JP2003225743A - Method for producing foil and its apparatus - Google Patents

Method for producing foil and its apparatus

Info

Publication number
JP2003225743A
JP2003225743A JP2002025895A JP2002025895A JP2003225743A JP 2003225743 A JP2003225743 A JP 2003225743A JP 2002025895 A JP2002025895 A JP 2002025895A JP 2002025895 A JP2002025895 A JP 2002025895A JP 2003225743 A JP2003225743 A JP 2003225743A
Authority
JP
Japan
Prior art keywords
foil
molten alloy
fine particles
melting crucible
melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002025895A
Other languages
Japanese (ja)
Other versions
JP3972667B2 (en
Inventor
Toshitomo Oota
稔智 太田
Koki Yoshizawa
廣喜 吉澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2002025895A priority Critical patent/JP3972667B2/en
Publication of JP2003225743A publication Critical patent/JP2003225743A/en
Application granted granted Critical
Publication of JP3972667B2 publication Critical patent/JP3972667B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To produce a foil taking in fine grains by dispersing fine grains in a base material. <P>SOLUTION: In a closed vessel 1 holding inactive gas atmosphere, an alloy raw material 6 is charged into a quartz vessel 3 as a melting crucible to make molten alloy 7 by heating with a coil 2 for heating. Into the molten alloy 7, the fine grains 10 produced with a fine grain production device 11, are beforehand added and dispersed. The molten alloy 7 added with the fine grains 10 is made to flow down from a nozzle 4 of the quartz vessel 3 and rapidly cooled and solidified by supplying the molten alloy 7 onto a rotated roll 5 for rapidly cooling to produce the foil 8 taking in the fine grains 10 in the base material. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は熱電半導体等の成形
材料となる箔の製造方法及びその装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for producing a foil which is a molding material for thermoelectric semiconductors and the like.

【0002】[0002]

【従来の技術】ペルチェ効果を利用した熱電素子やゼー
ベック効果を利用した熱電素子は、構造が簡単で安定し
た特性を有し、取り扱いが容易であることから各方面で
広く使用されている。
2. Description of the Related Art Thermoelectric elements utilizing the Peltier effect and thermoelectric elements utilizing the Seebeck effect are widely used in various fields because of their simple structure, stable characteristics, and easy handling.

【0003】上記熱電素子を構成する熱電半導体の成形
材料としては、ビスマス(Bi)、テルル(Te)、ア
ンチモン(Sb)及びセレン(Se)元素からなる群よ
り選択される1種又は複数種の原料を含有する合金が現
在使用されている。これらの化合物は層状構造化合物で
あり、結晶構造に起因する熱電気的特性に異方性を有す
るものである。
The molding material of the thermoelectric semiconductor constituting the thermoelectric element is one or more selected from the group consisting of bismuth (Bi), tellurium (Te), antimony (Sb) and selenium (Se) elements. Alloys containing raw materials are currently in use. These compounds are layered structure compounds and have anisotropy in thermoelectric properties due to the crystal structure.

【0004】上記のような層状構造化合物からなる結晶
粒の微細化及び配向性の向上を図る技術として、液体急
冷法(急冷ロール法)が知られている。この液体急冷法
を用いた箔の製造装置は、図4にその一例の概略を示す
如く、不活性ガス雰囲気を保持できるようにした密封容
器1内に、外周部に加熱用コイル2を装備させた溶融る
つぼとしての石英容器3を設置し、且つ該石英容器3の
下端に有するノズル4の直下方部に、水冷構造とした金
属製の急冷ロール5を配置して、加熱用コイル2を加熱
することにより、石英容器3内に入れた合金原料6を溶
融させて溶融合金7とし、該溶融合金7を、ノズル4か
ら流下させて高速回転している急冷ロール5の表面に供
給し、急冷凝固させることにより半導体材料としての箔
(薄帯)8を製造するようにしたものである。9は箔8
を捕集する捕集容器である。
A liquid quenching method (quenching roll method) is known as a technique for refining and improving the orientation of crystal grains composed of the layered structure compound as described above. This foil quenching apparatus using the liquid quenching method, as shown in the outline of an example in FIG. 4, is equipped with a heating coil 2 on the outer periphery in a sealed container 1 capable of maintaining an inert gas atmosphere. A quartz container 3 serving as a melting crucible is installed, and a water quenching metal quenching roll 5 is arranged immediately below a nozzle 4 at the lower end of the quartz container 3 to heat a heating coil 2. By doing so, the alloy raw material 6 put in the quartz container 3 is melted to form a molten alloy 7, and the molten alloy 7 is made to flow down from the nozzle 4 and supplied to the surface of the quenching roll 5 which is rotating at high speed, and is rapidly cooled. The foil (thin band) 8 as a semiconductor material is manufactured by solidifying. 9 is foil 8
Is a collection container for collecting.

【0005】上記液体急冷法を用いた箔の製造装置で製
造された箔8は良好な結晶配向性を維持しているが、結
晶配向性を維持した箔8を成形することによって、熱電
半導体を作成する場合、熱電性能を向上させるためには
熱伝導率を低下させる必要がある。この場合、熱電半導
体のゼーベック係数と電気伝導率の値を変えずに熱伝導
率を下げるには、フォノン伝導を低下させるように結晶
粒界を増加させるか、あるいは、粒径を数nmとした非
導電性物質の微粒子を添加分散させることなどが必要と
なる。
The foil 8 manufactured by the apparatus for manufacturing a foil using the above liquid quenching method maintains a good crystal orientation, but by molding the foil 8 maintaining the crystal orientation, a thermoelectric semiconductor is obtained. When it is made, it is necessary to reduce the thermal conductivity in order to improve the thermoelectric performance. In this case, in order to reduce the thermal conductivity without changing the values of Seebeck coefficient and electrical conductivity of the thermoelectric semiconductor, the grain boundaries are increased so as to reduce the phonon conduction, or the grain size is set to several nm. It is necessary to add and disperse fine particles of a non-conductive substance.

【0006】[0006]

【発明が解決しようとする課題】ところが、これまで
は、結晶粒界の増加のために、箔8を焼結工程又は押し
出し工程あるいは圧延工程で成形することによる熱電半
導体の多結晶体成形は行われてはいるが、箔8の母材中
にナノオーダーの微粒子を添加分散させるようにするこ
とは困難であり、現時点では行われていない。
However, until now, in order to increase the grain boundaries, it has been impossible to form a polycrystal body of a thermoelectric semiconductor by forming the foil 8 in a sintering process, an extrusion process, or a rolling process. However, it is difficult to add and disperse nano-order fine particles in the base material of the foil 8 and it has not been carried out at this time.

