ド振動を計測するための計測手段として圧電フィルム2
aと、同じく片持ち梁の表面に弾性モード振動を制御す
るための駆動手段として圧電素子3aと、圧電素子2a
が計測した歪速度に応じた制御力を圧電素子3aに出力
する制御手段4aから成る制御方法が報告されている。
Further, the vibration control of the beam by the piezoelectric film sensor / actuator (Proceedings of the Japan Opportunity Society (C edition) 65
Vol. 633) (hereinafter referred to as Document 2), as shown in FIG. 13, the structure is a cantilever, and the piezoelectric film 2 is used as a measuring unit for measuring elastic mode vibration on the surface of the cantilever.
a, a piezoelectric element 3a and a piezoelectric element 2a as driving means for controlling elastic mode vibration on the surface of the cantilever.
Has reported a control method comprising a control means 4a for outputting to the piezoelectric element 3a a control force according to the strain rate measured by.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、文献1
に示される構成では、図6に示すような構造物の伸縮方
向への弾性モード振動が発生した場合、図12に示す圧
電素子3aと3bを逆位相で同時に作動させると、前述
の伸縮方向の振動を増加させて制御系を不安定にする。
DISCLOSURE OF THE INVENTION Problem to be Solved by the Invention
In the configuration shown in FIG. 6, when elastic mode vibration occurs in the expansion / contraction direction of the structure as shown in FIG. 6, when the piezoelectric elements 3a and 3b shown in FIG. Increases vibration and destabilizes the control system.

【0006】又、文献2に示される構成では、図7に示
すように梁の表面の弾性モード振動だけを制御し、梁の
裏面の弾性モード振動を制御することができない。
Further, in the configuration shown in Document 2, as shown in FIG. 7, it is not possible to control only the elastic mode vibration of the front surface of the beam, but not the elastic mode vibration of the back surface of the beam.

【0007】本発明は上記事情に鑑みてなされたもの
で、その目的とする処は、制御系を不安定にすることな
く、且つ、構造物の弾性モード振動の高精度な制御を実
現することができる構造物の弾性モード振動の制御装置
を提供することにある。
The present invention has been made in view of the above circumstances, and an object thereof is to realize highly accurate control of elastic mode vibration of a structure without destabilizing a control system. Another object of the present invention is to provide a control device for elastic mode vibration of a structure capable of achieving the above.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するた
め、本発明は、構造物の表面の弾性モード振動を計測す
るための計測手段1と、構造物の表面の弾性モード振動
を制御するための駆動手段2と、駆動手段1の発生する
力を決定する補償器1と、構造物の裏面の弾性モード振
動を計測するための計測手段2と、構造物の裏面の弾性
モード振動を制御するための駆動手段2と、駆動手段2
の発生する力を決定する補償器2を、構造物の弾性モー
ド振動の腹となる部分にほぼ対称に有する構造物の制御
装置において、前記計測手段1、2は弾性モード振動の
位置、速度、加速度成分のうち最低限、弾性モード振動
の速度成分を計測する手段を有し、前記補償器1、2は
この速度情報を用いて前記構造物の弾性モード振動を制
御することを特徴とする。
In order to achieve the above object, the present invention provides a measuring means 1 for measuring the elastic mode vibration of the surface of a structure and a control means for controlling the elastic mode vibration of the surface of the structure. Driving means 2, a compensator 1 for determining the force generated by the driving means 1, a measuring means 2 for measuring the elastic mode vibration of the back surface of the structure, and an elastic mode vibration of the back surface of the structure. Driving means 2 for driving, and driving means 2
In the structure control device having the compensator 2 for determining the force generated by the elastic mode vibration of the structure substantially symmetrically with respect to the antinode of the elastic mode vibration of the structure, It is characterized in that it has means for measuring at least the velocity component of the elastic mode vibration among the acceleration components, and the compensators 1 and 2 control the elastic mode vibration of the structure using this velocity information.

