JP2003217987A - Laminated electric double-layer capacitor - Google Patents

Laminated electric double-layer capacitor

Info

Publication number
JP2003217987A
JP2003217987A JP2002013856A JP2002013856A JP2003217987A JP 2003217987 A JP2003217987 A JP 2003217987A JP 2002013856 A JP2002013856 A JP 2002013856A JP 2002013856 A JP2002013856 A JP 2002013856A JP 2003217987 A JP2003217987 A JP 2003217987A
Authority
JP
Japan
Prior art keywords
voltage
unit
laminated
cell
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002013856A
Other languages
Japanese (ja)
Inventor
Ron Horikoshi
論 堀越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2002013856A priority Critical patent/JP2003217987A/en
Publication of JP2003217987A publication Critical patent/JP2003217987A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/56Solid electrolytes, e.g. gels; Additives therein
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

<P>PROBLEM TO BE SOLVED: To improve so as to extend a voltage applying lifetime of an in-line laminated unit. <P>SOLUTION: Between two collection electrode plates 2, having one surfaces adhering active carbon electrodes, polarization electrodes 5 having both surfaces adhering the active carbon electrode and gel electrolytic films 4 functioning as a separator are alternately overlapped and pinched, and in outer peripheral parts thereof, packings 3 having a seal function are pinched and laminated. Further, these are clamped from both sides by an end plate 1, to form an in-line laminated capacitor unit of an airtight structure, and further a plurality of separators 4 are made to overlap for use. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、積層型電気二重層
キャパシタに関する。詳しくは、電圧印加寿命を延長で
きるように改良したものである。
TECHNICAL FIELD The present invention relates to a laminated electric double layer capacitor. More specifically, it is improved so that the voltage application life can be extended.

【0002】[0002]

【従来の技術】従来の積層型電気二重層キャパシタ(以
後キャパシタと呼称する)は、図1に示すように、活性
炭電極を接着した2枚の集電極板2の間に、アルミ箔基
材の両面に活性炭電極を接着した分極電極(中間電極)
5とセパレータの機能を有するゲル電解質膜4を交互に
重ねて挟み込み、複数のセルを積み重ねたバイポーラ構
造をとしキャパシタユニットを構成している。活性炭電
極、集電極の外周部には内部の電解液及び電解質塩が漏
れ出さないように、シール機能を有するゴムパッキン3
を挟んで積層している。このパッキン3は同時に中間電
極5同士が触れないようにする絶縁の機能も兼ねてい
る。
2. Description of the Related Art As shown in FIG. 1, a conventional laminated electric double layer capacitor (hereinafter referred to as a capacitor) has an aluminum foil base material between two collector electrode plates 2 to which activated carbon electrodes are adhered. Polarized electrode (intermediate electrode) with activated carbon electrodes bonded on both sides
5 and the gel electrolyte membrane 4 having the function of a separator are alternately stacked and sandwiched to form a capacitor unit having a bipolar structure in which a plurality of cells are stacked. A rubber packing 3 having a sealing function so that the electrolytic solution and the electrolyte salt inside do not leak to the outer periphery of the activated carbon electrode and the collecting electrode.
Are sandwiched between. At the same time, the packing 3 also has an insulating function to prevent the intermediate electrodes 5 from touching each other.

【0003】キャパシタユニットの組立を行う際には、
必要な耐電圧分のセル(1セル耐電圧2.5V程度)を
積み重ね、図2に示すように、最後にエンドプレート1
で両側から挟み、絶縁スペーサ6を介してボルト7で締
め付けることにより密閉構造を保ちセル内部に加圧力を
加える構造としている。積層型キャパシタユニットは金
属電極端面の集電極にリード線を取り付ければユニット
内で直列接続となり、(1セル耐電圧)×(セル積層
数)だけの耐電圧を持つことになる。
When assembling the capacitor unit,
The cells for the required withstand voltage (1 cell withstand voltage of about 2.5V) are stacked, and as shown in FIG.
It is sandwiched from both sides with and is tightened with bolts 7 via the insulating spacer 6 to keep a sealed structure and apply a pressure to the inside of the cell. If a lead wire is attached to the collector electrode on the end face of the metal electrode, the multilayer capacitor unit will be connected in series within the unit and will have a withstand voltage of (1 cell withstand voltage) × (number of cell stacks).

【0004】この積層型キャパシタユニットは、一般的
な巻き取り方式を用いた同一容量のキャパシタと比較し
てケーブル等を必要とせず、コンパクトに耐電圧が高く
設計できるため設置体積を小さくすることができる。
This multilayer capacitor unit does not require a cable or the like as compared with a capacitor of the same capacity using a general winding method, and can be designed compact and have a high withstand voltage, so that the installation volume can be reduced. it can.

【0005】[0005]

【発明が解決しようとする課題】上述したように直列積
層型電気二重層キャパシタユニットは、セルを複数重ね
ることでユニット内で直列接続となり、それぞれのセル
が電圧を分担する結果ユニットの耐電圧を高くできる。
しかし、実際には複数重ねたセルが、それぞれ均等に電
圧を分担するとは限らない。繰り返し充放電動作や、長
時間ユニットに電圧を加えることで、各セルの分担電圧
には、バラツキが生じるからである。
As described above, the series laminated type electric double layer capacitor unit is connected in series in the unit by stacking a plurality of cells, and each cell shares the voltage, resulting in the withstand voltage of the unit. Can be higher
However, in practice, a plurality of stacked cells do not always share the voltage evenly. This is because variations in the shared voltage of each cell occur due to repeated charging / discharging operations and application of voltage to the unit for a long time.

【0006】各セルの分担電圧の合計がユニットに加わ
る電圧なので、分担電圧の低いセルが生じれば当然電圧
が高くなるセルが生じてくる。セル電圧が上昇すると劣
化が早まり、内部抵抗が増加し、静電容量が減少し、ユ
ニット特性の劣化が起きることになる。また、電圧の高
いセル、低いセルで次第に性能差が生じ、更に分担電圧
をばらつかせる要因となり、加速度的にユニットの劣化
が進むことになる。
Since the sum of the shared voltage of each cell is the voltage applied to the unit, if a cell with a low shared voltage occurs, naturally a cell with a high voltage also occurs. When the cell voltage rises, the deterioration is accelerated, the internal resistance increases, the capacitance decreases, and the unit characteristics deteriorate. In addition, a difference in performance gradually occurs between cells with high voltage and cells with low voltage, which becomes a factor to further disperse the shared voltage, and the deterioration of the unit is accelerated.

【0007】このように積層型電気二重層キャパシタユ
ニットにおいて、各セルの分担電圧のバラツキはユニッ
トの寿命を縮ませる。分担電圧がばらつく要因の1つと
して、各セルの自己放電特性の差があげられる。図3
に、従来例に係る自己放電特性を示す。自己放電が小さ
いセルは電圧の保持が良く分担電圧が次第に高くなって
ゆき、自己放電が大きいセルは電圧保持が悪く分担電圧
が次第に低くなってゆく。
As described above, in the laminated electric double layer capacitor unit, variations in the shared voltage of each cell shorten the life of the unit. One of the factors that causes the shared voltage to vary is the difference in the self-discharge characteristics of each cell. Figure 3
The self-discharge characteristic according to the conventional example is shown in FIG. A cell with a small self-discharge has a good voltage retention and the shared voltage gradually increases, and a cell with a large self-discharge has a poor voltage retention and the shared voltage gradually decreases.

【0008】これは主にユニットに長時間電圧を加えた
時に生じ、一度バラツキが生じると元に戻すことは難し
い。自己放電特性に差が生じる原因は、電極間を遮蔽す
るセパレータ4の電気的遮蔽能力差による。従来例では
厚さ50nmのセルロース系のセパレータ4を使用して
いるが、数m2に数個程度の割合で微小なピンホール、
傷が生じていることがある。この微少な穴は肉眼で発見
することは困難で、事実上検査することができない。
This mainly occurs when a voltage is applied to the unit for a long time, and once the variation occurs, it is difficult to restore it. The cause of the difference in the self-discharge characteristics is due to the difference in the electric shielding ability of the separator 4 that shields the electrodes. In the conventional example using the cellulose-based separator 4 having a thickness of 50nm, but tiny pinholes at a rate of about several to several m 2,
There may be scratches. This tiny hole is difficult to detect with the naked eye and virtually uninspectable.

【0009】分担電圧をばらつかせる2つ目の要因とし
て、各セルの静電容量の差があげられる。静電容量が大
きいと充電時電圧の上昇が小さくなり、静電容量が小さ
いと電圧上昇が大きくなる。結果、充電完了時の電圧が
各セルでばらつくことになる。電圧が高くなるセルは、
劣化が早く進み更に静電容量を小さくして電圧の上昇が
大きくなってしまう。従来例では、電極を定まったサイ
ズでカットして使用しているのであるが、この電極には
密度差があり、同じサイズにカットしても重量が異なっ
てくる。この重量差が静電容量差となる。
The second factor that causes the divided voltage to vary is the difference in the capacitance of each cell. If the electrostatic capacity is large, the voltage increase during charging will be small, and if the electrostatic capacity is small, the voltage increase will be large. As a result, the voltage at the completion of charging will vary from cell to cell. The cell with the higher voltage is
Deterioration progresses rapidly and the capacitance is further reduced to increase the voltage rise. In the conventional example, the electrode is used after being cut into a fixed size, but the electrodes have different densities, and even if they are cut into the same size, the weight is different. This weight difference becomes the capacitance difference.

【0010】3つ目の要因としては、アルミ箔集電基材
の物理的な接触があげられる。従来例では400μm厚
のA1085Hアルミ箔を用いている。積層型ユニット
の極間距離は約0.5mmでありパッキンを用いて締め
付けを行った場合アルミ箔に撓みが生じる。
The third factor is the physical contact of the aluminum foil current collector substrate. In the conventional example, A1085H aluminum foil having a thickness of 400 μm is used. The distance between the electrodes of the laminated unit is about 0.5 mm, and the aluminum foil is bent when tightened using packing.

【0011】この撓みが隣り合うセルのアルミ箔と接触
すると短絡が起こり、電圧はほとんど分担されなくな
る。1セル電圧の分担が行われなくなると、その分の電
圧が他のセルに分散して印加され全体の分担電圧を上昇
させてしまう。
When this bending comes into contact with the aluminum foils of the adjacent cells, a short circuit occurs and the voltage is hardly shared. When the sharing of the voltage of one cell is not performed, the voltage corresponding to that is dispersed and applied to other cells, and the sharing voltage of the whole is raised.

【0012】[0012]

【課題を解決するための手段】上記課題を解決する本発
明の請求項1に係る積層型電気二重層キャパシタは、片
面に活性炭電極を接着した2枚の集電極板間に両面に活
性炭電極を接着した分極電極とセパレータとして機能す
るゲル電解質膜を交互に重ねて挟み込みそれらの外周部
にはシール機能を有するパッキンを挟んで積層し、更に
これらをエンドプレートで両側から締め付けて密閉構造
の直列積層型キャパシタユニットとし、更に、前記セパ
レータを複数枚重ねて使用することを特徴とする。
A laminated electric double layer capacitor according to claim 1 of the present invention which solves the above problems has an activated carbon electrode on both sides between two collector electrode plates having an activated carbon electrode bonded on one side. Glued polarized electrodes and gel electrolyte membranes that function as separators are alternately stacked and sandwiched, and packing with a sealing function is sandwiched between them and laminated, and these are tightened from both sides with end plates to form a series laminated structure with a closed structure. Type capacitor unit, and further, a plurality of the separators are stacked and used.

【0013】上記課題を解決する本発明の請求項2に係
る積層型電気二重層キャパシタは、請求項1に記載した
前記直列積層型キャパシタユニットにおいて、前記活性
炭電極の重量を揃えて使用することを特徴とする。
A laminated electric double layer capacitor according to a second aspect of the present invention which solves the above-mentioned problems is that the weight of the activated carbon electrodes is equalized in the serial laminated type capacitor unit according to the first aspect. Characterize.

【0014】[0014]

【発明の実施の形態】〔実施例1〕本実施例は、ユニッ
ト中各セルの電圧分担を均等化させるため、各セルの自
己放電特性のバラツキを抑えるようにしたものである。
キャパシタセルの基本構成は、図1に示すように、対向
した活性炭電極とそれに挟まれるセルロース系セパレー
タとで構成され、活性炭電極の付いたアルミ箔集電基材
である中間電極から構成されている。集電極基材はパッ
キンでシールする事により、各セル間の分極機能、セパ
レート機能を果たしている。セルには最後に電解液を含
浸させ完成となる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS [Embodiment 1] In this embodiment, in order to equalize the voltage sharing among cells in a unit, variations in self-discharge characteristics of each cell are suppressed.
As shown in FIG. 1, the basic structure of the capacitor cell is composed of opposing activated carbon electrodes and a cellulose-based separator sandwiched between them, and is composed of an intermediate electrode which is an aluminum foil current collecting substrate with the activated carbon electrodes. . By sealing the collector electrode base material with packing, the polarization function and the separation function between the cells are fulfilled. Finally, the cell is impregnated with the electrolytic solution to complete the cell.

【0015】自己放電特性を均等化するためには、水分
の影響を取り除くために、活性炭電極及びアルミ箔集電
基材を150℃、10-5Torr以下の環境で24h以
上真空乾燥処理を行う。セパレータは、100℃、10
-5Torr以下で24h以上真空乾燥を行う。電解液に
ついては水分含有量10ppm以下のものを用いる必要
がある。従来例ではセパレータはセルロース系で厚さ5
0μmのものを使用しているが、セパレータにピンホー
ルが存在していると電子移動が起こり、そのまま自己放
電となるため、厚さ35μmのものを二枚重ねとして使
用する。
In order to equalize the self-discharge characteristics, in order to remove the influence of moisture, the activated carbon electrode and the aluminum foil current collecting base material are vacuum dried for 24 hours or longer in an environment of 150 ° C. and 10 −5 Torr or lower. . The separator is 100 ° C, 10
-Vacuum drying is performed for 24 hours or more at -5 Torr or less. It is necessary to use an electrolyte solution having a water content of 10 ppm or less. In the conventional example, the separator is made of cellulose and has a thickness of 5
Although the thickness of 0 μm is used, if a separator has a pinhole, electron transfer occurs and self-discharge occurs as it is. Therefore, a thickness of 35 μm is used as two layers.

【0016】セパレータが薄くなるとピンホール存在の
確率が上がるが、二枚を通して同位置にピンホールが重
なる確率は、ほぼ0に近い。また、セパレータの厚みを
増してピンホールが入る確率を下げることも可能である
が、0に近づけることは難しくあまり厚くするとセルの
内部抵抗が上がってしまう。本実施例による自己放近の
バラツキを抑える効果を図4に示す。図4に示すよう
に、本実施例では、セパレータを従来例の50μm厚品
から35μm厚品を二枚重ねて使用することで、ユニッ
ト各セルの自己放電特性のバラツキを抑え、ユニットに
長時間電圧が印加される際、分担電圧の均等化が図れ、
直列積層型ユニットの電圧印加寿命を従来比5倍以上に
延ばすことができた。
The thinner the separator, the higher the probability of pinholes existing, but the probability that two pinholes overlap at the same position is close to zero. It is also possible to increase the thickness of the separator to reduce the probability of pinholes, but it is difficult to approach 0 and if it is too thick, the internal resistance of the cell will increase. FIG. 4 shows the effect of suppressing the variation in self-approach according to this embodiment. As shown in FIG. 4, in this embodiment, by using two separators each having a thickness of 35 μm from the conventional 50 μm thick product, variations in the self-discharge characteristics of each cell of the unit are suppressed, and a voltage is applied to the unit for a long time. When applied, the sharing voltage can be equalized,
It has been possible to extend the voltage application life of the series-stacked unit to 5 times or more that of the conventional case.

【0017】〔実施例2〕本実施例は、ユニット中各セ
ルの電圧分担を均等化させるために、各セルの静電容量
バラツキを抑えるようにしたものである。現在キャパシ
タの電極は、定まったサイズ(例えば200mm×20
0mm)でカットを行いそれをそのまま用いている。本
実施例では電極を基準サイズよりもやや大きめにカット
しておき(例えば200mm×205mm)、基準とな
る電極重量を定める(例えば3.2g)。カットした電
極の重量を測定し、基準重量からの比率を求める。
[Embodiment 2] In this embodiment, in order to equalize the voltage sharing of each cell in the unit, the variation in the electrostatic capacitance of each cell is suppressed. Currently, the electrodes of capacitors have a fixed size (for example, 200 mm × 20
0mm) is cut and used as it is. In this embodiment, the electrode is cut to be slightly larger than the reference size (for example, 200 mm × 205 mm), and the reference electrode weight is determined (for example, 3.2 g). The weight of the cut electrode is measured and the ratio from the standard weight is obtained.

【0018】例えば、3.4gであれば5%重いので面
積比に応じて電極を205mmから12mmカットして
200mm×193mmとして電極重量を揃える。電極
密度のバラツキから基準重量よりも軽いものが出ないよ
うに予め大きめにカットする事が必要である。こうした
電極重量測定、計算、カット工程をキャパシタの組立時
に実施してユニットを組むことで静電容量のバラツキが
極めて小さいユニットを得ることができる。具体的に
は、静電容量のバラツキを±3%以内に抑えることがで
きた。
For example, since 3.4 g is 5% heavier, the electrodes are cut from 205 mm to 12 mm according to the area ratio, and the electrode weight is made uniform to 200 mm × 193 mm. It is necessary to preliminarily cut into a large size so as to prevent the weight less than the standard weight from coming out due to variations in electrode density. By carrying out such electrode weight measurement, calculation, and cutting steps at the time of assembling the capacitor to assemble the unit, it is possible to obtain a unit with extremely small variation in capacitance. Specifically, the variation in capacitance could be suppressed within ± 3%.

【0019】このように説明したように、本実施例で
は、活性炭電極の重量を揃えることでユニット各セルの
静電容量の均等化が図れ、充放電時にばらつく分担電圧
を抑えることが可能となり直列積層型ユニットのサイク
ル充放電寿命を従来比2倍以上に延ばすことができる。
As described above, in this embodiment, by equalizing the weights of the activated carbon electrodes, it is possible to equalize the electrostatic capacities of each unit cell, and it is possible to suppress the shared voltage that fluctuates during charging / discharging. The cycle charge / discharge life of the laminated unit can be extended to more than twice that of the conventional one.

【0020】〔実施例3〕本実施例は、実施例1,2の
製造条件に関する。即ち、パッキンで締め付け時、アル
ミ箔に撓みが生じないようにA1085Hアルミ箔のな
まし処理を行っていない硬質アルミ箔を用いる。但し、
硬質アルミ箔は、加熱処理を行っていないために、表面
に油や不純物がのっており、これらがキャパシタの性能
劣化の一因となる。よって、これら不純物を取り除くた
めにアルミ箔の圧延時に、約70℃の炭酸ナトリウム溶
液にアルミ箔を50秒ほど通して浸漬させ、その後水で
洗い流す。
[Embodiment 3] This embodiment relates to manufacturing conditions of Embodiments 1 and 2. That is, a hard aluminum foil which is not subjected to the annealing treatment of the A1085H aluminum foil is used so that the aluminum foil does not bend when tightened with packing. However,
Since the hard aluminum foil is not heat-treated, oil and impurities are deposited on the surface thereof, which contributes to the performance deterioration of the capacitor. Therefore, in order to remove these impurities, when the aluminum foil is rolled, the aluminum foil is immersed in a sodium carbonate solution at about 70 ° C. for about 50 seconds and then rinsed with water.

【0021】このようにして得られたアルミ箔を集電極
基材として用いることによりセル間短絡を起こさないキ
ャパシタユニットを得ることができる。このように説明
したように、本実施例では、集電極基材に硬質アルミ箔
を使用することにより、セル間短絡が起きることを防止
し、ユニット各セルの分担電圧上昇を防ぐことができ
た。
By using the aluminum foil thus obtained as a collector electrode substrate, it is possible to obtain a capacitor unit which does not cause a short circuit between cells. As described above, in the present embodiment, by using the hard aluminum foil for the collector electrode base material, it was possible to prevent the occurrence of a short circuit between cells and prevent an increase in the shared voltage of each unit cell. .

【0022】[0022]

【発明の効果】以上、実施例に基づいて具体的に説明し
たように、本発明では、セパレータを複数枚重ねて使用
することでユニット各セルの自己放電特性のバラツキを
抑え、ユニットに長時間電圧が印加される際、分担電圧
の均等化が図れ、直列積層型ユニットの電圧印加寿命を
従来に比べ大幅に延ばすことができる。更に、活性炭電
極の重量を揃えることでユニット各セルの静電容量の均
等化が図れ、充放電時にばらつく分担電圧を抑えること
が可能となり直列積層型ユニットのサイクル充放電寿命
を従来に比べ大幅に延ばすことができる。しかも、集電
極基材に硬質アルミ箔を使用することにより、セル間短
絡が起きることを防止し、ユニット各セルの分担電圧上
昇を防ぐことができる。
As described above in detail with reference to the embodiments, in the present invention, by using a plurality of separators in a stacked manner, it is possible to suppress variations in the self-discharge characteristics of each cell of the unit and to keep the unit for a long time. When a voltage is applied, the shared voltage can be equalized, and the voltage application life of the series laminated unit can be significantly extended compared to the conventional case. In addition, by equalizing the weight of the activated carbon electrodes, the capacitance of each unit cell can be equalized, and the shared voltage that fluctuates during charging and discharging can be suppressed, making the cycle charge and discharge life of the series stacked unit significantly larger than before. It can be postponed. Moreover, by using a hard aluminum foil for the collector electrode base material, it is possible to prevent a short circuit between cells and prevent an increase in the shared voltage of each unit cell.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来の積層型電気二重層キャパシタユニットの
基本構成図である。
FIG. 1 is a basic configuration diagram of a conventional laminated electric double layer capacitor unit.

【図2】従来の積層型電気二重層キャパシタの断面図で
ある。
FIG. 2 is a cross-sectional view of a conventional laminated electric double layer capacitor.

【図3】従来例に係る自己放電特性を示すグラフであ
る。
FIG. 3 is a graph showing a self-discharge characteristic according to a conventional example.

【図4】実施例に係る自己放電特性を示すグラフであ
る。
FIG. 4 is a graph showing self-discharge characteristics according to an example.

【符号の説明】[Explanation of symbols]

1 エンドプレート 2 集電極板 3 ゴムパッキン 4 ゲル電解質膜(セパレータ) 5 分極電極(中間電極) 6 絶縁スペーサ 7 締め付けボルト 1 End plate 2 collector electrode plate 3 rubber packing 4 Gel electrolyte membrane (separator) 5 Polarized electrode (intermediate electrode) 6 Insulation spacer 7 Tightening bolt

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 片面に活性炭電極を接着した2枚の集電
極板間に両面に活性炭電極を接着した分極電極とセパレ
ータとして機能するゲル電解質膜を交互に重ねて挟み込
みそれらの外周部にはシール機能を有するパッキンを挟
んで積層し、更にこれらをエンドプレートで両側から締
め付けて密閉構造の直列積層型キャパシタユニットと
し、更に、前記セパレータを複数枚重ねて使用すること
を特徴とする積層型電気二重層キャパシタ。
1. A polarizing electrode having an activated carbon electrode adhered on both sides and a gel electrolyte membrane functioning as a separator are alternately sandwiched between two collector electrode plates having an activated carbon electrode adhered on one side, and a seal is provided on the outer peripheral portion thereof. Laminated packings having a function are sandwiched, and these are further tightened from both sides by end plates to form a series laminated capacitor unit having a hermetic structure. Further, a plurality of the separators are stacked and used. Multilayer capacitor.
【請求項2】 前記直列積層型キャパシタユニットにお
いて、前記活性炭電極の重量を揃えて使用することを特
徴とする請求項1記載の積層型電気二重層キャパシタ。
2. The laminated electric double layer capacitor according to claim 1, wherein the activated carbon electrodes of the series laminated capacitor unit have the same weight.
JP2002013856A 2002-01-23 2002-01-23 Laminated electric double-layer capacitor Pending JP2003217987A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002013856A JP2003217987A (en) 2002-01-23 2002-01-23 Laminated electric double-layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002013856A JP2003217987A (en) 2002-01-23 2002-01-23 Laminated electric double-layer capacitor

Publications (1)

Publication Number Publication Date
JP2003217987A true JP2003217987A (en) 2003-07-31

Family

ID=27650706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002013856A Pending JP2003217987A (en) 2002-01-23 2002-01-23 Laminated electric double-layer capacitor

Country Status (1)

Country Link
JP (1) JP2003217987A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008072002A (en) * 2006-09-15 2008-03-27 Meidensha Corp Laminated electric double layer capacitor and voltage monitor device therefor
CN114392146A (en) * 2021-12-07 2022-04-26 奥佳华智能健康科技集团股份有限公司 Massage armchair 4D massage core and massage armchair
CN114834777A (en) * 2022-05-13 2022-08-02 张家界康华实业股份有限公司 Fresh wet bagged rice dumpling leaf and production method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008072002A (en) * 2006-09-15 2008-03-27 Meidensha Corp Laminated electric double layer capacitor and voltage monitor device therefor
CN114392146A (en) * 2021-12-07 2022-04-26 奥佳华智能健康科技集团股份有限公司 Massage armchair 4D massage core and massage armchair
CN114392146B (en) * 2021-12-07 2023-11-28 奥佳华智能健康科技集团股份有限公司 4D massage machine core of massage chair and massage chair
CN114834777A (en) * 2022-05-13 2022-08-02 张家界康华实业股份有限公司 Fresh wet bagged rice dumpling leaf and production method thereof
CN114834777B (en) * 2022-05-13 2024-04-05 张家界康华实业股份有限公司 Fresh wet bagged rice dumpling leaf and production method thereof

Similar Documents

Publication Publication Date Title
US9728343B2 (en) Electrical storage device element and electrical storage device
JP3422745B2 (en) Electric double layer capacitor
JP3497448B2 (en) Electric double layer capacitors and batteries
KR20140007330A (en) Supercapacitor with high specific density and energy density and method of manufacturing such supercapacitor
US20040233613A1 (en) Electric double layer capacitor and electric double layer capacitor stacked body
US20090180238A1 (en) Energy storage devices
US8922976B2 (en) Decoupling device and fabricating method thereof
JP2003217987A (en) Laminated electric double-layer capacitor
JP2011512662A (en) Multitrack supercapacitor
KR20170125229A (en) Energy storage capacitor with composite electrode structure
JP2002343681A (en) Electric double-layer capacitor
US6320741B1 (en) Electrical double layer capacitor
JP3085250B2 (en) Electric double layer capacitor
CN109817463B (en) Electrolytic capacitor
JP3921957B2 (en) Multilayer electric double layer capacitor
EP3499533A1 (en) Electric double layer capacitor
EP3490051B1 (en) Electrode assembly comprising electrode lead coupled to long-side area
JPH02177525A (en) Electric double layer capacitor
JP2008117939A (en) Electric double layer capacitor
JPS6030095B2 (en) Multilayer film capacitor
JP3986356B2 (en) Electric double layer capacitor
KR101357137B1 (en) Electrode assembly and electric energy storage device having the same
JPS58153322A (en) Condenser
KR102288784B1 (en) Electrochemical element
JP3519896B2 (en) Polarizing electrode and electric double layer capacitor using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070213

A131 Notification of reasons for refusal

Effective date: 20070522

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070723

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071030