【0007】因に、原料粉末に微粒子を添加分散させて
焼結することにより熱電半導体を成形する方法もある
が、この方法の場合、箔を用いたものに比して良好な結
晶配向性が得られない。
There is also a method of molding a thermoelectric semiconductor by adding and dispersing fine particles to a raw material powder and sintering it. In this method, a better crystal orientation is obtained as compared with a method using a foil. I can't get it.

【0008】そこで、本発明は、母材中に微粒子を分散
させて取り込ませた箔を製造することができるようにし
ようとするものである。
Therefore, the present invention is intended to make it possible to produce a foil in which fine particles are dispersed and incorporated in a base material.

【0009】[0009]

【課題を解決するための手段】本発明は、上記課題を解
決するために、溶融るつぼ内で合金原料を溶融させてな
る溶融合金を、上記溶融るつぼのノズルから回転してい
る急冷ロールの表面に供給して急冷凝固させることによ
り箔を製造するようにしてある箔の製造方法及びその装
置において、溶融合金から箔が製造されて飛行する迄の
間の位置のうち、上記溶融るつぼ内の溶融合金中に、微
粒子を予め添加して分散させておき、溶融合金が凝固し
て箔となる前に微粒子を内包させるようにする。
In order to solve the above-mentioned problems, the present invention provides a surface of a quenching roll rotating a molten alloy obtained by melting an alloy raw material in a melting crucible from a nozzle of the melting crucible. In a method and an apparatus for manufacturing a foil, the foil is manufactured by rapidly cooling and solidifying the molten alloy, and at a position from the time when the foil is manufactured from the molten alloy until the flight, the melting in the melting crucible is performed. Fine particles are previously added and dispersed in the alloy so that the fine particles are included before the molten alloy solidifies to form a foil.

【0010】溶融合金中に予め微粒子を添加しておく
と、母材中に微粒子を取り込ませた箔を得ることができ
る。
If fine particles are added to the molten alloy in advance, a foil having the fine particles incorporated in the base material can be obtained.

【0011】又、溶融るつぼ内で合金原料を溶融させて
なる溶融合金を、上記溶融るつぼのノズルから回転して
いる急冷ロールの表面に供給して急冷凝固させることに
より箔を製造するようにしてある箔の製造方法及びその
装置において、溶融合金から箔が製造されて飛行する迄
の間の位置のうち、上記ノズルから急冷ロールの表面に
供給した溶融合金が凝固し始める部分に、微粒子を導入
し、溶融合金が凝固するときに微粒子を内包させるよう
にしても、母材中に微粒子を取り込ませた箔を得ること
ができる。
Further, the molten alloy obtained by melting the alloy raw material in the melting crucible is supplied from the nozzle of the melting crucible to the surface of the rotating quenching roll to be rapidly solidified to produce the foil. In a foil manufacturing method and apparatus, fine particles are introduced into a portion of the position where the foil is manufactured from the molten alloy until it flies and the molten alloy supplied from the nozzle to the surface of the quenching roll begins to solidify. However, even if the fine particles are included when the molten alloy is solidified, a foil having the fine particles incorporated in the base material can be obtained.

【0012】更に、溶融るつぼ内で合金原料を溶融させ
てなる溶融合金を、上記溶融るつぼのノズルから回転し
ている急冷ロールの表面に供給して急冷凝固させること
により箔を製造するようにしてある箔の製造方法及びそ
の装置において、下流の成形工程で箔に微粒子が内包さ
れるように、溶融合金から箔が製造されて飛行する迄の
間の位置のうち、溶融合金が凝固し箔として高温状態で
飛行する部分に、上記微粒子を添加するようにすると、
成形により箔の母材結晶組織に微粒子を取り込ませるこ
とができる。
Further, the molten alloy obtained by melting the alloy raw material in the melting crucible is supplied from the nozzle of the melting crucible to the surface of the rotating quenching roll to be rapidly solidified to produce the foil. In a method and apparatus for manufacturing a certain foil, the molten alloy is solidified as a foil at a position between the production of the molten alloy and the flight of the foil so that the fine particles are included in the foil in the downstream forming process. If you add the above particles to the part that fly at high temperature,
Fine particles can be incorporated into the base material crystal structure of the foil by molding.

【0013】非導電性物質からなる微粒子を用いて製造
した箔が半導体材料である場合は、これを成形すること
により熱伝導率の小さい熱電半導体が得られる。
When the foil produced by using the fine particles made of a non-conductive substance is a semiconductor material, a thermoelectric semiconductor having a low thermal conductivity can be obtained by molding the foil.

【0014】[0014]

【発明の実施の形態】以下、本発明の実施の形態を図面
を参照して説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings.

