JP2003225526A - Weight reduction operation method for pressure swing adsorption apparatus - Google Patents

Weight reduction operation method for pressure swing adsorption apparatus

Info

Publication number
JP2003225526A
JP2003225526A JP2002027662A JP2002027662A JP2003225526A JP 2003225526 A JP2003225526 A JP 2003225526A JP 2002027662 A JP2002027662 A JP 2002027662A JP 2002027662 A JP2002027662 A JP 2002027662A JP 2003225526 A JP2003225526 A JP 2003225526A
Authority
JP
Japan
Prior art keywords
adsorption
time
regeneration
gas
adsorption tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002027662A
Other languages
Japanese (ja)
Inventor
Ryuzo Ono
隆造 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Toyo Sanso Co Ltd
Original Assignee
Taiyo Toyo Sanso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Toyo Sanso Co Ltd filed Critical Taiyo Toyo Sanso Co Ltd
Priority to JP2002027662A priority Critical patent/JP2003225526A/en
Publication of JP2003225526A publication Critical patent/JP2003225526A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a weight reduction operation method for a pressure swing adsorption apparatus capable of reducing the consumption amount of raw material air to the utmost, capable of ensuring a production yield equal to or more than that at the time of usual operation, and capable of achieving the effective conservation of energy. <P>SOLUTION: At the time of weight reduction operation, the transfer from an adsorption process of each adsorption column to a regeneration process thereof is performed through a standby process wherein raw material air and regeneration gas are not supplied without altering an adsorption process time (t), and a cycle time T<SB>1</SB>is extended by the time (w) required in the standby process as compared with a cycle time T<SB>0</SB>at the time of usual operation. The standby process time (w) is set so that the increment of the cycle time T<SB>1</SB>at the time of weight reduction operation to the cycle time T<SB>0</SB>at the time of usual operation is inversely proportional to the decrement of the production quantity of product gas to that at the time of usual operation. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、圧力変動吸着装置
の減量運転方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for reducing a pressure fluctuation adsorption device.

【0002】[0002]

【従来の技術】圧力変動吸着装置(以下「PSA装置」
という)は、空気中の特定成分を優先的に吸着する吸着
剤を充填した一対の吸着塔を、吸着塔に導入された原料
空気を吸着処理して製品ガスを製造する吸着工程と吸着
工程終了後の吸着塔に再生ガスを供給して吸着剤を再生
処理する再生工程とに所定のサイクルタイムで切り替え
るようにして、吸着工程にある吸着塔からガス使用部に
製品ガスを供給させるように構成されている。
2. Description of the Related Art Pressure fluctuation adsorption device (hereinafter "PSA device")
Means that a pair of adsorption towers filled with an adsorbent that preferentially adsorbs a specific component in the air absorbs the raw material air introduced into the adsorption tower to produce product gas. The product gas is supplied from the adsorption tower in the adsorption process to the gas use part by switching to the regeneration process of supplying the regeneration gas to the subsequent adsorption tower to regenerate the adsorbent at a predetermined cycle time. Has been done.

【0003】而して、PSA装置にあっては、ガス使用
部における負荷変動に応じて減量運転させる必要があ
り、例えば、夜間等においてガス使用量が減少した場
合、これに応じて吸着塔からガス使用部への製品ガス供
給量を減少させる必要がある。
Therefore, in the PSA apparatus, it is necessary to carry out a reduction operation in accordance with the load fluctuation in the gas use section. For example, when the gas use quantity is reduced at night, the adsorption tower will be operated accordingly. It is necessary to reduce the amount of product gas supplied to the gas use section.

【0004】[0004]

【発明が解決しようとする課題】ところで、吸着塔に充
填される吸着剤としては、例えば、製品ガスが窒素であ
る場合には酸素成分を優先的に吸着する分子篩活性炭が
使用されるが、かかる分子篩活性炭は、図6に示す如
く、酸素成分と窒素成分との吸着速度が異なり、吸着開
始から一定時間t0経過すると酸素成分の吸着量が飽和
し、爾後、窒素成分の吸着量が増加するといった吸着特
性を有する。
By the way, as the adsorbent packed in the adsorption tower, for example, when the product gas is nitrogen, molecular sieve activated carbon which preferentially adsorbs an oxygen component is used. As shown in FIG. 6, the molecular sieve activated carbon has different adsorption rates of an oxygen component and a nitrogen component, and the adsorption amount of the oxygen component is saturated after a lapse of a certain time t0 from the start of the adsorption, and then the adsorption amount of the nitrogen component increases. Has adsorption properties.

【0005】したがって、分子篩活性炭による吸着処理
(窒素ガスの製造)を効率良く行うためには、このよう
な分子篩活性炭の吸着特性に基いて吸着工程を行う時間
(吸着工程タイム)を決定することが必要である。すな
わち、吸着塔の切替タイム(吸着工程と再生工程とに切
り替えるサイクルタイム)は、分子篩活性炭の吸着特性
によって一義的に決定され、PSA装置の規模等に拘わ
らず略一定となる。
Therefore, in order to efficiently perform the adsorption treatment (production of nitrogen gas) using the molecular sieve activated carbon, it is necessary to determine the adsorption process time (adsorption step time) based on the adsorption characteristics of the molecular sieve activated carbon. is necessary. That is, the switching time of the adsorption tower (the cycle time for switching between the adsorption step and the regeneration step) is uniquely determined by the adsorption characteristics of the molecular sieve activated carbon, and is substantially constant regardless of the scale of the PSA device.

【0006】しかし、このように吸着塔の切替タイムを
変更できないため、減量運転時においては、製品ガスの
製造量の減少割合に比して原料空気の消費量の減少割合
が小さくなる。例えば、分子篩活性炭を使用して純度9
9%の窒素ガスを製造する場合、通常運転(定格運転)
では、原料空気:窒素ガス=1:0.3〜0.4の比率
で窒素ガスを製造できるが、50%原料運転では、原料
空気:窒素ガス=0.8:0.2の比率で窒素ガスが製
造されることになり、窒素ガスの製造量が通常運転時の
50%に低下しているにも拘わらず、原料空気量は通常
運転時の80%が必要となり、消費原料空気は僅かに2
0%低減されるにすぎない。すなわち、通常運転時にお
いては原料空気の消費量に対する製品ガスの製造量の割
合(以下「製造収率」という)は0.3〜0.4である
が、50%減量運転時には製造収率が0.25となるに
止まる。このように、減量運転では、通常運転時より製
造収率が低くなり、製品ガスの製造量に対する原料空気
の消費量が多くなるため、吸着塔に供給される原料空気
を圧縮するために必要なエネルギが増大し、PSA装置
のランニングコストが高くなる等の問題が生じる。
However, since the switching time of the adsorption tower cannot be changed in this manner, the rate of decrease in the consumption of raw material air is smaller than the rate of decrease in the amount of product gas produced during the reduction operation. For example, using a molecular sieve activated carbon, a purity of 9
Normal operation (rated operation) when producing 9% nitrogen gas
Then, nitrogen gas can be produced at a ratio of raw material air: nitrogen gas = 1: 0.3 to 0.4, but in a 50% raw material operation, nitrogen is produced at a ratio of raw material air: nitrogen gas = 0.8: 0.2. Gas is produced, and although the production amount of nitrogen gas is reduced to 50% of that during normal operation, the amount of raw material air needs to be 80% of that during normal operation, and the consumption of raw material air is small. To 2
It is only reduced by 0%. That is, the ratio of the production amount of the product gas to the consumption amount of the raw material air in the normal operation (hereinafter referred to as “production yield”) is 0.3 to 0.4, but the production yield is 50% in the reduction operation. It stops at 0.25. As described above, in the reduction operation, the production yield is lower than that in the normal operation, and the consumption of the raw material air with respect to the production amount of the product gas is large, so that it is necessary to compress the raw material air supplied to the adsorption tower. There is a problem that the energy increases and the running cost of the PSA device increases.

