JP2003222565A - Water invasion detecting method for cable - Google Patents

Water invasion detecting method for cable

Info

Publication number
JP2003222565A
JP2003222565A JP2002021576A JP2002021576A JP2003222565A JP 2003222565 A JP2003222565 A JP 2003222565A JP 2002021576 A JP2002021576 A JP 2002021576A JP 2002021576 A JP2002021576 A JP 2002021576A JP 2003222565 A JP2003222565 A JP 2003222565A
Authority
JP
Japan
Prior art keywords
cable
water
temperature
optical fiber
flooded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002021576A
Other languages
Japanese (ja)
Other versions
JP2003222565A5 (en
Inventor
Tetsuya Yasutomi
徹也 安冨
Masami Hara
雅美 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2002021576A priority Critical patent/JP2003222565A/en
Publication of JP2003222565A publication Critical patent/JP2003222565A/en
Publication of JP2003222565A5 publication Critical patent/JP2003222565A5/ja
Pending legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve problems in a conventional water invasion detecting method for a cable that a water-absorptive expanding agent or an oil-absorptive expanding agent has to be included in the cable, that the outer diameter of the cable is necessarily thickened since space has to be secured therein for including the water-absorptive expanding agent or the oil-absorptive expanding agent, and that cost is increased by the amount of the expanding agents. <P>SOLUTION: A light pulse is launched into optical fiber in a cable of every kind such as an optical cable or a power cable. Based on the ratio of stroke side intensity to anti-stroke side intensity of resultantly generated Raman scattered light, whether the cable is invaded by water or not and/or what part is invaded by water are/is detected. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、光ケーブルや電力
ケーブルといった各種ケーブルの浸水を検知する方法に
関するものである。 【0002】 【従来の技術】電力ケーブルの浸水検知方法として、特
開平7−280695号公報に開示されている方法があ
る。この方法は電力ケーブルの絶縁層外周又は各被覆層
内に収納した保護管内に、検知用光ファイバと吸油膨張
材又は吸水膨張材を内蔵し、前記検知用光ファイバの歪
み分布から絶縁油の漏れや該ケーブルへの浸水を検知す
るものである。具体的には、検知用光ファイバに光パル
スを送出して、光パルスとブリルアン散乱光の周波数の
ずれを測定する。このとき、漏洩した絶縁油や侵入した
水が吸油膨張材又は吸水膨張材に触れると、膨張した膨
張材によって検知用光ファイバが保護管内壁に押し付け
られ、該ファイバに曲がりが発生する。曲がりが発生し
た個所では検知用光ファイバの歪みが増大するので、そ
れを観測すれば漏油又は浸水を検知できる。 【0003】 【発明が解決しようとする課題】前記従来の浸水検知方
法では、保護管内に予め吸油膨張材又は吸水膨張材を配
置しておかなくてはならない。従って、保護管の外径が
大きくなり、該保護管を収納したケーブルの外径も大き
くなる。また、吸油膨張材又は吸水膨張材の分だけ製造
コストも高くなる。 【0004】 【課題を解決するための手段】本発明のケーブルの浸水
検知方法は、光ケーブルや電力ケーブルといった各種ケ
ーブル中の光ファイバに光パルスを入射させ、ラマン散
乱光のストローク側と反ストローク側の強度比に基づい
てケーブルの浸水の有無及び浸水個所の双方又は一方を
検知するものである。 【0005】 【発明の実施の形態】(実施の形態1)以下、本発明の
ケーブルの浸水検知方法の実施形態の一例を説明する。
はじめに、本発明のケーブルの浸水検知方法の原理につ
いて説明する。光ファイバに光を入射させると、強度が
温度に対して感受性の低いストローク側と、感受性が高
い反ストローク側とにラマン散乱光が発生する。従っ
て、ストローク側と反ストローク側のラマン散乱光の強
度比から光ファイバの温度を算出可能であることが知ら
れている。一方、ケーブルに浸水部分と非浸水部分が存
在すると、水と空気の比熱差によって、浸水部分は非浸
水部分に比べて温度変動が遅れる。本発明のケーブルの
浸水検知方法は、これら2つの原理を利用してケーブル
の浸水を検知するものである。具体的には以下のように
してケーブルの浸水を検知する。 【0006】光ケーブルや電力ケーブル(電力線と共に
光ファイバが収容された複合ケーブル)中の未使用光フ
ァイバ(以下「検知用空き心線」)に光パルスを連続的
又は断続的に入射させると共に、ラマン散乱光を検出す
る温度測定器によって検知用空き心線の温度を測定す
る。この温度測定器は前記原理を利用した測定器であ
り、ストローク側のラマン散乱光と反ストロークのラマ
ン散乱光との強度比に基づいて検知用空き心線の温度を
算出する。 【0007】前記状態において、ケーブルに浸水が起こ
り、該ケーブルに浸水部分と非浸水部分が発生すると、
浸水部分と未浸水部分に温度差が生じる。例えば、浸水
した水の温度が浸水前のケーブル温度よりも高ければ、
非浸水部分よりも浸水部分の方が一時的に高温になる。
一方、浸水した水の温度が浸水前のケーブル温度よりも
低ければ、非浸水部分が浸水部分よりも一時的に低温に
なる。しかし、ばらくすると、環境温度の影響によって
浸水部分の温度が低下又は上昇し、非浸水部分との温度
差は解消される。その後、環境温度が変化すると、浸水
部分及び非浸水部分の双方に温度変動が生じる。例え
ば、夜間に同一温度となった浸水部分と非浸水部分は、
日中、太陽光やその他の影響によって暖められ温度が上
昇する。このとき、浸水部分は非浸水部分に比べて温度
変動が遅れるので、浸水部分と非浸水部分に温度差が生
じ、浸水部分と非浸水部分とで、ラマン散乱光のストロ
ーク側と反ストローク側の強度比が異なり、この強度比
の差が温度測定器によって温度差として検出される。 【0008】従って、温度測定器によって検知用空き心
線の長手方向何れかの個所に所定値以上の温度差が検出
されれば浸水有りと判別できる。さらに、検知用空き心
線の長手方向のうち、何れの地点で所定値以上の温度差
が発生しているのか算出すれば浸水の発生個所を特定す
ることもできる。 【0009】以下、本発明のケーブルの浸水検知方法の
効果を確認するために行った実験に関して説明する。こ