【0015】図1は本発明の実施の一形態を示すもの
で、半導体材料としての箔を製造する場合について説明
する。図4に示したと同様に、不活性ガス雰囲気を保持
できるようにした密封容器1内に溶融るつぼとしての石
英容器3を設置して、該石英容器3内で合金原料6を加
熱用コイル2で加熱して溶融させてなる溶融合金7を、
上記石英容器3の下端部のノズル4から流下させ、高速
回転している急冷ロール5の表面に供給して急冷凝固さ
せることにより半導体材料を箔8として製造するように
してある箔の製造装置において、上記密封容器1の外部
近傍に、箔8の母材中に取り込ませるための微粒子10
を製造するようにした微粒子製造装置11を設け、且つ
該微粒子製造装置11の出口に一端を接続した微粒子
(ガス)導入管12の他端となる先端を、溶融合金7か
ら箔8が製造されて飛行する迄の間の位置のうち、上記
密封容器1の壁を通して、石英容器3内の下部位置、た
とえば、底部に導いて設置させ、更に、密封容器1の外
部に位置する部分の微粒子導入管12に圧送ポンプ13
を設け、該圧送ポンプ13の運転により、微粒子製造装
置11で製造した微粒子10を、微粒子導入管12を通
し石英容器3内の溶融合金7中に吹き込み、溶融合金7
中に微粒子10を添加して分散させるようにして、石英
容器3のノズル4を通して急冷ロール5の表面に供給さ
れた溶融合金7が凝固させられて半導体材料としての箔
8となる前に微粒子10を取り込ませるようにする。
又、上記密封容器1には、圧力調整バルブ15と除害装
置(排ガス処理装置)16を備えた排ガス管14を接続
し、圧力調整バルブ15の操作で密封容器1内の圧力を
調整できるようにしてあると共に、密封容器1内で発生
した排ガスを除害装置16で適正に処理できるようにし
てある。
FIG. 1 shows an embodiment of the present invention, and a case of manufacturing a foil as a semiconductor material will be described. As shown in FIG. 4, a quartz container 3 as a melting crucible is installed in a sealed container 1 capable of holding an inert gas atmosphere, and an alloy raw material 6 is heated by a heating coil 2 in the quartz container 3. Molten alloy 7 formed by heating and melting,
In a foil manufacturing apparatus, a semiconductor material is manufactured as a foil 8 by flowing it down from a nozzle 4 at the lower end of the quartz container 3 and supplying it to the surface of a rapidly rotating quenching roll 5 for rapid solidification. The fine particles 10 to be incorporated into the base material of the foil 8 near the outside of the sealed container 1
A foil 8 is manufactured from the molten alloy 7 at the tip which is the other end of the particle (gas) introducing pipe 12 which is provided with the particle manufacturing apparatus 11 for manufacturing During the period until the flight, the particles are guided through the wall of the hermetically sealed container 1 to a lower position in the quartz container 3, for example, the bottom portion, and further, the fine particles are introduced into a portion located outside the hermetically sealed container 1. Pump 13 for pipe 12
The fine particles 10 produced by the fine particle production apparatus 11 are blown into the molten alloy 7 in the quartz container 3 through the fine particle introduction pipe 12 by operating the pressure pump 13.
The fine particles 10 are added and dispersed therein, and before the molten alloy 7 supplied to the surface of the quenching roll 5 through the nozzle 4 of the quartz container 3 is solidified to form the foil 8 as the semiconductor material, the fine particles 10 are formed. To take in.
Further, an exhaust gas pipe 14 equipped with a pressure adjusting valve 15 and an abatement device (exhaust gas treatment device) 16 is connected to the sealed container 1 so that the pressure in the sealed container 1 can be adjusted by operating the pressure adjusting valve 15. In addition, the exhaust gas generated in the sealed container 1 can be properly treated by the abatement device 16.

【0016】上記微粒子製造装置11としては、たとえ
ば、電気炉加熱法、化学炎(燃焼)法、プラズマ法、レ
ーザー法等によるCVD方式の気相合成装置を採用す
る。図1中、17は微粒子製造装置11内へ反応ガス及
びキャリアガスを供給するガス供給管、18はガス供給
管17に設けた流量計を示す。
As the above-mentioned fine particle production apparatus 11, for example, a CVD type gas phase synthesis apparatus by an electric furnace heating method, a chemical flame (combustion) method, a plasma method, a laser method or the like is adopted. In FIG. 1, 17 is a gas supply pipe for supplying a reaction gas and a carrier gas into the fine particle production apparatus 11, and 18 is a flow meter provided in the gas supply pipe 17.

【0017】又、上記微粒子製造装置11で製造して溶
融合金7中に混入させる微粒子10としては、電気伝導
率が10〜1000S/cmの半導体材料としての箔8
を製造するようにする場合は、結晶粒界を増加させるよ
うにするために粒径が1μm以下で金属に比して密度が
小さく、且つ電気伝導率が0.01S/cm以下の酸化
物、炭化物、窒化物等の非導電性物質を用いるのがよ
く、酸化物としては、たとえば、SiO、Al
を、又、炭化物としては、たとえば、SiC、Mo
を、窒化物としては、たとえば、Si、AlN等
を用いることができる。
The fine particles 10 produced by the fine particle producing apparatus 11 and mixed in the molten alloy 7 are foil 8 as a semiconductor material having an electric conductivity of 10 to 1000 S / cm.
In order to increase the number of crystal grain boundaries, an oxide having a grain size of 1 μm or less, a density lower than that of a metal, and an electric conductivity of 0.01 S / cm or less, It is preferable to use a non-conductive substance such as a carbide or a nitride. Examples of the oxide include SiO 2 and Al 2 O 3.
And as the carbide, for example, SiC, Mo 2 C
As the nitride, for example, Si 3 N 4 , AlN or the like can be used.

【0018】上記構成としてある箔の製造装置を用いて
半導体材料としての箔8を製造する場合は、基本的には
図4に示した箔の製造装置の場合と同様にして行うが、
箔8を製造する前に、石英容器3内の溶融合金7中に、
微粒子製造装置11で製造した非導電性物質からなる微
粒子10を予め添加しておくようにする。すなわち、石
英容器3内の溶融合金7をノズル4から流下させて急冷
ロール5の表面に供給することに先立って、圧送ポンプ
13を運転し、微粒子製造装置11で製造した微粒子1
0を、キャリアガスに乗せた状態として微粒子導入管1
2を通し石英容器3内の底部に吹き込むことにより、微
粒子10を溶融合金7中にバブリング作用で分散させて
おくようにする。これにより、石英容器3内の溶融合金
7をノズル4を通し急冷ロール5の表面に供給して急冷
凝固させると、電気伝導率が10〜1000S/cmの
半導体材料としての箔8が得られる。この得られた箔8
の母材中には微粒子10が均一に分散されて内包されて
いるので、この箔8を下流の焼結工程又は押し出し工程
あるいは圧延工程により成形すると、ゼーベック係数と
電気伝導率の値を変えずに熱伝導率の小さい高性能の熱
電半導体を得ることができる。
When the foil 8 as a semiconductor material is manufactured by using the foil manufacturing apparatus having the above-mentioned structure, it is basically carried out in the same manner as in the foil manufacturing apparatus shown in FIG.
Before producing the foil 8, in the molten alloy 7 in the quartz container 3,
The fine particles 10 made of the non-conductive substance manufactured by the fine particle manufacturing apparatus 11 are added in advance. That is, before the molten alloy 7 in the quartz container 3 is made to flow down from the nozzle 4 and supplied to the surface of the quenching roll 5, the pressure feed pump 13 is operated and the fine particles 1 produced by the fine particle production apparatus 11 are operated.
0 in a state of being placed in carrier gas 1
The fine particles 10 are dispersed in the molten alloy 7 by bubbling by blowing 2 through the bottom of the quartz container 3. Thus, when the molten alloy 7 in the quartz container 3 is supplied to the surface of the quenching roll 5 through the nozzle 4 and rapidly solidified, a foil 8 as a semiconductor material having an electric conductivity of 10 to 1000 S / cm is obtained. This obtained foil 8
Since the fine particles 10 are uniformly dispersed and included in the base material of No. 2, when the foil 8 is formed by the downstream sintering step, extrusion step or rolling step, the Seebeck coefficient and the electric conductivity values do not change. A high-performance thermoelectric semiconductor having a low thermal conductivity can be obtained.