【0007】本発明は、このような点に鑑みてなされた
もので、原料空気の消費量を可及的に低減し得て通常運
転時と同等又はそれ以上の製造収率を確保することがで
き、効果的な省エネルギ化を図りうるPSA装置の減量
運転方法を提供することを目的とするものである。
The present invention has been made in view of the above points, and it is possible to reduce the consumption of raw material air as much as possible and to secure a production yield equal to or higher than that during normal operation. It is an object of the present invention to provide a weight reduction operation method of a PSA device that can achieve effective energy saving.

【0008】[0008]

【課題を解決するための手段】本発明は、空気中の特定
成分を優先的に吸着する吸着剤を充填した一対の吸着塔
を、吸着塔に導入された原料空気を吸着処理して製品ガ
スを製造する吸着工程と吸着工程終了後の吸着塔に再生
ガスを供給して吸着剤を再生処理する再生工程とに所定
のサイクルタイムで切り替えることにより、吸着工程に
ある吸着塔からガス使用部に製品ガスを供給させるよう
にしたPSA装置において、上記の目的を達成すべく、
ガス使用部の負荷に応じて製品ガスの製造量を通常運転
時(定格運転時)より減少させた場合に、各吸着塔にお
ける吸着工程から再生工程への移行を原料空気及び再生
ガスが供給されない待機工程を介して行うことにより、
吸着工程タイムを変更することなく上記サイクルタイム
を延長するようにしたことを特徴とするPSA装置の減
量運転方法を提案する。なお、サイクルタイムとは、具
体的には、何れか一方の吸着塔において、吸着工程が開
始された時点から当該吸着工程終了後再生工程が開始さ
れるまでの時間(又は再生工程が開始された時点から当
該再生工程終了後吸着工程が開始されるまでの時間)を
意味する。
According to the present invention, a pair of adsorption towers filled with an adsorbent that preferentially adsorbs a specific component in the air is subjected to an adsorption treatment of raw material air introduced into the adsorption tower to produce a product gas. By switching the adsorption step in the adsorption step after the adsorption step and the regeneration step of regenerating the adsorbent by supplying a regeneration gas to the adsorption tower after the adsorption step at a predetermined cycle time, the adsorption tower in the adsorption step is changed to a gas use part. In order to achieve the above-mentioned object in a PSA device that supplies product gas,
When the production amount of the product gas is reduced from the normal operation (rated operation) according to the load of the gas use part, the feed air and the regenerated gas are not supplied during the transition from the adsorption step to the regeneration step in each adsorption tower. By performing through the standby process,
A method for reducing the weight of a PSA apparatus is proposed, which is characterized in that the cycle time is extended without changing the adsorption process time. The cycle time is specifically the time from the time when the adsorption process is started to the time when the regeneration process is started after the end of the adsorption process in one of the adsorption towers (or the regeneration process is started). Time from the end of the regeneration step to the start of the adsorption step).

【0009】かかる減量運転方法にあっては、前記サイ
クルタイムの通常運転時に対する増加率が製品ガス製造
量の通常運転時に対する減少率に反比例するように、待
機工程タイムを設定することが好ましい。すなわち、待
機工程タイムは、製品ガスの製造量が通常運転時の(1
/X)倍となった場合に前記サイクルタイムが通常運転
時のX倍又は略X倍となるように、設定される(Xは1
以上の任意の数値である)。また、一方の吸着塔が吸着
工程の開始から待機工程の終了に至る間においては、他
方の吸着塔が通常運転時と同一の再生ガス供給による再
生工程を行なった後、再生ガス供給を停止した状態で当
該吸着塔を大気に開放する減圧再生工程を行なうように
することが好ましい。また、本発明の減量運転方法は、
PSA装置が吸着剤として分子篩活性炭を使用した窒素
ガス製造装置である場合に、特に好適する。
In such a reduction operation method, it is preferable to set the standby process time so that the increase rate of the cycle time in the normal operation is inversely proportional to the decrease rate of the product gas production amount in the normal operation. That is, the standby process time is (1) when the production amount of product gas is normal operation.
/ X) times, the cycle time is set to be X times or approximately X times that in normal operation (X is 1
Any number above). Further, while one of the adsorption towers is from the start of the adsorption step to the end of the standby step, the other adsorption tower performs the regeneration step by the same regeneration gas supply as in the normal operation, and then the regeneration gas supply is stopped. In this state, it is preferable to perform a decompression regeneration step of opening the adsorption tower to the atmosphere. Further, the weight reduction operation method of the present invention is
It is particularly suitable when the PSA apparatus is a nitrogen gas production apparatus using molecular sieve activated carbon as an adsorbent.

【0010】[0010]

【発明の実施の形態】以下、本発明の実施の形態を図1
〜図5に基づいて具体的に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to FIG.
~ It demonstrates concretely based on FIG.

【0011】図1〜図4に示すPSA装置は窒素ガス製
造装置であり、一対の吸着塔1a,1bと、原料空気A
を吸着塔1a,1bに供給する原料空気供給手段2と、
吸着塔1a,1bで得られた製品ガス(窒素)Bをガス
使用部3に供給する製品ガス供給手段4と、再生ガス
(窒素)Cを吸着塔1a,1bに供給する再生ガス供給
手段5と、再生ガスCを吸着塔1a,1bから大気中に
放出するための再生ガスパージ手段6と、吸着塔1a,
1bの圧力を均等に調整する均圧手段(均圧路7,8及
び均圧弁71,81)とを具備するものである。
The PSA apparatus shown in FIGS. 1 to 4 is a nitrogen gas production apparatus, and comprises a pair of adsorption towers 1a and 1b and a raw material air A.
A raw material air supply means 2 for supplying the adsorption air to the adsorption towers 1a and 1b,
Product gas supply means 4 for supplying the product gas (nitrogen) B obtained in the adsorption towers 1a, 1b to the gas use part 3 and regeneration gas supply means 5 for supplying the regeneration gas (nitrogen) C to the adsorption towers 1a, 1b. A regeneration gas purge means 6 for releasing the regeneration gas C from the adsorption towers 1a, 1b into the atmosphere, and the adsorption towers 1a, 1b.
It is provided with a pressure equalizing means (pressure equalizing passages 7, 8 and pressure equalizing valves 71, 81) for uniformly adjusting the pressure of 1b.