の実験では、図1に示すように、光ファイバ架空地線
(OPGW)用の24心アルミ造管光ケーブルを2本用
意し、それらを恒温槽1内に配置した。このうち、一方
の光ケーブル2は非浸水であり、他方の光ケーブル3は
全長に亙って予め浸水させてある。また、夫々の光ケー
ブル2、3内に光ファイバを配置し、夫々の光ファイバ
の一端を恒温槽外において融着接続して(一本化して)
前記検知用空き心線に相当するファイバ心線を構成して
ある。さらに、一本化した光ファイバ4の一端には前記
温度測定器5を接続してある。 【0010】以上の実験系において、恒温槽1内の温度
を40℃/時間の温度勾配で20℃〜60℃に上昇させ
た。すると、60℃到達直後において、光ファイバ4の
うち、浸水ケーブル3内に配置されている部分に、非浸
水光ケーブル2内に配置されている部分と比べて約15
℃の温度遅れが測定された。その後、恒温槽を3時間放
置したところ、光ファイバ4の温度は全長に亙ってほぼ
同一となった(図2)。 【0011】以上の実験結果より、ケーブルに浸水部分
と非浸水部分が存在する場合、浸水部分は非浸水部分に
対して温度変動が遅れ、両部分に温度差が発生するこ
と、その温度差はストローク側のラマン散乱光と反スト
ロークのラマン散乱光との強度比に基づいて光ファイバ
の温度を測定する温度測定器によって測定可能であるこ
とが確認された。従って、各種ケーブル中の任意の空き
心線に光パルスを入射させ、ラマン散乱光のストローク
側と反ストローク側の強度比に基づいてケーブルの浸水
の有無及び浸水個所の双方又は一方をすることが可能で
ある。 【0012】前記実施形態では、浸水発生時に浸水部分
と非浸水部分に生じた温度差ではなく、その温度差が解
消された後に両部分の温度変動差に起因して再度生じる
温度差を検出して浸水の有無を判別した。しかし、浸水
発生時に浸水部分と未浸水部分に生じた温度差を検出し
て浸水の有無を判別しても良い。 【0013】 【発明の効果】本発明のケーブルの浸水検知方法は、ケ
ーブル中の光ファイバに光パルスを入射し、その結果発
生するラマン散乱光のストローク側と反ストローク側の
強度比に基づいて浸水の有無を検知する。従って、次ぎ
のような効果を有する。 (1)光ケーブルや電力ケーブルといった各種ケーブル
における浸水の有無や浸水個所を確実且つ容易に検知で
きる。 (2)各種ケーブル中の任意の光ファイバ(空き心線)
を利用するので、新たに検知用光ファイバを敷設する必
要がない。 (3)浸水を検知するために吸油膨張材や吸水膨張材を
必要としないので、ケーブル外径が大きくなるといった
不都合がなく、製造コストも低下する。 (4)ケーブル内に保護管を収容し、その中に検知用光
ファイバを配置する必要がないので、既設ケーブルの構
造を変更することなく浸水検知が可能である。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for detecting inundation of various cables such as an optical cable and a power cable. 2. Description of the Related Art As a method for detecting inundation of a power cable, there is a method disclosed in Japanese Patent Application Laid-Open No. Hei 7-280695. According to this method, a detection optical fiber and an oil-absorbing and expanding material or a water-absorbing and expanding material are incorporated in the outer periphery of an insulating layer of a power cable or in a protective tube accommodated in each coating layer, and leakage of insulating oil is detected from the strain distribution of the detecting optical fiber. And to detect inundation into the cable. Specifically, an optical pulse is transmitted to the optical fiber for detection, and the frequency difference between the optical pulse and the Brillouin scattered light is measured. At this time, when the leaked insulating oil or intruded water comes into contact with the oil-absorbing or expanding material, the expanded optical fiber presses the detection optical fiber against the inner wall of the protective tube, causing the fiber to bend. Since the distortion of the optical fiber for detection increases at the place where the bend occurs, oil leakage or water infiltration can be detected by observing the distortion. [0003] In the above-mentioned conventional method for detecting water infiltration, an oil-absorbing and expanding material or a water-absorbing and expanding material must be disposed in advance in a protective tube. Therefore, the outer diameter of the protection tube increases, and the outer diameter of the cable housing the protection tube also increases. Further, the manufacturing cost is increased by the amount of the oil-absorbing expanding material or the water-absorbing expanding material. [0004] A method for detecting the inundation of a cable according to the present invention comprises applying an optical pulse to an optical fiber in various cables such as an optical cable and a power cable, and setting a stroke side and a non-stroke side of the Raman scattered light. In this case, the presence or absence of water intrusion of the cable and / or the location of inundation of the cable are detected based on the intensity ratio. (Embodiment 1) An embodiment of a method for detecting inundation of a cable according to the present invention will be described below.