【0019】上記において、溶融合金7中への微粒子1
0の添加量は制御することができるので、熱伝導率の値
を選定することができる。又、酸化物以外の微粒子10
を添加して箔8を製造した場合は、その箔8を、成形前
に熱処理して、微粒子10のみを酸化させ、母材を還元
処理させるようにすると、原子の酸化物分散効果以外
に、結晶の再結晶化による結晶配向性の向上を図ること
ができる。
In the above, the fine particles 1 in the molten alloy 7
Since the addition amount of 0 can be controlled, the value of thermal conductivity can be selected. Also, fine particles 10 other than oxides
When the foil 8 is manufactured by adding the above, the foil 8 is heat-treated before forming to oxidize only the fine particles 10 and reduce the base material. The crystal orientation can be improved by recrystallizing the crystal.

【0020】なお、図1では、微粒子導入管12の先端
を、石英容器3の側壁の下端部を貫通させて石英容器3
内の底部に臨ませるようにした場合を示したが、石英容
器3の上方から石英容器3内の底部に差し込むようにし
てもよい。
In FIG. 1, the tip of the fine particle introducing tube 12 is made to penetrate the lower end of the side wall of the quartz container 3 and the quartz container 3 is
Although the case where it is made to face the inner bottom is shown, it may be inserted into the bottom of the quartz container 3 from above the quartz container 3.

【0021】次に、図2は本発明の実施の他の形態を示
すもので、図1に示したものと同様な構成において、微
粒子製造装置11で製造した微粒子10を、圧送ポンプ
13の運転で微粒子導入管12を通し石英容器3内の底
部に導入するようにすることに代えて、微粒子導入管1
2の先端を急冷ロール5上に溶融合金7が流下する位置
へ臨ませるようにし、微粒子製造装置11で製造した微
粒子10を、ガス供給管17を通して供給するキャリア
ガスによる気相流れに乗せて上記溶融合金7の流下位置
へ導入するようにし、溶融合金7が急冷ロール5上で急
冷凝固するときに微粒子10を箔8の母材内に取り込ま
せるようにしたものである。
Next, FIG. 2 shows another embodiment of the present invention. In the same structure as that shown in FIG. 1, the fine particles 10 produced by the fine particle producing apparatus 11 are operated by the pressure feed pump 13. Instead of passing through the fine particle introduction pipe 12 to the bottom of the quartz container 3, the fine particle introduction pipe 1
The tip of 2 is made to face the position where the molten alloy 7 flows down on the quenching roll 5, and the fine particles 10 produced by the fine particle producing apparatus 11 are placed on the gas phase flow by the carrier gas supplied through the gas supply pipe 17 and The molten alloy 7 is introduced into the flow-down position, and the fine particles 10 are taken into the base material of the foil 8 when the molten alloy 7 is rapidly solidified on the quench roll 5.

【0022】図2に示す実施の形態の場合は、溶融合金
7が箔8として凝固し始める部分に微粒子10が導入さ
れるが、凝固して箔8となった時点では箔8の母材中に
微粒子10が取り込まれているため、図1の実施の形態
の場合と同様に、箔8を焼結工程又は押し出し工程ある
いは圧延工程で成形することにより、熱伝導率の小さい
熱電半導体を得ることができる。
In the case of the embodiment shown in FIG. 2, the fine particles 10 are introduced into the portion where the molten alloy 7 begins to solidify as the foil 8. However, at the time when the molten alloy 7 becomes the foil 8, in the base material of the foil 8. Since the fine particles 10 are taken in, the thermoelectric semiconductor having a small thermal conductivity is obtained by forming the foil 8 in the sintering step, the extrusion step or the rolling step as in the case of the embodiment of FIG. You can

【0023】なお、図2の実施の形態では、密封容器1
外の微粒子製造装置11で製造した微粒子10を、微粒
子導入管12を通して溶融合金7の急冷ロール5上への
流下位置近傍へ導くようにした場合を示したが、二点鎖
線で示す如く、微粒子製造装置11を密封容器1内に配
置し、且つ溶融合金7が凝固し始める部分に微粒子製造
装置11の気相合成反応部を位置させて、密封容器1内
でIn−situに製造した微粒子10を、溶融合金7
が凝固して箔8となる部分に添加させるようにしてもよ
い。
In the embodiment of FIG. 2, the sealed container 1
The case where the fine particles 10 produced by the external fine particle production apparatus 11 is guided to the vicinity of the position where the molten alloy 7 flows onto the quenching roll 5 through the fine particle introduction pipe 12 is shown. The production apparatus 11 is arranged in the sealed container 1, and the vapor phase synthesis reaction part of the fine particle production apparatus 11 is positioned at a portion where the molten alloy 7 starts to solidify, and the fine particles 10 produced in-situ in the sealed container 1 are placed. The molten alloy 7
May be added to the portion that solidifies to form the foil 8.

【0024】次いで、図3は本発明の実施の更に他の形
態を示すもので、図2の実線の部分で示したものと同様
な構成において、微粒子導入管12の先端を、急冷ロー
ル5上に溶融合金7が流下する位置へ臨ませるようにす
ることに代えて、微粒子導入管12の先端を、溶融合金
7が凝固し高温状態の箔8となって飛行する部分へ臨ま
せるようにし、箔8の表面に微粒子10を添加させるよ
うにしたものである。
Next, FIG. 3 shows still another embodiment of the present invention. In a structure similar to that shown by the solid line in FIG. 2, the tip of the fine particle introducing pipe 12 is placed on the quenching roll 5. Instead of allowing the molten alloy 7 to face the position where the molten alloy 7 flows down, the tip of the fine particle introduction tube 12 is made to face the portion where the molten alloy 7 solidifies and becomes the foil 8 in a high temperature state, and fly. The fine particles 10 are added to the surface of the foil 8.