【0012】各吸着塔1a,1bは、空気中の酸素成分
を優先して吸着する吸着剤である分子篩活性炭9を充填
したものであり、その下部から導入された原料空気Aを
吸着処理して、その上部から製品ガスたる窒素ガスBを
導出させるようになっている。
Each of the adsorption towers 1a, 1b is filled with a molecular sieve activated carbon 9 which is an adsorbent which preferentially adsorbs oxygen components in the air, and the raw material air A introduced from the lower part thereof is adsorbed and treated. The nitrogen gas B, which is a product gas, is led out from the upper portion.

【0013】原料空気供給手段2は、空気圧縮機20
と、空気圧縮機20から導かれた原料空気供給管路21
と、原料空気供給管路21の下流端から分岐されて、一
方の吸着塔(以下「第1吸着塔」という)1aの下部に
接続された第1管路22及び他方の吸着塔(以下「第2
吸着塔」という)1bの下部に接続された第2管路23
と、第1及び第2開閉弁26,27とを具備してなる。
空気圧縮機20としては、エアドライヤー内蔵型のもの
(圧力:0.69MPa)が使用されている。原料空気
供給管路21にはミストセパレータ24及び流量計25
が配設されている。第1及び第2管路22,23には第
1及び第2開閉弁26,27が設けられている。而し
て、原料空気供給手段2によれば、第1又は第2開閉弁
26,27を開操作することにより、空気圧縮機20に
より圧縮,除湿され且つミストセパレータ24により清
浄化(ダスト及び油分の除去)された原料空気Aが第1
又は第2吸着塔1a,1bに供給されるようになってい
る。
The raw air supply means 2 is an air compressor 20.
And the raw material air supply line 21 led from the air compressor 20
And a first conduit 22 branched from the downstream end of the raw material air supply conduit 21 and connected to the lower part of one adsorption tower (hereinafter referred to as “first adsorption tower”) 1a and the other adsorption tower (hereinafter referred to as “ Second
2nd pipe line 23 connected to the lower part of 1b)
And the first and second on-off valves 26 and 27.
An air dryer built-in type (pressure: 0.69 MPa) is used as the air compressor 20. A mist separator 24 and a flow meter 25 are provided in the raw material air supply pipeline 21.
Is provided. First and second opening / closing valves 26, 27 are provided in the first and second pipelines 22, 23. Thus, according to the raw material air supply means 2, the first or second on-off valves 26 and 27 are opened to be compressed and dehumidified by the air compressor 20 and cleaned by the mist separator 24 (dust and oil content). The removed material air A is the first
Alternatively, it is supplied to the second adsorption towers 1a and 1b.

【0014】製品ガス供給手段4は、下流端がバッファ
タンク40、流量計41及び流量制御弁(自動弁)42
を経てガス使用部3に導かれた製品ガス供給管路43
と、製品ガス供給管路43の上流端から分岐されて、第
1吸着塔1aの上部に接続された第3管路44及び第2
吸着塔1bの上部に接続された第4管路45と、第3及
び第4管路44,45に設けられて、吸着塔1a,1b
方向への逆流を阻止する第1及び第2逆止弁46,47
とを具備してなる。而して、製品ガス供給手段4によれ
ば、第1又は第2吸着塔1a,1bから排出された製品
ガスAが、第3又は第4管路44,45を経て製品ガス
供給管路43からバッファタンク40に供給されるよう
になっている。
The product gas supply means 4 has a buffer tank 40, a flow meter 41 and a flow rate control valve (automatic valve) 42 at its downstream end.
Product gas supply line 43 led to the gas use part 3 via
And a third conduit 44 and a second conduit 44 branched from the upstream end of the product gas supply conduit 43 and connected to the upper part of the first adsorption tower 1a.
The fourth conduit 45 connected to the upper part of the adsorption tower 1b, and the third and fourth conduits 44, 45 are provided to provide the adsorption towers 1a, 1b.
First and second check valves 46, 47 for preventing backward flow in the direction
And. Thus, according to the product gas supply means 4, the product gas A discharged from the first or second adsorption tower 1a, 1b passes through the third or fourth conduits 44, 45 and the product gas supply conduit 43. Is supplied to the buffer tank 40.

【0015】再生ガス供給手段5は、上流端を製品ガス
供給管路43におけるバッファタンク40の上流側部位
に接続した再生ガス供給管路51と、再生ガス供給管路
51の下流端から分岐されて、第1吸着塔1aの上部に
接続された第5管路52及び第2吸着塔1bの上部に接
続された第6管路53と、第3及び第4逆止弁54,5
5と、第3開閉弁58とを具備してなる。第5及び第6
管路52,53の下流側部分(吸着塔1a,1bに接続
されている部分)は、製品ガス供給手段4の第3及び第
4管路44,45の上流側部分(第1及び第2逆止弁4
6,47より吸着塔1a,1b側の部分)によって兼用
構成されている。第5及び第6管路52,53の上流側
部分(再生ガス供給管路43に接続されている部分であ
って、第3及び第4管路44,45によって兼用構成さ
れていない部分)には、再生ガス供給管路43方向への
逆流を阻止する第3及び第4逆止弁54,55が設けら
れている。再生ガス供給管路51には、流量計56、流
量制御弁(ニードル弁)57及び第3開閉弁58が設け
られている。而して、再生ガス供給手段5によれば、第
3開閉弁58を開操作することにより、製品ガス供給管
路43からバッファタンク40に供給される製品ガスB
の一部(窒素ガス)が、再生ガスCとして、再生ガス供
給管路51から第5又は第6管路52,53を経て第1
又は第2吸着塔1a,1bに供給されるようになってい
る。
The regeneration gas supply means 5 is branched from a regeneration gas supply pipeline 51 whose upstream end is connected to an upstream side portion of the buffer tank 40 in the product gas supply pipeline 43 and a downstream end of the regeneration gas supply pipeline 51. A fifth conduit 52 connected to the upper part of the first adsorption tower 1a, a sixth conduit 53 connected to the upper part of the second adsorption tower 1b, and third and fourth check valves 54, 5
5 and a third opening / closing valve 58. 5th and 6th
The downstream side portions of the pipe lines 52, 53 (portions connected to the adsorption towers 1a, 1b) are upstream side portions (first and second pipe lines) of the third and fourth pipe lines 44, 45 of the product gas supply means 4. Check valve 4
6, 47, and the adsorption towers 1a, 1b side portions). In the upstream side portion of the fifth and sixth pipelines 52, 53 (the portion that is connected to the regeneration gas supply pipeline 43 and is not configured to be shared by the third and fourth pipelines 44, 45) Is provided with third and fourth check valves 54 and 55 that prevent a reverse flow in the direction of the regeneration gas supply line 43. A flow meter 56, a flow rate control valve (needle valve) 57, and a third opening / closing valve 58 are provided in the regeneration gas supply pipeline 51. Thus, according to the regeneration gas supply means 5, the product gas B supplied from the product gas supply pipeline 43 to the buffer tank 40 by opening the third opening / closing valve 58.
Part (nitrogen gas) of the regenerated gas C from the regenerated gas supply pipe line 51 via the fifth or sixth pipe lines 52, 53
Alternatively, it is supplied to the second adsorption towers 1a and 1b.

