JP2003219436A - Apparatus for adjustment of pixel shift camera and measuring method - Google Patents

Apparatus for adjustment of pixel shift camera and measuring method

Info

Publication number
JP2003219436A
JP2003219436A JP2002014299A JP2002014299A JP2003219436A JP 2003219436 A JP2003219436 A JP 2003219436A JP 2002014299 A JP2002014299 A JP 2002014299A JP 2002014299 A JP2002014299 A JP 2002014299A JP 2003219436 A JP2003219436 A JP 2003219436A
Authority
JP
Japan
Prior art keywords
image
pixel shift
moving
moving image
stripe portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002014299A
Other languages
Japanese (ja)
Inventor
Fuminori Suzuki
文典 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2002014299A priority Critical patent/JP2003219436A/en
Publication of JP2003219436A publication Critical patent/JP2003219436A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To improve accuracy in adjustment of a fine moving amount and remarkably reduce the time required therefor in a pixel shift camera. <P>SOLUTION: A pixel shift chart capable of differently handling the moving amounts of X and Y is employed to reduce the adjustment time of moving amount of the pixel shift camera, thereby searching for one-dimensional extreme values in two ways. Further, to reduce the time required for one trial and to avoid a problem of hysteresis, the present moving amount is measured not by repeatedly moving a CCD actually, but by repeating an arithmetic. Still further, to surely avoid the hysteresis, a series of fine moving sequences is performed in exactly the same way as that of normal photographing to pick up and store a series of moving images, and the respective moving amounts are measured. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】 【0001】 【発明が属する技術分野】本発明は、画素シフトカメラ
の調整のための測定方法に関するものである。 【0002】 【従来の技術】画素シフトカメラは、昨今流行の「デジ
カメ」とは異なり、業務用としてのみ流通しており、顕
微鏡画像の入力装置としては高い評価を得ている。理由
は、被写体が静止していることが条件として満足される
場合には、コストの割には圧倒的な高解像度が得られる
からである。一般的には、CCD2次元イメージセンサ
(以降CCDという。)として正方形画素の全画素読み
出しタイプのものを用いることにより画素毎の情報を損
なわずに取り出せるように構成した上で、CCDと入射
光の相対位置を何らかの方法で微小移動させて画素間の
情報を読み出していくことによりCCD単体の画素数の
4倍乃至9倍の画素数の画像を構築するものである。 【0003】しかし、画素の大きさは4〜7μm程度で
あり、求められる移動寸法はその3分の1乃至2分の1
の単位なので、如何にして正確な測定を行い調整するか
がこの種のカメラの性能を左右する一番の課題であっ
た。例えば、2/3インチ140万画素のCCDを用い
た場合、移動したい距離は画素寸法6.7μmの半分の
3.35μmであるから、精度±10μmを誇る高精度
変位計などは全く役に立たず、レーザー測位計でも数μ
mの誤差を持っているため役に立たないのである。 【0004】この解決策として、本発明者は以前に、特
開平9−135381において、初期位置にあるCCD
の映像出力信号(原点画像)から目標移動量だけ移動さ
せたときに相当する目標映像出力信号(仮想移動画像)
を予測し、実際に入射光とCCDとを相対移動させなが
らCCDの映像出力信号(移動画像)と目標映像出力信
号(仮想移動画像)との差が最小となるように相対的移
動量(駆動電圧)を調節することを提案した。この方法
は、仮想移動画像の予測方法において離散コサイン変換
と逆変換を使う点で画期的ではあったが、実際の運用に
おいては所要時間と正確さに大きな問題があった。 【0005】すなわち、X,Yの移動量を同時に調整し
ようとすると2次元極値探索を行なうことになり、両方
が最小誤差となるまでにはかなりの回数の試行を行なわ
なくてはならず、さらに、上記のように実際にCCDを
移動した上で画像を取り込むことを繰り返すやり方で目
標に近づいて行こうとすると所要時間はさらに膨大にな
ってしまうのである。さらに、大きな問題として、微小
移動させる手段の持っている機械的ヒステリシスの問題
があり、特に積層型圧電素子を用いた場合にこの問題が
大きく、同じ駆動電圧を印加した場合でも、電圧を上げ
てその電圧に到達したのか、下げて到達したのかによっ
て移動量がまるで違ってしまうのである。従って、誤差
が大きい上に、調整サイクルもヒステリシスのためにな
かなか収束しないという問題があったため、これを避け
るために、試行の度に、毎回、前回の位置に戻してから
改めて目標の電圧を印加する必要があり、所要時間はさ
らに膨大になってしまうのである。また、上記提案にお
いては特に被写体を限定しておらず、被写体形状によっ
ては、仮想移動画像を正確に作成したとしても、比較結
果においてXとYのどちらを移動させても同一となる場
合があり、調整結果に悪影響を与える現象があったので
ある。 【0006】 【発明が解決しようとする課題】解決しようとする課題
は、調整の正確さの飛躍的向上と所要時間の飛躍的短縮
である。 【0007】 【課題を解決するための手段】本発明は、調整の所要時
間を短縮するため、X,Yの移動量を別々に扱える画素
シフトチャートを採用することにより、従来のような2
次元の極値探索ではなく、1次元の極値探索を2通り行
なうようにし、さらに1回の試行の時間を短縮するため
とヒステリシスの問題を避けるため、実際にCCDの移
動を繰り返して調整するのではなく、逆に演算の方を繰
り返して現状の移動量を測定するようにし、さらにヒス
テリシス回避を確実にするため、一連の微小移動シーケ
ンスを通常撮影と全く同様に行なって一連の移動画像を
採取して記憶しておき、それぞれの移動量を測定するよ
うにしたことを主要な特徴とする。 【0008】 【発明の実施の形態】本発明は、調整の所要時間を短縮
し、さらに、正確な測定結果を得るという目的を、最適
なチャートの提案と、パソコンソフトウェアーの改良の
みで実現した。 【0009】 【実施例】図1は、本発明の画素シフトチャートであっ
て、1は縦縞部分、2は横縞部分である。使用に際して
は、空白を含むチャート全体が画面に入るように画角設
定を行い、撮影は縦縞と横縞のみが映る中央部を小さめ
に切り取って撮影を行なう。撮影画像に対して演算を施
す際に、さらに縦縞のみと横縞のみを別々に切り取るこ
とにより、X、Yの移動量を別々に扱えるようになる。
また、画素シフトに依存して見えたり見えなくなったり
するような細かい被写体やエッジは測定誤差の原因とな
るので、縦縞横縞の印刷の明暗はサインカーブ的に滑ら
かに変化している。印刷機の都合で細かい粒子が見える
場合には、レンズのフォーカスをずらしてぼかす必要が
ある。 【0010】図2は、本発明装置のブロック図であっ
て、CCD5はY駆動装置3により縦方向に微小移動さ
れ、X駆動装置4により横方向に微小移動される。信号
処理回路6は前記CCD5からの映像信号を処理してA
/D変換を施し、画像データを出力する。前記Y駆動装
置3とX駆動装置4は駆動電圧群記憶装置7から出力さ
れた電圧でそれぞれ駆動され、前記駆動電圧群記憶装置
7は、高解像度を得るための規則正しい一連の微小移動
の位置を示すXYアドレスに対応したX駆動電圧データ
とY駆動電圧データが記憶されており、指定されたXY
アドレスの電圧データを呼び出してD/Aコンバータを
介して直流電圧を出力する。画素シフトシーケンサー8
は、微小移動の順序を制御するためにXYアドレスを前
記駆動電圧群記憶装置7に対して出力し、使用する駆動
電圧データを選択する。画像合成装置9は通常撮影を行
なうための装置であり、前記画素シフトシーケンサー8
を介してCCD5を微小移動させながら画像データを次
々に取り込むと同時に最終画像の適切な位置に適切な画
素データを並べていき、高精細画像を構築する。ここま
でが通常動作に係わるブロックである。 【0011】これ以降は、前記X駆動電圧データとY駆
動電圧データを決定する調整にかかわるブロックであ