【0025】図3に示す実施の形態の場合は、得られた
箔8の母材中には微粒子は取り込まれていないが、高温
状態の箔8の表面に微粒子10が添加されることで、箔
8の表面に微粒子10を均一に分散させて付着させるこ
とができ、これら箔8を焼結工程や押し出し工程、圧延
工程で成形すると、微粒子10は箔8の母材結晶組織に
取り込まれるため、粒界不純物としての電気抵抗の増加
を最小限に抑えることができる。
In the case of the embodiment shown in FIG. 3, fine particles are not incorporated in the base material of the obtained foil 8, but by adding the fine particles 10 to the surface of the foil 8 in a high temperature state, The fine particles 10 can be uniformly dispersed and adhered to the surface of the foil 8, and when these foils 8 are formed in a sintering process, an extrusion process, or a rolling process, the fine particles 10 are incorporated into the base material crystal structure of the foil 8. It is possible to minimize an increase in electric resistance as a grain boundary impurity.

【0026】なお、本発明は上記各実施の形態にのみ限
定されるものではなく、各実施の形態を適宜併用して実
施するようにしてもよいこと、又、実施の形態では、微
粒子製造装置11としてCVD方式を採用した場合を示
したが、不活性ガス中で原料を蒸発させ、生成した原料
物質の原子が不活性ガス分子と衝突して減速され、原子
同士が衝突、結合しつつ微粒子に成長する、所謂PVD
方式の気相合成装置を採用してもよいこと、又、図3の
実施の形態では、得られた箔8の表面に微粒子10が付
着した状態であるが、得られた箔8に対し、成形前にプ
ラズマ処理を施しておくようにすれば、微粒子10の付
着性を向上できるので、成形温度を低くすることができ
るようになること、更に、図2、図3の実施の形態で
は、微粒子10を気相流れで箔8の表面部へ導入する場
合について示したが、これに代えて、微粒子10の表面
に電荷を帯電させて凝集を防止し、電磁波を用いて電磁
場輸送するようにしてもよいこと、各実施の形態では、
半導体材料としての箔8を製造する場合について説明し
たが、半導体材料以外の箔を製造する場合でも同様であ
り、この場合、非導電性物質以外の微粒子を用いるよう
にしてもよいこと、その他本発明の要旨を逸脱しない範
囲内において種々変更を加え得ることは勿論である。
The present invention is not limited to the above-mentioned respective embodiments, and the respective embodiments may be appropriately combined and implemented, and in the embodiment, the fine particle manufacturing apparatus is used. 11 shows the case where the CVD method is adopted, the raw material is evaporated in an inert gas, the atoms of the generated raw material collide with the inert gas molecules and are decelerated, and the atoms collide and bond with each other to form the fine particles. So-called PVD
It is also possible to employ a vapor-phase synthesis apparatus of the system, and in the embodiment of FIG. 3, the fine particles 10 are attached to the surface of the obtained foil 8, but with respect to the obtained foil 8, If the plasma treatment is performed before the molding, the adhesion of the fine particles 10 can be improved, so that the molding temperature can be lowered. Further, in the embodiment of FIGS. 2 and 3, Although the case where the fine particles 10 are introduced into the surface portion of the foil 8 by the gas phase flow has been shown, instead of this, the surface of the fine particles 10 is charged with an electric charge to prevent agglomeration, and electromagnetic fields are used to transport the particles. In each of the embodiments,
Although the case of manufacturing the foil 8 as the semiconductor material has been described, the same applies to the case of manufacturing the foil other than the semiconductor material, and in this case, fine particles other than the non-conductive substance may be used, and other matters. Needless to say, various changes can be made without departing from the scope of the invention.

【0027】[0027]

【発明の効果】以上述べた如く、本発明の箔の製造方法
及びその装置によれば、次の如き優れた効果を発揮す
る。 (1)溶融るつぼ内で合金原料を溶融させてなる溶融合金
を、上記溶融るつぼのノズルから回転している急冷ロー
ルの表面に供給して急冷凝固させることにより箔を製造
するようにしてある箔の製造方法及びその装置におい
て、溶融合金から箔が製造されて飛行する迄の間の位置
のうち、上記溶融るつぼ内の溶融合金中に、微粒子を予
め添加して分散させておき、溶融合金が凝固して箔とな
る前に微粒子を内包させるようにしてあるので、母材中
に微粒子を均一に分散させて取り込ませた箔を得ること
ができる。 (2)溶融るつぼ内で合金原料を溶融させてなる溶融合金
を、上記溶融るつぼのノズルから回転している急冷ロー
ルの表面に供給して急冷凝固させることにより箔を製造
するようにしてある箔の製造方法及びその装置におい
て、溶融合金から箔が製造されて飛行する迄の間の位置
のうち、上記ノズルから急冷ロールの表面に供給した溶
融合金が凝固し始める部分に、微粒子を導入し、溶融合
金が凝固するときに微粒子を内包させるようにすること
により、(1)項の場合と同様の効果が得られる。 (3)溶融るつぼ内で合金原料を溶融させてなる溶融合金
を、上記溶融るつぼのノズルから回転している急冷ロー
ルの表面に供給して急冷凝固させることにより箔を製造
するようにしてある箔の製造方法及びその装置におい
て、下流の成形工程で箔に微粒子が内包されるように、
溶融合金から箔が製造されて飛行する迄の間の位置のう
ち、溶融合金が凝固し箔として高温状態で飛行する部分
に、上記微粒子を添加するようにすることにより、箔の
表面に微粒子を均一に分散させて付着させることができ
るので、成形を行うことにより、箔の母材結晶組織に微
粒子を取り込ませることができる。 (4)非導電性物質からなる微粒子を用いて得られた箔が
半導体材料である場合は、これを成形することにより熱
伝導率の小さい高性能の熱電半導体を得ることができ
る。
As described above, according to the method for manufacturing a foil and the apparatus therefor of the present invention, the following excellent effects are exhibited. (1) A foil produced by melting an alloy raw material in a melting crucible, supplying the surface of a rotating quenching roll from the nozzle of the melting crucible to rapidly solidify the foil to produce a foil. In the manufacturing method and the apparatus thereof, fine particles are previously added and dispersed in the molten alloy in the molten crucible among the positions from the time when the foil is produced from the molten alloy to the flight, and the molten alloy is Since the fine particles are included before being solidified into a foil, it is possible to obtain a foil in which the fine particles are uniformly dispersed and incorporated in the base material. (2) A molten alloy obtained by melting the alloy raw material in the melting crucible, the foil is produced by rapidly solidifying by supplying to the surface of the quenching roll rotating from the nozzle of the melting crucible to rapidly solidify. In the manufacturing method and the apparatus thereof, in the position from the time when the foil is manufactured from the molten alloy to the flight, the fine particles are introduced into the portion where the molten alloy supplied from the nozzle to the surface of the quenching roll begins to solidify, By including the fine particles when the molten alloy is solidified, the same effect as in the case (1) can be obtained. (3) A molten alloy obtained by melting an alloy raw material in a melting crucible, a foil prepared by rapidly cooling and solidifying by supplying the molten alloy to the surface of a rapidly rotating quenching roll from the nozzle of the melting crucible. In the manufacturing method and apparatus thereof, so that the fine particles are included in the foil in the downstream molding step,
By adding the above-mentioned fine particles to the portion where the molten alloy is solidified and flies in a high temperature state as a foil among the positions from the production of the molten alloy to the flight of the foil, the fine particles are added to the surface of the foil. Since the particles can be uniformly dispersed and adhered, fine particles can be incorporated into the base material crystal structure of the foil by performing molding. (4) When the foil obtained by using the fine particles made of a non-conductive substance is a semiconductor material, a high performance thermoelectric semiconductor having a small thermal conductivity can be obtained by molding the foil.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の箔の製造装置の実施の一形態を示す概
略図である。
FIG. 1 is a schematic diagram showing an embodiment of a foil manufacturing apparatus of the present invention.