【0016】再生ガスパージ手段6は、第1吸着塔1a
の下部に接続された第7管路61と、第2吸着塔1bの
下部に接続された第8管路62と、第7及び第8管路6
1,62の下流端に合流接続された大気開放の放出管路
63と、第4及び第5開閉弁64,65とを具備してな
る。第7及び第8管路61,62の上流側部分(吸着塔
1a,1bに接続されている部分)は、原料空気供給手
段2の第1及び第2管路22,23の下流側部分(第1
及び第2開閉弁26,27より吸着塔1a,1b側の部
分)によって兼用構成されている。第7及び第8管路6
1,62の下流側部分(放出管路63に接続されている
部分であって、第1及び第2管路22,23によって兼
用構成されていない部分)には、第4及び第5開閉弁6
4,65が設けられている。而して、再生ガスパージ手
段6によれば、第4又は第5開閉弁64,65を開操作
することにより、第1又は第2吸着塔1a,1bに供給
された再生ガスCが第7又は第8管路61,62を経て
放出管路63から大気中に放出されるようになってい
る。
The regeneration gas purging means 6 is the first adsorption tower 1a.
Pipe line 61 connected to the lower part of the second adsorption tower 1b, eighth pipe line 62 connected to the lower part of the second adsorption tower 1b, and seventh and eighth pipe lines 6
It is provided with a discharge pipe line 63 that is connected to the downstream ends of 1, 62 and is open to the atmosphere, and fourth and fifth opening / closing valves 64, 65. The upstream side portions of the seventh and eighth pipelines 61 and 62 (portions connected to the adsorption towers 1a and 1b) are downstream portions of the first and second pipelines 22 and 23 of the raw material air supply means 2 ( First
And the portions on the adsorption towers 1a, 1b side of the second opening / closing valves 26, 27). 7th and 8th pipeline 6
The fourth and fifth on-off valves are provided in the downstream side portions of 1, 62 (portions that are connected to the discharge pipeline 63 and are not commonly configured by the first and second pipelines 22, 23). 6
4, 65 are provided. Thus, according to the regeneration gas purging means 6, the regeneration gas C supplied to the first or second adsorption towers 1a, 1b is changed to the seventh or the seventh by opening the fourth or fifth opening / closing valves 64, 65. It is adapted to be discharged into the atmosphere from the discharge conduit 63 via the eighth conduits 61 and 62.

【0017】均圧手段は、両吸着塔1a,1bの上部間
及び下部間を接続する第1及び第2均圧路7,8と、こ
れらに設けられた均圧弁たる第6及び第7開閉弁71,
81とを具備してなる。第1及び第2均圧路7,8の吸
着塔側部分は、前記第3及び第4管路44,45(又は
第5及び第6管路52,53)の吸着塔側部分及び前記
第1及び第2管路22,23(又は第7及び第8管路6
1,62)の吸着塔側部分で兼用構成されている。而し
て、均圧手段によれば、第6及び第7開閉弁71,81
を開操作することにより、両吸着塔1a,1bを連通し
て均等圧となしうるようになっている。
The pressure equalizing means is composed of first and second pressure equalizing passages 7 and 8 connecting the upper and lower portions of both adsorption towers 1a and 1b, and sixth and seventh opening and closing as pressure equalizing valves provided therein. Valve 71,
And 81. The adsorption tower side portions of the first and second pressure equalizing passages 7 and 8 are the adsorption tower side portions of the third and fourth pipelines 44 and 45 (or the fifth and sixth pipelines 52 and 53) and the adsorption tower side portions. 1st and 2nd pipeline 22,23 (or 7th and 8th pipeline 6
1, 62) is also configured to be used on the side of the adsorption tower. Thus, according to the pressure equalizing means, the sixth and seventh on-off valves 71, 81
By opening the column, both adsorption towers 1a and 1b can be communicated with each other so that a uniform pressure can be achieved.

【0018】而して、通常運転時にあっては、図5
(A)に示す如く、各吸着塔1a,1bが一定のサイク
ルタイムT0で切り替えられて、吸着工程、均圧工程及
び再生工程が順次連続して行なわれる。
Therefore, during normal operation, as shown in FIG.
As shown in (A), the adsorption towers 1a and 1b are switched at a constant cycle time T 0 , and the adsorption step, the pressure equalization step, and the regeneration step are successively performed.

【0019】まず、一方の吸着塔、例えば第1吸着塔1
aが吸着工程を開始すると共に他方の吸着塔である第2
吸着塔1bが再生工程を開始し、かかる工程が一定時間
(吸着工程タイムt)継続される。すなわち、図1に示
す如く、第1、第3及び第5開閉弁26,58,65が
開とされ、他の開閉弁27,64,71,81が閉とさ
れて、原料空気Aが原料空気供給管路21及び第1管路
22から第1吸着塔1aに供給される。第1吸着塔1a
に供給された原料空気Aは、当該吸着塔1aに充填され
た吸着剤(分子篩活性炭)9により酸素成分を吸着除去
されて、製品ガス(窒素)Bとして当該吸着塔1aの上
部から導出され、第3管路44及び製品ガス供給管路4
3からバッファタンク40に供給される。かかる吸着工
程が行なわれる時間(吸着工程タイム)tは、冒頭で述
べた吸着剤9の吸着特性が最大限有効に発揮されること
を条件として設定される。一方、第2吸着塔1bには、
第1吸着塔1bで製造された窒素ガスBの一部が、再生
ガスCとして再生ガス供給管路51及び第6管路53か
ら供給されると共に、第2吸着塔1bは第5管路62及
び放出管路63を介して大気に開放されて、第2吸着塔
1bに充填された吸着剤9の再生が行なわれる。なお、
図1〜図4においては、便宜上、閉状態にある開閉弁を
黒塗して、開状態にある開閉弁と区別している。
First, one adsorption tower, for example, the first adsorption tower 1
a starts the adsorption process and is the other adsorption tower
The adsorption tower 1b starts the regeneration process, and this process is continued for a fixed time (adsorption process time t). That is, as shown in FIG. 1, the first, third and fifth on-off valves 26, 58 and 65 are opened, and the other on-off valves 27, 64, 71 and 81 are closed, and the raw material air A is fed into the raw material air A. It is supplied to the first adsorption tower 1a from the air supply pipeline 21 and the first pipeline 22. First adsorption tower 1a
The raw material air A supplied to the adsorbent 1a has its oxygen component adsorbed and removed by the adsorbent (molecular sieve activated carbon) 9 packed in the adsorption tower 1a, and is discharged from the upper portion of the adsorption tower 1a as a product gas (nitrogen) B. Third pipeline 44 and product gas supply pipeline 4
3 is supplied to the buffer tank 40. The time (adsorption step time) t during which the adsorption step is performed is set on condition that the adsorption characteristics of the adsorbent 9 described at the beginning are exhibited to the maximum extent. On the other hand, in the second adsorption tower 1b,
A part of the nitrogen gas B produced in the first adsorption tower 1b is supplied as the regeneration gas C from the regeneration gas supply pipeline 51 and the sixth pipeline 53, and the second adsorption tower 1b is supplied to the fifth pipeline 62. Also, the adsorbent 9 which is opened to the atmosphere through the discharge pipe line 63 and is filled in the second adsorption tower 1b is regenerated. In addition,
1 to 4, for convenience, the on-off valve in the closed state is painted black to distinguish it from the on-off valve in the open state.