り、通常動作では原則として使われることはないが本発
明の主要部分である。駆動電圧調整手段10は、原点画
像記憶手段11に一連の微小移動前、必要ならばヒステ
リシス除去のための予備駆動をしてから零電圧に戻した
後の画像を記憶させ、続いて前記画素シフトシーケンサ
ー8を介してCCD5を微小移動させながら画像データ
を次々に移動画像群記憶手段12に取り込ませる。前記
原点画像記憶手段11は、原点画像のうち縦縞部分をX
演算手段13に、横縞部分をY演算手段15に出力す
る。前記移動画像群記憶手段12は各画像をXYアドレ
ス毎に別々に記憶し、前記駆動電圧調整手段10よりア
ドレス指定された記憶画像の縦縞部分をX比較手段14
に、横縞部分をY比較手段16に出力する。前記X演算
手段13とY演算手段15は、入力された画像を離散コ
サイン変換し、それぞれX方向とY方向に位相をずらす
ための位相係数を代入した上で逆変換した画像をそれぞ
れ前記X比較手段14と前記Y比較手段16に出力す
る。このとき、前記両演算手段は前記両比較手段からの
演算誤差情報を得、前回の演算誤差と比較して誤差が少
なくなる方向に位相係数を変更して演算を行い、その位
相係数を前記駆動電圧調整手段10に通知する。前記両
比較手段は、入力された2つの画像の差異を前記両演算
手段と前記駆動電圧調整手段10に前記演算誤差情報と
して通知する。さらに、前記駆動電圧調整手段10は、
前記演算誤差情報がXY共にほぼ零になった時の前記位
相係数を移動量に変換し、当該XYアドレスの目標移動
量と比較し、印加電圧として最適な電圧を演算予測して
変更し、前記駆動電圧群記憶装置7の当該XYアドレス
の電圧データを書き換えるのである。離散コサイン変換
と逆変換については、本発明の主体ではないので省略す
る。 【0012】このような調整装置と方法を採用したの
で、飛躍的に調整時間が短くなり、精度も比べ物になら
ない程向上した。高精細画像を得る為に0.5画素ピッ
チで16回シフトを行う場合を例にとると、図3のよう
な順序でCCDを移動させる。図中の四角形は0.5画
素ピッチ間隔の移動位置を示している。それぞれの位置
に対応するXYアドレスは16個となり、従来の方法だ
と16回の2次元極値探索型調整を行なうことになる。
1回の極値探索について、収束し易いように基準をかな
り緩めても平均60回の画素シフトと画像取り込みが必
要となり、合計960回、時間にして約250秒もかか
ってしまうのである。これを本発明の調整装置と方法で
行なうと、10秒以下で調整が終了するのである。これ
は、従来方法とは異なり、比較的演算回数が多い代わり
に画素シフトと画像取り込みの回数が極端に少なく、し
かも、シフト方法は通常撮影と同じタイミングで行なう
ことが必要条件なので、1シーケンス(16回シフト)
を演算を交えずに一気に行なうので時間短縮効果がこれ
ほど大きくなるのである。表1は、所要時間の比較を示
しており、本発明の演算回数については、16箇所の移
動位置についてX,Yの2通りの測定があるので基本数
を32とし、1回の測定が収束するまでの平均演算回数
は7〜8なので8としてある。また、画素シフトシーケ
ンスを回す回数は2〜5であるが、平均的には、初回と
電圧データの更新後と確認の3回である。 【0013】 【表1】 【0014】 【発明の効果】以上説明したように本発明の画素シフト
カメラは、一番の重要ポイントである画素シフト移動量
の調整において、大掛かりな治具や装置を一切使わず、
カメラ本体とパソコンと画素シフトチャートのみを用い
て短時間に処理が行なえるため低コストで質の高い画素
シフトカメラを提供することができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a measuring method for adjusting a pixel shift camera. 2. Description of the Related Art A pixel shift camera is different from a digital camera, which has become popular in recent years, and is distributed only for business use, and is highly evaluated as a microscope image input device. The reason is that if the condition that the subject is stationary is satisfied as a condition, overwhelmingly high resolution can be obtained for the cost. In general, a CCD two-dimensional image sensor (hereinafter, referred to as a CCD) is configured so that information of each pixel can be taken out without loss by using an all-pixel reading type of a square pixel. By reading the information between the pixels by slightly moving the relative position by some method, an image having four to nine times the number of pixels of the CCD alone is constructed. However, the size of the pixel is about 4 to 7 μm, and the required movement size is one third to one half thereof.
Therefore, how to perform accurate measurement and adjustment was the biggest issue that affected the performance of this type of camera. For example, if a 2/3 inch 1.4 million pixel CCD is used, the distance to be moved is 3.35 μm, which is half the pixel size of 6.7 μm. Therefore, a high-precision displacement meter boasting an accuracy of ± 10 μm is useless. Several μm even with a laser positioning system
It is useless because it has an error of m. As a solution to this, the present inventor has previously disclosed in Japanese Patent Application Laid-Open No. Hei 9-135381 a CCD in an initial position.
Target video output signal (virtual moving image) equivalent to moving the target moving amount from the video output signal (origin image) of
And the relative movement amount (driving amount) is set such that the difference between the CCD image output signal (moving image) and the target image output signal (virtual moving image) is minimized while actually moving the incident light and the CCD relative to each other. To adjust the voltage). Although this method is epoch-making in that a discrete cosine transform and an inverse transform are used in a method for predicting a virtual moving image, there are serious problems in the required time and accuracy in actual operation. That is, if the movement amounts of X and Y are to be adjusted at the same time, a two-dimensional extremum search is performed, and a considerable number of trials must be performed until both of them reach a minimum error. Furthermore, if it is attempted to approach the target by repeating the process of actually moving the CCD and taking in the image as described above, the required time is further increased. Further, as a major problem, there is a problem of mechanical hysteresis possessed by the means for micro-moving. This problem is particularly serious when using a laminated piezoelectric element, and even when the same drive voltage is applied, the