First, the principle of the cable immersion detection method of the present invention will be described. When light is incident on the optical fiber, Raman scattered light is generated on the stroke side where the intensity is low in sensitivity to temperature and on the anti-stroke side where the intensity is high. Therefore, it is known that the temperature of the optical fiber can be calculated from the intensity ratio of the Raman scattered light on the stroke side and the anti-stroke side. On the other hand, if there is a submerged portion and a non-submerged portion in the cable, the temperature fluctuation of the submerged portion is delayed as compared with the non-submerged portion due to a specific heat difference between water and air. The cable inundation detection method of the present invention detects inundation of a cable using these two principles. Specifically, the inundation of the cable is detected as follows. An optical pulse is continuously or intermittently incident on an unused optical fiber (hereinafter referred to as an "empty core wire for detection") in an optical cable or a power cable (a composite cable in which an optical fiber is housed together with a power line). The temperature of the free core wire for detection is measured by a thermometer for detecting scattered light. This temperature measuring device is a measuring device utilizing the above principle, and calculates the temperature of the free core wire for detection based on the intensity ratio between the Raman scattered light on the stroke side and the Raman scattered light on the anti-stroke. In the above state, when the cable is flooded and a flooded portion and a non-flooded portion occur in the cable,
A temperature difference occurs between the flooded part and the unflooded part. For example, if the temperature of the flooded water is higher than the cable temperature before the flooding,
The temperature of the submerged part is temporarily higher than that of the non-submerged part.
On the other hand, if the temperature of the flooded water is lower than the temperature of the cable before the flooding, the non-flooded portion temporarily becomes lower in temperature than the flooded portion. However, when the temperature is varied, the temperature of the inundated portion decreases or increases due to the influence of the environmental temperature, and the temperature difference from the non-immersed portion is eliminated. Thereafter, when the environmental temperature changes, a temperature change occurs in both the flooded portion and the non-flooded portion. For example, the flooded part and the non-flooded part which became the same temperature at night,
During the day, the temperature rises as it is warmed by sunlight and other effects. At this time, since the temperature fluctuation of the submerged portion is delayed as compared with the non-submerged portion, a temperature difference occurs between the submerged portion and the non-submerged portion. The intensity ratios are different, and the difference between the intensity ratios is detected as a temperature difference by a thermometer. Therefore, if a temperature difference of a predetermined value or more is detected at any point in the longitudinal direction of the detection free core wire by the temperature measuring device, it can be determined that water is present. Further, by calculating at which point in the longitudinal direction of the detection free core wire a temperature difference equal to or greater than a predetermined value occurs, it is possible to identify a location where water is generated. Hereinafter, an experiment conducted to confirm the effect of the method for detecting inundation of a cable according to the present invention will be described. In this experiment, as shown in FIG. 1, two 24-core aluminum tube optical cables for an optical fiber overhead ground wire (OPGW) were prepared and placed in the thermostat 1. Of these, one optical cable 2 is not flooded, and the other optical cable 3 is flooded in advance over its entire length. Further, an optical fiber is arranged in each of the optical cables 2 and 3, and one end of each of the optical fibers is fusion-spliced (unified) outside the thermostat.
A fiber core corresponding to the free core for detection is configured. Further, the temperature measuring device 5 is connected to one end of the integrated optical fiber 4. In the above experimental system, the temperature in the thermostat 1 was increased from 20 ° C. to 60 ° C. at a temperature gradient of 40 ° C./hour. Then, immediately after the temperature reaches 60 ° C., the portion of the optical fiber 4 disposed in the submerged cable 3 is approximately 15 times smaller than the portion disposed in the non-submerged optical cable 2.
A temperature delay of ° C. was measured. Thereafter, when the thermostat was left for 3 hours, the temperature of the optical fiber 4 became almost the same over the entire length (FIG. 2). From the above experimental results, when the cable has a flooded portion and a non-flooded portion, the temperature variation of the flooded portion is delayed with respect to the non-flooded portion, and a temperature difference occurs between the two portions. It was confirmed that the temperature can be measured by a thermometer that measures the temperature of the optical fiber based on the intensity ratio between the Raman scattered light on the stroke side and the Raman scattered light on the anti-stroke. Therefore, it is possible to make an optical pulse incident on an arbitrary empty core wire in various cables, and to determine whether or not the cable is flooded and / or where the cable is flooded based on the intensity ratio of the stroke side and the anti-stroke side of the Raman scattered light. It is possible. In the above-described embodiment, a temperature difference which occurs again due to a temperature fluctuation difference between the two parts after the temperature difference is eliminated is detected instead of a temperature difference generated between the water-immersed part and the non-water-immersed part at the time of occurrence of waterlogging. To determine the presence or absence of flooding. However, the presence or absence of flooding may be determined by detecting the temperature difference between the flooded portion and the unflooded portion when flooding occurs. According to the method for detecting inundation of a cable according to the present invention, an optical pulse is incident on an optical fiber in a cable, and the intensity of Raman scattered light generated as a result on the stroke side and the non-stroke side is determined. Detects the presence or absence of flooding. Therefore, the following effects are obtained. (1) It is possible to reliably and easily detect the presence or absence of water intrusion in various cables such as an optical cable and a power cable. (2) Arbitrary optical fiber in various cables (empty core wire)
Therefore, there is no need to lay a new detection optical fiber. (3) Since no oil-absorptive material or water-absorptive material is required to detect inundation, there is no inconvenience such as an increase in cable outer diameter, and the manufacturing cost is reduced. (4) Since it is not necessary to house the protection tube in the cable and arrange the detection optical fiber therein, it is possible to detect inundation without changing the structure of the existing cable.

【図面の簡単な説明】 【図1】本発明の効果を確認するために使用した実験系
の概略を示す説明図。 【図2】図1に示す実験系を使用した実験の結果を示す
図。 【符号の説明】 1 恒温槽 2 非浸水の光ケーブル(非浸水ケーブル) 3 浸水させた光ケーブル(浸水ケーブル) 4 光ファイバ 5 温度測定器
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory view schematically showing an experimental system used for confirming the effects of the present invention. FIG. 2 is a diagram showing the results of an experiment using the experimental system shown in FIG. [Description of Signs] 1 constant temperature bath 2 non-flooded optical cable (non-flooded cable) 3 flooded optical cable (flooded cable) 4 optical fiber 5 temperature measuring instrument

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2G043 AA03 BA10 CA05 EA03 FA05 GA07 GB01 HA05 2G067 AA23 BB16 BB25 CC02 DD08 DD27 EE08    ────────────────────────────────────────────────── ─── Continuation of front page    F-term (reference) 2G043 AA03 BA10 CA05 EA03 FA05                       GA07 GB01 HA05                 2G067 AA23 BB16 BB25 CC02 DD08                       DD27 EE08

Claims (1)

【特許請求の範囲】 【請求項1】光ケーブルや電力ケーブルといった各種ケ
ーブル中の光ファイバに光パルスを入射させ、ラマン散
乱光のストローク側と反ストローク側の強度比に基づい
てケーブルの浸水の有無及び浸水個所の双方又は一方を
検知することを特徴とするケーブルの浸水検知方法。
Claims 1. An optical pulse in an optical fiber in various cables such as an optical cable and a power cable, and the presence or absence of water in the cable based on the intensity ratio of the Raman scattered light between the stroke side and the non-stroke side. And / or a water infiltration point.
JP2002021576A 2002-01-30 2002-01-30 Water invasion detecting method for cable Pending JP2003222565A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002021576A JP2003222565A (en) 2002-01-30 2002-01-30 Water invasion detecting method for cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002021576A JP2003222565A (en) 2002-01-30 2002-01-30 Water invasion detecting method for cable

Publications (2)

Publication Number Publication Date
JP2003222565A true JP2003222565A (en) 2003-08-08
JP2003222565A5 JP2003222565A5 (en) 2005-06-23

Family

ID=27744790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002021576A Pending JP2003222565A (en) 2002-01-30 2002-01-30 Water invasion detecting method for cable

Country Status (1)

Country Link
JP (1) JP2003222565A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005195486A (en) * 2004-01-08 2005-07-21 Fujikura Ltd Optic fiber cable degradation detection system
JP2006292566A (en) * 2005-04-12 2006-10-26 Central Res Inst Of Electric Power Ind Technique and system for observing air temperature distribution
KR100869692B1 (en) * 2008-04-08 2008-11-21 (주)하림기술단 Device for leakage check in underground cable pipe

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005195486A (en) * 2004-01-08 2005-07-21 Fujikura Ltd Optic fiber cable degradation detection system
JP2006292566A (en) * 2005-04-12 2006-10-26 Central Res Inst Of Electric Power Ind Technique and system for observing air temperature distribution
KR100869692B1 (en) * 2008-04-08 2008-11-21 (주)하림기술단 Device for leakage check in underground cable pipe

Similar Documents

Publication Publication Date Title
US7269320B2 (en) Fiber optic cable with miniature bend incorporated
CN100373745C (en) Apparatus and method for analysis of electric power transmission link status
US6079875A (en) Apparatus for measuring the temperature of an object with a temperature sensor and method of making the temperature sensor
US6072928A (en) Tow cable with conducting polymer jacket for measuring the temperature of a water column
JP2003222565A (en) Water invasion detecting method for cable
JP2007003231A (en) Method and system for determination of water penetration into optical fiber cable
AU724951B2 (en) Electrical power cable underground-laying depth measuring method
JP2000346712A (en) Cable culvert monitor
CN201036088Y (en) High voltage cable with optical fiber
JP2004037207A (en) Method for detecting water infiltration in cable
CN108020345A (en) A kind of distributed fiber temperature measuring device based on single mode optical fiber Raman scattering effect
JP3224762B2 (en) Fiber optic cable
CN211147708U (en) Optical fiber cable sensor for concrete
JPH07280695A (en) Method for detecting leakage oil and water immersion of power cable
JP2782124B2 (en) Fiber optic cable
CN102736202A (en) Miniature high conductivity thermal temperature sensing cable
JP2522303Y2 (en) Optical fiber temperature sensor
JP2004037358A (en) Submerged spot detection method and device for optical fiber cable
JP2520671Y2 (en) Fiber optic composite cable
JP2761271B2 (en) Optical fiber temperature sensor for detecting electric wire short circuit
JPH068768B2 (en) Infiltration detection sensor
JPH03180731A (en) Heat medium leakage detecting method for piping for heat medium transportation
CN216349082U (en) Sensing probe, optical fiber interference type hydrophone based on air cavity and monitoring system
JP2556573B2 (en) Infiltration detector
JP2006029878A (en) Optical fiber for radiation sensor, and optical fiber type radiometer

Legal Events

Date Code Title Description
A521 Written amendment

Effective date: 20040929

Free format text: JAPANESE INTERMEDIATE CODE: A523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040929

A621 Written request for application examination

Effective date: 20041101

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060614

A131 Notification of reasons for refusal

Effective date: 20060620

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20061018

Free format text: JAPANESE INTERMEDIATE CODE: A02