【0020】そして、第1吸着塔1aによる吸着工程が
終了すると、図3に示す如く、開状態にある開閉弁2
6,58,65を閉状態に切り替えて、第1吸着塔1a
への原料空気Aの供給及び第2吸着塔1bへの再生ガス
Cの供給を停止すると共に、第6及び第7開閉弁71,
81を開操作して、両吸着塔1a,1bを均圧工程に移
行させる。すなわち、高圧状態にある第1吸着塔1aと
低圧状態にある第2吸着塔1bとを均圧路7,8を介し
て連通させて、両吸着塔1a,1bの圧力を均等化させ
る。このとき、第1吸着塔1aの上部に残留する濃縮窒
素は第1均圧路7から第2吸着塔1bに流入して、第2
吸着塔1bの吸着工程への移行を円滑ならしめる。
When the adsorption process by the first adsorption tower 1a is completed, the on-off valve 2 in the open state as shown in FIG.
6, 58, 65 are switched to the closed state, and the first adsorption tower 1a
The supply of the raw material air A to the second adsorption tower 1b and the supply of the regeneration gas C to the second adsorption tower 1b are stopped, and the sixth and seventh on-off valves 71,
By opening 81, both adsorption towers 1a and 1b are transferred to the pressure equalizing step. That is, the first adsorption tower 1a in the high pressure state and the second adsorption tower 1b in the low pressure state are communicated with each other through the pressure equalizing paths 7 and 8 to equalize the pressures of the adsorption towers 1a and 1b. At this time, the concentrated nitrogen remaining in the upper portion of the first adsorption tower 1a flows into the second adsorption tower 1b from the first pressure equalizing passage 7,
Smooth the transition of the adsorption tower 1b to the adsorption step.

【0021】そして、均圧工程が終了すると、図4に示
す如く、均圧路71,81が遮断されると共に第2〜第
4開閉弁27,58,65が開とされて、第1吸着塔1
aが再生工程に且つ第2吸着塔1bが吸着工程に切り替
えられて、上記と同様の吸着工程及び再生工程が行なわ
れる。爾後、かかる吸着塔1a,1bの切り替えが一定
のサイクルタイムT0で繰り返し行なわれて、製品ガス
Bの製造が連続して行なわれる。
When the pressure equalizing step is completed, the pressure equalizing passages 71 and 81 are shut off and the second to fourth on-off valves 27, 58 and 65 are opened, as shown in FIG. Tower 1
A is switched to the regeneration step and the second adsorption tower 1b is switched to the adsorption step, and the adsorption step and the regeneration step similar to the above are performed. After that, the switching of the adsorption towers 1a and 1b is repeatedly performed at a constant cycle time T 0 , and the product gas B is continuously produced.

【0022】而して、ガス使用部3におけるガス使用量
が通常運転時より減少すると、PSA装置は、本発明に
従って次のように減量運転される。
When the amount of gas used in the gas use unit 3 is smaller than that during normal operation, the PSA device is reduced in amount according to the present invention as follows.

【0023】減量運転にあっては、図5(B)に示す如
く、吸着工程から均圧工程及び再生工程への移行が待機
工程を介して行なわれ、吸着工程タイムtは通常運転時
と同一であるが、吸着塔1a,1bの切り替え時間つま
りサイクルタイムT1が通常運転時のサイクルタイムT0
より減量程度に応じて延長される。
In the reduction operation, as shown in FIG. 5 (B), the adsorption process is shifted to the pressure equalizing process and the regeneration process through the standby process, and the adsorption process time t is the same as that in the normal operation. However, the switching time of the adsorption towers 1a and 1b, that is, the cycle time T 1 is the cycle time T 0 during normal operation.
It will be extended depending on the weight loss.

【0024】すなわち、一方の吸着塔、例えば第1吸着
塔1aは、図1に示す吸着工程を通常運転時と同一時間
t行なった後において、図2に示す如く、第1開閉弁2
6が閉状態に切り替えられて、第1吸着塔1aへの原料
空気Aの供給及び当該吸着塔1aによる製品ガスBの製
造が停止された待機工程に移行する。待機工程を行なう
時間(待機工程タイム)wは、待機工程を含めたサイク
ルタイムT1の通常運転サイクルタイムT0に対する増加
率が製品ガス製造量の通常運転時に対する減少率に略反
比例するように、つまり製品ガス製造量が通常運転時の
(1/X)倍となった場合にサイクルタイムT1が通常
運転サイクルタイムT0のX倍(又は略X倍)となるよ
うに、設定される。
That is, in one adsorption tower, for example, the first adsorption tower 1a, after the adsorption step shown in FIG. 1 has been performed for the same time t as in the normal operation, the first opening / closing valve 2 as shown in FIG.
6 is switched to the closed state, and the process shifts to the standby step in which the supply of the raw material air A to the first adsorption tower 1a and the production of the product gas B by the adsorption tower 1a are stopped. The time (standby process time) w for performing the standby process is set such that the increase rate of the cycle time T 1 including the standby process with respect to the normal operation cycle time T 0 is substantially inversely proportional to the decrease rate of the product gas production amount during the normal operation. That is, the cycle time T 1 is set to be X times (or approximately X times) the normal operation cycle time T 0 when the product gas production amount is (1 / X) times the normal operation time. .

【0025】そして、このように設定された待機工程タ
イムwが経過すると、第1吸着塔1aは待機工程を終了
して、通常運転時と同様に、図3に示す均圧工程に移行
し、更に図4に示す再生工程に移行する。
When the standby process time w thus set has elapsed, the first adsorption tower 1a ends the standby process and shifts to the pressure equalizing process shown in FIG. Further, the process proceeds to the regeneration process shown in FIG.

【0026】このように、減量運転においては、減量程
度に応じて製品ガスBの製造が所定時間(待機工程タイ
ム)w停止されることから、原料空気Aの消費量に対す
る製品ガスの製造量の割合である製造収率が通常運転時
と同等若しくはそれ以上となる。換言すれば、原料空気
Aの消費量が、待機工程を設けない場合に比して、大幅
に低減されることになる。したがって、空気圧縮機20
の負荷が軽減され、省エネルギ化及びランニングコスト
の低減が図られる。
As described above, in the reduction operation, since the production of the product gas B is stopped for a predetermined time (standby step time) w according to the reduction amount, the production amount of the product gas with respect to the consumption of the raw material air A is reduced. The production yield, which is a ratio, is equal to or higher than that in normal operation. In other words, the consumption amount of the raw material air A is significantly reduced as compared with the case where the standby process is not provided. Therefore, the air compressor 20
Load is reduced, energy saving and running cost reduction are achieved.