voltage is increased. The amount of movement differs depending on whether the voltage has reached the voltage or whether the voltage has reached the lower level. Therefore, there is a problem that the error is large and the adjustment cycle does not easily converge due to hysteresis.To avoid this, in each trial, return to the previous position each time and apply the target voltage again. And the time required is even greater. Further, in the above proposal, the subject is not particularly limited, and depending on the shape of the subject, even if the virtual moving image is accurately created, the result of the comparison may be the same regardless of whether X or Y is moved. There was a phenomenon that adversely affected the adjustment result. The problem to be solved is a drastic improvement in the accuracy of adjustment and a drastic reduction in the required time. According to the present invention, in order to shorten the time required for adjustment, a pixel shift chart which can separately handle the X and Y movement amounts is employed, thereby achieving the conventional two-dimensional pixel shift chart.
Instead of one-dimensional extremum search, one-dimensional extremum search is performed in two ways. Further, in order to reduce the time of one trial and to avoid the problem of hysteresis, the movement of the CCD is actually repeated and adjusted. Instead, in order to measure the current movement amount by repeating the calculation, and to ensure that the hysteresis is avoided, a series of minute movement sequences are performed exactly in the same way as normal shooting, and a series of movement images are obtained. The main feature is that the movement is collected and stored, and the amount of each movement is measured. [0008] The present invention has achieved the object of shortening the time required for adjustment and obtaining accurate measurement results only by proposing an optimal chart and improving the personal computer software. . FIG. 1 is a pixel shift chart of the present invention, wherein 1 is a vertical stripe portion and 2 is a horizontal stripe portion. At the time of use, the angle of view is set so that the entire chart including the blanks fits on the screen, and the photographing is performed by cutting out the center where only the vertical stripes and the horizontal stripes appear, and photographing. When the calculation is performed on the captured image, only the vertical stripes and the horizontal stripes are separately cut out, so that the movement amounts of X and Y can be separately handled.
In addition, fine objects and edges that can be seen or disappeared depending on the pixel shift cause measurement errors. Therefore, the brightness of the printing of the vertical stripes and the horizontal stripes smoothly changes in a sine curve. If fine particles are visible due to the printing machine, it is necessary to shift the focus of the lens to blur. FIG. 2 is a block diagram of the apparatus of the present invention. The CCD 5 is minutely moved in the vertical direction by the Y driving device 3 and minutely moved in the horizontal direction by the X driving device 4. The signal processing circuit 6 processes the video signal from the CCD 5 and
/ D conversion and output image data. The Y drive device 3 and the X drive device 4 are respectively driven by the voltages output from the drive voltage group storage device 7, and the drive voltage group storage device 7 determines the position of a regular series of minute movements for obtaining high resolution. X drive voltage data and Y drive voltage data corresponding to the indicated XY address are stored.
The voltage data at the address is called and a DC voltage is output via the D / A converter. Pixel shift sequencer 8
Outputs an XY address to the drive voltage group storage device 7 to control the order of the minute movement, and selects drive voltage data to be used. The image synthesizing device 9 is a device for performing normal photographing, and includes the pixel shift sequencer 8.
The image data is successively taken in while the CCD 5 is slightly moved via the CPU, and at the same time, appropriate pixel data is arranged at an appropriate position of the final image to construct a high-definition image. These are the blocks related to the normal operation. [0011] The following is a block relating to the adjustment for determining the X drive voltage data and the Y drive voltage data, and is a principal part of the present invention although it is not used in principle in normal operation. The drive voltage adjusting means 10 causes the origin image storage means 11 to store an image before a series of minute movements, if necessary, after pre-driving for removing hysteresis, and returning to zero voltage, and then the pixel shift The image data is successively taken into the moving image group storage means 12 while the CCD 5 is slightly moved through the sequencer 8. The origin image storage means 11 stores a vertical stripe portion in the origin image as X
The horizontal stripe portion is output to the calculating means 13 to the Y calculating means 15. The moving image group storage unit 12 stores each image separately for each XY address, and compares the vertical stripe portion of the storage image addressed by the drive voltage adjustment unit 10 with the X comparison unit 14.
Then, the horizontal stripe portion is output to the Y comparison means 16. The X calculating means 13 and the Y calculating means 15 perform the discrete cosine transform of the input image, substitute the phase coefficients for shifting the phase in the X direction and the Y direction, and perform the inverse comparison on the respective images. Output to the means 14 and the Y comparison means 16. At this time, the two calculation means obtain the calculation error information from the two comparison means, perform a calculation by changing the phase coefficient in a direction in which the error is reduced as compared with the previous calculation error, and calculate the phase coefficient by the drive The voltage adjustment means 10 is notified. The comparing means notifies the difference between the two input images to the calculating means and the drive voltage adjusting means 10 as the calculation error information. Further, the drive voltage adjusting means 10
Converting the phase coefficient when the calculation error information becomes substantially zero in both XY to a movement amount, comparing with the target movement amount of the XY address, calculating and predicting an optimal voltage as an applied voltage, and changing the applied voltage; This is because the voltage data of the XY address in the drive voltage group storage device 7 is rewritten. Discrete cosine transform and inverse transform are omitted because they are not the subject of the present invention. Since such an adjusting device and method are employed, the adjusting time is drastically shortened, and the accuracy is improved so as not to be comparable. Taking a case where shifting is performed 16 times at a 0.5 pixel pitch to obtain a high definition image as an example, the CCD is moved in the order shown in FIG. The squares in the figure indicate the movement positions at 0.5 pixel pitch intervals. The number of XY addresses corresponding to each position is 16, and according to the conventional method, adjustment of the two-dimensional extreme value search is performed 16 times.
For one extreme value search, an average of 60 pixel shifts and image capture are required even if the criterion is loosened so that convergence is easy, and it takes 960 times in total, which takes about 250 seconds. When this is performed by the adjusting device and method of the present invention, the adjustment is completed in 10 seconds or less. This is because, unlike the conventional method, the number of calculations is relatively large, but the number of pixel shifts and image captures is extremely small. Moreover, the shift method needs to be performed at the same timing as normal shooting. (Shift 16 times)
Is performed at once without any calculation, so that the time reduction effect is so great. Table 1 shows a comparison of required time. Regarding the number of operations of the present invention, since there are two types of measurements, X and Y, at 16 movement positions, the basic number is set to 32, and one measurement converges. Since the average number of computations before the calculation is 7 to 8, it is set to 8. Although the number of times the pixel shift sequence is rotated is 2 to 5, it is, on average, three times: the first time, after the voltage data is updated, and the confirmation. [Table 1] As described above, the pixel shift camera according to the present invention does not use any large-scale jigs or devices in adjusting the amount of pixel shift movement, which is the most important point.
Since processing can be performed in a short time using only the camera body, the personal computer, and the pixel shift chart, a low-cost, high-quality pixel shift camera can be provided.

【図面の簡単な説明】 【図1】画素シフトチャートを示した図である。 【図2】画素シフトカメラの構成を示したブロック図で
ある。 【図3】画素シフトの順序の一例を示した説明図であ
る。 【符号の説明】 1 画素シフトチャートの縦縞部分 2 画素シフトチャートの横縞部分 3 Y駆動装置 4 X駆動装置 5 CCD2次元イメージセンサー 6 信号処理回路 7 駆動電圧群記憶装置 8 画素シフトシーケンサー 9 画像合成装置 10 駆動電圧調整手段 11 原点画像記憶手段 12 移動画像群記憶手段 13 X演算手段 14 X比較手段 15 Y演算手段 16 Y比較手段
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing a pixel shift chart. FIG. 2 is a block diagram illustrating a configuration of a pixel shift camera. FIG. 3 is an explanatory diagram showing an example of a pixel shift order. [Description of Signs] 1 Vertical stripe portion of pixel shift chart 2 Horizontal stripe portion of pixel shift chart 3 Y drive device 4 X drive device 5 CCD two-dimensional image sensor 6 Signal processing circuit 7 Drive voltage group storage device 8 Pixel shift sequencer 9 Image synthesis device Reference Signs List 10 drive voltage adjusting means 11 origin image storing means 12 moving image group storing means 13 X calculating means 14 X comparing means 15 Y calculating means 16 Y comparing means

Claims (1)

【特許請求の範囲】 【請求項1】 レンズ系を介して被写体からの反射散乱
光をCCD2次元イメージセンサに受光するとともに、
前記CCD2次元イメージセンサを受光面に平行な2次
元方向に規則正しい一連の微小移動をさせて複数の画像
を撮りこれらを合成して高解像の最終画像を得る画素シ
フトカメラにおいて、前記微小移動量の調整を行なうた
めに、中央付近に縦縞部分と横縞部分とを有する画素シ
フトチャートを被写体として用意し、移動前の原点画像
を記憶する原点画像記憶手段と、前記規則正しい一連の
微小移動後の画像を記憶する移動画像群記憶手段と、前
記原点画像の縦縞部分の画像をフーリエ変換または離散
コサイン変換しX方向に位相をずらした上で逆変換する
ことにより仮想X移動画像を作成するX演算手段と、前
記移動画像群記憶手段からの画像の縦縞部分と前記仮想
X移動画像を比較して差異が最小となるまでX方向位相
を変えながら前記X演算手段を繰り返し起動するX比較
手段と、前記原点画像の横縞部分の画像をフーリエ変換
または離散コサイン変換しY方向に位相をずらした上で
逆変換することにより仮想Y移動画像を作成するY演算
手段と、前記移動画像群記憶手段からの画像の横縞部分
画像と前記仮想Y移動画像を比較して差異が最小となる
までY方向位相を変えながら前記Y演算手段を繰り返し
起動するY比較手段とを備え、前記画素シフトチャート
の縦縞横縞の印刷の明暗はサインカーブ的に滑らかに変
化していることを特徴とする画素シフトカメラの調整の
ための装置と測定方法。
Claims 1. A CCD two-dimensional image sensor receives reflected and scattered light from a subject via a lens system, and
In a pixel shift camera, a plurality of images are taken by moving the CCD two-dimensional image sensor regularly in a two-dimensional direction parallel to a light receiving surface to take a plurality of images, and these are combined to obtain a high-resolution final image. In order to perform the adjustment, a pixel shift chart having a vertical stripe portion and a horizontal stripe portion near the center is prepared as a subject, and an origin image storage means for storing an origin image before the movement, and the image after the regular series of minute movements Moving image group storing means for storing a vertical stripe portion of the origin image, and an X calculating means for creating a virtual X moving image by performing a Fourier transform or a discrete cosine transform, performing a phase shift in the X direction, and performing an inverse transform. And comparing the vertical stripe portion of the image from the moving image group storage means with the virtual X moving image and changing the phase in the X direction until the difference is minimized. X comparison means for repeatedly starting the calculation means, and Y calculation for creating a virtual Y moving image by performing Fourier transform or discrete cosine transform on the image of the horizontal stripe portion of the origin image, shifting the phase in the Y direction, and then performing inverse transformation. Means for comparing the horizontal stripe partial image of the image from the moving image group storing means with the virtual Y moving image, and repeatedly activating the Y calculating means while changing the phase in the Y direction until the difference is minimized; And a method for adjusting a pixel shift camera, wherein the brightness of the printing of the vertical stripes and horizontal stripes of the pixel shift chart changes smoothly in a sine curve.
JP2002014299A 2002-01-23 2002-01-23 Apparatus for adjustment of pixel shift camera and measuring method Pending JP2003219436A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002014299A JP2003219436A (en) 2002-01-23 2002-01-23 Apparatus for adjustment of pixel shift camera and measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002014299A JP2003219436A (en) 2002-01-23 2002-01-23 Apparatus for adjustment of pixel shift camera and measuring method

Publications (1)

Publication Number Publication Date
JP2003219436A true JP2003219436A (en) 2003-07-31

Family

ID=27651022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002014299A Pending JP2003219436A (en) 2002-01-23 2002-01-23 Apparatus for adjustment of pixel shift camera and measuring method

Country Status (1)

Country Link
JP (1) JP2003219436A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7155119B2 (en) 2004-08-17 2006-12-26 Dialog Imaging Systems Gmbh Multi-processing of a picture to speed up mathematics and calculation for one picture
US7248347B2 (en) 2004-08-17 2007-07-24 Dialog Imaging Systems Gmbh Focus processing with the distance of different target wheels
US7403229B2 (en) 2004-08-17 2008-07-22 Digital Imaging Systems Gmbh Testing of miniaturized digital camera modules with electrical and/or optical zoom functions
US7486309B2 (en) 2004-08-17 2009-02-03 Digital Imaging Systems Gmbh Digital camera module test system
US7505064B2 (en) 2004-08-17 2009-03-17 Digital Imaging Systems Gmbh Camera handling system
US7567273B2 (en) 2004-10-12 2009-07-28 Digital Imaging Systems Gmbh Multiple frame grabber
US7697031B2 (en) 2004-08-17 2010-04-13 Digital Imaging Systems Gmbh Intelligent light source with synchronization with a digital camera

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7155119B2 (en) 2004-08-17 2006-12-26 Dialog Imaging Systems Gmbh Multi-processing of a picture to speed up mathematics and calculation for one picture
US7248347B2 (en) 2004-08-17 2007-07-24 Dialog Imaging Systems Gmbh Focus processing with the distance of different target wheels
US7403229B2 (en) 2004-08-17 2008-07-22 Digital Imaging Systems Gmbh Testing of miniaturized digital camera modules with electrical and/or optical zoom functions
US7486309B2 (en) 2004-08-17 2009-02-03 Digital Imaging Systems Gmbh Digital camera module test system
US7505064B2 (en) 2004-08-17 2009-03-17 Digital Imaging Systems Gmbh Camera handling system
US7697031B2 (en) 2004-08-17 2010-04-13 Digital Imaging Systems Gmbh Intelligent light source with synchronization with a digital camera
US7812858B2 (en) 2004-08-17 2010-10-12 Digital Imaging Systems Gmbh Camera handling system
US7948519B2 (en) 2004-08-17 2011-05-24 Digital Imaging Systems Gmbh Intelligent light source with synchronization with a digital camera
US7965316B2 (en) 2004-08-17 2011-06-21 Digital Imaging Systems Gmbh Intelligent light source with synchronization with a digital camera
US7567273B2 (en) 2004-10-12 2009-07-28 Digital Imaging Systems Gmbh Multiple frame grabber
US8068182B2 (en) 2004-10-12 2011-11-29 Youliza, Gehts B.V. Limited Liability Company Multiple frame grabber
US8681274B2 (en) 2004-10-12 2014-03-25 Youliza, Gehts B.V. Limited Liability Company Multiple frame grabber

Similar Documents

Publication Publication Date Title
TWI582383B (en) Three-dimensional measuring device
WO2012053521A1 (en) Optical information processing device, optical information processing method, optical information processing system, and optical information processing program
JPWO2014069632A1 (en) Image processing apparatus, image processing method, image processing program, and recording medium
WO2007095090A2 (en) Method and apparatus and computer program product for collecting digital image data from microscope media-based specimens
WO2005104524A1 (en) Movement decision method for acquiring sub-pixel motion image appropriate for super resolution processing and imaging device using the same
JP2011118553A (en) Image processing apparatus, image processing method and computer program
JP2006003212A (en) Phase measurement system
JPWO2008078744A1 (en) Three-dimensional shape measuring apparatus, method and program by pattern projection method
JP2011114575A (en) Image photographing system, image photographing method, and image photographing program
CN109544643A (en) A kind of camera review bearing calibration and device
CN113920205B (en) Calibration method of non-coaxial camera
CN101447073A (en) Zoom lens calibration method
WO2018168757A1 (en) Image processing device, system, image processing method, article manufacturing method, and program
JP3507865B2 (en) Method and apparatus for real-time shape measurement by CCD camera using DMD
CN111189415A (en) Multifunctional three-dimensional measurement reconstruction system and method based on line structured light
CN101449590A (en) System and method for optical section image line removal
JP2003219436A (en) Apparatus for adjustment of pixel shift camera and measuring method
KR100694320B1 (en) Length Measuring Device and Method
JP2012109737A (en) Image coupler, image coupling method, image input/output system. program and recording medium
CN109859313B (en) 3D point cloud data acquisition method and device, and 3D data generation method and system
JP2019011984A (en) Displacement acquisition device, displacement acquisition method, and program
JP2001066112A (en) Image measuring method and device
TW201416993A (en) System for estimating image correlation degree based on feature speckles and method thereof
CN113962853B (en) Automatic precise resolving method for rotary linear array scanning image pose
JP2015187705A (en) Image acquisition device and method for controlling the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050426

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050823