JP2003227913A - Diffraction optical element - Google Patents

Diffraction optical element

Info

Publication number
JP2003227913A
JP2003227913A JP2002026310A JP2002026310A JP2003227913A JP 2003227913 A JP2003227913 A JP 2003227913A JP 2002026310 A JP2002026310 A JP 2002026310A JP 2002026310 A JP2002026310 A JP 2002026310A JP 2003227913 A JP2003227913 A JP 2003227913A
Authority
JP
Japan
Prior art keywords
glass
diffractive
diffraction grating
optical element
diffraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002026310A
Other languages
Japanese (ja)
Inventor
Yoshibumi Tokiyoda
義文 常世田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2002026310A priority Critical patent/JP2003227913A/en
Priority to US10/355,166 priority patent/US20030161044A1/en
Publication of JP2003227913A publication Critical patent/JP2003227913A/en
Priority to US11/501,720 priority patent/US7554733B2/en
Priority to US12/495,131 priority patent/US20090273841A1/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
    • G02B27/0037Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration with diffracting elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4205Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive optical element [DOE] contributing to image formation, e.g. whereby modulation transfer function MTF or optical aberrations are relevant
    • G02B27/4211Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive optical element [DOE] contributing to image formation, e.g. whereby modulation transfer function MTF or optical aberrations are relevant correcting chromatic aberrations
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4272Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having plural diffractive elements positioned sequentially along the optical path
    • G02B27/4277Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having plural diffractive elements positioned sequentially along the optical path being separated by an air space
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1814Diffraction gratings structurally combined with one or more further optical elements, e.g. lenses, mirrors, prisms or other diffraction gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4272Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having plural diffractive elements positioned sequentially along the optical path

Abstract

<P>PROBLEM TO BE SOLVED: To provide a diffraction optical element in which the angular characteristic is improved to be better than heretofore and the productivity of a diffraction grating is improved. <P>SOLUTION: In the diffraction element 20 a first diffraction element 10 and a second diffraction element 20 which are made of materials different from each other are tightly joined and a diffraction grating groove 30 having a prescribed figure is formed on the joined plane of the diffraction grating elements 10 and 20. The material of one of the diffraction grating elements 10 and 20 is glass for glass mold and the material of the other is an ultraviolet curing resin, and the relation 7.0 μm≤h≤18.0 μm is satisfied where the height of the diffraction grating groove 30 is given by h. Further, the pitch p of the diffraction grating groove 30 is 70 μm or larger. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、回折光学素子に関
し、特に、複数の回折素子要素から構成された複層型の
回折光学素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a diffractive optical element, and more particularly to a multi-layer diffractive optical element composed of a plurality of diffractive element elements.

【0002】[0002]

【従来の技術】回折光学素子は、微小間隔(約1mm)
当たり数百本程度の細かい等間隔のスリット状若しくは
溝状の格子構造を備えて作られた光学素子であり、光が
入射されると、スリットや溝のピッチ(間隔)と光の波
長とで定まる方向に回折光束を生じさせる性質を有して
いる。このような回折光学素子は種々の光学系に用いら
れており、例えば、特定次数の回折光を一点に集めてレ
ンズとして使用するものなどが知られている。
2. Description of the Related Art Diffractive optical elements have a minute interval (about 1 mm).
It is an optical element made with a slit-like or groove-like lattice structure with a few evenly spaced slits or grooves, and when light is incident, the pitch (spacing) of the slits or grooves and the wavelength of the light will change. It has a property of generating a diffracted light beam in a fixed direction. Such a diffractive optical element is used in various optical systems, and for example, one that collects diffracted light of a specific order at one point and uses it as a lens is known.

【0003】このような回折光学素子においては近年、
複層型と呼ばれる回折光学素子が提案されてきている。
このタイプの回折光学素子は、鋸歯状に形成された面を
持つ複数の回折素子要素を積み重ねてなるものであり、
所望の広波長領域(例えば可視光領域)のほぼ全域で高
い回折効率が保たれる、すなわち波長特性が良好である
という特徴を有している。
In recent years, such diffractive optical elements have been used.
A diffractive optical element called a multi-layer type has been proposed.
This type of diffractive optical element is formed by stacking a plurality of diffractive element elements having sawtooth-shaped surfaces,
It has a characteristic that a high diffraction efficiency is maintained in almost all of a desired wide wavelength region (for example, a visible light region), that is, wavelength characteristics are good.

【0004】一般に複層型回折光学素子の構造は、例え
ば図3に示すように、第1の材質からなる第1の回折素
子要素110と、第1の材質とは屈折率やアッベ数が異
なる第2の材質からなる第2の回折素子要素120とか
ら構成され、それぞれの回折素子要素の対向し合う鋸歯
状に形成された面同士は、空気130を挟んで分離した
状態に配置されている。ここで、特定の2波長に対して
色消し条件を満足させるように、第1の回折素子要素1
10の高さd1を所定の値に決定し、第2の回折素子要
素120の高さd2を別の所定の値に決定する。これに
より、特定の2波長に対しては回折効率が1.0とな
り、その他の波長に対しても、かなり高い回折効率を得
ることができるようになる。本明細書中で、回折効率と
は、透過型の回折光学素子において、入射する光の振幅
値I0と一次回折光の振幅値I1との割合η(=I1/I0
×100%)とする。
Generally, in the structure of the multi-layer type diffractive optical element, as shown in FIG. 3, for example, the first diffractive element 110 made of the first material and the first material have different refractive indexes and Abbe numbers. The second diffractive element element 120 made of the second material and the sawtooth-shaped surfaces of the respective diffractive element elements facing each other are arranged in a state of being separated with the air 130 interposed therebetween. . Here, the first diffractive element 1 is designed to satisfy the achromatic condition for two specific wavelengths.
The height d1 of 10 is set to a predetermined value, and the height d2 of the second diffractive element 120 is set to another predetermined value. As a result, the diffraction efficiency becomes 1.0 for two specific wavelengths, and a considerably high diffraction efficiency can be obtained for other wavelengths. In the present specification, the diffraction efficiency in the transmission type diffractive optical element, the ratio of the amplitude value I 1 between the amplitude value I 0 of incident light first-order diffracted light eta (= I 1 / I 0
X 100%).

【0005】[0005]

【発明が解決しようとする課題】しかしながら、このよ
うな構成の複層型回折光学素子では、回折格子溝の高さ
によっては角度特性、すなわち入射光線の入射角の変化
に対する回折効率の低下の度合いが悪くなる場合がある
という問題があった。また、回折格子溝のピッチの大き
さによっては回折格子溝の形成が困難であるという問題
があった。
However, in the multi-layer type diffractive optical element having such a structure, depending on the height of the diffraction grating groove, the angle characteristic, that is, the degree of decrease of the diffraction efficiency with respect to the change of the incident angle of the incident light beam. There is a problem that may be worse. Further, there is a problem that it is difficult to form the diffraction grating groove depending on the size of the pitch of the diffraction grating groove.

【0006】また、図3に示す従来の複層型回折光学素
子では、第1の回折素子要素110における回折格子溝
の高さd1と第2の回折素子要素120における回折格
子溝の高さd2とは相異なるため、回折素子要素11
0,120それぞれを同じ手順で別々に製造しなければ
ならない上、最終的には、両回折素子要素110,12
0を精度良く位置合わせする必要があるため、非常に作
りづらいものとなる。
Further, in the conventional multilayer diffractive optical element shown in FIG. 3, the height d1 of the diffraction grating groove in the first diffraction element element 110 and the height d2 of the diffraction grating groove in the second diffraction element element 120. Is different from that of the diffractive element 11
0 and 120 must be manufactured separately by the same procedure, and finally, both diffractive element elements 110 and 12 must be manufactured.
Since it is necessary to accurately align 0, it is very difficult to make.

【0007】本発明はこのような問題に鑑みてなされた
ものであり、角度特性を従来に比して向上させることが
できるとともに、回折格子の生産性を向上させることが
可能な回折光学素子を提供することを目的としている。
The present invention has been made in view of such a problem, and provides a diffractive optical element capable of improving the angle characteristic as compared with the conventional one and improving the productivity of the diffraction grating. It is intended to be provided.

【0008】[0008]

【課題を解決するための手段】このような目的を達成す
るため、請求項1に記載の回折光学素子は、互いに異な
る材質からなる第1の回折素子要素と第2の回折素子要
素とが密着接合され、両回折素子要素の接合面に所定形
状の回折格子溝が形成されている回折光学素子であり、
両回折素子要素の一方の材質がガラスモールド用のガラ
スであるとともに他方の材質が紫外線硬化樹脂であり、
回折格子溝の高さをhとしたとき、式7.0μm≦h≦
18.0μmが満足されることを特徴とする。
In order to achieve such an object, in the diffractive optical element according to claim 1, the first diffractive element element and the second diffractive element element made of different materials are in close contact with each other. A diffractive optical element that is bonded and has a diffraction grating groove of a predetermined shape formed on the bonding surface of both diffractive element elements,
One material of both diffractive element is glass for glass mold and the other material is ultraviolet curable resin,
Assuming that the height of the diffraction grating groove is h, the formula 7.0 μm ≦ h ≦
It is characterized in that 18.0 μm is satisfied.

【0009】また、請求項2に記載の回折光学素子は、
互いに異なる材質からなる第1の回折素子要素と第2の
回折素子要素とが密着接合され、両回折素子要素の接合
面に所定形状の回折格子溝が形成されている回折光学素
子であり、両回折素子要素の一方の材質がガラスモール
ド用のガラスであるとともに他方の材質が紫外線硬化樹
脂であり、回折格子溝のピッチが70μm以上であるこ
とを特徴とする。
A diffractive optical element according to a second aspect is
A diffractive optical element in which a first diffractive element element and a second diffractive element element, which are made of different materials, are closely bonded and a diffractive grating groove having a predetermined shape is formed on a bonding surface of both diffractive element elements. One of the materials of the diffractive element is glass for glass molding, the other material is an ultraviolet curable resin, and the pitch of the diffraction grating grooves is 70 μm or more.

【0010】また、請求項3に記載の回折光学素子は、
請求項1又は2に記載の回折光学素子において、ガラス
モールド用のガラスは、d線での屈折率をndGとし、
アッベ数をνdGとしたとき、式1.55≦ndG≦
1.65及び55≦νdG≦65を満足し、かつ、前記
紫外線硬化樹脂は、d線での屈折率をndRとし、アッ
ベ数をνdRとしたとき、式1.50≦ndR≦1.6
0及びνdR≦40を満足することを特徴とする。
A diffractive optical element according to a third aspect is
In the diffractive optical element according to claim 1 or 2, the glass for glass molding has a refractive index of ndG at d line,
When the Abbe number is νdG, the formula 1.55 ≦ ndG ≦
1.65 and 55 ≦ νdG ≦ 65 are satisfied, and the above-mentioned ultraviolet curable resin has the formula 1.50 ≦ ndR ≦ 1.6, where the refractive index at d-line is ndR and the Abbe number is νdR.
It is characterized by satisfying 0 and νdR ≦ 40.

【0011】更に、請求項4に記載の回折光学素子は、
請求項1又は2に記載の回折光学素子において、ガラス
モールド用のガラスは、d線での屈折率をndGとし、
アッベ数をνdGとしたとき、式1.63≦ndG≦
1.73及び50≦νdG≦60を満足し、かつ、前記
紫外線硬化樹脂は、d線での屈折率をndRとし、アッ
ベ数をνdRとしたとき、式1.58≦ndR≦1.6
8及びνdR≦35を満足することを特徴とする。
Further, the diffractive optical element according to claim 4 is
In the diffractive optical element according to claim 1 or 2, the glass for glass molding has a refractive index of ndG at d line,
When the Abbe number is νdG, the expression 1.63 ≦ ndG ≦
1.73 and 50 ≦ νdG ≦ 60 are satisfied, and the above ultraviolet curable resin has a refractive index at the d-line of ndR and an Abbe's number of νdR, the formula 1.58 ≦ ndR ≦ 1.6.
8 and νdR ≦ 35 are satisfied.

【0012】[0012]

【発明の実施の形態】以下、図面を参照して本発明の好
ましい実施形態について説明する。図1は本発明に係る
回折光学素子の概念を示すものであり、密着した2層で
構成される複層型回折光学素子、すなわち密着複層型回
折光学素子の模式断面図である。本実施形態における回
折光学素子1では、互いに異なる材質からなる第1の回
折素子要素10と第2の回折素子要素20とが密着接合
されてなり、両回折素子要素10,20の境界には所定
形状の回折格子溝30が形成されている。本実施形態で
は、この回折格子溝30は図のように鋸歯形状をしてい
るが、本発明がこれに限定されるわけではない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows the concept of a diffractive optical element according to the present invention, and is a schematic cross-sectional view of a multi-layer diffractive optical element composed of two layers in close contact, that is, a contact multi-layer diffractive optical element. In the diffractive optical element 1 according to the present embodiment, the first diffractive element element 10 and the second diffractive element element 20 made of different materials are in close contact with each other, and the diffractive optical element 1 and the diffractive element elements 10 and 20 have a predetermined boundary. A diffraction grating groove 30 having a shape is formed. In the present embodiment, the diffraction grating groove 30 has a sawtooth shape as shown in the figure, but the present invention is not limited to this.

【0013】本発明の回折光学素子1では、第1及び第
2の回折素子要素10,20を構成する材質の一方はガ
ラスモールド用のガラスにより構成され、他方は紫外線
硬化樹脂により構成される。本実施形態では、第1の回
折素子要素10がガラスモールド用のガラスにより構成
され、また第2の回折素子要素20が紫外線硬化樹脂に
より構成されるものとして説明するが、これらは逆であ
ってもよい。本発明では、ガラスモールド用のガラスを
使用することで、射出成形が可能になり、量産性が向上
する。また、本発明では、熱可塑性樹脂ではなく、紫外
線硬化樹脂を用いている。熱可塑性樹脂は、成形時収縮
率が大きいため、ガラスとの密着性が悪く、なかなか貼
り合わせることができないという欠点がある。また、熱
可塑性樹脂の成形装置は、大がかりであり、量産性とい
う点からは、あまり良くない。これに対し、紫外線硬化
樹脂は、ガラスとの密着性が良く、小規模な装置により
成形を行うことができるという利点がある。また、本発
明では、図1に示すような密着複層型回折光学素子であ
るので、図3に示される従来よりの複層型回折光学素子
より回折格子の溝の高さを低くすることが可能である。
これにより、角度特性を良好にすることができる。
In the diffractive optical element 1 of the present invention, one of the materials forming the first and second diffractive element elements 10 and 20 is made of glass for glass molding, and the other is made of an ultraviolet curable resin. In the present embodiment, the first diffractive element element 10 is described as being made of glass for glass molding, and the second diffractive element element 20 is made of an ultraviolet curable resin. Good. In the present invention, by using glass for glass molding, injection molding is possible and mass productivity is improved. Further, in the present invention, an ultraviolet curable resin is used instead of the thermoplastic resin. Since the thermoplastic resin has a large shrinkage factor during molding, it has a drawback that it has poor adhesion to glass and cannot be easily bonded. Moreover, the molding apparatus for the thermoplastic resin is large-scale, and is not so good in terms of mass productivity. On the other hand, the ultraviolet curable resin has an advantage that it has good adhesion to glass and can be molded by a small-scale apparatus. Further, in the present invention, since the contact multilayer diffractive optical element as shown in FIG. 1 is used, the height of the groove of the diffraction grating can be made lower than that of the conventional multilayer diffractive optical element shown in FIG. It is possible.
Thereby, the angle characteristic can be improved.

【0014】本発明の回折光学素子1では回折格子溝3
0の高さをhとしたとき、下式(1)が満足される。
In the diffractive optical element 1 of the present invention, the diffraction grating groove 3
When the height of 0 is h, the following expression (1) is satisfied.

【0015】[0015]

【数1】 7.0μm≦h≦18.0μm … (1)[Equation 1] 7.0 μm ≦ h ≦ 18.0 μm (1)

【0016】上記式(1)は角度特性(入射光線の入射
角の変化に対する回折効率の低下の度合い)に関する条
件であり、この条件を満たすようにすることにより、従
来の密着複層型回折光学素子に比して角度特性を向上さ
せることができる。すなわち、回折格子溝30の高さh
を式(1)の上限値(18.0μm)以下にして回折格
子溝30の高さを低くすることにより、光透過時の損失
を小さくして角度特性を向上させることができる。但
し、高さhの値を無制限に小さくすることは、厳しい製
造精度を満足し得なくなる可能性があるため、式(1)
においては高さhに下限の値を設けている。ここで、上
記条件式(1)の下限の値を8.0μmとするととも
に、上限の値を16.5μmとすると、更に良い結果が
得られる。
The above equation (1) is a condition relating to the angle characteristic (the degree of decrease in the diffraction efficiency with respect to the change of the incident angle of the incident light beam). By satisfying this condition, the conventional contact multi-layer diffractive optical system The angle characteristic can be improved as compared with the element. That is, the height h of the diffraction grating groove 30
By lowering the height of the diffraction grating groove 30 to be equal to or less than the upper limit value (18.0 μm) of Expression (1), it is possible to reduce loss during light transmission and improve the angle characteristic. However, if the value of the height h is reduced infinitely, it may not be possible to satisfy the strict manufacturing accuracy.
In, the height h has a lower limit value. Here, when the lower limit value of the conditional expression (1) is set to 8.0 μm and the upper limit value is set to 16.5 μm, even better results are obtained.

【0017】また、本発明の回折光学素子1では、回折
格子溝30のピッチ(最小ピッチ)p(図1参照)を7
0μm以上と大きくすることで、回折格子溝30の頂角
θ(図1参照)を緩やかにすることができる。このよう
に回折格子溝30の頂角θを緩やかにしておけば、後述
するように、金型(第1の金型50)を用いて第1の回
折素子要素10を成形するときに、その形状を正確に転
写することができるとともに、このように転写成形され
た回折格子溝30上に滴下した紫外線硬化樹脂が第1の
回折素子要素10上に形成された(転写された)回折格
子溝30の窪み部分に充分に行き渡るようになるため、
所定形状の回折格子溝30を容易に形成することが可能
となり、ひいては本回折光学素子1の生産性を向上させ
ることができるようになる。なお、回折格子溝30のピ
ッチ(最小ピッチ)pを更に大きく100μm以上程度
とすれば、回折格子溝30の頂角θは更に緩やかになる
ので、回折格子溝30の形成はより一層容易になる。ま
た、ピッチが大きくなれば、角度特性が向上する。シミ
ュレーションによれば、大体70μm以上において、良
好な結果を得ることができた。
Further, in the diffractive optical element 1 of the present invention, the pitch (minimum pitch) p (see FIG. 1) of the diffraction grating groove 30 is set to 7
By increasing it to 0 μm or more, the apex angle θ (see FIG. 1) of the diffraction grating groove 30 can be made gentle. If the apex angle θ of the diffraction grating groove 30 is made gentle in this way, as described later, when the first diffraction element element 10 is molded using the mold (first mold 50), The shape can be accurately transferred, and the ultraviolet curable resin dropped on the diffraction grating groove 30 thus transfer-molded is formed (transferred) on the first diffraction element element 10. Since it will be fully spread over the depression of 30,
It is possible to easily form the diffraction grating groove 30 having a predetermined shape, and thus it is possible to improve the productivity of the present diffractive optical element 1. If the pitch (minimum pitch) p of the diffraction grating groove 30 is further increased to about 100 μm or more, the apex angle θ of the diffraction grating groove 30 becomes gentler, so that the formation of the diffraction grating groove 30 becomes easier. . Also, if the pitch is increased, the angle characteristic is improved. According to the simulation, good results could be obtained at approximately 70 μm or more.

【0018】また、本発明の回折光学素子1において第
1の回折素子要素10を構成するガラスモールド用のガ
ラスは、d線での屈折率をndGとし、アッベ数をνd
Gとしたとき、下の両式(2),(3)を満足し、か
つ、第2の回折光学素子20を構成する紫外線硬化樹脂
は、d線での屈折率をndRとし、アッベ数をνdRと
したとき、下の両式(4),(5)を満足することが好
ましい。
In the diffractive optical element 1 of the present invention, the glass for the glass mold forming the first diffractive element 10 has a refractive index of ndG at d line and an Abbe number of νd.
When G is set, the following two equations (2) and (3) are satisfied, and the ultraviolet curable resin that constitutes the second diffractive optical element 20 has a refractive index at d line of ndR and an Abbe number of When νdR is set, it is preferable to satisfy the following two expressions (4) and (5).

【0019】[0019]

【数2】 1.55≦ndG≦1.65 … (2) 55≦νdG≦65 … (3) 1.50≦ndR≦1.60 … (4) νdR≦40 … (5)[Equation 2] 1.55 ≦ ndG ≦ 1.65 (2) 55 ≦ νdG ≦ 65 (3) 1.50 ≦ ndR ≦ 1.60 (4) νdR ≦ 40 (5)

【0020】或いは、ガラスモールド用のガラスが下の
両式(6),(7)を満足し、かつ紫外線硬化樹脂が下
の両式(8),(9)を満足するのであってもよい。
Alternatively, the glass for the glass mold may satisfy both of the following expressions (6) and (7), and the ultraviolet curable resin may satisfy both of the following expressions (8) and (9). .

【0021】[0021]

【数3】 1.63≦ndG≦1.73 … (6) 50≦νdG≦60 … (7) 1.58≦ndR≦1.68 … (8) νdR≦35 … (9)[Equation 3] 1.63 ≦ ndG ≦ 1.73 (6) 50 ≦ νdG ≦ 60 (7) 1.58 ≦ ndR ≦ 1.68 (8) νdR ≦ 35 (9)

【0022】上記両式(2),(3)、或いは両式
(6),(7)は、多数あるガラスモールド用のガラス
の中でも、特に、紫外線硬化樹脂との相性の良い領域を
示している。これらの式に規定された領域を外れると、
第1の回折素子要素10(ガラスモールド用のガラス)
と第2の回折素子要素20(紫外線硬化樹脂)とが共通
の回折格子溝30において接する形状を有する本複層型
回折光学素子を得ることが困難となる。ここで、式
(2)の下限を1.57、上限を1.63とするととも
に、式(3)の下限を57、上限を63とすると、更に
良い結果が得られる。また同様に、式(6)の下限を
1.65、上限を1.70とするとともに、式(7)の
下限を52、上限を58とすると、更に良い結果が得ら
れる。
The above formulas (2) and (3), or both formulas (6) and (7) indicate the region having a good compatibility with the ultraviolet curable resin, among the many glasses for glass molding. There is. Outside the area specified by these equations,
First diffractive element 10 (glass for glass mold)
It becomes difficult to obtain the present multi-layer type diffractive optical element in which the second diffractive element element 20 (UV curable resin) and the second diffractive element element 20 are in contact with each other in the common diffraction grating groove 30. Here, if the lower limit of Expression (2) is set to 1.57 and the upper limit is set to 1.63, and the lower limit of Expression (3) is set to 57 and the upper limit is set to 63, even better results are obtained. Similarly, if the lower limit of the formula (6) is 1.65 and the upper limit is 1.70, and the lower limit of the formula (7) is 52 and the upper limit is 58, a better result can be obtained.

【0023】また、上記両式(4),(5)或いは両式
(8),(9)は、得られる回折光学素子1の諸性能を
良好に保つための条件である。これらの条件を外れる
と、第1の回折素子要素10(ガラスモールド用のガラ
ス)と第2の回折素子要素20(紫外線硬化樹脂)とが
共通の回折格子溝30において接する形状となっていて
も、回折格子溝30の高さhが高くなってしまって角度
特性が悪くなったり、或いは諸波長に対する回折効率が
低下してしまったりする。ここで、式(4)の下限を
1.52、上限を1.58とするとともに、式(5)の
上限を25とすると、更に良い結果が得られる。また同
様に、式(8)の上限を1.65とするとともに、式
(9)の下限を20、上限を30とすると、更に良い結
果が得られる。
The above expressions (4) and (5) or both expressions (8) and (9) are conditions for keeping various performances of the obtained diffractive optical element 1. If these conditions are not satisfied, even if the first diffraction element element 10 (glass for glass molding) and the second diffraction element element 20 (ultraviolet curing resin) are in contact with each other at the common diffraction grating groove 30. As a result, the height h of the diffraction grating groove 30 becomes high and the angle characteristics deteriorate, or the diffraction efficiency for various wavelengths decreases. Here, if the lower limit of formula (4) is set to 1.52 and the upper limit is set to 1.58, and the upper limit of formula (5) is set to 25, even better results are obtained. Similarly, if the upper limit of the equation (8) is set to 1.65 and the lower limit of the equation (9) is set to 20 and the upper limit is set to 30, an even better result is obtained.

【0024】次に、本発明に係る回折光学素子1の製造
手順について説明する。これには先ず、所定形状の回折
格子溝を予め形成してある第1の金型50と、所定の面
を予め形成してある第2の金型60とを用意する。ま
た、所定の形状(本実施形態では円盤状とする)に形成
され、ガラス転移点以上に加熱されたガラスモールド用
のガラス10’を用意する(図2(A)参照)。ガラス
モールド用のガラス10’には、後述の実施例に示すも
のが用いられるとよい。
Next, a procedure for manufacturing the diffractive optical element 1 according to the present invention will be described. For this purpose, first, a first mold 50 in which a diffraction grating groove having a predetermined shape is formed in advance and a second mold 60 in which a predetermined surface is formed in advance are prepared. Further, a glass 10 'for a glass mold, which is formed into a predetermined shape (disc-shaped in the present embodiment) and is heated to a glass transition point or higher, is prepared (see FIG. 2A). As the glass 10 'for the glass mold, those shown in Examples described later may be used.

【0025】次に、ガラス転移点以上に加熱した上記ガ
ラスモールド用のガラス10’を第1の金型50及び第
2の金型60により型押し成形した後、徐々に冷却し、
固化させる(図2(B)参照)。そして、固化した上記
ガラスモールド用のガラス10’を第1及び第2の金型
50,60より取り出す(図2(C)参照)。これによ
り、第1の金型50に形成されていた回折格子溝の形状
がガラスモールド用のガラス10’に転写されて第1の
回折光学素子10が形成される。
Next, the glass 10 ′ for glass molding heated above the glass transition point is embossed by the first mold 50 and the second mold 60, and then gradually cooled,
Solidify (see FIG. 2 (B)). Then, the solidified glass 10 'for glass mold is taken out from the first and second molds 50, 60 (see FIG. 2C). As a result, the shape of the diffraction grating groove formed in the first mold 50 is transferred to the glass mold glass 10 ′ to form the first diffractive optical element 10.

【0026】続いて、このようにして作製された第1の
回折光学素子10の回折格子溝30が形成された面上
に、液状の紫外線硬化樹脂20’を適量滴下する(図2
(D)参照)。紫外線硬化樹脂20’としては、後述の
実施例に示すものが用いられるとよい。液状の紫外線硬
化樹脂20’において回折格子溝30が形成される面と
は反対側の面に、面形成用の第3の金型70を押し当て
る(図2(E)参照)。更に、紫外線80を液状の紫外
線硬化樹脂20’に照射することで、液状の紫外線硬化
樹脂20’を硬化させる(図2(F)参照)。これによ
り第1の回折素子要素10に密着接合された第2の回折
素子要素20が形成される。最後に、面形成用の上記第
3の金型70を取り外せば、第1の回折素子要素10
(ガラスモールド用のガラス)と第2の回折素子要素2
0(紫外線硬化樹脂)とから構成される、本発明に係る
密着複層型の回折光学素子1が完成する。
Subsequently, an appropriate amount of liquid ultraviolet curable resin 20 'is dropped on the surface of the first diffractive optical element 10 thus manufactured on which the diffraction grating groove 30 is formed (FIG. 2).
(D)). As the ultraviolet curable resin 20 ', those shown in Examples described later may be used. The third metal mold 70 for surface formation is pressed against the surface of the liquid ultraviolet curable resin 20 'opposite to the surface on which the diffraction grating groove 30 is formed (see FIG. 2E). Further, the liquid ultraviolet curable resin 20 ′ is cured by irradiating the liquid ultraviolet curable resin 20 ′ with the ultraviolet rays 80 (see FIG. 2F). As a result, the second diffractive element element 20 that is in close contact with the first diffractive element element 10 is formed. Finally, if the third metal mold 70 for surface formation is removed, the first diffractive element 10 is formed.
(Glass for glass mold) and second diffractive element 2
The contact multilayer diffractive optical element 1 according to the present invention, which is composed of 0 (ultraviolet curable resin), is completed.

【0027】本発明の回折光学素子1を上記のような手
順で製造した場合、回折格子溝30を予め形成しておか
なければならない金型は一つ(ここでは第1の金型5
0)のみでよく、製造コストを低減することができる。
また、第1及び第2の回折素子要素10,20に形成さ
れた両回折格子溝30同士を位置合わせする作業も不要
となる。
When the diffractive optical element 1 of the present invention is manufactured by the above procedure, the number of the molds for which the diffraction grating groove 30 must be formed in advance is one (the first mold 5 in this case).
0) is sufficient and the manufacturing cost can be reduced.
Further, the work of aligning both diffraction grating grooves 30 formed in the first and second diffraction element elements 10 and 20 is also unnecessary.

【0028】[0028]

【実施例】(第1実施例)本実施例では、ガラスモール
ド用のガラス10’を住田光学ガラス社製VC78(n
dG=1.66910、νdG=55.4)、紫外線硬化樹脂20’を
アデール社製HV16(ndR=1.5980、νdR=28.0)と
し、回折格子溝30の高さhを8.1μmとした。この様
に構成することで、g線からC線までの波長領域で、
0.97以上の高い回折効率を得ることができた。
EXAMPLE (First Example) In this example, a glass mold glass 10 'was VC78 (n) manufactured by Sumita Optical Glass Co., Ltd.
dG = 1.66910, νdG = 55.4), and the ultraviolet curable resin 20 'was HV16 (ndR = 1.5980, νdR = 28.0) manufactured by Adele Co., and the height h of the diffraction grating groove 30 was 8.1 μm. With this configuration, in the wavelength range from g-line to C-line,
A high diffraction efficiency of 0.97 or more could be obtained.

【0029】(第2実施例)本実施例では、ガラスモー
ルド用のガラス10’を低転移点ガラスA(ndG=1.677
90、νdG=55.3)、紫外線硬化樹脂20’を紫外線硬化
樹脂a(ndR=1.6350、νdR=23.0)とし、回折格子溝
30の高さhを15.0μmとした。この様に構成すること
で、g線からC線までの波長領域で、0.97以上の高
い回折効率を得ることができた。
(Second Embodiment) In this embodiment, the glass 10 'for glass molding is a low transition point glass A (ndG = 1.677).
90, νdG = 55.3), the ultraviolet curable resin 20 'was the ultraviolet curable resin a (ndR = 1.6350, νdR = 23.0), and the height h of the diffraction grating groove 30 was 15.0 µm. With such a configuration, a high diffraction efficiency of 0.97 or more could be obtained in the wavelength range from the g-line to the C-line.

【0030】(第3実施例)本実施例では、ガラスモー
ルド用のガラス10’を住田光学ガラス社製HV79
(ndG=1.60970、νdG=57.8)、紫外線硬化樹脂2
0’を紫外線硬化樹脂b(ndR=1.5440、νdR=29.3)
とし、回折格子溝30の高さhを8.8μmとした。この
様に構成することで、g線からC線までの波長領域で、
0.98以上の高い回折効率を得ることができた。
(Third Embodiment) In this embodiment, glass 10 'for glass molding is HV79 manufactured by Sumita Optical Glass Co., Ltd.
(ndG = 1.60970, νdG = 57.8), UV curable resin 2
0'is UV curable resin b (ndR = 1.5440, νdR = 29.3)
And the height h of the diffraction grating groove 30 was set to 8.8 μm. With this configuration, in the wavelength range from g-line to C-line,
A high diffraction efficiency of 0.98 or more could be obtained.

【0031】(第4実施例)本実施例では、ガラスモー
ルド用のガラス10’を低転移点ガラスC(ndG=1.598
13、νdG=61.1)、紫外線硬化樹脂20’を紫外線硬化
樹脂c(ndR=1.5539、νdR=38.1)とし、回折格子溝
30の高さhを16.4μmとした。この様に構成すること
で、g線からC線までの波長領域で、0.98以上の高
い回折効率を得ることができた。
(Fourth Embodiment) In this embodiment, the glass 10 'for glass molding is a low transition point glass C (ndG = 1.598).
13, νdG = 61.1), the ultraviolet curable resin 20 'was the ultraviolet curable resin c (ndR = 1.5539, νdR = 38.1), and the height h of the diffraction grating groove 30 was 16.4 μm. With such a structure, a high diffraction efficiency of 0.98 or more could be obtained in the wavelength region from the g-line to the C-line.

【0032】上記実施例より、回折格子溝30の高さh
を上記式(1)を満たす値とすれば、g線からC線まで
の間の波長領域において、0.97以上の高い回折効率
を得ることができ、角度特性が良好となることが確認で
きた。
From the above embodiment, the height h of the diffraction grating groove 30 is
It can be confirmed that a high diffraction efficiency of 0.97 or more can be obtained in the wavelength range from the g-line to the C-line, and that the angle characteristics are good, when is a value that satisfies the above formula (1). It was

【0033】[0033]

【発明の効果】以上説明したように、本発明に係る回折
光学素子によれば、角度特性を従来に比して向上させる
ことができ、生産性を向上させることができるようにな
った。
As described above, according to the diffractive optical element of the present invention, the angle characteristic can be improved as compared with the conventional one, and the productivity can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る回折光学素子の一実施形態を示
す、密着した2層で構成される複層型回折光学素子の模
式断面図である。
FIG. 1 is a schematic cross-sectional view of a multi-layer diffractive optical element composed of two layers in close contact, showing an embodiment of a diffractive optical element according to the present invention.

【図2】本発明の回折光学素子の製造工程を(A)から
(G)の順で示す図である。
FIG. 2 is a diagram showing manufacturing steps of the diffractive optical element of the present invention in the order of (A) to (G).

【図3】従来の回折光学素子の構成を示す模式断面図で
ある。
FIG. 3 is a schematic cross-sectional view showing the configuration of a conventional diffractive optical element.

【符号の説明】[Explanation of symbols]

1 回折光学素子 10 第1の回折素子要素 10’ ガラスモールド用のガラス 20 第2の回折素子要素 20’ 紫外線硬化樹脂 30 回折格子溝 50 第1の金型 60 第2の金型 70 第3の金型 80 紫外線 1 Diffractive optical element 10 First diffractive element element Glass for 10 'glass mold 20 Second diffractive element element 20 'UV curable resin 30 diffraction grating groove 50 First mold 60 Second mold 70 Third mold 80 UV

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 互いに異なる材質からなる第1の回折素
子要素と第2の回折素子要素とが密着接合され、前記両
回折素子要素の接合面に所定形状の回折格子溝が形成さ
れている回折光学素子であり、 前記両回折素子要素の一方の材質がガラスモールド用の
ガラスであるとともに他方の材質が紫外線硬化樹脂であ
り、 前記回折格子溝の高さをhとしたとき、式 7.0μm≦h≦18.0μm が満足されることを特徴とする回折光学素子。
1. A diffraction device in which a first diffractive element element and a second diffractive element element, which are made of different materials, are closely bonded to each other, and a diffraction grating groove having a predetermined shape is formed on a bonding surface of both diffractive element elements. An optical element, one material of both of the diffractive element elements is glass for glass molding and the other material is an ultraviolet curable resin, and when the height of the diffraction grating groove is h, an equation of 7.0 μm is obtained. A diffractive optical element, wherein ≦ h ≦ 18.0 μm is satisfied.
【請求項2】 互いに異なる材質からなる第1の回折素
子要素と第2の回折素子要素とが密着接合され、前記両
回折素子要素の接合面に所定形状の回折格子溝が形成さ
れている回折光学素子であり、前記両回折素子要素の一
方の材質がガラスモールド用のガラスであるとともに他
方の材質が紫外線硬化樹脂であり、前記回折格子溝のピ
ッチが70μm以上であることを特徴とする回折光学素
子。
2. A diffractive element in which a first diffractive element element and a second diffractive element element, which are made of different materials, are closely bonded to each other, and a diffraction grating groove having a predetermined shape is formed on a bonding surface of the both diffractive element elements. An optical element, wherein one material of the both diffraction element elements is glass for glass molding and the other material is an ultraviolet curable resin, and the pitch of the diffraction grating grooves is 70 μm or more. Optical element.
【請求項3】 前記ガラスモールド用のガラスは、d線
での屈折率をndGとし、アッベ数をνdGとしたと
き、両式 1.55≦ndG≦1.65 55≦νdG≦65 を満足し、かつ、前記紫外線硬化樹脂は、d線での屈折
率をndRとし、アッベ数をνdRとしたとき、両式 1.50≦ndR≦1.60 νdR≦40 を満足することを特徴とする請求項1又は2記載の回折
光学素子。
3. The glass for a glass mold satisfies both equations 1.55 ≦ ndG ≦ 1.65 55 ≦ νdG ≦ 65, where dG is a refractive index of ndG and Abbe's number is νdG. Further, the ultraviolet curable resin satisfies both equations 1.50 ≦ ndR ≦ 1.60 νdR ≦ 40 when the refractive index at the d-line is ndR and the Abbe number is νdR. Item 3. The diffractive optical element according to item 1 or 2.
【請求項4】 前記ガラスモールド用のガラスは、d線
での屈折率をndGとし、アッベ数をνdGとしたと
き、両式 1.63≦ndG≦1.73 50≦νdG≦60 を満足し、かつ、前記紫外線硬化樹脂は、d線での屈折
率をndRとし、アッベ数をνdRとしたとき、両式 1.58≦ndR≦1.68 νdR≦35 を満足することを特徴とする請求項1又は2記載の回折
光学素子。
4. The glass for a glass mold satisfies both equations 1.63 ≦ ndG ≦ 1.73 50 ≦ νdG ≦ 60 when the refractive index at d-line is ndG and the Abbe number is νdG. Further, the ultraviolet curable resin satisfies both equations 1.58 ≦ ndR ≦ 1.68 νdR ≦ 35 when the refractive index at d-line is ndR and the Abbe number is νdR. Item 3. The diffractive optical element according to item 1 or 2.
JP2002026310A 2002-02-04 2002-02-04 Diffraction optical element Pending JP2003227913A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002026310A JP2003227913A (en) 2002-02-04 2002-02-04 Diffraction optical element
US10/355,166 US20030161044A1 (en) 2002-02-04 2003-01-31 Diffractive optical element and method for manufacturing same
US11/501,720 US7554733B2 (en) 2002-02-04 2006-08-10 Diffractive optical element and method for manufacturing same
US12/495,131 US20090273841A1 (en) 2002-02-04 2009-06-30 Diffractive optical element and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002026310A JP2003227913A (en) 2002-02-04 2002-02-04 Diffraction optical element

Publications (1)

Publication Number Publication Date
JP2003227913A true JP2003227913A (en) 2003-08-15

Family

ID=27748181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002026310A Pending JP2003227913A (en) 2002-02-04 2002-02-04 Diffraction optical element

Country Status (1)

Country Link
JP (1) JP2003227913A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005031404A1 (en) * 2003-09-30 2005-04-07 Nikon Corporation Diffractive optical device and method for producing diffractive optical device
JP2005173057A (en) * 2003-12-10 2005-06-30 Nikon Corp Method for manufacturing optical element
JP2009025654A (en) * 2007-07-20 2009-02-05 Toshiba Corp Diffraction optical element, die for molding diffraction optical element, and method of manufacturing die for molding diffraction optcial element
US7710651B2 (en) 2007-03-23 2010-05-04 Canon Kabushiki Kaisha Contacting two-layer diffractive optical element
US8120852B2 (en) 2008-03-12 2012-02-21 Canon Kabushiki Kaisha Diffractive optical element, optical system, and optical apparatus
US8792168B2 (en) 2010-09-30 2014-07-29 Canon Kabushiki Kaisha Optical system including diffractive grating and optical apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005031404A1 (en) * 2003-09-30 2005-04-07 Nikon Corporation Diffractive optical device and method for producing diffractive optical device
CN100447590C (en) * 2003-09-30 2008-12-31 株式会社尼康 Diffractive optical device and method for producing diffractive optical device
US7612940B2 (en) 2003-09-30 2009-11-03 Nikon Corporation Diffractive optical element and method of fabricating diffractive optical element
JP2005173057A (en) * 2003-12-10 2005-06-30 Nikon Corp Method for manufacturing optical element
US7710651B2 (en) 2007-03-23 2010-05-04 Canon Kabushiki Kaisha Contacting two-layer diffractive optical element
JP2009025654A (en) * 2007-07-20 2009-02-05 Toshiba Corp Diffraction optical element, die for molding diffraction optical element, and method of manufacturing die for molding diffraction optcial element
US8120852B2 (en) 2008-03-12 2012-02-21 Canon Kabushiki Kaisha Diffractive optical element, optical system, and optical apparatus
US8792168B2 (en) 2010-09-30 2014-07-29 Canon Kabushiki Kaisha Optical system including diffractive grating and optical apparatus

Similar Documents

Publication Publication Date Title
US7554733B2 (en) Diffractive optical element and method for manufacturing same
US7957063B2 (en) Diffractive optical device, optical system using the diffractive optical device and method for manufacturing diffractive optical device
KR101174180B1 (en) Diffractive optical element
US8154803B2 (en) Diffractive optical element with improved light transmittance
JP2005107298A (en) Diffraction optical element and method for manufacturing the same
JP4239822B2 (en) Diffractive optical element, manufacturing method thereof, and optical apparatus
JP4944652B2 (en) Diffractive optical element and optical system using the same
JP4378433B2 (en) Diffractive optical element and manufacturing method thereof
JP4697584B2 (en) Diffractive optical element and method of manufacturing diffractive optical element
JP5264223B2 (en) Diffractive optical element, optical system and optical instrument
JP2001042112A (en) Diffraction optical device and optical system using the device
US7042642B2 (en) Diffractive optical element
CN102918432A (en) Diffractive optical element and method for manufacturing same
JP2003262713A (en) Diffraction optical element and method for manufacturing diffraction optical element
JP2003227913A (en) Diffraction optical element
JPH11223717A (en) Optical diffraction element and optical system using the same
JP2004126061A (en) Diffracting optical element and optical system using same
JPH11287904A (en) Diffraction optical element and its production
US20110235178A1 (en) Diffractive optical element and optical device
JP2013205534A (en) Diffractive-optical element, method for manufacturing the same, and optical system using diffractive-optical element
JPH11271513A (en) Diffracting optical element
JP2011227481A (en) Diffractive optical element and optical equipment
JP2004126392A (en) Diffraction optical element
JP3495925B2 (en) Optical element manufacturing method
JP2005107299A (en) Diffraction optical element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070907

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071228