【0027】一方、他方の吸着塔である第2吸着塔1b
においては、第1吸着塔1aが吸着工程の開始から待機
工程の終了に至る間においては、まず、図1に示す如
く、通常運転時と同様に再生ガスCの供給による再生工
程が行なわれ、その後、図2に示す如く、第3開閉弁5
8が閉状態に切り替えられて、第2吸着塔1bへの再生
ガスCの供給が停止された状態で当該吸着塔1bを大気
に開放する減圧再生工程に移行する。すなわち、減圧再
生工程においては、第2吸着塔1bの下部が第8管路6
2及び放出管路63を介して大気中に開放されるが、再
生ガスCの供給を行なわずとも、かかる大気への開放の
みによっても当該吸着塔1bの吸着剤9の再生処理が進
行する。したがって、通常の再生工程に加えて減圧再生
工程を行なうことにより、吸着剤の再生程度が通常運転
時よりも高くなり、爾後の吸着処理をより効果的に行な
うことができ、製造収率の更なる向上が図られる。特
に、吸着剤9が吸着速度及び脱着速度(再生速度)の遅
いものである場合においては、かかる減圧再生工程の付
加による効果は顕著である。なお、再生ガスCの供給に
よる再生工程は、通常、通常運転時と同一時間(吸着工
程タイムt)行なわれ、再生工程から減圧再生工程への
移行時期を吸着工程から待機工程への移行時期に一致さ
せておくが、吸着剤9の性状等の吸着条件によっては、
これらの移行時期を齟齬させておくこと(例えば、再生
工程から減圧再生工程への移行時期を吸着工程から待機
工程への移行時期より早くしておくこと)も可能であ
る。
On the other hand, the second adsorption tower 1b which is the other adsorption tower
In the process from the start of the adsorption process to the end of the standby process in the first adsorption tower 1a, first, as shown in FIG. 1, the regeneration process is performed by supplying the regeneration gas C as in the normal operation, Then, as shown in FIG.
8 is switched to the closed state, and the supply of the regeneration gas C to the second adsorption tower 1b is stopped, and the depressurization regeneration step of opening the adsorption tower 1b to the atmosphere is started. That is, in the reduced pressure regeneration step, the lower part of the second adsorption tower 1b is the eighth conduit 6
Although it is opened to the atmosphere via 2 and the release pipe line 63, the regeneration process of the adsorbent 9 in the adsorption tower 1b proceeds only by opening to the atmosphere without supplying the regeneration gas C. Therefore, by performing the reduced pressure regeneration step in addition to the normal regeneration step, the degree of regeneration of the adsorbent becomes higher than that during normal operation, and the subsequent adsorption treatment can be performed more effectively, and the production yield can be further improved. Can be improved. In particular, when the adsorbent 9 has a low adsorption rate and a low desorption rate (regeneration rate), the effect of the addition of the reduced pressure regeneration step is remarkable. The regeneration process by supplying the regeneration gas C is usually performed for the same time as during normal operation (adsorption process time t), and the transition time from the regeneration process to the decompression regeneration process is set to the transition time from the adsorption process to the standby process. Although they are matched, depending on the adsorption conditions such as the properties of the adsorbent 9,
It is also possible to deviate from these transition timings (for example, the transition timing from the regeneration step to the reduced pressure regeneration step may be earlier than the transition timing from the adsorption step to the standby step).

【0028】そして、また、第1吸着塔1aが待機工程
から均圧工程に移行すると、第2吸着塔1bも減圧再生
工程から均圧工程に移行して、爾後、吸着塔1a,1b
は上記した延長サイクルタイムT1で切り替えられて上
記各工程を行なうが、サイクルタイムT1つまり待機工
程タイムwは減量程度に応じて増減される。
When the first adsorption tower 1a shifts from the standby step to the pressure equalization step, the second adsorption tower 1b also shifts from the decompression regeneration step to the pressure equalization step, and after that, the adsorption towers 1a and 1b.
Is switched at the extended cycle time T 1 described above to perform each of the above steps, but the cycle time T 1, that is, the waiting step time w is increased or decreased in accordance with the reduction amount.

【0029】なお、本発明は上記した実施の形態に限定
されるものではなく、本発明の基本原理を逸脱しない範
囲において、適宜に改良,変更することができる。例え
ば、上記した実施の形態では、再生ガス供給管路51を
製品ガス供給管路43におけるバッファタンク40の上
流側に接続して、バッファタンク40に向かう製品ガス
Bの一部を再生ガスCとして使用するようにしたが、製
品ガスBの一部を再生ガスCとして使用する場合におけ
る再生ガス供給管路51の接続個所(再生ガスCの採取
個所)や再生ガスCの供給源の選定は、PSA装置の構
成や使用条件に応じて任意である。また、上記した実施
の形態にあっては、本発明を吸着剤9として分子篩活性
炭を使用する窒素ガス製造用のPSA装置に適用した
が、本発明は、吸着剤として窒素成分を優先的に吸着す
るゼオライト等を使用した酸素ガス製造用のPSA装置
に対しても適用することができる。
The present invention is not limited to the above-described embodiments, but can be appropriately improved and changed without departing from the basic principle of the present invention. For example, in the above-described embodiment, the regeneration gas supply pipe line 51 is connected to the product gas supply pipe line 43 upstream of the buffer tank 40, and a part of the product gas B toward the buffer tank 40 is used as the regeneration gas C. However, when a part of the product gas B is used as the regeneration gas C, the connection point of the regeneration gas supply pipe 51 (reproduction gas C sampling point) and the source of the regeneration gas C are selected. It is optional depending on the configuration and usage conditions of the PSA device. Further, in the above-described embodiment, the present invention is applied to the PSA apparatus for nitrogen gas production using the molecular sieve activated carbon as the adsorbent 9, but the present invention preferentially adsorbs the nitrogen component as the adsorbent. The present invention can also be applied to a PSA apparatus for oxygen gas production using zeolite or the like.

【0030】[0030]

【実施例】実施例として、上記したPSA装置を使用し
て、サイクルタイムを96秒として通常運転を行う共
に、サイクルタイムを146秒(待機工程タイムw:5
0秒)及び296秒(待機工程タイムw:200秒)と
した2種類の減量運転A,B(何れも、吸着工程タイム
tは通常運転と同一)を行い、夫々の場合における減量
空気消費量及び窒素製造量から製造収率を求めた。その
結果は、表1に示す通りであった。
EXAMPLE As an example, the above PSA apparatus was used to perform a normal operation with a cycle time of 96 seconds and a cycle time of 146 seconds (standby step time w: 5
0 seconds) and 296 seconds (standby step time w: 200 seconds), two types of reduction operations A and B (both the adsorption step time t is the same as the normal operation) are performed, and the reduction air consumption amount in each case And the production yield was determined from the nitrogen production amount. The results are as shown in Table 1.

【0031】また、比較例として、待機工程を設けない
点(待機工程タイム:w=0)を除いて、実施例と同一
の条件で、通常運転及び減量運転a,bを行い、夫々の
場合における減量空気消費量及び窒素製造量から製造収
率を求めた。その結果は、表2に示す通りであった。な
お、何れの場合も、吸着工程タイムt及びサイクルタイ
ムは実施例の通常運転と同一である。また、減量運転a
における窒素製造量は減量運転Aと同一であり、減量運
転bにおける窒素製造量は減量運転Bと同一である。
As a comparative example, a normal operation and a weight reduction operation a and b are performed under the same conditions as those of the embodiment except that the standby process is not provided (standby process time: w = 0). The production yield was calculated from the reduced air consumption and nitrogen production in the above. The results are shown in Table 2. In any case, the adsorption step time t and the cycle time are the same as in the normal operation of the embodiment. In addition, the weight reduction operation a
The nitrogen production amount in 1 is the same as that in the reduction operation A, and the nitrogen production amount in the reduction operation b is the same as that in the reduction operation B.

【0032】而して、実施例については、表1に示す如
く、通常運転においては製造収率が0.339であっ
た。そして、サイクルタイムを146秒に延長した減量
運転Aでは、製造収率が0.362であり、通常運転時
の製造収率を上回った。更に、サイクルタイムを296
秒に延長した減量運転Bでは、製造収率が0.411で
あり、通常運転時の製造収率を大幅に上回った。
As shown in Table 1, the production yield of the example was 0.339 in normal operation. Then, in the reduction operation A in which the cycle time was extended to 146 seconds, the production yield was 0.362, which was higher than the production yield in the normal operation. Furthermore, the cycle time is 296
In the weight reduction operation B extended to 2 seconds, the production yield was 0.411, which greatly exceeded the production yield in the normal operation.

【0033】これに対して、比較例については、表2に
示す如く、通常運転においては製造収率が当然のことな
がら実施例の通常運転時と同一(製造収率:0.33
9)であったが、減量運転aでは、製造収率が0.27
0であり、通常運転時の製造収率を下回った。更に、減
量運転bでは、製造収率が0.183であり、通常運転
時の製造収率を大幅に下回った。
On the other hand, in the comparative example, as shown in Table 2, the production yield in the normal operation is naturally the same as that in the normal operation of the example (production yield: 0.33).
9), the production yield was 0.27 in the reduction operation a.
It was 0, which was lower than the production yield in normal operation. Further, in the reduction operation b, the production yield was 0.183, which was significantly lower than the production yield in the normal operation.

【0034】これらのことから、比較例のようにサイク
ルタイムを同一とする冒頭の一般的な減量運転方法で
は、製造収率が通常運転時より下回り、減量程度が高く
なるに従って製造収率が更に低下するが、実施例のよう
に、本発明の減量運転方法によれば、製造収率が通常運
転時より低下することがなく、通常運転時と同等若しく
はそれ以上の製造収率を確保することができ、一般的な
減量運転方法とは逆に減量程度が高くなるに従って製造
収率が高くなることが理解される。
From these facts, according to the general reduction operation method at the beginning, which has the same cycle time as in the comparative example, the production yield is lower than that in the normal operation, and the production yield further increases as the reduction amount increases. However, according to the weight reduction operation method of the present invention, as in the example, the production yield does not decrease from that during normal operation, and it is possible to ensure a production yield equal to or higher than that during normal operation. It is understood that the production yield increases as the degree of weight loss increases, contrary to the general weight loss operation method.

【0035】[0035]

【表1】 [Table 1]

【0036】[0036]

【表2】 [Table 2]

【0037】[0037]

【発明の効果】以上の説明から理解されるように、本発
明の減量運転方法によれば、通常運転時と同等又はそれ
以上の製造収率(原料空気の消費量に対する製品ガスの
製造量の割合)を確保することができ、原料空気の消費
量を可及的に低減し得て、PSA装置の省エネルギ化及
びランニングコストの低減を図ることができる。
As can be understood from the above description, according to the reduction operation method of the present invention, the production yield (equal to the production amount of product gas relative to the consumption amount of raw material air) equal to or higher than that during normal operation can be obtained. Ratio) can be secured, the consumption of raw material air can be reduced as much as possible, and energy saving and running cost reduction of the PSA device can be achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1吸着塔が吸着工程にあり且つ第2吸着塔が
再生工程にある状態を示すPSA装置の系統図である。
FIG. 1 is a system diagram of a PSA apparatus showing a state in which a first adsorption tower is in an adsorption step and a second adsorption tower is in a regeneration step.

【図2】第1吸着塔が待機工程にあり且つ第2吸着塔が
再生工程にある状態を示す図1相当図である。
FIG. 2 is a view corresponding to FIG. 1 showing a state where the first adsorption tower is in a standby process and the second adsorption tower is in a regeneration process.

【図3】両吸着塔が均圧工程にある状態を示す図1相当
図である。
FIG. 3 is a view corresponding to FIG. 1 showing a state where both adsorption towers are in a pressure equalizing step.

【図4】第1吸着塔が再生工程に第2吸着塔が吸着工程
に切り替えられた状態を示す図1相当図である。
FIG. 4 is a view corresponding to FIG. 1, showing a state in which the first adsorption tower is switched to the regeneration step and the second adsorption tower is switched to the adsorption step.

【図5】工程の切り替え形態を示す工程図であり、
(A)図は通常運転を示しており、(B)図は減量運転
を示している。
FIG. 5 is a process diagram showing a mode of switching processes,
The figure (A) shows the normal operation, and the figure (B) shows the reduction operation.

【図6】分子篩活性炭の吸着特性を示す曲線図である。FIG. 6 is a curve diagram showing adsorption characteristics of molecular sieve activated carbon.

【符号の説明】[Explanation of symbols]

1a,1b…吸着塔、2…原料空気供給手段、3…ガス
使用部、4…製品ガス供給手段、5…再生ガス供給手
段、6…再生ガスパージ手段、7,8…均圧路(均圧手
段)、A…原料空気、B…製品ガス(窒素ガス)、C…
再生ガス(窒素ガス)。
1a, 1b ... Adsorption tower, 2 ... Raw material air supply means, 3 ... Gas use part, 4 ... Product gas supply means, 5 ... Regeneration gas supply means, 6 ... Regeneration gas purging means, 7, 8 ... Pressure equalizing path (equalizing pressure) Means), A ... Raw material air, B ... Product gas (nitrogen gas), C ...
Regeneration gas (nitrogen gas).

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成14年2月5日(2002.2.5)[Submission date] February 5, 2002 (2002.2.5)

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】発明の名称[Name of item to be amended] Title of invention

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【発明の名称】 圧力変動吸着装置の減量運転方法 ─────────────────────────────────────────────────────
[Title of Invention] Method for reducing pressure of pressure fluctuation adsorption device ────────────────────────────────────── ────────────────

【手続補正書】[Procedure amendment]

【提出日】平成14年2月5日(2002.2.5)[Submission date] February 5, 2002 (2002.2.5)

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0036[Correction target item name] 0036

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0036】[0036]

【表2】 [Table 2]

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 空気中の特定成分を優先的に吸着する吸
着剤を充填した一対の吸着塔を、吸着塔に導入された原
料空気を吸着処理して製品ガスを製造する吸着工程と吸
着工程終了後の吸着塔に再生ガスを供給して吸着剤を再
生処理する再生工程とに所定のサイクルタイムで切り替
えることにより、吸着工程にある吸着塔からガス使用部
に製品ガスを供給させるようにした圧力変動吸着装置に
おいて、 ガス使用部の負荷に応じて製品ガスの製造量を通常運転
時より減少させた場合に、各吸着塔における吸着工程か
ら再生工程への移行を原料空気及び再生ガスが供給され
ない待機工程を介して行うことにより、吸着工程タイム
を変更することなく上記サイクルタイムを延長するよう
にしたことを特徴とする圧力変動吸着装置の減量運転方
法。
1. An adsorption step and an adsorption step in which a pair of adsorption towers filled with an adsorbent that preferentially adsorbs a specific component in the air is adsorbed with raw air introduced into the adsorption tower to produce a product gas. The product gas is supplied from the adsorption tower in the adsorption step to the gas use part by switching to a regeneration step of supplying the regeneration gas to the adsorption tower after the completion to regenerate the adsorbent at a predetermined cycle time. In the pressure fluctuation adsorption device, when the production amount of the product gas is reduced from the normal operation according to the load of the gas use part, the feed air and the regenerated gas are supplied from each adsorption tower to the transition from the adsorption process to the regeneration process. The method for reducing the pressure fluctuation adsorption device is characterized in that the cycle time is extended without changing the adsorption process time by performing the operation through a standby process not performed.
【請求項2】 前記サイクルタイムの通常運転時に対す
る増加率が製品ガス製造量の通常運転時に対する減少率
に反比例するように、待機工程タイムを設定するように
したことを特徴とする、請求項1に記載する圧力変動吸
着装置の減量運転方法。
2. The standby process time is set so that the increase rate of the cycle time with respect to the normal operation is inversely proportional to the decrease rate of the product gas production amount with respect to the normal operation. 1. The method for reducing the pressure fluctuation adsorption device described in 1.
【請求項3】 一方の吸着塔が吸着工程の開始から待機
工程の終了に至る間においては、他方の吸着塔が通常運
転時と同一の再生ガス供給による再生工程を行なった
後、再生ガス供給を停止した状態で当該吸着塔を大気に
開放する減圧再生工程を行なうことを特徴とする、請求
項1又は請求項2に記載する圧力変動吸着装置の減量運
転方法。
3. During one of the adsorption towers from the start of the adsorption step to the end of the standby step, the other adsorption tower performs the same regeneration gas supply as in the normal operation and then the regeneration gas supply. The method for reducing the pressure fluctuation adsorption device according to claim 1 or 2, wherein a depressurization regeneration step of opening the adsorption tower to the atmosphere is performed in a state where the pressure fluctuation adsorption device is stopped.
【請求項4】 圧力変動吸着装置が、吸着剤として分子
篩活性炭を使用した窒素ガス製造装置であることを特徴
とする、請求項1、請求項2又は請求項3に記載する圧
力変動吸着装置の減量運転方法。
4. The pressure fluctuation adsorption device according to claim 1, wherein the pressure fluctuation adsorption device is a nitrogen gas production device using molecular sieve activated carbon as an adsorbent. Weight loss driving method.
JP2002027662A 2002-02-05 2002-02-05 Weight reduction operation method for pressure swing adsorption apparatus Pending JP2003225526A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002027662A JP2003225526A (en) 2002-02-05 2002-02-05 Weight reduction operation method for pressure swing adsorption apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002027662A JP2003225526A (en) 2002-02-05 2002-02-05 Weight reduction operation method for pressure swing adsorption apparatus

Publications (1)

Publication Number Publication Date
JP2003225526A true JP2003225526A (en) 2003-08-12

Family

ID=27749107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002027662A Pending JP2003225526A (en) 2002-02-05 2002-02-05 Weight reduction operation method for pressure swing adsorption apparatus

Country Status (1)

Country Link
JP (1) JP2003225526A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007209868A (en) * 2006-02-08 2007-08-23 Mitsubishi Kakoki Kaisha Ltd Stable operation method of pressure swing adsorption device
JP2009011904A (en) * 2007-07-02 2009-01-22 Sanyo Electric Industries Co Ltd Gas separator, and operation method for gas separator
CN102688655A (en) * 2012-06-01 2012-09-26 江南大学 Intelligent control method for organic waste gas reclaiming
JP2018114466A (en) * 2017-01-19 2018-07-26 東洋紡株式会社 Liquid treatment device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007209868A (en) * 2006-02-08 2007-08-23 Mitsubishi Kakoki Kaisha Ltd Stable operation method of pressure swing adsorption device
JP2009011904A (en) * 2007-07-02 2009-01-22 Sanyo Electric Industries Co Ltd Gas separator, and operation method for gas separator
CN102688655A (en) * 2012-06-01 2012-09-26 江南大学 Intelligent control method for organic waste gas reclaiming
JP2018114466A (en) * 2017-01-19 2018-07-26 東洋紡株式会社 Liquid treatment device

Similar Documents

Publication Publication Date Title
US5015272A (en) Adsorptive separation process
KR930010571B1 (en) Purifying combustible gases containing carbon monoxide
CA2189232C (en) Method of recovering oxygen-rich gas
CN104066493B (en) Nitrogen-rich gas preparation method, gas separating method and nitrogen-rich gas preparation facilities
JPH1043535A (en) Production of gas flow
WO1995003873A1 (en) Method and apparatus for separating nitrogen-rich gas
US9656202B2 (en) Method and device for separating a gas mixture by means of pressure swing adsorption
WO2013069768A1 (en) Method for producing nitrogen gas, method for separating gas and device for producing nitrogen gas
JP4799454B2 (en) Pressure swing adsorption oxygen concentrator
JP5559755B2 (en) Method for separating mixed gas and separation apparatus therefor
JP2003225526A (en) Weight reduction operation method for pressure swing adsorption apparatus
AU9701998A (en) Process for gas separation by adsorption with variable production rate
JP4895467B2 (en) Oxygen concentration method and oxygen concentration apparatus
JPH10192636A (en) Separation of gas rich in nitrogen
JP5007610B2 (en) Oxygen concentrator design method
JPS636481B2 (en)
JPH10118439A (en) Gas separating device based on psa process
JPH0994424A (en) Gaseous mixture separator
JPH0938443A (en) Gas separator
JP7388731B2 (en) Pressure swing adsorption device and gas generation method
JPH0731826A (en) Gas concentrator
JPS61230716A (en) Method for accumulating pressure in pressure swing adsorption
JP2004148258A (en) Gas separation equipment
WO2017163792A1 (en) Method for manufacturing concentrated target gas
JP2012110824A (en) Psa device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040901

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041224