【図2】本発明の実施の他の形態を示す概略図である。FIG. 2 is a schematic view showing another embodiment of the present invention.

【図3】本発明の実施の更に他の形態を示す概略図であ
る。
FIG. 3 is a schematic diagram showing still another embodiment of the present invention.

【図4】液体急冷法を用いた従来の箔の製造装置の一例
を示す概略図である。
FIG. 4 is a schematic view showing an example of a conventional foil manufacturing apparatus using a liquid quenching method.

【符号の説明】[Explanation of symbols]

3 石英容器(溶融るつぼ) 4 ノズル 5 急冷ロール 6 合金原料 7 溶融合金 8 箔 10 微粒子 11 微粒子製造装置 12 微粒子導入管 3 Quartz container (melting crucible) 4 nozzles 5 Quenching roll 6 alloy raw materials 7 Molten alloy 8 foil 10 fine particles 11 Fine particle manufacturing equipment 12 Particle introduction tube

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 35/34 H01L 35/34 (72)発明者 吉澤 廣喜 神奈川県横浜市磯子区新中原町1番地 石 川島播磨重工業株式会社機械・プラント開 発センター内 Fターム(参考) 4E004 DB02 DB20 TA07 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) H01L 35/34 H01L 35/34 (72) Inventor Hiroki Yoshizawa 1 Shinshinarahara-cho, Isogo-ku, Yokohama-shi, Kanagawa Ishikawajima Harima Heavy Industries Co., Ltd. Machinery and plant development center F-term (reference) 4E004 DB02 DB20 TA07

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 溶融るつぼ内で合金原料を溶融させてな
る溶融合金を、上記溶融るつぼのノズルから回転してい
る急冷ロールの表面に供給して急冷凝固させることによ
り箔を製造するようにしてある箔の製造方法において、
上記溶融るつぼ内の溶融合金中に、微粒子を予め添加し
て分散させておき、溶融合金が凝固して箔となる前に微
粒子を内包させるようにすることを特徴とする箔の製造
方法。
1. A foil is manufactured by supplying a molten alloy obtained by melting an alloy raw material in a melting crucible to the surface of a rotating quenching roll from a nozzle of the melting crucible to rapidly solidify the foil. In a method of manufacturing a foil,
A method for producing a foil, characterized in that fine particles are previously added and dispersed in the molten alloy in the melting crucible, and the fine particles are included before the molten alloy solidifies to form a foil.
【請求項2】 溶融るつぼ内で合金原料を溶融させてな
る溶融合金を、上記溶融るつぼのノズルから回転してい
る急冷ロールの表面に供給して急冷凝固させることによ
り箔を製造するようにしてある箔の製造方法において、
上記ノズルから急冷ロールの表面に供給した溶融合金が
凝固し始める部分に、微粒子を導入し、溶融合金が凝固
するときに微粒子を内包させるようにすることを特徴と
する箔の製造方法。
2. A foil is manufactured by supplying a molten alloy obtained by melting an alloy raw material in a melting crucible to a surface of a rotating quenching roll from a nozzle of the melting crucible to rapidly solidify it. In a method of manufacturing a foil,
A method for producing a foil, characterized in that fine particles are introduced into a portion where the molten alloy supplied from the nozzle to the surface of the quenching roll begins to solidify, and the fine particles are included when the molten alloy solidifies.
【請求項3】 溶融るつぼ内で合金原料を溶融させてな
る溶融合金を、上記溶融るつぼのノズルから回転してい
る急冷ロールの表面に供給して急冷凝固させることによ
り箔を製造するようにしてある箔の製造方法において、
下流の成形工程で箔に微粒子が内包されるように、溶融
合金が凝固し箔として高温状態で飛行する部分に、上記
微粒子を添加するようにすることを特徴とする箔の製造
方法。
3. A foil is produced by supplying a molten alloy obtained by melting an alloy raw material in a melting crucible to the surface of a rotating quenching roll from a nozzle of the melting crucible to rapidly solidify the foil. In a method of manufacturing a foil,
A method for producing a foil, characterized in that the above-mentioned particles are added to a portion where the molten alloy is solidified and flies in a high temperature state as the foil so that the foil contains the particles in a downstream forming step.
【請求項4】 箔が半導体材料である請求項1、2又は
3記載の箔の製造方法。
4. The method for producing a foil according to claim 1, 2 or 3, wherein the foil is a semiconductor material.
【請求項5】 半導体材料の電気伝導率が10〜100
0S/cmである請求項4記載の箔の製造方法。
5. A semiconductor material having an electric conductivity of 10 to 100.
The method for producing a foil according to claim 4, wherein the foil is 0 S / cm.
【請求項6】 微粒子が、非導電性物質からなる微粒子
である請求項1、2、3、4又は5記載の箔の製造方
法。
6. The method for producing a foil according to claim 1, wherein the fine particles are fine particles made of a non-conductive substance.
【請求項7】 非導電性物質からなる微粒子の電気伝導
率が0.01S/cm以下である請求項6記載の箔の製
造方法。
7. The method for producing a foil according to claim 6, wherein the electrical conductivity of the fine particles made of a non-conductive substance is 0.01 S / cm or less.
【請求項8】 非導電性物質からなる微粒子の粒径が1
μm以下である請求項6又は7記載の箔の製造方法。
8. The particle size of fine particles made of a non-conductive substance is 1
The method for producing a foil according to claim 6 or 7, wherein the thickness is not more than μm.
【請求項9】 溶融るつぼ内で合金原料を溶融させてな
る溶融合金を、上記溶融るつぼのノズルから回転してい
る急冷ロールの表面に供給して急冷凝固させることによ
り箔を製造するようにしてある箔の製造装置において、
微粒子を製造する微粒子製造装置の出口に接続した微粒
子導入管の先端を、上記溶融合金から箔が製造されて飛
行する迄の間の位置に、微粒子が供給されるように配置
させた構成を有することを特徴とする箔の製造装置。
9. A foil is manufactured by supplying a molten alloy obtained by melting an alloy raw material in a melting crucible to a surface of a rotating quenching roll from a nozzle of the melting crucible to rapidly solidify the foil. In a foil manufacturing device,
The tip of a fine particle introducing pipe connected to the outlet of a fine particle producing apparatus for producing fine particles is arranged so that the fine particles are supplied at a position until the foil is produced from the molten alloy and flies. A foil manufacturing apparatus characterized by the above.
【請求項10】 溶融るつぼ内で合金原料を溶融させて
なる溶融合金を、上記溶融るつぼのノズルから回転して
いる急冷ロールの表面に供給して急冷凝固させることに
より箔を製造するようにしてある箔の製造装置におい
て、微粒子製造装置の出口に接続した微粒子導入管の先
端を、上記溶融るつぼ内に臨ませるように配置し、微粒
子製造装置で製造された微粒子を、溶融るつぼ内の溶融
合金中に上記微粒子導入管を通して吹き込めるようにし
た構成を有することを特徴とする箔の製造装置。
10. A foil is manufactured by supplying a molten alloy obtained by melting an alloy raw material in a melting crucible to the surface of a rotating quenching roll from a nozzle of the melting crucible to rapidly solidify the foil. In a certain foil production apparatus, the tip of the fine particle introduction pipe connected to the outlet of the fine particle production apparatus is arranged so as to face the inside of the melting crucible, and the fine particles produced by the fine particle production apparatus are melted in the melting crucible. An apparatus for producing a foil, characterized in that it has a structure in which it can be blown through the fine particle introduction tube.
【請求項11】 溶融るつぼ内で合金原料を溶融させて
なる溶融合金を、上記溶融るつぼのノズルから回転して
いる急冷ロールの表面に供給して急冷凝固させることに
より箔を製造するようにしてある箔の製造装置におい
て、微粒子製造装置の出口に接続した微粒子導入管の先
端を、上記ノズルから急冷ロールの表面に溶融合金が供
給される位置に臨ませるように配置し、微粒子製造装置
で製造された微粒子を、溶融合金が凝固し始める部分に
上記微粒子導入管を通して導入できるようにした構成を
有することを特徴とする半導体材料の製造装置。
11. A foil is manufactured by supplying a molten alloy obtained by melting an alloy raw material in a melting crucible to a surface of a rotating quenching roll from a nozzle of the melting crucible to rapidly solidify the foil. In a certain foil production apparatus, the tip of the fine particle introduction pipe connected to the outlet of the fine particle production apparatus is arranged so as to face the position where the molten alloy is supplied from the nozzle to the surface of the quenching roll, and produced by the fine particle production apparatus. An apparatus for producing a semiconductor material, characterized in that the fine particles thus obtained can be introduced into the portion where the molten alloy begins to solidify through the fine particle introducing pipe.
【請求項12】 溶融るつぼ内で合金原料を溶融させて
なる溶融合金を、上記溶融るつぼのノズルから回転して
いる急冷ロールの表面に供給して急冷凝固させることに
より箔を製造するようにしてある箔の製造装置におい
て、微粒子製造装置の出口に接続した微粒子導入管の先
端を、溶融合金が凝固し高温状態の箔となって飛行する
部分に臨ませるように配置し、微粒子製造装置で製造さ
れた微粒子を、箔の表面に上記微粒子導入管を通して添
加できるようにした構成を有することを特徴とする箔の
製造装置。
12. A foil is produced by supplying a molten alloy obtained by melting an alloy raw material in a melting crucible to the surface of a rapidly rotating quenching roll from a nozzle of the melting crucible to rapidly solidify the foil. In a certain foil manufacturing device, the tip of the particle introduction pipe connected to the outlet of the particle manufacturing device is placed so that it faces the part where the molten alloy solidifies and becomes a high temperature foil, and is manufactured by the particle manufacturing device. An apparatus for producing a foil, characterized in that it has a configuration in which the obtained fine particles can be added to the surface of the foil through the fine particle introducing pipe.
JP2002025895A 2002-02-01 2002-02-01 Foil manufacturing method and apparatus Expired - Fee Related JP3972667B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002025895A JP3972667B2 (en) 2002-02-01 2002-02-01 Foil manufacturing method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002025895A JP3972667B2 (en) 2002-02-01 2002-02-01 Foil manufacturing method and apparatus

Publications (2)

Publication Number Publication Date
JP2003225743A true JP2003225743A (en) 2003-08-12
JP3972667B2 JP3972667B2 (en) 2007-09-05

Family

ID=27747908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002025895A Expired - Fee Related JP3972667B2 (en) 2002-02-01 2002-02-01 Foil manufacturing method and apparatus

Country Status (1)

Country Link
JP (1) JP3972667B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007066820A1 (en) * 2005-12-07 2007-06-14 Toyota Jidosha Kabushiki Kaisha Thermoelectric conversion material and process for producing the same
JP2008543110A (en) * 2005-06-06 2008-11-27 ミシガン ステイト ユニバーシティー Thermoelectric composition and method
US7932460B2 (en) 2001-10-24 2011-04-26 Zt Plus Thermoelectric heterostructure assemblies element
US7952015B2 (en) 2006-03-30 2011-05-31 Board Of Trustees Of Michigan State University Pb-Te-compounds doped with tin-antimony-tellurides for thermoelectric generators or peltier arrangements
US8277677B2 (en) 2008-06-23 2012-10-02 Northwestern University Mechanical strength and thermoelectric performance in metal chalcogenide MQ (M=Ge,Sn,Pb and Q=S, Se, Te) based compositions
US8394284B2 (en) 2007-06-06 2013-03-12 Toyota Jidosha Kabushiki Kaisha Thermoelectric converter and method of manufacturing same
US8617918B2 (en) 2007-06-05 2013-12-31 Toyota Jidosha Kabushiki Kaisha Thermoelectric converter and method thereof
US8778214B2 (en) 2009-09-25 2014-07-15 Northwestern University Thermoelectrics compositions comprising nanoscale inclusions in a chalcogenide matrix
US8795545B2 (en) 2011-04-01 2014-08-05 Zt Plus Thermoelectric materials having porosity
US8828277B2 (en) 2009-06-18 2014-09-09 Toyota Jidosha Kabushiki Kaisha Nanocomposite thermoelectric conversion material and method of producing the same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7932460B2 (en) 2001-10-24 2011-04-26 Zt Plus Thermoelectric heterostructure assemblies element
JP4917091B2 (en) * 2005-06-06 2012-04-18 ミシガン ステイト ユニバーシティー Thermoelectric composition and method
JP2010212699A (en) * 2005-06-06 2010-09-24 Michigan State Univ Thermoelectric composition and method
US7847179B2 (en) 2005-06-06 2010-12-07 Board Of Trustees Of Michigan State University Thermoelectric compositions and process
JP2008543110A (en) * 2005-06-06 2008-11-27 ミシガン ステイト ユニバーシティー Thermoelectric composition and method
WO2007066820A1 (en) * 2005-12-07 2007-06-14 Toyota Jidosha Kabushiki Kaisha Thermoelectric conversion material and process for producing the same
JP5173433B2 (en) * 2005-12-07 2013-04-03 トヨタ自動車株式会社 Thermoelectric conversion material and manufacturing method thereof
US7952015B2 (en) 2006-03-30 2011-05-31 Board Of Trustees Of Michigan State University Pb-Te-compounds doped with tin-antimony-tellurides for thermoelectric generators or peltier arrangements
US8617918B2 (en) 2007-06-05 2013-12-31 Toyota Jidosha Kabushiki Kaisha Thermoelectric converter and method thereof
US8394284B2 (en) 2007-06-06 2013-03-12 Toyota Jidosha Kabushiki Kaisha Thermoelectric converter and method of manufacturing same
US8277677B2 (en) 2008-06-23 2012-10-02 Northwestern University Mechanical strength and thermoelectric performance in metal chalcogenide MQ (M=Ge,Sn,Pb and Q=S, Se, Te) based compositions
US8828277B2 (en) 2009-06-18 2014-09-09 Toyota Jidosha Kabushiki Kaisha Nanocomposite thermoelectric conversion material and method of producing the same
US8778214B2 (en) 2009-09-25 2014-07-15 Northwestern University Thermoelectrics compositions comprising nanoscale inclusions in a chalcogenide matrix
US8795545B2 (en) 2011-04-01 2014-08-05 Zt Plus Thermoelectric materials having porosity

Also Published As

Publication number Publication date
JP3972667B2 (en) 2007-09-05

Similar Documents

Publication Publication Date Title
KR100642328B1 (en) raw material alloy for nanocomposite magnet, raw material alloy powder for the nanocomposite magnet, method for preparing the raw material alloy, method for preparing the nanocomposite magnet powder, and method for producing the nanocomposite magnet
US8409348B2 (en) Production method of zinc oxide single crystal
JP3972667B2 (en) Foil manufacturing method and apparatus
CN1610587A (en) Apparatus and method for casting amorphous metal alloys in an adjustable low density atmosphere
JP4224453B2 (en) Rare earth metal-containing alloy production system
KR890003437B1 (en) Procesas for the preparation of a modified amorphous glass material
US4363769A (en) Method for manufacturing thin and flexible ribbon wafer of _semiconductor material and ribbon wafer
JP3604308B2 (en) Raw material alloy for nanocomposite magnet, powder and manufacturing method thereof, and nanocomposite magnet powder and magnet manufacturing method
US20220077375A1 (en) Thermoelectric material manufacturing method
JP4553521B2 (en) Powder thermoelectric material manufacturing apparatus and powder thermoelectric material manufacturing method using the same
EP2241534A2 (en) Method for manufacturing bismuth single crystal nonowires
JPS63119589A (en) Manufacture of thermoelectric material
KR20190119744A (en) Manufacturing method of thermoelectric powder containing low-oxygen and sintered body
JP4051234B2 (en) Method for producing granular silicon
JP2000036627A (en) Thermoelectric material and thermoelectric transfer element
JP3647420B2 (en) Method for producing quenched alloy
JP3233446B2 (en) Magnetostrictive material manufacturing apparatus and magnetostrictive material manufacturing method
JP4374633B2 (en) Method for producing raw material alloy for nanocomposite magnet, and method for producing nanocomposite magnet powder and magnet
JPS5911164B2 (en) Superconductor ribbon manufacturing method and device
JP3134370B2 (en) Method for producing granular silicon polycrystal
Takigawa et al. Fabrication of Thermoelectric Ribbon-Shaped Fe 3 Al Alloys with Large Anomalous Nernst Effect
JP2008207984A (en) Method and apparatus for manufacturing crystalline silicon grain
JP2000178613A (en) Powder producing device
JP2001089292A (en) Method of producing high quality crystal material by collision solidification of freely falling liquid drop
JP2005303326A (en) MnSi1.7 SYSTEM THERMOELECTRIC MATERIAL

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060710

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070305

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070604

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130622

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140622

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees