JP2003226985A - Highly corrosion resistant plated stainless steel sheet and production method therefor - Google Patents

Highly corrosion resistant plated stainless steel sheet and production method therefor

Info

Publication number
JP2003226985A
JP2003226985A JP2002028243A JP2002028243A JP2003226985A JP 2003226985 A JP2003226985 A JP 2003226985A JP 2002028243 A JP2002028243 A JP 2002028243A JP 2002028243 A JP2002028243 A JP 2002028243A JP 2003226985 A JP2003226985 A JP 2003226985A
Authority
JP
Japan
Prior art keywords
titanium
stainless steel
steel sheet
titanium oxide
cathodic protection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002028243A
Other languages
Japanese (ja)
Inventor
Hiroshige Nakamura
浩茂 中村
Setsuko Koura
節子 小浦
Yoshiko Sakamoto
佳子 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2002028243A priority Critical patent/JP2003226985A/en
Publication of JP2003226985A publication Critical patent/JP2003226985A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Physical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a highly corrosion resistant plated stainless steel sheet in which a base material is subjected to cathodic protection by photoirradiation. <P>SOLUTION: A titanium or titanium alloy plating having a thickness of ≥0.05 μm is applied to a stainless steel sheet as a substrate, and a titanium oxide film is formed on the outermost surface layer of the plating. The coating of the titanium or titanium alloy plating to the stainless steel sheet substrate is performed by a sputtering method. After the formation of the plated layer, heat treatment is performed at ≥400°C in an oxidizing atmosphere, and the titanium oxide film is formed on the surface layer. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、厳しい腐食環境下
でも光を吸収することで高い耐食性を呈するめっきステ
ンレス鋼板及び製造方法に関する。
TECHNICAL FIELD The present invention relates to a plated stainless steel sheet which exhibits high corrosion resistance by absorbing light even in a severe corrosive environment, and a manufacturing method.

【0002】[0002]

【従来の技術】バンドギャップ以上のエネルギーを有す
る波長の光を照射した場合、光励起により伝導帯に電子
が生じ、価電子帯には正孔が生じる物質は、正孔が強い
酸化力を有するので、光照射の下で、有機物や水の分解
等に使用されている。このような物質として、Ti
2,ZnO,ZrO2,WO3,Fe23,FeTi
3,SrTiO3等が挙げられる。なかでも酸化チタン
を利用するものが最も多く実用化されている。スパッタ
リング法やゾルゲル法で酸化チタンを直接被覆したステ
ンレス鋼板は、光照射の下で酸化チタン層を非犠牲アノ
ードとして、基板のステンレス鋼板のもつ腐食電位より
卑な電位を示すことが知られている。
2. Description of the Related Art When a light having a wavelength having an energy larger than a band gap is irradiated, an electron is generated in a conduction band by photoexcitation and a hole is generated in a valence band, so that a hole has a strong oxidizing power. It is used to decompose organic substances and water under light irradiation. As such a substance, Ti
O 2 , ZnO, ZrO 2 , WO 3 , Fe 2 O 3 , FeTi
Examples include O 3 and SrTiO 3 . Among them, the one using titanium oxide is most practically used. It is known that the stainless steel sheet directly coated with titanium oxide by the sputtering method or the sol-gel method shows a base potential lower than the corrosion potential of the stainless steel sheet of the substrate when the titanium oxide layer is used as a non-sacrificial anode under light irradiation. .

【0003】[0003]

【発明が解決しようとする課題】前記の酸化チタン被覆
ステンレス鋼板における酸化チタン層と基材との界面に
は、不動態皮膜や不純物が存在することから、実環境で
ある沿岸等の腐食環境下でステンレス鋼板はカソード防
食されず赤錆を発生する。一方、特開平8−24619
2号公報には、チタンまたはチタン基合金基材の表面
に、酸化チタン層を形成することにより、光励起を有す
ることが紹介されている。しかし、これらのチタン基材
表面に、酸化チタン層を形成する場合、チタン基材を陽
極酸化した後、酸化性雰囲気中で加熱処理する必要があ
る。酸化チタン層と基材との間に絶縁膜が形成されるた
め、光照射により酸化チタン層を非犠牲アノードとし
て、基材をカソード防食することは望めない。
Since a passive film and impurities are present at the interface between the titanium oxide layer and the base material in the titanium oxide-coated stainless steel sheet described above, it is not possible to use it in a corrosive environment such as a coastal environment which is the actual environment. Therefore, the stainless steel plate is not cathodic protected and red rust occurs. On the other hand, JP-A-8-24619
Japanese Unexamined Patent Publication No. 2 (1993) describes that a titanium oxide layer is formed on the surface of a titanium or titanium-based alloy base material to have photoexcitation. However, when forming a titanium oxide layer on the surface of these titanium base materials, it is necessary to subject the titanium base material to anodization and then perform heat treatment in an oxidizing atmosphere. Since the insulating film is formed between the titanium oxide layer and the base material, it is not possible to use the titanium oxide layer as a non-sacrificial anode to perform cathodic protection of the base material by light irradiation.

【0004】[0004]

【課題を解決するための手段】本発明は、このような問
題を解消すべく案出されたものであり、所定量のチタン
またはチタン合金を被覆した金属板を酸化性雰囲気中で
熱処理することによって、該チタンまたはチタン合金の
表層に薄膜の酸化チタン層を形成させ、光照射でカソー
ド防食が可能な材料を提供することを目的とする。
The present invention has been devised to solve such a problem, and heat-treats a metal plate coated with a predetermined amount of titanium or titanium alloy in an oxidizing atmosphere. A thin titanium oxide layer is formed on the surface layer of the titanium or titanium alloy to provide a material capable of cathodic protection by light irradiation.

【0005】本発明は、その目的を達成するために、ス
テンレス鋼板を基板に、厚さ0.05μm以上のチタン
またはチタン合金めっきを施し、該めっき最表層に酸化
チタン皮膜を形成した。ステンレス鋼板基板へのチタン
またはチタン合金めっき被覆はスパッタリング法にて行
い、めっき層形成後に酸化性雰囲気400℃以上の温度
で熱処理し、表層に酸化チタン皮膜を形成した。
In the present invention, in order to achieve the object, a stainless steel plate is coated on a substrate with titanium or titanium alloy having a thickness of 0.05 μm or more, and a titanium oxide film is formed on the outermost layer of the plating. The titanium or titanium alloy plating coating on the stainless steel plate substrate was performed by a sputtering method, and after the plating layer was formed, a heat treatment was performed at a temperature of 400 ° C. or higher in an oxidizing atmosphere to form a titanium oxide film on the surface layer.

【0006】[0006]

【発明の実施の形態】本発明の高耐食性めっきステンレ
ス鋼板は、ステンレス基板表面にチタンまたはチタン合
金めっき層を施し、酸化性雰囲気中で熱処理すること
で、最表層に形成された酸化チタン層を非犠牲アノード
として作用させ、カソード防食が可能となる。チタンま
たはチタン合金をステンレス鋼板に被覆する方法は、物
理蒸着法等が挙げられる。なかでも、廃液等の発生がな
く、効率的に被覆するためにはスパッタリング法が好ま
しい。スパッタリング法により形成されたチタンまたは
チタン合金層の厚さは、0.05μm以上とする。チタ
ンまたはチタン合金層の厚さが0.05μm未満では、
カソード防食効果が得られない。
BEST MODE FOR CARRYING OUT THE INVENTION The highly corrosion-resistant plated stainless steel sheet of the present invention has a titanium or titanium alloy plating layer formed on the surface of a stainless steel substrate and heat-treated in an oxidizing atmosphere to form a titanium oxide layer formed on the outermost layer. It acts as a non-sacrificial anode and allows cathodic protection. Examples of the method of coating the stainless steel plate with titanium or a titanium alloy include physical vapor deposition. Among them, the sputtering method is preferable in order to coat efficiently without generation of waste liquid. The thickness of the titanium or titanium alloy layer formed by the sputtering method is 0.05 μm or more. When the thickness of the titanium or titanium alloy layer is less than 0.05 μm,
Cathodic protection cannot be obtained.

【0007】チタンまたはチタン合金めっきステンレス
鋼板を400℃以上の酸化性雰囲気中で30秒間以上熱
処理する。酸化性雰囲気温度が400℃未満であった
り、30秒に達しない短時間処理では、最表層全体が酸
化チタン層にならず、十分なカソード防食機能が発現で
きない。また、基板の軟化温度を越える熱処理では、基
板形状が損なわれるので好ましくない。熱処理により形
成される酸化チタン層は薄膜であり、加工しても酸化チ
タン層へ影響する程の応力集中はないものと考えられ
る。したがって、本発明の酸化チタン層を有するチタン
合金めっきステンレス鋼板を、成形加工で変形しても、
酸化チタン層の剥離は皆無であり、加工部のカソード防
食機能を十分発揮できる。最表層に酸化チタン層が形成
されたチタンまたはチタン合金めっきを施すことによる
カソード防食は、ステンレス鋼のみならず、光非照射時
の浸漬電位(腐食電位)が光照射時より貴な電位を示す
金属であれば、めっき鋼板等種々の金属にも応用でき
る。
A titanium or titanium alloy-plated stainless steel plate is heat-treated for 30 seconds or longer in an oxidizing atmosphere at 400 ° C. or higher. If the oxidizing atmosphere temperature is less than 400 ° C. or a short time treatment that does not reach 30 seconds, the entire outermost layer does not become a titanium oxide layer, and a sufficient cathodic protection function cannot be exhibited. Further, the heat treatment exceeding the softening temperature of the substrate is not preferable because the shape of the substrate is impaired. The titanium oxide layer formed by the heat treatment is a thin film, and it is considered that there is no stress concentration enough to affect the titanium oxide layer even if it is processed. Therefore, even if the titanium alloy-plated stainless steel sheet having the titanium oxide layer of the present invention is deformed by molding,
There is no peeling of the titanium oxide layer, and the cathodic protection function of the processed part can be fully exerted. Cathodic protection by applying titanium or titanium alloy plating with titanium oxide layer formed on the outermost layer shows not only stainless steel, but also the immersion potential (corrosion potential) when exposed to light, which is noble than when exposed to light. Any metal can be applied to various metals such as plated steel sheets.

【0008】このように、最表層に酸化チタン層が形成
されたチタンまたはチタン合金めっきステンレス鋼板
は、光照射下において、酸化チタン層を非犠牲アノード
とするカソード防食が可能となり、腐食環境下において
も高耐食性を呈するため、沿岸等の屋外や蛍光灯の光が
存在する屋内でも使用可能である。
As described above, the titanium or titanium alloy-plated stainless steel sheet having the titanium oxide layer formed on the outermost layer can be subjected to cathodic protection using the titanium oxide layer as a non-sacrificial anode under light irradiation, and in a corrosive environment. Since it has high corrosion resistance, it can be used outdoors such as on the coast or indoors where there is light from a fluorescent lamp.

【0009】[0009]

【実施例】板厚0.5mmのSUS430ステンレス鋼
板に、マグネトロン型スパッタリング装置(出力;10
KW)で厚さ0.01〜5μmの純チタン(99.9w
t%Ti)を被覆した後、大気中で600℃×30秒間
熱処理した。なお、ディツプコーティング装置(ゾルゲ
ル法)で酸化チタンを形成した(大気中で450℃×3
分間焼成、酸化チタンの厚さ0.1μm)ものを比較材
とした。これらの金属板表面に光照射を行い、カソード
防食効果を次に示す方法で調査した。
EXAMPLE A magnetron type sputtering device (output: 10) was used on a SUS430 stainless steel plate having a plate thickness of 0.5 mm.
KW) pure titanium with a thickness of 0.01-5 μm (99.9w
After coating with t% Ti), it was heat-treated in the atmosphere at 600 ° C. for 30 seconds. Titanium oxide was formed by a dip coating device (sol-gel method) (450 ° C. × 3 in air).
A material that was calcined for one minute and had a titanium oxide thickness of 0.1 μm) was used as a comparative material. The surface of these metal plates was irradiated with light, and the cathodic protection effect was investigated by the following method.

【0010】光非照射時の浸漬電位より光照射時の浸漬
電位が卑な電位を示すことがカソード防食の必須条件で
あり、まず、光照射有無による試料の電位測定を行っ
た。光源には、ブラックライト(紫外線強度;9mW/
cm2)を用い、試料は0.3質量%NaCl水溶液に
浸漬し、浸漬面を4×4cm□とした。浸漬電位は水溶
液を攪拌しながら、非照射20分間、照射後30分間、
非照射20分間のサイクルで測定した。比較電極はAg
/AgClを用いた。光照射時の浸漬電位が、光非照射
時の浸漬電位よりも50mV以上卑な電位であり、か
つ、基板のSUS430ステンレス鋼板の浸漬電位より
も50mV以上卑な電位である場合をカソード防食効果
があるとして○、いずれの浸漬電位よりも50mV未満
卑な電位である場合をカソード防食効果に改善がないと
して×とした。
It is an essential condition for cathodic protection that the immersion potential when exposed to light is lower than the immersion potential when not exposed to light. First, the potential of the sample was measured with and without light irradiation. Black light (UV intensity; 9 mW /
cm 2 ), the sample was immersed in a 0.3 mass% NaCl aqueous solution, and the immersion surface was set to 4 × 4 cm □. The immersion potential is 20 minutes for non-irradiation and 30 minutes after irradiation while stirring the aqueous solution.
The measurement was performed in a non-irradiated cycle of 20 minutes. The reference electrode is Ag
/ AgCl was used. When the immersion potential at the time of light irradiation is 50 mV or more lower than the immersion potential at the time of non-irradiation and is 50 mV or more lower than the immersion potential of the SUS430 stainless steel plate of the substrate, the cathodic protection effect is obtained. If the potential was less than 50 mV lower than any of the immersion potentials, there was no improvement in the cathodic protection effect, and the result was rated as x.

【0011】表1に、各めっきステンレス鋼板の浸漬電
位によるカソード防食効果を示す。チタンの厚さ0.0
5μm未満では、カソード防食効果がないのに対し、
0.05μm以上では高いカソード防食効果を示した。
また、比較材のゾルゲル材はカソード防食効果がなく、
光照射によるカソード防食は望めない。
Table 1 shows the cathodic protection effect by the immersion potential of each plated stainless steel plate. Titanium thickness 0.0
If it is less than 5 μm, there is no cathodic protection, whereas
When it was 0.05 μm or more, a high cathodic protection effect was exhibited.
Also, the sol-gel material of the comparative material has no cathodic protection,
Cathodic protection by light irradiation cannot be expected.

【0012】[0012]

【表1】 [Table 1]

【0013】次に、耐食性を調査するため、光照射下
(紫外線強度;9mW/cm2)、25℃雰囲気で塩水
浸漬20時間,乾燥4時間のサイクル試験を行い、1ヶ
月後の赤錆発生有無を観察した。表2に、各めっきステ
ンレス鋼板の耐食性試験結果を示す。ステンレス鋼板ま
ま、及びチタンの厚さが0.05μm未満では赤錆の発
生が著しいのに対し、チタンの厚さが0.05μm以上
では、赤錆の発生が認められず、高いカソード防食効果
を示した。また、比較材のゾルゲル材はカソード防食効
果がなく、光照射によるカソード防食は望めない。
Next, in order to investigate the corrosion resistance, a cycle test was conducted under irradiation of light (ultraviolet intensity; 9 mW / cm 2 ) in a 25 ° C. atmosphere in salt water for 20 hours and drying for 4 hours. Was observed. Table 2 shows the corrosion resistance test results of each plated stainless steel sheet. When the thickness of titanium was less than 0.05 μm, red rust was remarkable, whereas when the thickness of titanium was 0.05 μm or more, no red rust was observed and a high cathodic protection effect was exhibited. . Moreover, the sol-gel material of the comparative material has no cathodic protection, and cathodic protection by light irradiation cannot be expected.

【0014】[0014]

【表2】 [Table 2]

【0015】板厚0.5mmのSUS430ステンレス
鋼板に、厚さ0.5μmの純チタンを被覆し、大気中で
400〜800℃×30分間熱処理した。これらの試料
について、光照射有無による電位測定と、塩水浸漬によ
る耐食性試験を行った結果を表3に示す。非熱処理材で
は、カソード防食効果に改善がみられず、赤錆が発生し
たのに対し、本発明のめっきステンレス鋼板は、何れも
高いカソード防食効果を示し、赤錆の発生が認められな
かった。
A 0.5 mm-thick SUS430 stainless steel plate was coated with pure titanium having a thickness of 0.5 μm and heat-treated in the atmosphere at 400 to 800 ° C. for 30 minutes. Table 3 shows the results of the potential measurement of these samples with and without light irradiation and the corrosion resistance test by immersion in salt water. In the non-heat treated material, no improvement was observed in the cathodic protection effect and red rust was generated, whereas the plated stainless steel sheets of the present invention showed a high cathodic protection effect, and no red rust was observed.

【0016】[0016]

【表3】 [Table 3]

【0017】さらに、Ti−5Al−2Sn−2Zr−
4Mo−4wt%Cr,Ti−6Al−4wt%V,T
i−6Al−6V−2wt%Sn,Ti−6Al−2S
n−4Zr−2wt%Mo,Ti−6Al−2Sn−4
Zr−6wt%Mo,Ti−8Al−1V−1wt%M
o,Ti−9V−2Mo−3wt%Al,Ti−10V
−2Fe−3wt%Al,Ti−15V−3Sn−3C
r−3wt%Al,Ti−34wt%Al,Ti−36
wt%Alの各種チタン合金を被覆したステンレス鋼板
について、同様な熱処理を行い、光照射の有無による試
料の電位測定と、塩水浸漬による耐食性試験を行った結
果、本発明のめっきステンレス鋼板は何れも高いカソー
ド防食効果を示した。
Further, Ti-5Al-2Sn-2Zr-
4Mo-4wt% Cr, Ti-6Al-4wt% V, T
i-6Al-6V-2wt% Sn, Ti-6Al-2S
n-4Zr-2wt% Mo, Ti-6Al-2Sn-4
Zr-6wt% Mo, Ti-8Al-1V-1wt% M
o, Ti-9V-2Mo-3wt% Al, Ti-10V
-2Fe-3wt% Al, Ti-15V-3Sn-3C
r-3 wt% Al, Ti-34 wt% Al, Ti-36
The same heat treatment was performed on the stainless steel sheets coated with various titanium alloys of wt% Al, the potential of the sample was measured with or without light irradiation, and the corrosion resistance test by salt water immersion was performed. It showed a high cathodic protection effect.

【0018】[0018]

【発明の効果】以上に説明したように、本発明に従った
所定量のチタンまたはチタン合金めっきステンレス鋼板
は、めっき後酸化性雰囲気中で熱処理することにより、
最表層に薄膜酸化チタンを形成させ、光照射した場合、
酸化チタン層を非犠牲アノードとして作用し、ステンレ
ス鋼板のカソード防食が可能になる。そのため、沿岸等
の外装及び内装建材等の各種形状に加工しても高耐食性
を呈する。
As described above, the predetermined amount of titanium or titanium alloy-plated stainless steel sheet according to the present invention is treated by heat treatment in an oxidizing atmosphere after plating,
When thin film titanium oxide is formed on the outermost layer and irradiated with light,
The titanium oxide layer acts as a non-sacrificial anode, enabling cathodic protection of stainless steel plates. Therefore, it exhibits high corrosion resistance even when processed into various shapes such as exterior and interior building materials on the coast.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4K029 AA02 BA48 BC01 CA05 DC03 DC39 EA01 EA08 GA01 4K044 AA03 AB02 BA02 BA12 BB03 BC02 CA12 CA13    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 4K029 AA02 BA48 BC01 CA05 DC03                       DC39 EA01 EA08 GA01                 4K044 AA03 AB02 BA02 BA12 BB03                       BC02 CA12 CA13

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ステンレス鋼板を基板に、厚さ0.05
μm以上のチタンまたはチタン合金めっきを施し、該め
っき最表層に酸化チタン皮膜を形成することを特徴とす
る高耐食性めっきステンレス鋼板。
1. A stainless steel plate as a substrate with a thickness of 0.05.
A highly corrosion-resistant plated stainless steel sheet, characterized by being plated with titanium or titanium alloy having a thickness of at least μm and forming a titanium oxide film on the outermost surface layer of the plating.
【請求項2】 ステンレス鋼板を基板に、チタンまたは
チタン合金めっき層をスパッタリング法にて厚さ0.0
5μm以上施した後、酸化性雰囲気400℃以上の温度
で熱処理することにより、酸化チタン皮膜を形成するこ
とを特徴とする高耐食性めっきステンレス鋼板の製造方
法。
2. A stainless steel plate is used as a substrate, and a titanium or titanium alloy plating layer is formed by sputtering to a thickness of 0.0.
A method for producing a highly corrosion-resistant plated stainless steel sheet, which comprises forming a titanium oxide film by applying a heat treatment at a temperature of 400 ° C. or more in an oxidizing atmosphere after applying the coating having a thickness of 5 μm or more.
JP2002028243A 2002-02-05 2002-02-05 Highly corrosion resistant plated stainless steel sheet and production method therefor Withdrawn JP2003226985A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002028243A JP2003226985A (en) 2002-02-05 2002-02-05 Highly corrosion resistant plated stainless steel sheet and production method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002028243A JP2003226985A (en) 2002-02-05 2002-02-05 Highly corrosion resistant plated stainless steel sheet and production method therefor

Publications (1)

Publication Number Publication Date
JP2003226985A true JP2003226985A (en) 2003-08-15

Family

ID=27749520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002028243A Withdrawn JP2003226985A (en) 2002-02-05 2002-02-05 Highly corrosion resistant plated stainless steel sheet and production method therefor

Country Status (1)

Country Link
JP (1) JP2003226985A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007518881A (en) * 2004-01-21 2007-07-12 フォルシュングスツェントルム・ユーリッヒ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Protective layer for aluminum-containing alloys for use at high temperatures and method for producing such a protective layer
JP2015515538A (en) * 2012-02-23 2015-05-28 トレードストーン テクノロジーズ インク Metal substrate surface coating method, electrochemical device, and fuel cell plate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007518881A (en) * 2004-01-21 2007-07-12 フォルシュングスツェントルム・ユーリッヒ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Protective layer for aluminum-containing alloys for use at high temperatures and method for producing such a protective layer
JP2015515538A (en) * 2012-02-23 2015-05-28 トレードストーン テクノロジーズ インク Metal substrate surface coating method, electrochemical device, and fuel cell plate
KR102061922B1 (en) * 2012-02-23 2020-01-02 트레드스톤 테크놀로지스, 인크. Corrosion resistant and electrically conductive surface of metal

Similar Documents

Publication Publication Date Title
EP0034408B2 (en) A method of forming an anticorrosive coating on a metal electrode substrate
JP5171865B2 (en) Method for producing metal oxide and / or metal hydroxide-coated metal material
JP3251144B2 (en) Oxidized titanium or titanium-based alloy material having photocatalytic activity and method for producing the same
JP5059605B2 (en) Anode for oxygen release
WO2003078694A1 (en) Electrode for generation of hydrogen
Cui et al. In vitro corrosion and antibacterial performance of micro-arc oxidation coating on AZ31 magnesium alloy: Effects of tannic acid
JP3450979B2 (en) Metallic material having photocatalytic activity and method for producing the same
ES2378888T3 (en) Procedure for producing a crystalline titanium oxide coating film through electrolytic anodization
JP2009052069A (en) Electrode for electrolysis
KR101668542B1 (en) Metal material surface treatment method, and metal material
TWI596236B (en) Electrode for oxygen evolution in industrial electrochemical processes
JP2003226985A (en) Highly corrosion resistant plated stainless steel sheet and production method therefor
JP3127228B2 (en) Metal surface modification method
Palanivel et al. Development of corrosion-resistant and hydrophobic coating on commercially pure titanium
JP2003253468A (en) High corrosion resistant plated stainless steel sheet and its manufacturing method
JP3860632B2 (en) Surface-treated steel with excellent corrosion resistance
JP3678227B2 (en) Photocatalytic coating composition for metal substrate, photocatalytic metal material obtained using the same, and method for producing photocatalytic metal material
JP5874437B2 (en) Method for producing galvanized steel sheet and galvanized steel sheet
JP3686472B2 (en) Surface-treated steel material excellent in corrosion resistance and its surface treatment method
JP2000084415A (en) Composite material having photocatalytic function and its production
WO2020217663A1 (en) Method for producing surface-treated steel sheet, and surface-treated steel sheet
US7927914B2 (en) Manufacturing method for semiconductor photoelectrochemical cell and semiconductor photoelectrochemical cell
JPS60243285A (en) Method for removing cover from metallic electrode
JP2000279805A (en) Photocatalyst coated metal plate and its manufacture
US6821575B2 (en) Electrode treatment

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050405