【0009】このような構成を用いることにより、図6
に示すような伸縮方向への弾性モード振動を制御するこ
とができ、更に、構造物の表面にだけ弾性モード振動の
制御装置を有する場合に比べて、より効果的に構造物の
弾性モード振動を制御することができる。
By using such a configuration, as shown in FIG.
It is possible to control the elastic mode vibration in the expansion and contraction direction as shown in Fig. 3, and more effectively control the elastic mode vibration of the structure compared to the case where the elastic mode vibration control device is provided only on the surface of the structure. Can be controlled.

【0010】[0010]

【発明の実施の形態】以下に本発明の実施の形態を添付
図面に基づいて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the accompanying drawings.

【0011】<実施の形態1>図1に示すように、梁を
構造物1として、梁の表面に、弾性モード振動を計測す
るための計測手段2aと、弾性モード振動を制御するた
めの駆動手段3aを備え、補償器4aは計測手段2aが
計測した速度成分に応じた制御力を駆動手段3aに出力
する。更に、梁の裏面にも、弾性モード振動を計測する
ための計測手段2bと、弾性モード振動を制御するため
の駆動手段3bを備え、補償器4bは計測手段2bが計
測した速度成分に応じた制御力を駆動手段3bに出力す
る。ここでは、補償器4a,4bとして例えばゲイン補
償を用いた。
<First Embodiment> As shown in FIG. 1, a beam is used as a structure 1, and a measuring means 2a for measuring elastic mode vibration and a drive for controlling elastic mode vibration are provided on the surface of the beam. Compensator 4a includes means 3a, and compensator 4a outputs to control means 3a a control force corresponding to the velocity component measured by measuring means 2a. Further, the back surface of the beam is also provided with measuring means 2b for measuring the elastic mode vibration and driving means 3b for controlling the elastic mode vibration, and the compensator 4b responds to the velocity component measured by the measuring means 2b. The control force is output to the driving means 3b. Here, for example, gain compensation is used as the compensators 4a and 4b.

【0012】図1の加振点9から計測点10への力から
変位への伝達特性を図8に示す。図8の破線は、弾性モ
ード振動を制御しなかった場合の梁の力から変位への伝
達特性を示している。弾性モード振動の共振点が高いピ
ークをもっている。
FIG. 8 shows a transfer characteristic from force to displacement from the excitation point 9 to the measurement point 10 in FIG. The broken line in FIG. 8 shows the transfer characteristic from the force to the displacement of the beam when the elastic mode vibration is not controlled. The resonance point of elastic mode vibration has a high peak.

【0013】図8の点線は、梁の表面にだけ弾性モード
振動を検出するための計測手段2aと、弾性モード振動
を制御するための駆動手段3aと、補償器4aを備え
た、文献2で示される従来技術による弾性モード振動の
制御手段を行った場合の梁の力から変位への伝達特性を
示している。弾性モード振動のピークが抑えられてはい
るが、未だピークが残っている。図8の実線は、実施例
1を施した場合の梁の伝達特性を示している。点線の従
来技術に比べて、弾性モード振動のピークが更に抑えら
れている。
The dotted line in FIG. 8 is the reference 2 in which the measuring means 2a for detecting elastic mode vibration only on the surface of the beam, the driving means 3a for controlling elastic mode vibration, and the compensator 4a are provided. The transmission characteristic from the force to the displacement of the beam when the elastic mode vibration control means according to the related art shown is performed is shown. Although the peak of elastic mode vibration is suppressed, the peak still remains. The solid line in FIG. 8 shows the transfer characteristics of the beam when the first embodiment is applied. The peak of elastic mode vibration is further suppressed as compared with the prior art of the dotted line.

【0014】<実施の形態2>図2に示すように、実施
の形態1に示す構成を図5に示す2次の弾性モード振動
の腹となる部分に2組設けることにより、1次と2次の
弾性モード振動を同時に減衰させることが可能になる。
図2の加振点9から計測点10への力から変位への伝達
特性を図8に示す。
<Second Embodiment> As shown in FIG. 2, two sets of the structure shown in the first embodiment are provided in the antinode of the secondary elastic mode vibration shown in FIG. The next elastic mode vibration can be damped at the same time.
FIG. 8 shows the transfer characteristic from the force to the displacement to the measurement point 10 from the excitation point 9 in FIG.

【0015】図9の破線は、弾性モード振動を制御しな
かった場合の梁の力から変位への伝達特性を示してい
る。図9の点線は、実施の形態1を施した場合の梁の伝
達特性を示している。2次の弾性モード振動を減衰する
ことができていない。図9の実線は、実施の形態2を施
した場合の梁の伝達特性を示している。1次と2次の弾
性モード振動のピークが抑えられている。
The broken line in FIG. 9 shows the transfer characteristic from the force of the beam to the displacement when the elastic mode vibration is not controlled. The dotted line in FIG. 9 shows the transfer characteristics of the beam when the first embodiment is applied. The second-order elastic mode vibration cannot be damped. The solid line in FIG. 9 shows the transfer characteristics of the beam when the second embodiment is applied. The peaks of the first and second elastic mode vibrations are suppressed.

【0016】<実施の形態3>図3は実施の形態1に示
す構成に、梁の剛体振動を制御する制御系を追加したも
のである。梁の剛体振動は、基準位置5から剛体振動を
計測する計測手段6a,6bにより、梁のZ軸方向への
位置及びY軸回りの回転を計測し、この計測結果に応じ
た制御力を補償器8が駆動手段7a,7bに発生するこ
とにより、制御される。ここでは、補償器8として例え
ばPID補償器を用いた。
<Third Embodiment> FIG. 3 shows a structure in which a control system for controlling rigid body vibration of a beam is added to the structure shown in the first embodiment. Regarding the rigid body vibration of the beam, the measuring means 6a and 6b for measuring the rigid body vibration from the reference position 5 measure the position of the beam in the Z-axis direction and the rotation around the Y-axis, and compensate the control force according to the measurement result. It is controlled by generating the device 8 in the driving means 7a, 7b. Here, for example, a PID compensator is used as the compensator 8.

【0017】図10の点線は、梁の表面にだけ弾性モー
ド振動を検出するための計測手段2aと、弾性モード振
動を制御するための駆動手段3aと補償器4aを備え
た、文献2で示される従来技術による弾性モード振動の
制御手段を行った場合のY軸回りの回転の伝達特性を示
している。1次の弾性モード振動のピークが残っている
ため、剛体振動を制御する制御系のサーボ帯域を600
[Hz]までしか上げることができない。
The dotted line in FIG. 10 is shown in Reference 2, which comprises a measuring means 2a for detecting elastic mode vibration only on the surface of the beam, a driving means 3a for controlling elastic mode vibration and a compensator 4a. 7 shows a transfer characteristic of rotation about the Y axis when the elastic mode vibration control means according to the related art is performed. Since the peak of the first-order elastic mode vibration remains, the servo band of the control system that controls the rigid body vibration is 600
It can only be increased to [Hz].

【0018】図10の実線は、実施の形態3におけるY
軸回りの回転の伝達特性を示している。従来技術に比べ
て1次の弾性モードのピークが抑えられ、剛体振動を制
御する制御系のサーボ帯域を1100[Hz]まで上げ
ることが可能になっている。
The solid line in FIG. 10 represents Y in the third embodiment.
The transmission characteristic of the rotation around the axis is shown. The peak of the first-order elastic mode is suppressed as compared with the conventional technique, and it is possible to raise the servo band of the control system for controlling the rigid body vibration to 1100 [Hz].

【0019】<実施の形態4>図4は実施の形態2に示
す構成に、梁の剛体振動を制御する制御系を追加したも
のである。梁の剛体振動は,基準位置5から剛体振動を
計測する計測手段6a,6bにより、梁のZ軸方向への
位置及びY軸回りの回転を計測し、この計測結果に応じ
た制御力を補償器8が駆動手段7a,7bに発生するこ
とにより、制御される。
<Fourth Preferred Embodiment> FIG. 4 shows a structure in which a control system for controlling a rigid body vibration of a beam is added to the structure shown in the second preferred embodiment. For the rigid body vibration of the beam, the measuring means 6a and 6b for measuring the rigid body vibration from the reference position 5 measure the position of the beam in the Z-axis direction and the rotation around the Y-axis, and compensate the control force according to the measurement result. It is controlled by generating the device 8 in the driving means 7a, 7b.

【0020】図11の点線は、梁の表面にだけ弾性モー
ド振動を検出するための計測手段2aと、弾性モード振
動を制御するための駆動手段3aと、補償器4aを備え
た、文献2で示される従来技術による弾性モード振動の
制御手段を行った場合のY軸回りの回転の伝達特性を示
している。1次の弾性モード振動のピークが残っている
ため、剛体振動を制御する制御系のサーボ帯域を250
[Hz]までしか上げることができない。
The dotted line in FIG. 11 is a reference 2 which is provided with a measuring means 2a for detecting elastic mode vibration only on the surface of the beam, a driving means 3a for controlling elastic mode vibration, and a compensator 4a. The transmission characteristic of the rotation around the Y-axis when the elastic mode vibration control means according to the related art shown is performed is shown. Since the peak of the first-order elastic mode vibration remains, the servo band of the control system for controlling the rigid body vibration is set to 250.
It can only be increased to [Hz].

【0021】図11の実線は、実施の形態4におけるY
軸回りの回転の伝達特性を示している。従来技術に比べ
て1次の弾性モードのピークが抑えられ、剛体振動を制
御する制御系のサーボ帯域を500[Hz]まで上げる
ことが可能になっている。
The solid line in FIG. 11 represents Y in the fourth embodiment.
The transmission characteristic of the rotation around the axis is shown. The peak of the first-order elastic mode is suppressed as compared with the conventional technique, and the servo band of the control system for controlling the rigid body vibration can be increased to 500 [Hz].

【0022】<実施の形態5>実施の形態1の計測手段
2a,2b及び駆動手段3a,3bに圧電素子を用いる
ことができる。
<Embodiment 5> Piezoelectric elements can be used for the measuring means 2a, 2b and the driving means 3a, 3b of the first embodiment.

【0023】<実施の形態6>実施の形態2の計測手段
2a,2b,2c,2d及び駆動手段3a,3b,3
c,3dに圧電素子を用いることができる。
<Embodiment 6> Measuring means 2a, 2b, 2c, 2d and driving means 3a, 3b, 3 of the second embodiment.
Piezoelectric elements can be used for c and 3d.

【0024】<実施の形態7>実施の形態3の計測手段
2a,2b及び駆動手段3a,3bに圧電素子を用いる
ことができる。
<Embodiment 7> Piezoelectric elements can be used for the measuring means 2a, 2b and the driving means 3a, 3b of the third embodiment.

【0025】<実施の形態8>実施の形態4の計測手段
2a,2b,2c,2d及び駆動手段3a,3b,3
c,3dに圧電素子を用いることができる。
<Embodiment 8> Measuring means 2a, 2b, 2c, 2d and drive means 3a, 3b, 3 of the fourth embodiment.
Piezoelectric elements can be used for c and 3d.

【0026】[0026]

【発明の効果】以上の説明で明らかなように、本発明に
よれば、構造物の表面の弾性モード振動を計測するため
の計測手段1と、構造物の表面の弾性モード振動を制御
するための駆動手段2と、駆動手段1の発生する力を決
定する補償器1と、構造物の裏面の弾性モード振動を計
測するための計測手段2と、構造物の裏面の弾性モード
振動を制御するための駆動手段2と、駆動手段2の発生
する力を決定する補償器2を、構造物の弾性モード振動
の腹となる部分にほぼ対称に有する構造物の制御装置に
おいて、前記計測手段1、2は弾性モード振動の位置、
速度、加速度成分のうち最低限、弾性モード振動の速度
成分を計測する手段を有し、前記補償器1、2はこの速
度情報を用いて前記構造物の弾性モード振動を制御する
ようにしたため、制御系を不安定にすることなく、且
つ、構造物の弾性モード振動の高精度な制御を実現する
ことができるという効果が得られる。
As is apparent from the above description, according to the present invention, the measuring means 1 for measuring the elastic mode vibration of the surface of the structure and the control means for controlling the elastic mode vibration of the surface of the structure. Driving means 2, a compensator 1 for determining the force generated by the driving means 1, a measuring means 2 for measuring elastic mode vibration of the back surface of the structure, and an elastic mode vibration of the back surface of the structure. In the structure control device, which has drive means 2 for driving and a compensator 2 for determining the force generated by the drive means 2 substantially symmetrically with respect to the antinode of the elastic mode vibration of the structure, the measuring means 1, 2 is the position of elastic mode vibration,
Since at least the velocity and acceleration components have a means for measuring the velocity component of the elastic mode vibration, and the compensators 1 and 2 control the elastic mode vibration of the structure using the velocity information, It is possible to obtain an effect that highly accurate control of elastic mode vibration of a structure can be realized without destabilizing the control system.

【図面の簡単な説明】[Brief description of drawings]

【図1】梁の弾性モード振動を制御する場合の構成を示
す図である。
FIG. 1 is a diagram showing a configuration for controlling elastic mode vibration of a beam.

【図2】梁の複数の弾性モード振動を制御する場合の構
成を示す図である。
FIG. 2 is a diagram showing a configuration for controlling a plurality of elastic mode vibrations of a beam.

【図3】梁の弾性モード振動と剛体振動とを制御する場
合の構成を示す図である。
FIG. 3 is a diagram showing a configuration for controlling elastic mode vibration and rigid body vibration of a beam.

【図4】梁の複数の弾性モード振動と剛体振動とを制御
する場合の構成を示す図である。
FIG. 4 is a diagram showing a configuration for controlling a plurality of elastic mode vibrations and a rigid body vibration of a beam.

【図5】梁の弾性モード振動を示す図である。FIG. 5 is a diagram showing elastic mode vibration of a beam.

【図6】梁の伸縮方向への弾性モード振動を示す図であ
る。
FIG. 6 is a diagram showing elastic mode vibration in the expansion / contraction direction of a beam.

【図7】梁の伸縮方向への弾性モード振動を示す図であ
る。
FIG. 7 is a diagram showing elastic mode vibration in the expansion / contraction direction of a beam.

【図8】梁の弾性モード振動を制御した場合の力から変
位への伝達特性を示す図である。
FIG. 8 is a diagram showing a transfer characteristic from a force to a displacement when elastic mode vibration of a beam is controlled.

【図9】梁の複数の弾性モード振動を制御した場合の力
から変位への伝達特性を示す図である。
FIG. 9 is a diagram showing a transfer characteristic from a force to a displacement when a plurality of elastic mode vibrations of a beam are controlled.

【図10】梁の弾性モード振動と剛体振動を制御した場
合のY軸回りの回転の伝達特性を示す図である。
FIG. 10 is a diagram showing transfer characteristics of rotation about the Y axis when elastic mode vibration and rigid body vibration of a beam are controlled.

【図11】梁の複数の弾性モード振動と剛体振動を制御
した場合のY軸回りの回転の伝達特性を示す図である。
FIG. 11 is a diagram showing transfer characteristics of rotation about the Y axis when a plurality of elastic mode vibrations of a beam and a rigid body vibration are controlled.

【図12】特開2001−148341号公報に示され
た実施例を示す図である。
FIG. 12 is a diagram showing an example disclosed in Japanese Patent Laid-Open No. 2001-148341.

【図13】圧電フィルムセンサ/アクチュエータによる
梁の振動制御に示された実施例を示す図である。
FIG. 13 is a diagram showing an embodiment shown in vibration control of a beam by a piezoelectric film sensor / actuator.

【符号の説明】[Explanation of symbols]

1 構造物 2a〜2d 弾性モード振動を計測する計測手段 3a〜3d 弾性モード振動を制御する駆動手段 4a〜4d 弾性モード振動を制御する制御手段 5 基準位置 6a,6b 剛体振動を計測する計測手段 7a,7b 剛体振動を制御する駆動手段 8 剛体振動を制御する制御手段 9 加振点 10 計測点 11 フランジ 1 structure 2a-2d Measuring means for measuring elastic mode vibration 3a to 3d Driving means for controlling elastic mode vibration 4a-4d Control means for controlling elastic mode vibration 5 reference position 6a, 6b Measuring means for measuring rigid body vibration 7a, 7b Drive means for controlling rigid body vibration 8 Control means for controlling rigid body vibration 9 Excitation points 10 measurement points 11 flange

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 構造物の表面の弾性モード振動を計測す
るための計測手段1と、構造物の表面の弾性モード振動
を制御するための駆動手段2と、駆動手段1の発生する
力を決定する補償器1と、構造物の裏面の弾性モード振
動を計測するための計測手段2と、構造物の裏面の弾性
モード振動を制御するための駆動手段2と、駆動手段2
の発生する力を決定する補償器2を、構造物の弾性モー
ド振動の腹となる部分にほぼ対称に有する構造物の制御
装置において、 前記計測手段1、2は弾性モード振動の位置、速度、加
速度成分のうち最低限、弾性モード振動の速度成分を計
測する手段を有し、前記補償器1、2はこの速度情報を
用いて前記構造物の弾性モード振動を制御することを特
徴とする構造物の弾性モード振動の制御装置。
1. A measuring means 1 for measuring elastic mode vibration of the surface of a structure, a driving means 2 for controlling elastic mode vibration of the surface of a structure, and a force generated by the driving means 1 are determined. Compensator 1, measuring means 2 for measuring elastic mode vibration of the back surface of the structure, driving means 2 for controlling elastic mode vibration of the back surface of the structure, and driving means 2
In a structure control device having a compensator 2 for determining the force generated by the elastic mode vibration of the structure substantially symmetrically with respect to the antinode of the elastic mode vibration of the structure, A structure characterized by having means for measuring at least a velocity component of elastic mode vibration among acceleration components, and the compensators 1 and 2 controlling the elastic mode vibration of the structure using this velocity information. Control device for elastic mode vibration of objects.
【請求項2】 構造物の表面に設けられた計測手段1
と、駆動手段1と、補償器1と、構造物の裏面に設けら
れた計測手段2と、駆動手段2と、補償器2を一組の制
御手段として、それらを構造物の高次の弾性モード振動
の腹となる部分に複数組有することにより、構造物の高
次の弾性モード振動も制御することを特徴とする請求項
1記載の構造物の弾性モード振動の制御装置。
2. A measuring means 1 provided on the surface of a structure.
The driving means 1, the compensator 1, the measuring means 2 provided on the back surface of the structure, the driving means 2, and the compensator 2 as a set of controlling means, and these are used as high-order elasticity of the structure. The elastic mode vibration control device for a structure according to claim 1, wherein the elastic mode vibration of a higher order of the structure is also controlled by having a plurality of sets in a portion serving as an antinode of the mode vibration.
【請求項3】 構造物の基準位置からの位置を計測する
計測手段3と、構造物に外部から力を印加する駆動手段
3と、計測手段3の計測した情報を用いて、駆動手段3
の発生する力を決定する補償器4を有することにより、
構造物の剛体振動も制御することを特徴する構造物の弾
性モード振動の制御装置。
3. The driving means 3 using the measuring means 3 for measuring the position of the structure from the reference position, the driving means 3 for applying a force to the structure from the outside, and the information measured by the measuring means 3.
By having a compensator 4 that determines the force generated by
A control device for elastic mode vibration of a structure, which also controls rigid body vibration of the structure.
【請求項4】 計測手段1、2及び駆動手段1、2に圧
電素子を用いることを特徴とする請求項1,2又は3記
載の構造物の弾性モード振動の制御装置。
4. The elastic mode vibration control device for a structure according to claim 1, wherein a piezoelectric element is used for the measuring means 1 and 2 and the driving means 1 and 2.
JP2002026676A 2002-02-04 2002-02-04 Control device and control method for elastic mode vibration of structure Expired - Fee Related JP3977091B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002026676A JP3977091B2 (en) 2002-02-04 2002-02-04 Control device and control method for elastic mode vibration of structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002026676A JP3977091B2 (en) 2002-02-04 2002-02-04 Control device and control method for elastic mode vibration of structure

Publications (3)

Publication Number Publication Date
JP2003228426A true JP2003228426A (en) 2003-08-15
JP2003228426A5 JP2003228426A5 (en) 2005-08-18
JP3977091B2 JP3977091B2 (en) 2007-09-19

Family

ID=27748442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002026676A Expired - Fee Related JP3977091B2 (en) 2002-02-04 2002-02-04 Control device and control method for elastic mode vibration of structure

Country Status (1)

Country Link
JP (1) JP3977091B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102169046A (en) * 2010-12-22 2011-08-31 北京航空航天大学 Online elastic mode testing system for magnetically suspended electromechanical equipment
CN105443635A (en) * 2016-01-07 2016-03-30 南昌航空大学 Frequency adjustable stair beam type dynamic vibration absorber based on piezoelectric feedback control
CN110488882A (en) * 2019-08-16 2019-11-22 西安邮电大学 Piezoelectricity semi-active vibration control experimental provision and method based on acceleration detection

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102169046A (en) * 2010-12-22 2011-08-31 北京航空航天大学 Online elastic mode testing system for magnetically suspended electromechanical equipment
CN102169046B (en) * 2010-12-22 2012-07-25 北京航空航天大学 Online elastic mode testing system for magnetically suspended electromechanical equipment
CN105443635A (en) * 2016-01-07 2016-03-30 南昌航空大学 Frequency adjustable stair beam type dynamic vibration absorber based on piezoelectric feedback control
CN110488882A (en) * 2019-08-16 2019-11-22 西安邮电大学 Piezoelectricity semi-active vibration control experimental provision and method based on acceleration detection

Also Published As

Publication number Publication date
JP3977091B2 (en) 2007-09-19

Similar Documents

Publication Publication Date Title
JP2559589B2 (en) Vibration absorber
JP5247182B2 (en) Angular velocity sensor
US7755251B2 (en) Control apparatus and control method for vibration wave driven apparatus
JP5408961B2 (en) Angular velocity sensor
JPH11230246A (en) Active damper
JPS63180401A (en) Cutting tool having active vibration isolating function
JP2003228426A (en) Control apparatus for elastic mode vibration of structure
JP4516053B2 (en) Control device
JP4585346B2 (en) Control method of ultrasonic motor
JP5534668B2 (en) Driving apparatus and driving method
JP4880763B2 (en) Motor control method and apparatus
JP6091316B2 (en) Speed control mechanism of vibration type drive device, vibration type drive device, electronic apparatus, and speed control method
JP4998244B2 (en) Vibration actuator, control method therefor, and robot hand
JP2010054397A (en) Control actuator and vibration control method
JPH07168631A (en) Vibration damping device
JPH08168274A (en) Vibration device and ultrasonic motor
JPS63216110A (en) High speed moving table
JP6448406B2 (en) Vibrating actuator, control method therefor, and optical instrument
JP2013195886A (en) Optical scanner
JP3641902B2 (en) Drive device
JP2005261025A (en) Ultrasonic motor, moving device and its driving method
JP2945684B2 (en) Vibration control method for structures
JP2004211741A (en) Active damper control device, vibration damper and active damper control method
JPH0553650A (en) Positioning controller
JPH01174281A (en) Ultrasonic motor

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050204

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050204

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070620

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3977091

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130629

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees