JP2003217677A - Charging/discharging control device for nickel hydrogen battery - Google Patents

Charging/discharging control device for nickel hydrogen battery

Info

Publication number
JP2003217677A
JP2003217677A JP2002008521A JP2002008521A JP2003217677A JP 2003217677 A JP2003217677 A JP 2003217677A JP 2002008521 A JP2002008521 A JP 2002008521A JP 2002008521 A JP2002008521 A JP 2002008521A JP 2003217677 A JP2003217677 A JP 2003217677A
Authority
JP
Japan
Prior art keywords
nickel
hydrogen battery
charging
battery
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002008521A
Other languages
Japanese (ja)
Inventor
Naoki Kinoshita
直樹 木下
Kazuhiro Araki
一浩 荒木
Yoshiji Ishikura
誉士 石倉
Kazuhisa Okamoto
和久 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2002008521A priority Critical patent/JP2003217677A/en
Publication of JP2003217677A publication Critical patent/JP2003217677A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a charging/discharging control device for a nickel hydrogen battery, capable of detecting performance deterioration of the nickel hydrogen battery by discriminating the performance deterioration due to memory effect and that due to another factor. <P>SOLUTION: A controller 5 performs refreshing for recovering a chargeable capacity of the nickel hydrogen battery 2 decreased due to the memory effect. At the completion of refreshing, the nickel hydrogen battery 2 is determined to be deteriorated due to a factor other than the memory effect when the integrated value of a discharging current from the start of discharging from the nickel hydrogen battery 2 to a running motor 9 until the discharged depth of the nickel hydrogen battery 2 reaches a designated discharge stop level becomes smaller than a designated deterioration value, and information to urging replacement of the nickel hydrogen battery 2 is given. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ニッケル水素電池
の性能劣化の検知を行うニッケル水素電池の充放電制御
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nickel-hydrogen battery charge / discharge control device for detecting performance deterioration of a nickel-hydrogen battery.

【0002】[0002]

【従来の技術】例えば、電気自動車の駆動電源としてニ
ッケル水素電池が採用されている。そして、該電気自動
車においては、満充電状態で走行モータ等の負荷への放
電を開始してからニッケル水素電池の出力電圧が所定の
放電停止レベルに至るまでの放電電流の積算値が、新品
時における当該積算値から所定値以上低下したときに、
ニッケル水素電池の性能劣化が生じたと判断して、ニッ
ケル水素電池の交換を促す報知を行なうようにしてい
た。
2. Description of the Related Art For example, a nickel hydrogen battery is used as a driving power source for an electric vehicle. Then, in the electric vehicle, the integrated value of the discharge current from the time when the discharge to the load such as the traveling motor is started in the fully charged state until the output voltage of the nickel-hydrogen battery reaches the predetermined discharge stop level is When the integrated value falls below a predetermined value,
When it is judged that the performance of the nickel-hydrogen battery has deteriorated, a notification prompting replacement of the nickel-hydrogen battery is given.

【0003】しかし、ニッケル水素電池は、高温での充
電が繰り返されたときに、充電時にニッケル水素電池の
温度が上昇し始めるポイントが低SOC(State Of Cha
rge)側にずれるという特性(いわゆるメモリ効果)を
有している。そして、ニッケル水素電池の充電処理にお
いては、充電開始後、ニッケル水素電池の温度上昇率が
所定レベルに達したときにニッケル水素電池が満充電さ
れたと判断して充電処理を終了するのが一般的である。
However, the nickel-metal hydride battery has a low SOC (State Of Cha) at a point where the temperature of the nickel-metal hydride battery starts to rise during charging when charging is repeated at high temperature.
rge) side to the side (so-called memory effect). Then, in the charging process of the nickel-hydrogen battery, it is common to determine that the nickel-hydrogen battery is fully charged when the temperature increase rate of the nickel-hydrogen battery reaches a predetermined level after the start of charging, and terminate the charging process. Is.

【0004】そのため、メモリ効果によりニッケル水素
電池の温度上昇の開始ポイントが低SOC側にずれる
と、実際にニッケル水素電池が満充電状態(SOC10
0%付近)となる前にニッケル水素電池の温度上昇率が
前記所定レベルに達して充電処理が終了してしまい、こ
の場合には、ニッケル水素電池の充電可能容量が減少す
ることとなる。
Therefore, when the starting point of the temperature rise of the nickel-hydrogen battery shifts to the low SOC side due to the memory effect, the nickel-hydrogen battery is actually in a fully charged state (SOC10).
The temperature rise rate of the nickel-metal hydride battery reaches the predetermined level before the charging process ends before it becomes 0%), and in this case, the chargeable capacity of the nickel-metal hydride battery decreases.

【0005】その結果、充電が完了した状態で負荷への
放電を開始してからニッケル水素電池の出力電圧が前記
放電停止レベルに至るまでのニッケル水素電池の放電電
流の積算値が減少して、ニッケル水素電池の性能が劣化
したと判断され、上述したニッケル水素電池の交換を促
す報知が行なわれる。
As a result, the integrated value of the discharge current of the nickel-hydrogen battery from the time when the discharge to the load is started after the charging is completed until the output voltage of the nickel-hydrogen battery reaches the discharge stop level, It is determined that the performance of the nickel-hydrogen battery has deteriorated, and the above-mentioned notification prompting the replacement of the nickel-hydrogen battery is performed.

【0006】しかし、上述したメモリ効果によりニッケ
ル水素電池の充電可能容量が減少した状態は、ニッケル
水素電池を過充電する等の処理により解消することが可
能である。そのため、メモリ効果によるニッケル水素電
池の性能劣化とメモリ効果以外の要因によるニッケル水
素電池の性能劣化とを区別して検知し、メモリ効果以外
の要因によりニッケル水素電池の性能劣化が生じたとき
にのみ、ニッケル水素電池の交換を促す報知がなされる
ことが望ましい。
However, the state in which the chargeable capacity of the nickel-hydrogen battery has decreased due to the memory effect described above can be resolved by a process such as overcharging the nickel-hydrogen battery. Therefore, the performance deterioration of the nickel-hydrogen battery due to the memory effect and the performance deterioration of the nickel-hydrogen battery due to factors other than the memory effect are detected separately, and only when the performance deterioration of the nickel-hydrogen battery occurs due to the factors other than the memory effect. It is desirable to be informed that the nickel hydrogen battery should be replaced.

【0007】[0007]

【発明が解決しようとする課題】本発明は上記背景を鑑
みてなされたものであり、メモリ効果によるニッケル水
素電池の性能劣化を他の要因による性能劣化と区別して
検知することができるニッケル水素電池の充放電制御装
置を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above background, and can detect the performance deterioration of a nickel hydrogen battery due to the memory effect separately from the performance deterioration due to other factors. It is an object of the present invention to provide a charge / discharge control device of

【0008】[0008]

【課題を解決するための手段】本発明は上記目的を達成
するためになされたものであり、ニッケル水素電池を有
して、該ニッケル水素電池から該ニッケル水素電池を駆
動用電源とする電気自動車又はハイブリット車の電気負
荷に電流を供給すると共に該ニッケル水素電池を充電す
るニッケル水素電池の充放電制御装置の改良に関する。
The present invention has been made in order to achieve the above-mentioned object, and has an electric vehicle having a nickel-hydrogen battery and using the nickel-hydrogen battery as a driving power source. Alternatively, the present invention relates to an improvement of a charge / discharge control device for a nickel hydrogen battery that supplies current to an electric load of a hybrid vehicle and charges the nickel hydrogen battery.

【0009】そして、前記ニッケル水素電池の放電深度
を把握する放電深度把握手段と、前記ニッケル水素電池
の充電可能容量を回復させる容量回復充電を行う充電手
段と、該容量回復充電が完了した状態で前記ニッケル水
素電池から前記負荷への放電が開始されてから前記ニッ
ケル水素電池の放電深度が所定の放電停止レベルに達す
るまでの放電電流の積算値が、所定積算値よりも小さく
なったときに、前記ニッケル水素電池の劣化が生じたと
判断する劣化検知手段とを備えたことを特徴とする。
Then, a discharge depth grasping means for grasping the discharge depth of the nickel-hydrogen battery, a charging means for performing a capacity recovery charge for recovering the chargeable capacity of the nickel-hydrogen battery, and a state in which the capacity recovery charge is completed. When the integrated value of the discharge current from the start of the discharge from the nickel-hydrogen battery to the load until the depth of discharge of the nickel-hydrogen battery reaches a predetermined discharge stop level is less than a predetermined integrated value, A deterioration detecting unit that determines that the nickel-hydrogen battery has deteriorated is provided.

【0010】かかる本発明によれば、前記容量回復充電
を行ったにも拘わらず、前記ニッケル水素電池から前記
負荷への放電開始から前記ニッケル水素電池の放電深度
が前記放電停止レベルに達するまでの放電電流の積算値
が前記所定積算値よりも小さくなった場合には、前記ニ
ッケル水素電池の充電可能容量を回復することが不可能
になったと判断することができる。そこで、かかる場合
に、前記劣化検知手段は、前記ニッケル水素電池の劣化
が生じたと判断する。そして、これにより、前記ニッケ
ル水素電池に回復可能な劣化が生じたときは前記容量回
復充電により前記ニッケル水素電池の充電可能容量を回
復する処理を行い、前記ニッケル水素電池に回復不能な
劣化が生じたときには前記ニッケル水素電池の交換を促
す処理を行なうことができる。
According to the present invention, from the start of discharge from the nickel-hydrogen battery to the load until the depth of discharge of the nickel-hydrogen battery reaches the discharge stop level, despite performing the capacity recovery charge. When the integrated value of the discharge current becomes smaller than the predetermined integrated value, it can be determined that it is impossible to recover the chargeable capacity of the nickel hydrogen battery. Therefore, in such a case, the deterioration detection unit determines that the nickel hydrogen battery has deteriorated. Thus, when recoverable deterioration occurs in the nickel-hydrogen battery, a process for recovering the chargeable capacity of the nickel-hydrogen battery by the capacity recovery charging is performed, and the unrecoverable deterioration occurs in the nickel-hydrogen battery. In this case, it is possible to perform a process for prompting the replacement of the nickel-hydrogen battery.

【0011】また、前記ニッケル水素電池の温度を検出
する電池温度センサを備え、前記充放電制御手段は、該
電池温度センサの検出温度が所定の容量回復充電開始温
度以下となったときに、前記容量回復充電を行なうこと
を特徴とする。
The charging / discharging control means includes a battery temperature sensor for detecting the temperature of the nickel-hydrogen battery, and when the temperature detected by the battery temperature sensor becomes equal to or lower than a predetermined capacity recovery charging start temperature, It is characterized by performing capacity recovery charging.

【0012】かかる本発明によれば、前記ニッケル水素
電池の温度が前記容量回復充電開始温度以下に下がった
ときに、前記容量回復充電を実行することによって、前
記充放電制御手段は、前記ニッケル水素電池の容量回復
の効果を高めることができる。
According to the present invention, when the temperature of the nickel-hydrogen battery falls below the capacity-recovery charge start temperature, the charge-discharge control means executes the capacity-recovery charge so that the nickel-hydrogen battery can be controlled. The effect of battery capacity recovery can be enhanced.

【0013】また、前記ニッケル水素電池を冷却する冷
却手段と、該冷却手段の付近の温度を検出する外気温度
センサと、前記電池温度センサの検出温度が前記容量回
復充電開始温度よりも高く、且つ、前記外気温度センサ
の検出温度が前記電池温度センサの検出温度よりも所定
温度差以上低いときにのみ、前記冷却手段を作動させて
前記ニッケル水素電池を冷却する冷却制御手段とを備え
たことを特徴とする。
Further, cooling means for cooling the nickel-hydrogen battery, an outside air temperature sensor for detecting a temperature in the vicinity of the cooling means, and a temperature detected by the battery temperature sensor are higher than the capacity recovery charging start temperature, and A cooling control means for operating the cooling means to cool the nickel-hydrogen battery only when the temperature detected by the outside air temperature sensor is lower than the temperature detected by the battery temperature sensor by a predetermined temperature difference or more. Characterize.

【0014】かかる本発明によれば、前記冷却制御手段
は、前記冷却手段の付近の温度が前記ニッケル水素電池
の温度よりも前記所定温度差以上低く、前記ニッケル水
素電池に対する冷却効果が高いと判断できる場合にの
み、前記冷却手段を作動させる。そして、これにより、
冷却効果が低いときに前記冷却手段が無駄に作動するこ
とを防止することができる。
According to the present invention, the cooling control means determines that the temperature in the vicinity of the cooling means is lower than the temperature of the nickel-hydrogen battery by the predetermined temperature difference or more, and the cooling effect on the nickel-hydrogen battery is high. The cooling means is activated only when possible. And this
It is possible to prevent the cooling means from operating unnecessarily when the cooling effect is low.

【0015】また、前記充電手段は、前記ニッケル水素
電池に一定の充電電流を供給すると共に、前記ニッケル
水素電池への充電電流の供給を開始して該開始時からの
充電電流の積算値が所定の充電停止値以上となったとき
に充電電流の供給を停止する処理を繰り返すことによっ
て、前記容量回復充電を行なうことができる。
Further, the charging means supplies a constant charging current to the nickel-hydrogen battery and starts supplying the charging current to the nickel-hydrogen battery so that an integrated value of the charging current from the start is predetermined. The capacity recovery charging can be performed by repeating the process of stopping the supply of the charging current when the value becomes equal to or more than the charging stop value.

【0016】また、前記ニッケル水素電池の温度を検出
する電池温度検出センサを備え、前記ニッケル水素電池
に一定の充電電流を供給すると共に、前記ニッケル水素
電池への充電電流の供給を開始して前記電池温度センサ
の検出温度の上昇率が所定レベル以上となったときに充
電電流の供給を停止する処理を繰り返すことによって
も、前記充電手段は前記容量回復充電を行なうことがで
きる。
Further, a battery temperature detection sensor for detecting the temperature of the nickel-hydrogen battery is provided, and a constant charging current is supplied to the nickel-hydrogen battery, and the charging current is supplied to the nickel-hydrogen battery to start the charging. The charging means can also perform the capacity recovery charging by repeating the process of stopping the supply of the charging current when the rate of increase in the temperature detected by the battery temperature sensor becomes equal to or higher than the predetermined level.

【0017】[0017]

【発明の実施の形態】本発明の実施の形態の一例につい
て、図1〜図4を参照して説明する。図1は本発明のニ
ッケル水素電池の充放電制御装置の全体構成図、図2は
図1に示した充放電制御装置によるニッケル水素電池の
充放電処理のフローチャート、図3は図1に示した充放
電制御装置によるニッケル水素電池の充電処理のフロー
チャート、図4は図1に示した充放電制御装置によるニ
ッケル水素電池のリフレッシュ充電処理のフローチャー
トである。
BEST MODE FOR CARRYING OUT THE INVENTION An example of an embodiment of the present invention will be described with reference to FIGS. FIG. 1 is an overall configuration diagram of a charge / discharge control device for a nickel-hydrogen battery of the present invention, FIG. 2 is a flow chart of charge / discharge processing of a nickel-hydrogen battery by the charge-discharge control device shown in FIG. 1, and FIG. 3 is shown in FIG. FIG. 4 is a flowchart of a nickel-hydrogen battery charging process by the charge / discharge control device, and FIG. 4 is a flowchart of a nickel-hydrogen battery refresh charging process by the charge / discharge control device shown in FIG.

【0018】図1を参照して、ニッケル水素電池の充放
電制御装置1(以下、単に充放電制御装置1という)
は、ニッケル水素電池を駆動用電源とする電気自動車や
ハイブリット車に搭載され、複数のニッケル水素電池2
(2a〜2h)が直列に接続されたバッテリーボックス
3、ニッケル水素電池2を充電する充電回路4、充放電
制御装置1の作動を制御するコントローラ5、ニッケル
水素電池2を冷却する冷却システム6(本発明の冷却手
段に相当する)、ニッケル水素電池2の温度を検出する
電池温度センサ7、外気温を検出する外気温度センサ
6、バッテリーボックス3から出力される直流電圧を走
行用モータ9(本発明の電気自動車の負荷に相当する)
を駆動するための3相交流電圧に変換するインバータ1
0、バッテリーボックス3の出力電圧を検出する電圧セ
ンサ11、及びバッテリーボックス3の出力電流を検出
する電流センサ12を備えている。
Referring to FIG. 1, a charge / discharge control device 1 for a nickel-hydrogen battery (hereinafter, simply referred to as charge / discharge control device 1).
Is installed in an electric vehicle or a hybrid vehicle that uses a nickel-hydrogen battery as a driving power source.
A battery box 3 in which (2a to 2h) are connected in series, a charging circuit 4 that charges the nickel hydrogen battery 2, a controller 5 that controls the operation of the charge / discharge control device 1, and a cooling system 6 that cools the nickel hydrogen battery 2 ( (Corresponding to the cooling means of the present invention), a battery temperature sensor 7 that detects the temperature of the nickel-hydrogen battery 2, an outside air temperature sensor 6 that detects the outside air temperature, and a DC voltage output from the battery box 3 for the traveling motor 9 (the book). Equivalent to the load of the electric vehicle of the invention)
Inverter 1 for converting into three-phase AC voltage for driving
0, a voltage sensor 11 that detects the output voltage of the battery box 3, and a current sensor 12 that detects the output current of the battery box 3.

【0019】また、冷却システム6は、その一部がバッ
テリーボックス3内のニッケル水素電池2の付近に設け
られた循環回路20と、循環回路20内に冷媒を循環さ
せるためのポンプ21と、循環回路20の途中箇所に設
けられたラジエータ22と、ラジエータ22に送風して
ラジエータ22内を通過する冷媒を冷却する冷却ファン
23とにより構成される。なお、外気温度センサ8はラ
ジエータ22の付近に設けられてラジエータ22の周辺
温度を検出する。また、ニッケル水素電池3の充電時に
は、充電回路4は交流電源25と接続される。
The cooling system 6 has a circulation circuit 20 partially provided near the nickel-hydrogen battery 2 in the battery box 3, a pump 21 for circulating a refrigerant in the circulation circuit 20, and a circulation circuit. The circuit 20 includes a radiator 22 provided in the middle of the circuit 20, and a cooling fan 23 that blows air to the radiator 22 to cool the refrigerant passing through the radiator 22. The outside air temperature sensor 8 is provided in the vicinity of the radiator 22 and detects the ambient temperature of the radiator 22. When charging the nickel-hydrogen battery 3, the charging circuit 4 is connected to the AC power supply 25.

【0020】コントローラ5(本発明の放電深度把握手
段、充電手段、及び劣化検知手段の機能を含む)は、C
PU、RAM等により構成された電子ユニットであり、
コントローラ5には、電池温度センサ7、外気温度セン
サ8、電圧センサ11、及び電流センサ12の検出信号
が入力される。また、コントローラ5から出力される制
御信号により、充電回路4、ポンプ21、及び冷却ファ
ン23の作動が制御される。
The controller 5 (including the functions of the discharge depth grasping means, the charging means, and the deterioration detecting means of the present invention) is C
An electronic unit composed of PU, RAM, etc.,
Detection signals from the battery temperature sensor 7, the outside air temperature sensor 8, the voltage sensor 11, and the current sensor 12 are input to the controller 5. Further, the control signal output from the controller 5 controls the operations of the charging circuit 4, the pump 21, and the cooling fan 23.

【0021】次に、図2〜図4に示したフローチャート
に従って、充放電制御装置1の作動について説明する。
Next, the operation of the charge / discharge control device 1 will be described with reference to the flowcharts shown in FIGS.

【0022】図2のSTEP1でニッケル水素電池2の
充電が完了した状態で、STEP2で電気自動者の運転
者がイグニッションをONして電気自動車の走行を開始
すると、ニッケル水素電池2からインバータ10を介し
て走行用モータ9への電流供給が開始される。そして、
続くSTEP3で、コントローラ5は、電流センサ12
からの電流検出信号に基づいてニッケル水素電池2の放
電電流(Ibat)を検知し、ニッケル水素電池2の放電
電流の積算を開始する。
In step 1 of FIG. 2, when the nickel-hydrogen battery 2 is completely charged and the driver of the electric vehicle operator turns on the ignition and starts running the electric vehicle in step 2, the inverter 10 is switched from the nickel-hydrogen battery 2 to the vehicle. Through this, the supply of electric current to the traveling motor 9 is started. And
In the subsequent STEP 3, the controller 5 causes the current sensor 12
The discharge current (Ibat) of the nickel-hydrogen battery 2 is detected based on the current detection signal from, and integration of the discharge current of the nickel-hydrogen battery 2 is started.

【0023】次のSTEP4で、コントローラ5は、電
圧センサ11からの電圧検出信号に基づいて検知したニ
ッケル水素電池2の出力電圧(Vbat)を検知して、該
出力電圧(Vbat)からニッケル水素電池2の放電深度
を把握し、該放電深度が放電停止レベルに達したとき
に、STEP5に進んでニッケル水素電池2の放電を停
止する。そして、STEP6で、コントローラ5は、S
TEP5で放電を停止するまでの放電電流の積算値を劣
化判定値(本発明の所定積算値に相当する)と比較す
る。
At the next STEP 4, the controller 5 detects the output voltage (Vbat) of the nickel-hydrogen battery 2 detected based on the voltage detection signal from the voltage sensor 11, and detects the output voltage (Vbat) from the nickel-hydrogen battery. The discharge depth of 2 is grasped, and when the discharge depth reaches the discharge stop level, the process proceeds to STEP 5 to stop the discharge of the nickel hydrogen battery 2. Then, in STEP 6, the controller 5 sets S
The integrated value of the discharge current until the discharge is stopped at TEP5 is compared with the deterioration determination value (corresponding to the predetermined integrated value of the present invention).

【0024】STEP6で放電電流の積算値が劣化判定
値以上であったときは、コントローラ5は、ニッケル水
素電池2の充電可能容量の減少が生じていないと判断し
てSTEP7に進み、ニッケル水素電池2の充電可能容
量の低下が生じたことを示す一時的容量低下フラグ(F
tem)をリセット(Ftem=0)して、次のSTEP8で
図3に示した充電処理を実行する。
When the integrated value of the discharge current is equal to or higher than the deterioration determination value in STEP 6, the controller 5 determines that the chargeable capacity of the nickel-hydrogen battery 2 has not decreased, and proceeds to STEP 7 to proceed to the nickel-hydrogen battery. No. 2 temporary capacity drop flag (F
tem) is reset (Ftem = 0), and the charging process shown in FIG. 3 is executed in the next STEP8.

【0025】一方、STEP6で放電電流の積算値が劣
化判定値よりも小さかったときには、コントローラ5
は、ニッケル水素電池2の充電可能容量がいわゆるメモ
リ効果により一時的に減少したと判断してSTEP10
に分岐し、劣化判定許可フラグ(Fj)がセット(Fj=
1)されているか否かを確認する。
On the other hand, when the integrated value of the discharge current is smaller than the deterioration determination value in STEP 6, the controller 5
Judges that the chargeable capacity of the nickel-hydrogen battery 2 has temporarily decreased due to the so-called memory effect, and the STEP10
And the deterioration determination permission flag (Fj) is set (Fj =
1) Check whether it has been done.

【0026】ここで、劣化判定許可フラグ(Fj)は、
メモリ効果により一時的に減少したニッケル水素電池2
の充電可能容量を回復させるために行なわれるリフレッ
シュ充電(詳細は後述する)が所定サイクル実行された
ときにセットされるものである。そのため、STEP1
0で劣化判定許可フラグ(Fj)がセットされていたと
きには、リフレッシュ充電を行ったにも拘わらず、ニッ
ケル水素電池2の充電可能容量が回復しなかったと判断
することができる。
Here, the deterioration determination permission flag (Fj) is
Nickel-metal hydride battery temporarily reduced due to memory effect 2
Is set when a refresh charge (described later in detail) performed to restore the chargeable capacity of the is executed for a predetermined cycle. Therefore, STEP1
When the deterioration determination permission flag (Fj) is set to 0, it is possible to determine that the chargeable capacity of the nickel-hydrogen battery 2 has not recovered despite refresh charging.

【0027】そこで、この場合には、メモリ効果以外の
要因によりニッケル水素電池2の劣化が生じ、ニッケル
水素電池2の充電可能容量の回復は不能であると判断し
て、STEP10からSTEP15に分岐し、コントロ
ーラ5は運転席のディスプレイ等にニッケル水素電池2
の交換を促す表示をする。
Therefore, in this case, it is determined that the nickel-hydrogen battery 2 is deteriorated due to factors other than the memory effect, and it is impossible to recover the chargeable capacity of the nickel-hydrogen battery 2, and the process branches from STEP 10 to STEP 15. The controller 5 displays the nickel-hydrogen battery 2 on the driver's seat display or the like.
Display to prompt replacement of.

【0028】一方、STEP10で劣化判定フラグ(F
j)がセットされていなかった(Fj=0)ときには、通
常の充電が完了したときのニッケル水素電池2の充電量
が、劣化判定値よりも少なかったと判断することができ
る。そのため、この場合には、メモリ効果によりニッケ
ル水素電池2の充電可能容量が一時的に減少したと判断
して、コントローラ5は、STEP11で一時的容量低
下フラグ(Fj)をセット(Fj=1)してSTEP8に
進み、リフレッシュ充電を所定サイクル実行する。
On the other hand, in STEP 10, the deterioration determination flag (F
When j) is not set (Fj = 0), it can be determined that the charge amount of the nickel hydrogen battery 2 when the normal charging is completed is less than the deterioration determination value. Therefore, in this case, the controller 5 determines that the chargeable capacity of the nickel-hydrogen battery 2 has temporarily decreased due to the memory effect, and the controller 5 sets the temporary capacity decrease flag (Fj) in STEP 11 (Fj = 1). Then, in STEP 8, refresh charging is executed for a predetermined cycle.

【0029】次に、図3は、通常充電処理とリフレッシ
ュ充電を所定サイクル実行する処理を行なう「充電処
理」サブルーチンのフローチャートを示しており、図2
のSTEP8で該「充電処理」サブルーチンがコールさ
れる。なお、「充電処理」サブルーチンにおいて、リフ
レッシュ充電を所定回数実行する処理が本発明の容量回
復充電に相当する。
Next, FIG. 3 shows a flow chart of a "charging process" subroutine for performing the normal charging process and the process for executing the refresh charging for a predetermined cycle.
In STEP 8, the "charging process" subroutine is called. In the "charging process" subroutine, the process of performing refresh charging a predetermined number of times corresponds to the capacity recovery charging of the present invention.

【0030】「充電処理」サブルーチンがコールされる
と、コントローラ5は、先ず、図3のSTEP21で一
時的容量低下フラグ(Fj)がセットされているか否か
を確認する。そして、一時的容量フラグ(Fj)がセッ
トされていなかったとき(Fj=0)は、STEP30
に分岐して「通常充電」を実行する。すなわち、一定の
充電電流をニッケル水素電池2に供給して、電池温度セ
ンサ7の検出信号から検知されるニッケル水素電池2の
温度(Tbat)の上昇率が充電完了レベル以上となった
ときに充電電流の供給を停止してニッケル水素電池2の
充電を完了する。そして、STEP29に進み、「充電
処理」サブルーチンからリターンする。
When the "charge process" subroutine is called, the controller 5 first confirms in STEP 21 of FIG. 3 whether the temporary capacity decrease flag (Fj) is set. Then, when the temporary capacity flag (Fj) is not set (Fj = 0), STEP30
Branch to and execute "normal charge". That is, a constant charging current is supplied to the nickel-hydrogen battery 2, and charging is performed when the rate of increase in the temperature (Tbat) of the nickel-hydrogen battery 2 detected from the detection signal of the battery temperature sensor 7 is equal to or higher than the charging completion level. The supply of electric current is stopped to complete the charging of the nickel hydrogen battery 2. Then, the process proceeds to STEP29 and returns from the "charging process" subroutine.

【0031】一方、一時的容量低下フラグ(Fj)がセ
ットされていたとき(Fj=1)には、STEP23に
進んで「通常充電」を実行した後、コントローラ5は、
STEP24で「リフレッシュ充電」を1サイクル実行
する(リフレッシュ充電の詳細については後述する)。
そして、コントローラ5は、続くSTEP25でリフレ
ッシュ充電カウンタ(Rc)をカウントアップし、ST
EP24でリフレッシュカウンタ(Rc)のカウント値
が所定回数以上となるまで、STEP24に分岐して
「リフレッシュ充電」を繰り返し実行する。
On the other hand, when the temporary capacity decrease flag (Fj) is set (Fj = 1), the controller 5 proceeds to STEP 23 to execute "normal charge", and then the controller 5
In STEP 24, "refresh charging" is executed for one cycle (details of refresh charging will be described later).
Then, the controller 5 counts up the refresh charge counter (Rc) in the subsequent STEP25, and the ST
Until the count value of the refresh counter (Rc) reaches a predetermined number of times in EP24, the process branches to STEP24 and "refresh charging" is repeatedly executed.

【0032】そして、リフレッシュカウンタ(Rc)の
カウント値が所定回数に達したときにSTEP27に進
み、コントローラ5は、一時的容量低下フラグ(Fte
m)をリセットし(Ftem=0)、STEP28で、リフ
レッシュ充電が所定回数行なわれて上述した図2のST
EP10におけるニッケル水素電池2の劣化判定が可能
になったことを示すために、劣化判定許可フラグ(F
j)をセット(Fj=1)してSTEP29で「充電処
理」サブルーチンからリターンする。
Then, when the count value of the refresh counter (Rc) reaches a predetermined number, the process proceeds to STEP 27, and the controller 5 causes the temporary capacity decrease flag (Fte
m) is reset (Ftem = 0), and in step 28, refresh charging is performed a predetermined number of times and the above-described ST of FIG.
In order to indicate that the deterioration determination of the nickel-hydrogen battery 2 in EP10 has become possible, the deterioration determination permission flag (F
j) is set (Fj = 1), and in STEP 29, the "charging process" subroutine is returned.

【0033】次に、図4は、リフレッシュ充電の1サイ
クルを実行する「リフレッシュ充電処理」サブルーチン
のフローチャートを示しており、図3のSTEP23で
該「リフレッシュ充電処理」サブルーチンがコールされ
る。
Next, FIG. 4 shows a flow chart of a "refresh charge processing" subroutine for executing one cycle of refresh charge, and the "refresh charge processing" subroutine is called in STEP23 of FIG.

【0034】「リフレッシュ充電処理」サブルーチンが
コールされると、コントローラ5は、先ず、STEP4
1で電池温度センサ7の検出信号からニッケル水素電池
2の温度(Tbat)を検知し、STEP42でニッケル
水素電池2の温度(Tbat)がリフレッシュ充電開始温
度(Tchst)以下であるか否かを確認する。
When the "refresh charge processing" subroutine is called, the controller 5 firstly proceeds to STEP4.
In 1, the temperature (Tbat) of the nickel-hydrogen battery 2 is detected from the detection signal of the battery temperature sensor 7, and in STEP 42, it is confirmed whether or not the temperature (Tbat) of the nickel-hydrogen battery 2 is below the refresh charge start temperature (Tchst). To do.

【0035】そして、ニッケル水素電池2の温度(Tba
t)がリフレッシュ充電開始温度(Tchst)以下であっ
たときは、STEP43に進んで一定の充電電流の供給
を開始する。このように、ニッケル水素電池2の温度
(Tbat)が低い状態で充電電流を供給してニッケル水
素電池2を過充電することによって、メモリ効果により
減少したニッケル水素電池2の充電可能容量を回復させ
る効果を高めることができる。
Then, the temperature of the nickel-hydrogen battery 2 (Tba
When t) is equal to or lower than the refresh charge start temperature (Tchst), the process proceeds to STEP 43 to start supplying a constant charge current. In this way, the charging current is supplied to overcharge the nickel-hydrogen battery 2 in a state where the temperature (Tbat) of the nickel-hydrogen battery 2 is low, so that the chargeable capacity of the nickel-hydrogen battery 2 reduced by the memory effect is restored. The effect can be enhanced.

【0036】そして、コントローラ5は、STEP44
でニッケル水素電池2の検出温度の上昇率(ΔT/Δ
t)がリフレッシュ充電終了レベル(Cend,本発明の
所定レベルに相当する)以上となったときに、STEP
45に進んで充電電流の供給を停止し、リフレッシュ充
電の1サイクルを終了してSTEP46で「リフレッシ
ュ充電処理」サブルーチンからリターンする。
Then, the controller 5 moves to STEP44.
The rate of increase in the temperature detected by the nickel-hydrogen battery 2 (ΔT / Δ
When t) is equal to or higher than the refresh charge end level (Cend, which corresponds to the predetermined level of the present invention), STEP
In step 45, the supply of charging current is stopped, one cycle of refresh charging is completed, and in step 46, the "refresh charging process" subroutine is returned.

【0037】一方、STEP42でニッケル水素電池2
の温度(Tbat)がリフレッシュ充電開始温度(Tchs
t)よりも高く、リフレッシュ充電を行ってもメモリ効
果により減少したニッケル水素電池2の充電可能容量を
回復させる効果が低いときには、STEP50に分岐し
て、コントローラ5はSTEP50で電池温度センサ7
の検出信号からニッケル水素電池2の温度(Tbat)を
検知し、STEP51で外気温度センサ8の検出温度か
らラジエータ6付近の外気温度(Tamb)を検知する。
On the other hand, in STEP 42, the nickel hydrogen battery 2
Temperature (Tbat) is the refresh charge start temperature (Tchs
t) and the effect of recovering the chargeable capacity of the nickel-hydrogen battery 2 that has decreased due to the memory effect even if refresh charging is performed is low, the process branches to STEP50, and the controller 5 sends the battery temperature sensor 7 at STEP50.
The temperature (Tbat) of the nickel-hydrogen battery 2 is detected from the detection signal of 1 and the outside air temperature (Tamb) near the radiator 6 is detected from the temperature detected by the outside air temperature sensor 8 in STEP 51.

【0038】そして、次のSTEP52でバッテリ冷却
システムがON状態(ポンプ21と冷却ファン23が作
動した状態)にあるときはSTEP60に分岐し、コン
トローラ5は、ニッケル水素電池2の温度(Tbat)と
外気温度(Tamb)との差が、第2の温度差(Tdef2)
よりも低く、冷却システムをONさせてもニッケル水素
2の冷却効果が低いときには、STEP61に進んでバ
ッテリー冷却システム6をOFF状態(ポンプ21と冷
却ファン23を停止)にする。
Then, in step 52, when the battery cooling system is in the ON state (state in which the pump 21 and the cooling fan 23 are operating), the process branches to step 60, and the controller 5 sets the temperature (Tbat) of the nickel-hydrogen battery 2 and The difference from the outside air temperature (Tamb) is the second temperature difference (Tdef2)
When the cooling effect of the nickel hydrogen 2 is low even when the cooling system is turned on, the process proceeds to STEP 61, where the battery cooling system 6 is turned off (the pump 21 and the cooling fan 23 are stopped).

【0039】また、STEP60で、ニッケル水素電池
2の温度(Tbat)と外気温度(Tamb)との差が第2の
温度差(Tdef2)よりも大きく、バッテリー冷却システ
ム6によるニッケル水素電池2の冷却効果が高いときに
は、STEP55に分岐して、コントローラ5はバッテ
リー冷却システム6をON状態に維持する。
In STEP 60, the difference between the temperature (Tbat) of the nickel-hydrogen battery 2 and the outside air temperature (Tamb) is larger than the second temperature difference (Tdef2), and the nickel-hydrogen battery 2 is cooled by the battery cooling system 6. When the effect is high, the process branches to STEP 55, and the controller 5 maintains the battery cooling system 6 in the ON state.

【0040】次に、STEP52でバッテリー冷却シス
テム6がOFF状態であったときはSTEP53に進
み、コントローラ5は、ニッケル水素電池2の温度(T
bat)と外気温度(Tamb)との差が第1の温度差(Tde
f1,本発明の所定温度差に相当する)よりも大きく、バ
ッテリー冷却システム6によるニッケル水素電池2の冷
却効果が高いときに、STEP54に進んでバッテリー
冷却システム6をON状態とする。
Next, when the battery cooling system 6 is in the OFF state in STEP52, the process proceeds to STEP53, and the controller 5 causes the temperature of the nickel-hydrogen battery 2 (T
bat) and the outside air temperature (Tamb) are the first temperature difference (Tde
f1 (corresponding to the predetermined temperature difference of the present invention) and the effect of cooling the nickel-hydrogen battery 2 by the battery cooling system 6 is high, the process proceeds to STEP 54 and the battery cooling system 6 is turned on.

【0041】また、STEP53で、ニッケル水素電池
2の温度(Tbat)と外気温度(Tamb)との差が第1の
温度差(Tdef1,本発明の所定温度差に相当する)以下
であって、バッテリー冷却システム6によるニッケル水
素電池2の冷却効果が低いときには、STEP55に分
岐し、コントローラ5は、バッテリー冷却システム6を
OFF状態に維持する。
In STEP 53, the difference between the temperature (Tbat) of the nickel-hydrogen battery 2 and the outside air temperature (Tamb) is less than or equal to the first temperature difference (Tdef1, which corresponds to the predetermined temperature difference of the present invention), When the cooling effect of the nickel hydrogen battery 2 by the battery cooling system 6 is low, the process branches to STEP 55, and the controller 5 maintains the battery cooling system 6 in the OFF state.

【0042】このように、STEP50〜STEP5
4、及びSTEP60〜STEP61の処理により、ニ
ッケル水素電池2の温度(Tbat)よりも外気温度(Ta
mb)の方が第1の温度差(Tdef 1)以上低く、ニッケ
ル水素電池2に対する冷却効果が高い場合にのみバッテ
リー冷却システム6をON状態とすることによって、コ
ントローラ5は、ポンプ21と冷却ファン23により無
駄な電力が消費されることを防止している。
In this way, STEP50 to STEP5
4 and the processing of STEP 60 to STEP 61, the outside air temperature (Ta) is higher than the temperature (Tbat) of the nickel hydrogen battery 2.
mb) is lower than the first temperature difference (Tdef 1) or more and the battery cooling system 6 is turned on only when the cooling effect on the nickel hydrogen battery 2 is high, so that the controller 5 causes the pump 21 and the cooling fan. The use of 23 prevents unnecessary power consumption.

【0043】なお、第2の温度差(Tdef 2)は、ヒス
テリシスを持たせてバッテリー冷却システム6が頻繁に
ON/OFFすることを防止するため、第1の温度差
(Tdef1)よりも若干小さい値に設定されている。
The second temperature difference (Tdef2) is slightly smaller than the first temperature difference (Tdef1) in order to prevent the battery cooling system 6 from being frequently turned on / off by providing a hysteresis. It is set to a value.

【0044】そして、STEP55でニッケル水素電池
2の温度(Tbat)がリフレッシュ充電開始温度(Tchs
t)以下となるまで、STEP55からSTEP50に
分岐して、バッテリー冷却システム6による強制冷却と
自然冷却により、ニッケル水素電池2が冷却される。
Then, in STEP 55, the temperature (Tbat) of the nickel hydrogen battery 2 is set to the refresh charge start temperature (Tchs).
Until the time becomes equal to or less than t), the nickel-hydrogen battery 2 is cooled by branching from STEP 55 to STEP 50 and by forced cooling and natural cooling by the battery cooling system 6.

【0045】そして、STEP55でニッケル水素電池
2の温度(Tbat)がリフレッシュ充電開始温度(Tchs
t)以下となったときに、STEP56に進んで、コン
トローラ5はバッテリー冷却システム6をOFFしてS
TEP43に戻り、コントローラ5はニッケル水素電池
2への充電電流の供給を開始する。
Then, in STEP 55, the temperature (Tbat) of the nickel hydrogen battery 2 is set to the refresh charge start temperature (Tchs).
t) or less, the process proceeds to STEP 56, and the controller 5 turns off the battery cooling system 6 and S
Returning to TEP 43, the controller 5 starts supplying the charging current to the nickel hydrogen battery 2.

【0046】なお、本実施の形態においては、図4のS
TEP44でニッケル水素電池2の温度の上昇率(ΔT
/Δt)がリフレッシュ充電終了レベル(Cend)以上
となったときに、リフレッシュ充電を終了してニッケル
水素電池2を過充電したが、STEP43で充電電流の
供給を開始してからの充電電流の積算値が所定の充電停
止値に達したときに、リフレッシュ充電を終了してニッ
ケル水素電池2を過充電するようにしてもよい。
In the present embodiment, S of FIG.
With TEP44, the temperature rise rate of the nickel-hydrogen battery 2 (ΔT
/ Δt) is equal to or higher than the refresh charge end level (Cend), the refresh charge is terminated and the nickel-hydrogen battery 2 is overcharged, but the charge current is integrated in STEP 43 after the charge current supply is started. When the value reaches a predetermined charge stop value, refresh charging may be terminated and the nickel hydrogen battery 2 may be overcharged.

【0047】また、本実施の形態では、バッテリー冷却
システム6によりニッケル水素電池2を強制的に冷却す
るようにしたが、バッテリー冷却システム6を備えずに
自然冷却のみよりニッケル水素電池2を冷却する場合で
あっても、本発明の効果を得ることができる。
Further, in this embodiment, the nickel-hydrogen battery 2 is forcibly cooled by the battery cooling system 6, but the nickel-hydrogen battery 2 is cooled only by natural cooling without the battery cooling system 6. Even in such a case, the effect of the present invention can be obtained.

【0048】また、本実施の形態では、本発明の冷却手
段として、冷却回路20内に冷媒を循環させてニッケル
水素電池2を冷却する水冷式のバッテリー冷却システム
6を示したが、ファンの送風によりニッケル水素電池2
を直接的に冷却する空冷式のバッテリー冷却システムを
用いてもよい。
Further, in the present embodiment, as the cooling means of the present invention, the water cooling type battery cooling system 6 for cooling the nickel hydrogen battery 2 by circulating the refrigerant in the cooling circuit 20 is shown. By nickel hydrogen battery 2
An air-cooled battery cooling system that directly cools the battery may be used.

【図面の簡単な説明】[Brief description of drawings]

【図1】ニッケル水素電池の充放電制御装置の全体構成
図。
FIG. 1 is an overall configuration diagram of a charge / discharge control device for a nickel hydrogen battery.

【図2】図1に示した充放電制御装置によるニッケル水
素電池の充放電処理のフローチャート。
FIG. 2 is a flowchart of a charging / discharging process of a nickel hydrogen battery by the charging / discharging control device shown in FIG.

【図3】図1に示した充放電制御装置によるニッケル水
素電池の充電処理のフローチャート。
FIG. 3 is a flowchart of a charging process of a nickel-hydrogen battery by the charge / discharge control device shown in FIG.

【図4】図1に示した充放電制御装置によるニッケル水
素電池のリフレッシュ充電処理のフローチャート。
FIG. 4 is a flowchart of a refresh charge process of a nickel hydrogen battery by the charge / discharge control device shown in FIG.

【符号の説明】[Explanation of symbols]

1…ニッケル水素電池の充放電制御装置、2…ニッケル
水素電池、3…バッテリーボックス、4…充電回路、5
…コントローラ、6…バッテリー冷却システム、7…電
池温度センサ、8…外気温度センサ
1 ... Nickel-hydrogen battery charge / discharge control device, 2 ... Nickel-hydrogen battery, 3 ... Battery box, 4 ... Charging circuit, 5
... controller, 6 ... battery cooling system, 7 ... battery temperature sensor, 8 ... outside air temperature sensor

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H02J 7/00 H02J 7/00 Y (72)発明者 石倉 誉士 埼玉県和光市中央1丁目4番1号 株式会 社本田技術研究所内 (72)発明者 岡本 和久 埼玉県和光市中央1丁目4番1号 株式会 社本田技術研究所内 Fターム(参考) 2G016 CA03 CB05 CB22 CB32 CC02 CC07 CC23 CC27 CC28 CF06 5G003 AA01 BA01 CA14 CB01 EA05 EA06 EA08 FA06 GB06 GC05 5H030 AA04 BB01 FF22 FF42 5H031 KK08 Front page continuation (51) Int.Cl. 7 Identification code FI theme code (reference) H02J 7/00 H02J 7/00 Y (72) Inventor Takashi Ishikura 1-4-1 Chuo, Wako-shi, Saitama Stock Association In-house Honda R & D Laboratories (72) Inventor Kazuhisa Okamoto 1-4-1 Chuo Wako, Saitama Stock Company Honda R & D Laboratories F-term (reference) 2G016 CA03 CB05 CB22 CB32 CC02 CC07 CC23 CC27 CC28 CF06 5G003 AA01 BA01 CA14 CB01 EA05 EA06 EA08 FA06 GB06 GC05 5H030 AA04 BB01 FF22 FF42 5H031 KK08

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】ニッケル水素電池を有して、該ニッケル水
素電池から該ニッケル水素電池を駆動用電源とする電気
自動車又はハイブリット車の電気負荷に電流を供給する
と共に該ニッケル水素電池を充電するニッケル水素電池
の充放電制御装置において、 前記ニッケル水素電池の放電深度を把握する放電深度把
握手段と、 前記ニッケル水素電池の充電可能容量を回復させて前記
ニッケル水素電池を充電する容量回復充電を行う充電手
段と、 該容量回復充電が完了した状態で前記ニッケル水素電池
から前記負荷への放電が開始されてから前記ニッケル水
素電池の放電深度が所定の放電停止レベルに達するまで
の放電電流の積算値が、所定積算値よりも小さくなった
ときに、前記ニッケル水素電池の劣化が生じたと判断す
る劣化検知手段とを備えたことを特徴とするニッケル水
素電池の充放電制御装置。
1. A nickel which has a nickel-hydrogen battery and supplies a current from the nickel-hydrogen battery to an electric load of an electric vehicle or a hybrid vehicle using the nickel-hydrogen battery as a driving power source and charges the nickel-hydrogen battery. In a charge / discharge control device for a hydrogen battery, a depth-of-discharge grasping means for grasping the depth of discharge of the nickel-hydrogen battery, and a charge for performing capacity recovery charging for recovering the chargeable capacity of the nickel-hydrogen battery to charge the nickel-hydrogen battery An integrated value of the discharge current from the start of discharge from the nickel-hydrogen battery to the load in a state where the capacity recovery charging is completed until the depth of discharge of the nickel-hydrogen battery reaches a predetermined discharge stop level. And a deterioration detection unit that determines that the nickel-hydrogen battery has deteriorated when the value becomes smaller than a predetermined integrated value. Charge and discharge control device of the nickel hydrogen battery, characterized in that.
【請求項2】前記ニッケル水素電池の温度を検出する電
池温度センサを備え、前記充電手段は、該電池温度セン
サの検出温度が所定の容量回復充電開始温度以下となっ
たときに、前記容量回復充電を行なうことを特徴とする
請求項1記載のニッケル水素電池の充放電制御装置。
2. A battery temperature sensor for detecting the temperature of the nickel-hydrogen battery, wherein the charging means recovers the capacity when the temperature detected by the battery temperature sensor becomes equal to or lower than a predetermined capacity recovery charge start temperature. The charging / discharging control device for a nickel-hydrogen battery according to claim 1, which is charged.
【請求項3】前記ニッケル水素電池を冷却する冷却手段
と、該冷却手段の付近の温度を検出する外気温度センサ
と、 前記電池温度センサの検出温度が前記容量回復充電開始
温度よりも高く、且つ、前記外気温度センサの検出温度
が前記電池温度センサの検出温度よりも所定温度差以上
低いときにのみ、前記冷却手段を作動させて前記ニッケ
ル水素電池を冷却する冷却制御手段とを備えたことを特
徴とする請求項2記載のニッケル水素電池の充放電制御
装置。
3. A cooling means for cooling the nickel-hydrogen battery, an outside air temperature sensor for detecting a temperature in the vicinity of the cooling means, a temperature detected by the battery temperature sensor is higher than the capacity recovery charging start temperature, and A cooling control means for operating the cooling means to cool the nickel-hydrogen battery only when the temperature detected by the outside air temperature sensor is lower than the temperature detected by the battery temperature sensor by a predetermined temperature difference or more. The charge / discharge control device for a nickel-hydrogen battery according to claim 2.
【請求項4】前記充電手段は、前記ニッケル水素電池に
一定の充電電流を供給すると共に、前記ニッケル水素電
池への充電電流の供給を開始して該開始時からの充電電
流の積算値が所定の充電停止値以上となったときに充電
電流の供給を停止する処理を繰り返すことによって、前
記容量回復充電を行なうことを特徴とする請求項1から
請求項3のうちいずれか1項記載のニッケル水素電池の
充放電制御装置。
4. The charging means supplies a constant charging current to the nickel-hydrogen battery and starts supplying the charging current to the nickel-hydrogen battery so that an integrated value of the charging current from the start is predetermined. 4. The nickel according to any one of claims 1 to 3, wherein the capacity recovery charging is performed by repeating a process of stopping the supply of the charging current when the charging stop value becomes equal to or more than the charging stop value. Charge / discharge control device for hydrogen batteries.
【請求項5】前記ニッケル水素電池の温度を検出する電
池温度検出センサを備え、 前記充電手段は、前記ニッケル水素電池に一定の充電電
流を供給すると共に、前記ニッケル水素電池への充電電
流の供給を開始して前記電池温度センサの検出温度の上
昇率が所定レベル以上となったときに充電電流の供給を
停止する処理を繰り返すことによって、前記容量回復充
電を行なうことを特徴とする請求項1記載のニッケル水
素電池の充放電制御装置。
5. A battery temperature detection sensor for detecting a temperature of the nickel-hydrogen battery, wherein the charging means supplies a constant charging current to the nickel-hydrogen battery and supplies a charging current to the nickel-hydrogen battery. 2. The capacity recovery charging is performed by repeating the process of starting the charging and stopping the supply of the charging current when the rate of increase in the temperature detected by the battery temperature sensor becomes equal to or higher than a predetermined level. A nickel-hydrogen battery charge / discharge control device as described.
JP2002008521A 2002-01-17 2002-01-17 Charging/discharging control device for nickel hydrogen battery Pending JP2003217677A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002008521A JP2003217677A (en) 2002-01-17 2002-01-17 Charging/discharging control device for nickel hydrogen battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002008521A JP2003217677A (en) 2002-01-17 2002-01-17 Charging/discharging control device for nickel hydrogen battery

Publications (1)

Publication Number Publication Date
JP2003217677A true JP2003217677A (en) 2003-07-31

Family

ID=27646759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002008521A Pending JP2003217677A (en) 2002-01-17 2002-01-17 Charging/discharging control device for nickel hydrogen battery

Country Status (1)

Country Link
JP (1) JP2003217677A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1699106A2 (en) * 2005-03-02 2006-09-06 Panasonic EV Energy Co., Ltd. Temperature management apparatus and power supply
JP2009515306A (en) * 2005-11-08 2009-04-09 ビーワイディー カンパニー リミテッド Heat dissipating device for battery pack and battery pack using the same
CN103825062A (en) * 2013-12-23 2014-05-28 北京海克智动科技开发有限公司 Battery management system of electric vehicle and control method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1699106A2 (en) * 2005-03-02 2006-09-06 Panasonic EV Energy Co., Ltd. Temperature management apparatus and power supply
EP1699106A3 (en) * 2005-03-02 2007-10-10 Panasonic EV Energy Co., Ltd. Temperature management apparatus and power supply
US7647788B2 (en) 2005-03-02 2010-01-19 Panasonic Ev Energy Co., Ltd. Temperature management apparatus and power supply
JP2009515306A (en) * 2005-11-08 2009-04-09 ビーワイディー カンパニー リミテッド Heat dissipating device for battery pack and battery pack using the same
CN103825062A (en) * 2013-12-23 2014-05-28 北京海克智动科技开发有限公司 Battery management system of electric vehicle and control method thereof

Similar Documents

Publication Publication Date Title
JP6569446B2 (en) Battery control device
JP3615445B2 (en) Hybrid car power supply
US8237398B2 (en) Electric system, charging device and charging method for electric system for discharging of a power storage mechanism for resetting a state of a charge
US9987932B2 (en) Battery system
JP4049959B2 (en) Battery charging method
US20110148361A1 (en) Battery system and method for detecting current restriction state in a battery system
JP6791123B2 (en) Power storage element monitoring device, power storage device and power storage element monitoring method
JP6598542B2 (en) Power supply device and control method of power supply device
JPWO2012081104A1 (en) Vehicle control apparatus and vehicle control method
CN103248085A (en) Charging/discharging control apparatus
US9350186B2 (en) Battery pack
JP2003259508A (en) Power unit for electric vehicle
CN105308825A (en) Pre-charging and voltage supply system for a DC-AC inverter
EP2460060A1 (en) Monitoring battery health in an hvac system
JP2020127300A (en) Vehicle power supply system
JP2015180138A (en) Onboard charging system
JP2012244663A (en) Charging system for electric automobile
GB2536657A (en) Auxiliary battery charging apparatus and method
CN109070819A (en) Power control
JP5404712B2 (en) Charging apparatus, in-vehicle charging apparatus, and charging method in in-vehicle charging apparatus
JP2008131772A (en) Power supply unit
JP2011172409A (en) System for control of battery characteristic
JP2003217677A (en) Charging/discharging control device for nickel hydrogen battery
JP2011140389A (en) Battery charging apparatus for industrial vehicle
JP2019006251A (en) Charge control device for electric vehicle