JP2003226703A - Polymerization reaction vessel and production method of polyvinyl chloride resin - Google Patents

Polymerization reaction vessel and production method of polyvinyl chloride resin

Info

Publication number
JP2003226703A
JP2003226703A JP2002029183A JP2002029183A JP2003226703A JP 2003226703 A JP2003226703 A JP 2003226703A JP 2002029183 A JP2002029183 A JP 2002029183A JP 2002029183 A JP2002029183 A JP 2002029183A JP 2003226703 A JP2003226703 A JP 2003226703A
Authority
JP
Japan
Prior art keywords
heat exchanger
polymerization reaction
reflux heat
reflux
reaction vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002029183A
Other languages
Japanese (ja)
Inventor
Kazutoshi Kotani
和利 小谷
Katsuyuki Takagi
勝幸 高木
Akio Okada
暁夫 岡田
Teruyuki Suzuki
輝行 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHIN DAIICHI ENBI KK
Original Assignee
SHIN DAIICHI ENBI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHIN DAIICHI ENBI KK filed Critical SHIN DAIICHI ENBI KK
Priority to JP2002029183A priority Critical patent/JP2003226703A/en
Publication of JP2003226703A publication Critical patent/JP2003226703A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polymerization reaction vessel enabling to enhance productivity by largely shortening polymerization reaction time through largely increasing cooling capacity of a reflux heat exchanger which is made to manifest performance almost close to the overall heat transfer coefficient originally possessed by the reflux heat exchanger resulting in its down-sizing, to provide a method for producing polyvinyl chloride resin by using the polymerization reaction vessel to conduct suspension polymerization or emulsion polymerization of a vinyl chloride-based monomer. <P>SOLUTION: The polymerization reaction vessel is equipped with a reflux heat exchanger the bottom and top parts of which are both connected with the vessel via each separated piping. Preferably the reflux heat exchanger is of a vertical type and multi-tube type. A condensable monomer gas in the vessel is introduced to the top part of the reflux heat exchanger passing through the piping connecting the top part of the heat exchanger and the top part of the vessel, condensing while moving downward from the top part of the heat exchanger to return to the vessel. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、還流熱交換器を使
用して凝縮性モノマーを重合する重合反応容器及び該重
合反応容器を用いて塩化ビニル系モノマーの懸濁重合又
は乳化重合を行う塩化ビニル樹脂の製造方法に関する。
更に詳しくは、還流熱交換器の多管内で流下する凝縮液
と上昇する被凝縮液の向流を防ぎ、円滑な凝縮液の流下
を作ることで総括伝熱係数の低下を防ぎ、熱交換器の小
型化及び 冷却能力を大きくできる還流熱交換器を備え
た重合反応容器及び該重合反応容器を用いて塩化ビニル
系モノマーの懸濁重合又は乳化重合を行う塩化ビニル樹
脂の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polymerization reaction vessel for polymerizing a condensable monomer using a reflux heat exchanger, and a chloride reaction for carrying out suspension polymerization or emulsion polymerization of a vinyl chloride monomer using the polymerization reaction vessel. The present invention relates to a method for producing a vinyl resin.
More specifically, the counterflow of the condensate flowing down and the rising condensate in the multiple tubes of the reflux heat exchanger is prevented, and a smooth flow of the condensate is prevented to prevent the overall heat transfer coefficient from decreasing. The present invention relates to a polymerization reaction vessel equipped with a reflux heat exchanger capable of downsizing and increasing cooling capacity, and a method for producing a vinyl chloride resin in which suspension polymerization or emulsion polymerization of a vinyl chloride monomer is carried out using the polymerization reaction vessel. .

【0002】[0002]

【従来の技術】本発明は塩化ビニル系モノマーの重合に
は限られないが、例えば懸濁重合にあっては、塩化ビニ
ル系重合体は撹拌しながら塩化ビニル系モノマーを水性
媒体中で油溶性ラジカル開始剤を用いて懸濁重合するこ
とにより製造される。近年、反応時間を短縮することで
生産性を向上させるため、還流熱交換器を重合反応容器
の上部に設置し、反応熱の一部を除熱させる方法がとら
れてきた。
Although the present invention is not limited to the polymerization of vinyl chloride-based monomers, for example, in suspension polymerization, the vinyl chloride-based polymer is oil-soluble in an aqueous medium while stirring the vinyl chloride-based monomer. It is produced by suspension polymerization using a radical initiator. In recent years, in order to improve productivity by shortening the reaction time, a method has been adopted in which a reflux heat exchanger is installed above the polymerization reaction vessel to remove a part of the reaction heat.

【0003】還流熱交換器の構造は一般的には、竪型、
多管式であり、重合反応容器の気相部に直結あるいは配
管で連結されており、被凝縮ガスと凝縮液とが同一の穴
あるいは接続配管内で、上昇するガス流と下降する凝縮
液とが向流するか、被凝縮ガスだけを上昇させる配管を
竪型・多管式還流熱交換器の下部胴体カバー(チャンネ
ルカバー)に接続し、凝縮した液と向流させないで重合
缶に戻す方法が採られている。しかし、これらの方法で
は、還流熱交換器の管内で被凝縮ガスと凝縮液が向流す
ることは避けられず、多管内で凝縮液による液詰まり
(フラッディング)が起こり断熱面積の減少や総括伝熱
係数の低下を招くので、還流熱交換器内のそれぞれの管
径を大きくするか、管の数を多くするなどの設計が必要
となり、装置の大型化は避けることができなかった。
The structure of the reflux heat exchanger is generally a vertical type,
It is a multi-tube type and is directly connected to the gas phase part of the polymerization reaction vessel or is connected by a pipe, and the gas to be condensed and the condensate are in the same hole or the connecting pipe, and the ascending gas flow and the descending condensate are Or a pipe that raises only the gas to be condensed is connected to the lower body cover (channel cover) of the vertical / multitubular reflux heat exchanger, and the condensed liquid is returned to the polymerization vessel without countercurrent flow. Is taken. However, in these methods, it is unavoidable that the gas to be condensed and the condensate flow in the tubes of the reflux heat exchanger, and the condensate causes liquid clogging (flooding) in the multiple tubes to reduce the adiabatic area and overall transfer. Since this causes a decrease in the heat coefficient, it is necessary to increase the size of each tube in the reflux heat exchanger, or to increase the number of tubes.

【0004】[0004]

【発明が解決しようとする課題】かかる現状において、
本発明が解決しようとする課題は、還流熱交換器が本来
持つ総括伝熱係数に殆ど近い性能を発揮させ、還流熱交
換器を小型化し、冷却能力を大幅に大きくすることによ
り、重合反応時間を大幅に短縮して、生産性を高めるこ
とが可能となる重合反応容器及び該重合反応容器を用い
て塩化ビニル系モノマーの懸濁重合又は乳化重合を行う
塩化ビニル樹脂の製造方法を提供する点にある。
Under the present circumstances,
The problem to be solved by the present invention is to achieve performance close to the overall heat transfer coefficient originally possessed by the reflux heat exchanger, downsize the reflux heat exchanger, and significantly increase the cooling capacity, thereby increasing the polymerization reaction time. To provide a method for producing a vinyl chloride resin in which suspension polymerization or emulsion polymerization of a vinyl chloride-based monomer is performed using the polymerization reaction vessel and the polymerization reaction vessel capable of significantly shortening the productivity. It is in.

【0005】[0005]

【課題を解決するための手段】すなわち、本発明のうち
第一の発明は、還流熱交換器を装着した重合反応容器で
あって、該還流熱交換器の下部及び頂部はそれぞれ異な
る配管で重合反応容器に連結されている重合反応容器に
係るものである。また、本発明のうち第二の発明は、上
記の重合反応容器を用いて塩化ビニル系モノマーの懸濁
重合又は乳化重合を行う塩化ビニル樹脂の製造方法に係
るものである。
That is, the first invention of the present invention is a polymerization reaction vessel equipped with a reflux heat exchanger, wherein the lower part and the top part of the reflux heat exchanger are polymerized by different pipes. The present invention relates to a polymerization reaction container connected to a reaction container. A second aspect of the present invention relates to a method for producing a vinyl chloride resin, which comprises suspension-polymerizing or emulsion-polymerizing a vinyl chloride-based monomer using the above-mentioned polymerization reaction vessel.

【0006】[0006]

【発明の実施の形態】本発明の還流熱交換器としては、
竪型かつ多管式の還流熱交換器を用いることができる。
この還流熱交換器の頂部と重合反応容器の頂部とは配管
で連結されている(以下この配管をガス導入管とい
う)。本発明の重合反応容器で重合反応を行う場合、こ
のガス導入管内を重合反応容器内の凝縮性モノマーガス
が通過して還流熱交換器の頂部に導入され、該還流熱交
換器の頂部から下部へ移動しつつ凝縮して重合反応容器
へ還流する。
BEST MODE FOR CARRYING OUT THE INVENTION The reflux heat exchanger of the present invention includes:
A vertical and multitubular reflux heat exchanger can be used.
The top of this reflux heat exchanger and the top of the polymerization reaction vessel are connected by a pipe (hereinafter this pipe is referred to as a gas introduction pipe). When the polymerization reaction is carried out in the polymerization reaction vessel of the present invention, the condensable monomer gas in the polymerization reaction vessel passes through the gas introduction pipe and is introduced at the top of the reflux heat exchanger, and from the top to the bottom of the reflux heat exchanger. It is condensed while moving to and is refluxed to the polymerization reaction vessel.

【0007】このような凝縮性のモノマーガスがガス導
入管通過して還流熱交換器で凝縮して重合反応容器へ還
流する循環は、ガス導入管の重合反応容器との連結部分
と還流熱交換器の頂部との差圧が還流熱交換器の頂部と
還流熱交換器の下部の重合反応容器との連結部分との差
圧よりも小である場合に円滑に行われる。この場合のガ
ス導入管路は被凝縮ガスが流れた時に生じる管路差圧が
20KPa以下、好ましくは10KPa以下、あるい
は管長(L)と管径(D)の比L/Dを30〜100に
するのは好ましい形態である。
The circulation in which the condensable monomer gas passes through the gas introduction tube, is condensed in the reflux heat exchanger, and is returned to the polymerization reaction vessel is connected to the polymerization reaction vessel of the gas introduction tube and reflux heat exchange. When the pressure difference between the top of the reflux heat exchanger and the connection between the top of the reflux heat exchanger and the polymerization reaction vessel at the bottom of the reflux heat exchanger is smaller than that, the operation is smoothly performed. In this case, the gas introduction pipeline has a pipeline differential pressure of 20 KPa or less, preferably 10 KPa or less when the gas to be condensed flows, or the ratio L / D of the pipe length (L) to the pipe diameter (D) is set to 30 to 100. It is the preferred form.

【0008】本発明の重合反応容器は、上記の条件を充
足するものであればその他の構造、形状等に特に制限は
ない。通常、ステンレス製のたて長の円筒容器であっ
て、重合反応熱を除去するために容器の外部、あるいは
内部に冷却水を通すジャケットを有し、また反応熱を補
助的に除去する、多管式の還流熱交換器を装着して該還
流熱交換器の管内に被凝縮ガスを通し、シェル内には冷
却水を通して除熱する。水性媒体、モノマー及び油溶性
ラジカル開始剤を均一に混合するための撹拌装置と複数
のバッフルを容器の頂部あるいは底部から備えてなる圧
力容器である。
The polymerization reaction container of the present invention is not particularly limited in other structure, shape and the like as long as the above conditions are satisfied. Usually, it is a vertically long stainless steel container having a jacket for passing cooling water to the outside or inside of the container to remove the heat of polymerization reaction. A tube-type reflux heat exchanger is installed to pass the gas to be condensed into the tube of the reflux heat exchanger, and cooling water is passed through the shell to remove heat. A pressure vessel comprising a stirrer for uniformly mixing an aqueous medium, a monomer and an oil-soluble radical initiator and a plurality of baffles from the top or bottom of the vessel.

【0009】本発明の重合反応容器は、凝縮性モノマー
であれば使用可能である。例えば、酢酸ビニル、プロピ
オン酸ビニル等のビニルエステル類、メチルビニルエー
テル、エチルビニルエーテル等のアルキルビニルエーテ
ル類、エチレン、プロピレン等のα-オレフィン類等が
挙げられ、塩化ビニルと共重合可能なアクリル酸、アク
リル酸エステル類も使用可能である。
The polymerization reaction vessel of the present invention can be used if it is a condensable monomer. Examples thereof include vinyl esters such as vinyl acetate and vinyl propionate, alkyl vinyl ethers such as methyl vinyl ether and ethyl vinyl ether, α-olefins such as ethylene and propylene, and acrylic acid copolymerizable with vinyl chloride and acrylic. Acid esters can also be used.

【0010】塩化ビニル系モノマーの懸濁法重合反応容
器として用いる場合、該容器内に塩化ビニル系モノマ
ー、水性媒体及び油溶性ラジカル開始剤等を仕込み、撹
拌を行って重合反応熱を容器ジャケット及び補助冷却器
である還流熱交換器により除熱しながら反応をすすめて
塩化ビニル系重合体を得る。通常の重合条件は反応温度
40℃から75℃、反応時間3時間から10時間であ
る。
When used as a polymerization reaction container for suspension method of vinyl chloride monomer, vinyl chloride monomer, an aqueous medium, an oil-soluble radical initiator and the like are charged in the container and stirred to heat the polymerization reaction to the container jacket and The reaction is advanced while removing heat by a reflux heat exchanger which is an auxiliary cooler to obtain a vinyl chloride polymer. Usual polymerization conditions are a reaction temperature of 40 ° C. to 75 ° C. and a reaction time of 3 hours to 10 hours.

【0011】ガス導入管の被凝縮ガス取り出し位置は、
重合缶の頂部半楕円部の中心とするのがよいが、頂部半
楕円部であればどこであってもよい。導入管の途中にガ
スの流れを遮断する弁があってもよい。ガス導入管は二
重管として冷却水を通し、ガス導入管内部に液の薄膜を
作り重合体の付着を防止することもできる。またガス導
入管入口部に付着防止剤を散布するノズルを装備させ、
重合後の洗浄工程で付着防止剤を散布したり、重合中に
脱塩水を間欠あるいは連続的に散水しても重合体の付着
防止に有効である。
The position at which the condensed gas is taken out of the gas introduction pipe is
The center of the top semi-elliptical portion of the polymerization can is preferably used, but any location may be used as long as it is the top semi-elliptical portion. There may be a valve for shutting off the gas flow in the introduction pipe. The gas introducing pipe may be a double pipe through which cooling water is passed to form a liquid thin film inside the gas introducing pipe to prevent the adhesion of the polymer. Equipped with a nozzle for spraying anti-adhesion agent at the gas inlet pipe inlet,
It is effective to prevent the adhesion of the polymer even if the anti-adhesion agent is sprayed in the washing step after the polymerization, or deionized water is intermittently or continuously sprayed during the polymerization.

【0012】ガス導入管内面の仕上げ精度は電解研磨E
P−6としてもよいが、管製作時の引抜き鋼管状態のま
までもよい。
The finishing accuracy of the inner surface of the gas introduction pipe is electrolytic polishing E
Although it may be P-6, it may be in the state of a drawn steel pipe when the pipe is manufactured.

【0013】本発明のガス導入管の一端を還流熱交換器
の頂部と重合反応容器の気相部とを配管で連結させた還
流熱交換器を備えた重合反応容器は、還流熱交換器の管
内で凝縮したモノマー液と被凝縮ガスの流れを向流させ
ずに一方方向の流れにすることができるので、上昇する
被凝縮ガスが凝縮液の流下しようとするのを妨げること
で生じる凝縮液が管内で詰まることが防止できる。その
結果、還流熱交換器が本来持つ総括伝熱係数に殆ど近い
性能を発揮させることができるようになり、還流熱交換
器を小型化して、冷却能力を大幅な増大、重合反応時間
の大幅な短縮等により、樹脂の生産性を高めることが可
能となった。
The polymerization reaction vessel equipped with a reflux heat exchanger in which one end of the gas introduction pipe of the present invention is connected by piping to the top of the reflux heat exchanger and the gas phase portion of the polymerization reaction vessel is Since the flow of the monomer liquid condensed in the pipe and the flow of the gas to be condensed can be made to flow in one direction without counterflowing, the condensate generated by preventing the rising gas to be condensed from trying to flow down Can be prevented from clogging in the pipe. As a result, it is possible to exhibit performance close to the overall heat transfer coefficient originally possessed by the reflux heat exchanger, downsizing the reflux heat exchanger, greatly increasing the cooling capacity, and significantly increasing the polymerization reaction time. It has become possible to improve the productivity of the resin by shortening it.

【0014】[0014]

【実施例】実施例1 還流熱交換器底部と重合缶気相部を内径800φからな
る配管でつなぎ、反応器気相部と還流熱交換器頂部を呼
び径200A(8インチ)、長さ12mのガス導入管で
接続した管径25.4mm、管本数485、伝熱面積
(外径基準)150m2を有した竪型・多管式還流熱交
換器を備えた容積100m3 反応器に塩化ビニルモノマ
ー39m3、脱塩水42.5m3、分散剤750ppm
(対モノマー)及び油溶性開始剤500ppm(対モノマ
ー)を添加して撹拌し、反応温度を57℃に調節しなが
ら反応を進め、重合率25%に到達する前までに反応器
内の非凝縮ガス(主に窒素ガス)を還流熱交換器の頂部
に設けたイナートガスベント弁を一定時間開けて、重合
反応容器及び還流熱交換器から系外へ移動させ,還流熱
交換器の冷却開始に備えた。そして重合率が25%に到
達した頃に還流熱交換器のジャケットに冷却水を通し、
冷却を開始させた。冷却開始30分後には冷却量が80
0,000Kcal/Hrに達し、更に20分後には目
標の1,400,000Kcal/Hrに達した。反応
途中の還流熱交換器の冷却水量は175m3/Hr、入
口水温30℃、出口水温38℃で推移し、反応停止前の
30分まで除熱量1,400,000Kcal/Hrを
継続させ、その後、徐々に負荷熱量を下げて停止させ
た。反応時間は4.5時間で終わった。還流熱交換器の
総括伝熱係数は410Kcal/m2・Hr・degで
あった。
Example 1 The bottom part of the reflux heat exchanger and the vapor phase part of the polymerization vessel were connected by a pipe having an inner diameter of 800φ, and the vapor phase part of the reactor and the top part of the reflux heat exchanger were nominally 200 A (8 inches) in length and 12 m in length. Chloride in a 100 m 3 reactor equipped with a vertical multi-tube reflux heat exchanger having a tube diameter of 25.4 mm, a number of tubes of 485, and a heat transfer area (outer diameter standard) of 150 m 2 connected with a gas introduction pipe of Vinyl monomer 39m 3 , demineralized water 42.5m 3 , dispersant 750ppm
(To the monomer) and 500 ppm of the oil-soluble initiator (to the monomer) are added and stirred, and the reaction proceeds while adjusting the reaction temperature to 57 ° C, and the non-condensation in the reactor is reached before the polymerization rate reaches 25%. Open the inert gas vent valve provided at the top of the reflux heat exchanger for a certain period of time to move the gas (mainly nitrogen gas) from the polymerization reaction container and the reflux heat exchanger to the outside of the system, and prepare for the start of cooling the reflux heat exchanger. It was Then, when the polymerization rate reaches 25%, cooling water is passed through the jacket of the reflux heat exchanger,
Cooling was started. After 30 minutes from the start of cooling, the cooling amount is 80
The target value was 10,000 Kcal / Hr, and the target value of 1,400,000 Kcal / Hr was reached 20 minutes later. The amount of cooling water of the reflux heat exchanger during the reaction was 175 m 3 / Hr, the inlet water temperature was 30 ° C., the outlet water temperature was 38 ° C., and the heat removal amount of 1,400,000 Kcal / Hr was continued until 30 minutes before the reaction was stopped. , The load calorific value was gradually reduced and stopped. The reaction time was 4.5 hours. The overall heat transfer coefficient of the reflux heat exchanger was 410 Kcal / m 2 · Hr · deg.

【0015】比較例1 ガス導入管がない 還流熱交換器底部と重合缶気相部を
内径800φ径の配管でつながれた、管径25.4m
m、管本数485、伝熱面積(外径基準)150m2
有した竪型・多管式還流熱交換器を備えた容積100m
3反応器に塩化ビニルモノマー39m3、脱塩水42.5
3、分散剤750ppm(対モノマー)及び油溶性開始
剤500ppm(対モノマー)を添加して撹拌し、反応温
度を57℃に調節しながら反応を進め、重合率25%到
達する前までに反応器内の非凝縮ガス(主に窒素ガス)
を還流熱交換器の頂部に設けたイナートガスベント弁を
一定時間開けて、重合反応容器及び還流熱交換器から系
外へ移動させ,還流熱交換器の冷却開始に備えた。そし
て重合率が25%に到達した頃に還流熱交換器のジャケ
ットに冷却水を通し、冷却を開始させた。冷却開始30
分後には冷却量が800,000Kcal/Hrに達
し、更に20分後に 目標の1,400,000Kcal
/Hrにしようと還流熱交換器ジャケット冷却水量を1
75m3/Hrまで増加させたが、除熱量は900,0
00Kcal/Hrまでしか上昇せず、還流熱交換器の
冷却水量は175m3/Hr、入口水温30℃、出口水
温35.1℃で推移し、反応停止前の30分まで 除熱
量900,000Kcal/Hrと変わらなかった。そ
の後、徐々に負荷熱量を下げて停止させた。反応時間は
4.5時間で終わった。還流熱交換器の総括伝熱係数は
246Kcal/m2・Hr・degであった。
Comparative Example 1 No Gas Introducing Pipe The bottom of the reflux heat exchanger and the vapor phase of the polymerization vessel were connected by a pipe having an inner diameter of 800φ, and the pipe diameter was 25.4 m.
m, number of tubes 485, heat transfer area (outer diameter standard) 150 m 2 , vertical type multitubular reflux heat exchanger with a volume of 100 m
Vinyl chloride monomer 39m 3 and demineralized water 42.5 in 3 reactors
m 3 , dispersant 750 ppm (to monomer) and oil-soluble initiator 500 ppm (to monomer) were added and stirred, the reaction proceeded while adjusting the reaction temperature to 57 ° C., and the reaction was performed before the polymerization rate reached 25%. Non-condensable gas in the vessel (mainly nitrogen gas)
The inert gas vent valve provided at the top of the reflux heat exchanger was opened for a certain period of time to move it from the polymerization reaction container and the reflux heat exchanger to the outside of the system to prepare for cooling of the reflux heat exchanger. Then, when the polymerization rate reached 25%, cooling water was passed through the jacket of the reflux heat exchanger to start cooling. Start cooling 30
After 20 minutes, the cooling amount reached 800,000 Kcal / Hr, and after another 20 minutes, the target of 14,000,000 Kcal
/ Hr to set the reflux water heat exchanger jacket cooling water amount to 1
Although increased to 75 m 3 / Hr, quantity of heat removed is 900,0
The amount of cooling water in the reflux heat exchanger changes to 175 m 3 / Hr, the inlet water temperature is 30 ° C, the outlet water temperature is 35.1 ° C, and the heat removal amount is 900,000 Kcal / hour until 30 minutes before the reaction is stopped. It was the same as Hr. After that, the amount of heat applied was gradually reduced to stop. The reaction time was 4.5 hours. The overall heat transfer coefficient of the reflux heat exchanger was 246 Kcal / m 2 · Hr · deg.

【0016】[0016]

【発明の効果】以上説明したとおり、本発明により、還
流熱交換器が本来持つ総括伝熱係数に殆ど近い性能を発
揮させ、還流熱交換器を小型化し、冷却能力を大幅に大
きくすることにより、重合反応時間を大幅に短縮して、
生産性を高めることが可能となる重合反応容器及び該重
合反応容器を用いて塩化ビニル系モノマーの懸濁重合又
は乳化重合を行う塩化ビニル樹脂の製造方法を提供する
ことができた。
As described above, according to the present invention, by making the reflux heat exchanger exhibit a performance almost close to the general heat transfer coefficient originally possessed, downsizing the reflux heat exchanger, and greatly increasing the cooling capacity. , Greatly shortening the polymerization reaction time,
It has been possible to provide a polymerization reaction container capable of increasing productivity and a method for producing a vinyl chloride resin for carrying out suspension polymerization or emulsion polymerization of a vinyl chloride monomer using the polymerization reaction container.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の還流熱交換器を備えた重合反応容器の
例を示す図である。
FIG. 1 is a diagram showing an example of a polymerization reaction vessel equipped with a reflux heat exchanger of the present invention.

【符号の説明】[Explanation of symbols]

1:イナートガス ベントライン 2:還流熱交換器 頂部カバー 3:ガス導入管 遮断弁 4:ガス導入管 5:還流熱交換器 6:重合缶 還流熱交換器 接続配管 7:還流熱交換器 冷却水配管 8:還流熱交換器 底部カバー 9:重合缶 気相半楕円部 1: Inert gas vent line 2: Reflux heat exchanger top cover 3: Gas introduction pipe shutoff valve 4: Gas introduction pipe 5: Reflux heat exchanger 6: Polymerization can Reflux heat exchanger connection piping 7: Reflux heat exchanger Cooling water piping 8: Reflux heat exchanger bottom cover 9: Polymerization can Gas phase semi-elliptical part

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡田 暁夫 千葉県市原市姉崎海岸5の1 住友化学工 業株式会社内 (72)発明者 鈴木 輝行 千葉県市原市姉崎海岸5の1 住友化学工 業株式会社内 Fターム(参考) 4J011 AA01 AB03 AB15 DA01 DA03 DB12 DB14 DB23 DB27 DB36 JA01 JB02 JB07 JB15 KA00 KB00    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Akio Okada             Sumitomo Chemical Co., Ltd. 1-5 Anezaki Kaigan, Ichihara City, Chiba Prefecture             Business (72) Inventor, Teruyuki Suzuki             Sumitomo Chemical Co., Ltd. 1-5 Anezaki Kaigan, Ichihara City, Chiba Prefecture             Business F-term (reference) 4J011 AA01 AB03 AB15 DA01 DA03                       DB12 DB14 DB23 DB27 DB36                       JA01 JB02 JB07 JB15 KA00                       KB00

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 還流熱交換器を装着した重合反応容器で
あって、該還流熱交換器の下部及び頂部はそれぞれ異な
る配管で重合反応容器に連結されている重合反応容器。
1. A polymerization reaction container equipped with a reflux heat exchanger, wherein the lower part and the top part of the reflux heat exchanger are connected to the polymerization reaction container by different pipes.
【請求項2】 前記還流熱交換器が竪型かつ多管式の還
流熱交換器である請求項1記載の重合反応容器。
2. The polymerization reaction container according to claim 1, wherein the reflux heat exchanger is a vertical and multitubular reflux heat exchanger.
【請求項3】 前記還流熱交換器の頂部と重合反応容器
の頂部とを連結した配管内を重合反応容器内の凝縮性モ
ノマーガスが通過して還流熱交換器の頂部に導入され、
該還流熱交換器の頂部から下部へ移動しつつ凝縮して重
合反応容器へ還流する請求項1又は2記載の重合反応容
器。
3. A condensable monomer gas in the polymerization reaction vessel passes through a pipe connecting the top of the reflux heat exchanger and the top of the polymerization reaction vessel and is introduced to the top of the reflux heat exchanger,
The polymerization reaction container according to claim 1 or 2, wherein the reflux reaction heat exchanger is condensed from the top to the bottom while being condensed and refluxed to the polymerization reaction container.
【請求項4】 前記還流熱交換器の頂部と重合反応容器
の頂部とを連結した配管内の差圧が還流熱交換器の頂部
と還流熱交換器の下部の重合反応容器との連結部分との
差圧よりも小である請求項1から3のいずれかに記載さ
れた重合反応容器。
4. The differential pressure in the pipe connecting the top of the reflux heat exchanger and the top of the polymerization reaction vessel is the connecting portion between the top of the reflux heat exchanger and the polymerization reaction vessel below the reflux heat exchanger. The polymerization reaction container according to any one of claims 1 to 3, which has a pressure difference smaller than the differential pressure.
【請求項5】 前記還流熱交換器の頂部と重合反応容器
の頂部とを連結した配管内の差圧が20KPa以下であ
る請求項4に記載の重合反応容器。
5. The polymerization reaction container according to claim 4, wherein the differential pressure in the pipe connecting the top of the reflux heat exchanger and the top of the polymerization reaction container is 20 KPa or less.
【請求項6】 請求項1から5のいずれかに記載の重合
反応容器を用いて塩化ビニル系モノマーの懸濁重合又は
乳化重合を行う塩化ビニル樹脂の製造方法。
6. A method for producing a vinyl chloride resin, which comprises suspension-polymerizing or emulsion-polymerizing a vinyl chloride-based monomer using the polymerization reaction container according to claim 1.
JP2002029183A 2002-02-06 2002-02-06 Polymerization reaction vessel and production method of polyvinyl chloride resin Pending JP2003226703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002029183A JP2003226703A (en) 2002-02-06 2002-02-06 Polymerization reaction vessel and production method of polyvinyl chloride resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002029183A JP2003226703A (en) 2002-02-06 2002-02-06 Polymerization reaction vessel and production method of polyvinyl chloride resin

Publications (1)

Publication Number Publication Date
JP2003226703A true JP2003226703A (en) 2003-08-12

Family

ID=27750057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002029183A Pending JP2003226703A (en) 2002-02-06 2002-02-06 Polymerization reaction vessel and production method of polyvinyl chloride resin

Country Status (1)

Country Link
JP (1) JP2003226703A (en)

Similar Documents

Publication Publication Date Title
JP5156232B2 (en) Thermal separation process for separating a material stream enriched and containing at least one (meth) acrylic monomer
JPS6411642B2 (en)
US3968090A (en) Method for removing heat of polymerization
JPS6136301A (en) Method for controlling temperature in polymerization reactor
US3825512A (en) Process for polymerizing vinyl chloride using a reflux condenser
US6588450B2 (en) Storage tank for viscous oil containing easily polymerizable compounds
JP2000290226A (en) Purification of easily polymerizable substance-containing material and equipment therefor
JP2003226703A (en) Polymerization reaction vessel and production method of polyvinyl chloride resin
KR101319234B1 (en) Process for preparing polybutadiene latex
AU2005201143B2 (en) A continuous process for preparing polymers
JP3739323B2 (en) Polymerization reactor
US20090118444A1 (en) Process for the polymerisation of vinyl-containing monomers
JPH09136907A (en) Double pipe reflux condenser and manufacture of vinyl chloride using the same
US20080281057A1 (en) Process For the Polymerisation of Vinyl-Containing Monomers
US5462998A (en) Vinyl chloride polymerization process using ball valves in recycle line
JPH08134107A (en) Production of vinyl chloride polymer
JPH07252304A (en) Method for controlling of temperature inside polymerizer
JP3197146B2 (en) Polymerization vessel effective for preventing adhesion of polymer scale and method for producing polymer using the same
US5444131A (en) Polymerization process with recycle line containing screen with rodlike projection
JP4202849B2 (en) Method for producing vinyl chloride resin
JP3197445B2 (en) Polymerization apparatus and method for producing vinyl chloride polymer using the same
JPH09124705A (en) Double-cooling reflux condenser and production of vinyl chloride resin therewith
JP3465353B2 (en) Polymerization reaction method
JP3699238B2 (en) Method for producing vinyl chloride polymer
JPS627923B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050325

A131 Notification of reasons for refusal

Effective date: 20050712

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20051129

Free format text: JAPANESE INTERMEDIATE CODE: A02