JP2003215027A - Curved-surface reflected-light sensor - Google Patents

Curved-surface reflected-light sensor

Info

Publication number
JP2003215027A
JP2003215027A JP2002009644A JP2002009644A JP2003215027A JP 2003215027 A JP2003215027 A JP 2003215027A JP 2002009644 A JP2002009644 A JP 2002009644A JP 2002009644 A JP2002009644 A JP 2002009644A JP 2003215027 A JP2003215027 A JP 2003215027A
Authority
JP
Japan
Prior art keywords
sensor
light
reflected light
curved
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002009644A
Other languages
Japanese (ja)
Inventor
Koji Suzuki
鈴木  孝治
Kazuyoshi Kurihara
一嘉 栗原
Gen Iwasaki
弦 岩崎
Tsutomu Horiuchi
勉 堀内
Osamu Niwa
修 丹羽
Tatsuya Hida
達也 飛田
Hisao Tabei
久男 田部井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanagawa Academy of Science and Technology
Japan Science and Technology Agency
NTT Advanced Technology Corp
Nippon Telegraph and Telephone Corp
Original Assignee
Kanagawa Academy of Science and Technology
NTT Advanced Technology Corp
Nippon Telegraph and Telephone Corp
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanagawa Academy of Science and Technology, NTT Advanced Technology Corp, Nippon Telegraph and Telephone Corp, Japan Science and Technology Corp filed Critical Kanagawa Academy of Science and Technology
Priority to JP2002009644A priority Critical patent/JP2003215027A/en
Publication of JP2003215027A publication Critical patent/JP2003215027A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reflected-light sensor capable of solving conventional problems and being inexpensively manufactured with having no mechanical movable parts. <P>SOLUTION: The curved-surface reflected-light sensor is provided with a sensor chip having a reflecting surface, a light source, and an optical detector and detects the difference of the intensity of reflected light which depends on the angle of incidence of light from the light source to the reflecting surface. The reflecting surface of the sensor chip is constituted of a curved surface. The optical detector is constituted in such a way as to measure the reflected light at different locations and measure the intensity of reflection at an angle of incidence, which is different according to a location for measuring reflected light. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、光の反射現象を用
いるセンサに関する。詳細には、光の入射角度に依存し
た反射光強度の差を検出するセンサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sensor that uses a light reflection phenomenon. More specifically, the present invention relates to a sensor that detects a difference in reflected light intensity depending on the incident angle of light.

【0002】[0002]

【従来の技術】光を全反射させその反射面に染み出すエ
バネッセント光を利用する光測定技術は、広く研究され
応用されている。液体の光学的性質をプリズムを用いた
全反射光学系で測定する方法はATR法とよばれ、特に
研究が進み広く用いられている。また、反射面に金、銀
等の薄膜を有する面を使い、光によって表面プラズモン
共鳴を起こす光学系を用いて高感度に入射光と反対側の
光学的厚みまたは、屈折率を測定する方法はSPRセン
サと呼ばれ販売されている。これら光の反射を用いる測
定方法においては、光の入射角度によって異なる反射強
度の差から測定対象の状態を測定するため、測定時に光
の入射角度を測定または決定することが重要である。す
なわち、入射角度と反射率の関係を光源、光検出器の位
置、反射面の角度から決めなければならない。図7に光
の反射を用いるセンサの代表的な光学配置を示す。図中
符号20はプリズムを、符号21は反射面を構成する金
薄膜を、符号22は試料を各々示している。このように
反射面21が平面の場合には光源からでた光が反射面2
1で反射され、光検出器に入るように光路が調整され
る。このようなセンサにおいて、入射角度を調整または
測定する場合には、入射角度を機械的に変更するか、ま
たは反射面で集光する光束を用いて反射光を異なった位
置で測定するか、または点光源と見なしうる光源から出
た光が反射平面内の異なった箇所からの反射光を異なっ
た箇所で測定する方法がとられている。また、反射面が
平面とみなしうるように、微小な領域に入射光を集光す
る方法もある。SPRセンサでは、単色光を試料の反対
面からある角度で入射し、そのエバネッセント波と金属
面で起きる表面プラズモンと共鳴する角度を測定する。
図8に代表的SPR測定の光学系を示す。図中符号20
〜22は図7と同様に、各々、プリズム、金薄膜及び試
料を示している。このSPRセンサでは光源からでた光
をくさび形の光に集光しプリズムに入射する。プリズム
の底部に屈折率を合わせるための材料を介してセンサチ
ップを配置し、センサチップに全反射の条件下で光を照
射する。金薄膜側に生じるエバネッセント波と表面プラ
ズモン波はある入射角で共鳴が起り、CCDなどの光検
出器で反射光の強度を測定すると図9に示す様に共鳴が
起る角度で、反射率の低い谷が観測される。共鳴が起る
角度は、表面の光学的な性質(屈折率)に依存するた
め、例えば、抗原抗体反応で表面に分子が結合すると表
面の屈折率が変化し、谷のあらわれる角度が僅かに変化
する。この経時変化を測定することにより、表面の分子
の相互作用を測定することができる。または照射する光
の波長を変えることによっても、SPR現象がおこる波
長から被測定物の屈折率を測定できる。SPRセンサ
は、抗原−抗体反応を利用した免疫センサやDNAの検
出、レセプターとタンパク質の相互作用などの検出に応
用されつつある。
2. Description of the Related Art An optical measurement technique that uses evanescent light that totally reflects light and seeps out on its reflection surface has been widely studied and applied. A method of measuring the optical properties of a liquid with a total reflection optical system using a prism is called an ATR method, which has been widely researched and widely used. In addition, a method for measuring the optical thickness or the refractive index on the side opposite to the incident light with high sensitivity by using an optical system that causes a surface plasmon resonance by light using a surface having a thin film of gold, silver, etc. as a reflecting surface is available. It is called SPR sensor and is sold. In these measurement methods using reflection of light, it is important to measure or determine the incident angle of light at the time of measurement, because the state of the measurement target is measured from the difference in reflection intensity depending on the incident angle of light. That is, the relationship between the incident angle and the reflectance must be determined from the positions of the light source, the photodetector, and the angle of the reflecting surface. FIG. 7 shows a typical optical arrangement of a sensor using light reflection. In the figure, reference numeral 20 indicates a prism, reference numeral 21 indicates a gold thin film forming a reflecting surface, and reference numeral 22 indicates a sample. Thus, when the reflecting surface 21 is a flat surface, the light emitted from the light source is reflected by the reflecting surface 2
The optical path is adjusted so that it is reflected at 1 and enters the photodetector. In such a sensor, when adjusting or measuring the incident angle, the incident angle is mechanically changed, or the reflected light is measured at different positions by using a light beam condensed on the reflecting surface, or A method is used in which light emitted from a light source that can be regarded as a point light source measures reflected light from different points in a reflection plane at different points. There is also a method of condensing incident light in a minute area so that the reflecting surface can be regarded as a flat surface. In the SPR sensor, monochromatic light is incident from the opposite surface of the sample at a certain angle, and the angle at which the evanescent wave and the surface plasmon generated on the metal surface resonate are measured.
FIG. 8 shows a typical optical system for SPR measurement. Reference numeral 20 in the figure
22 to 22 respectively show a prism, a gold thin film and a sample, as in FIG. In this SPR sensor, the light emitted from the light source is condensed into wedge-shaped light and is incident on the prism. A sensor chip is arranged on the bottom of the prism through a material for matching the refractive index, and the sensor chip is irradiated with light under the condition of total reflection. The evanescent wave and surface plasmon wave generated on the gold thin film side resonate at a certain incident angle, and when the intensity of the reflected light is measured by a photodetector such as CCD, the resonance occurs at the angle at which the resonance occurs as shown in FIG. A low valley is observed. The angle at which resonance occurs depends on the optical properties (refractive index) of the surface. For example, when molecules bind to the surface in an antigen-antibody reaction, the refractive index of the surface changes, and the angle at which the valley appears changes slightly. To do. By measuring this change with time, the interaction of the molecules on the surface can be measured. Alternatively, the refractive index of the measured object can be measured from the wavelength at which the SPR phenomenon occurs by changing the wavelength of the irradiation light. The SPR sensor is being applied to an immunosensor using an antigen-antibody reaction, detection of DNA, detection of interaction between a receptor and protein, and the like.

【0003】[0003]

【発明が解決しようとする課題】上記したように光の反
射を利用したセンサは、光の入射角度によって異なる反
射強度の差から測定対象の状態を測定するため、入射角
度を測定または決定する必要があるが、従来のセンサ
は、その反射面が平面なので、入射角度を測定または決
定するためには、入射光の角度走査を行う装置や複数の
角度で光を入射する機構または、幅を持った角度で光を
入射する装置が必要であった。このために、特別な光学
系や、機械的可動装置など高価で煩雑な構成が必要であ
った。また、光学系を工夫した場合でも反射面が平面で
あると流体の測定においては測定部を小さくすることが
困難で、微量計測に不向きであった。さらに、曲面を有
する管状物の内面に均一な金属薄膜を安定して形成する
のは一般に困難で、管状の流路を直接センサとして製造
するには不都合であった。本発明は、上記した従来の問
題点を解決し、機械的可動部分がなく安価に製造ができ
る反射光センサを提供することを目的としている。
As described above, the sensor utilizing the reflection of light measures the state of the object to be measured from the difference in the reflection intensity which differs depending on the incident angle of the light, so that it is necessary to measure or determine the incident angle. However, since the reflection surface of a conventional sensor is a flat surface, in order to measure or determine the incident angle, a device that performs an angle scan of the incident light, a mechanism that allows light to be incident at multiple angles, or a width is used. A device for injecting light at a certain angle was necessary. For this reason, an expensive and complicated structure such as a special optical system and a mechanical movable device is required. In addition, even if the optical system is devised, it is difficult to make the measuring portion small in the measurement of the fluid if the reflecting surface is a flat surface, which is unsuitable for trace measurement. Further, it is generally difficult to stably form a uniform metal thin film on the inner surface of a tubular object having a curved surface, which is inconvenient to directly manufacture a tubular flow path as a sensor. An object of the present invention is to solve the above-mentioned conventional problems and to provide a reflected light sensor that has no mechanically movable parts and can be manufactured at low cost.

【0004】[0004]

【課題を解決するための手段】上記した目的を達成する
ために、本発明に係る曲面反射光センサは、反射面を有
するセンサチップと、光源と、光検出装置とを備え、光
源からの反射面への光の入射角度に依存した反射光強度
の差を光検出装置で検出する光センサにおいて、前記セ
ンサチップの反射面を曲面で構成し、前記光検出装置で
異なる位置の反射光を測定できるようにし、反射光を測
定する位置によって異なる入射角度の反射強度が測定で
きるようにしたことを特徴とするものである。
In order to achieve the above object, a curved surface reflected light sensor according to the present invention comprises a sensor chip having a reflecting surface, a light source, and a photodetector, and a reflection from the light source. In a photosensor for detecting a difference in reflected light intensity depending on an incident angle of light on a surface with a photodetector, the reflecting surface of the sensor chip is formed by a curved surface, and the reflected light at different positions is measured by the photodetector. It is possible to measure the reflection intensity at different incident angles depending on the position where the reflected light is measured.

【0005】[0005]

【発明の実施の形態】以下、添付図面に示した一実施例
を参照して本発明に係る曲面反射光センサの実施の形態
について説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of a curved reflected light sensor according to the present invention will be described below with reference to an embodiment shown in the accompanying drawings.

【0006】図1は、本発明に係る曲面反射光センサの
原理を示す概略模式図である。図中符号1はセンサチッ
プを示しており、このセンサチップ1は、板状の透明体
1aを備えている。透明体1aには、試料の流路を構成
する貫通孔1bが形成されており、前記貫通孔1bの内
面には反射面を形成する金属薄膜1cが形成されてい
る。また、図中符号2は光源を示しており、符号3は光
検出装置を示しており、符号3aは光検出装置に設けら
れた偏光フィルタを示している。上記したように構成さ
れた曲面反射光センサによれば、反射面を構成する金属
薄膜1cが貫通孔1bの内面に形成され曲面になってい
るので、光源2から一定の入射角で光Xを金属薄膜1c
に入射させるだけで、光検出装置3では、入射角の異な
る複数の反射光Yを検出することが可能になる。
FIG. 1 is a schematic diagram showing the principle of a curved surface reflected light sensor according to the present invention. In the figure, reference numeral 1 indicates a sensor chip, and the sensor chip 1 includes a plate-shaped transparent body 1a. The transparent body 1a is formed with a through hole 1b forming a sample flow path, and a metal thin film 1c forming a reflecting surface is formed on the inner surface of the through hole 1b. Further, in the figure, reference numeral 2 indicates a light source, reference numeral 3 indicates a photodetector, and reference numeral 3a indicates a polarization filter provided in the photodetector. According to the curved surface reflected light sensor configured as described above, since the metal thin film 1c forming the reflective surface is formed on the inner surface of the through hole 1b and has a curved surface, the light X is emitted from the light source 2 at a constant incident angle. Metal thin film 1c
The light detection device 3 can detect a plurality of reflected lights Y having different incident angles only by making the light incident on the light.

【0007】次に、本発明に係るSPR光センサの具体
的実施例の一つを図2〜図4を参照して説明する。図2
は、本発明に係るSPRセンサの概略上面図であり、図
3は図2における右側面図である。図中符号5はセンサ
チップを、符号6は光源を、また、符号7は光検出装置
を構成するCCDカメラを各々示している。前記センサ
チップ5は透明な板状ガラス5aを備えている。前記板
状ガラス5aには、試料の流路を形成する貫通孔5bが
形成されており、この貫通孔5bの内面には金薄膜(図
示せず:図1参照)が形成されている。尚、本実施例で
は、厚さ1mmの材質BK7のガラス板の側面を研磨し
て板状ガラス5aとして使用している。また、板状ガラ
ス5aに形成されている貫通孔5bは大和テクノシステ
ムズ社によって加工された。内径は1mmであり、その
貫通孔5bの内面の金薄膜は、日本シード研究所社製の
スパッタ装置を用いてスパッタ法で50nmの厚さで形
成されている。板状ガラス5aの厚さが薄いのでスパッ
タ法で金薄膜をガラスに空けた貫通孔の内面に均一に付
着させることができ、同時に多数のガラス基板に均質の
金薄膜を付着させることができた。この金の代わりに銀
を用いることもできる。また、前記板状ガラス5aの両
側、即ち、貫通孔5bの両端に試料液を流すためのクロ
マトグラフィー用のチューブ5dが液密に接着されてい
る。上記したように構成されたセンサチップ5の貫通孔
5bの径方向下半分に、側面から光が当たるように、光
源からビーム径0.5mmの半導体レーザー光(波長6
90nm)を照射した。そして、CCDカメラ7(東京
電子工業社製CS8330)のCCDセンサーに偏光フ
ィルタ7aを貼付け、さらに、偏光フィルタと、板状ガ
ラス5aにおける反射光が出てくる面とを接触させて配
置した。前記偏光フィルタ7aはP偏光反射光が観測で
きる向きに調整した。上記した条件で、貫通孔5bの内
部を空気にして、反射光強度の分布を測定した結果、図
4に示すように、CCD7で測定した反射光の強度の分
布に反射が弱い部分が観測された。次に流路を構成する
貫通孔5bに取り付けたチューブ5dを不図示のポンプ
に接続し水を流した。この場合には、空気の場合に比
べ、より出射側に近い位置で反射した光に相当するCC
D上の位置に、反射強度が弱い部分が移動した。さら
に、1M KCl溶液をサンプルとして貫通孔5bに流
すと、KClがガラスを通過している時だけCCD7で
反射強度が弱い位置が移動した。この結果から、流路を
構成する貫通孔5b内の試料の屈折率をSPR法で測定
できることが確認できる。
Next, one specific embodiment of the SPR photosensor according to the present invention will be described with reference to FIGS. Figure 2
3 is a schematic top view of the SPR sensor according to the present invention, and FIG. 3 is a right side view of FIG. In the figure, reference numeral 5 indicates a sensor chip, reference numeral 6 indicates a light source, and reference numeral 7 indicates a CCD camera constituting a photodetector. The sensor chip 5 includes a transparent plate glass 5a. A through hole 5b that forms a sample flow path is formed in the plate-shaped glass 5a, and a gold thin film (not shown: see FIG. 1) is formed on the inner surface of the through hole 5b. In this embodiment, the side surface of the glass plate of the material BK7 having a thickness of 1 mm is polished and used as the plate glass 5a. The through hole 5b formed in the plate glass 5a was processed by Daiwa Techno Systems Co., Ltd. The inner diameter is 1 mm, and the gold thin film on the inner surface of the through hole 5b is formed with a thickness of 50 nm by a sputtering method using a sputtering device manufactured by Japan Seed Research Institute. Since the plate-shaped glass 5a is thin, the gold thin film can be uniformly attached to the inner surface of the through hole formed in the glass by the sputtering method, and at the same time, the homogeneous gold thin film can be attached to many glass substrates. . Silver can be used instead of this gold. Further, chromatography tubes 5d for flowing a sample solution are liquid-tightly adhered to both sides of the plate glass 5a, that is, both ends of the through hole 5b. The semiconductor laser light (wavelength: 6 mm) from the light source has a beam diameter of 0.5 mm so that the lower half in the radial direction of the through hole 5b of the sensor chip 5 configured as described above is irradiated with light from the side surface.
90 nm). Then, the polarization filter 7a was attached to the CCD sensor of the CCD camera 7 (CS8330 manufactured by Tokyo Denshi Kogyo Co., Ltd.), and the polarization filter was placed in contact with the surface of the plate-shaped glass 5a from which the reflected light emerges. The polarization filter 7a was adjusted so that the P-polarized reflected light could be observed. Under the conditions described above, the inside of the through hole 5b was made air, and the distribution of the intensity of the reflected light was measured. As a result, as shown in FIG. 4, a portion where the reflection was weak was observed in the intensity distribution of the reflected light measured by the CCD 7. It was Next, the tube 5d attached to the through hole 5b forming the flow path was connected to a pump (not shown) to flow water. In this case, compared to the case of air, CC corresponding to the light reflected at a position closer to the emission side is used.
The portion with weak reflection intensity moved to the position on D. Furthermore, when a 1 M KCl solution was flown as a sample into the through hole 5b, the position where the reflection intensity was weak on the CCD 7 moved only when KCl was passing through the glass. From this result, it can be confirmed that the refractive index of the sample in the through hole 5b forming the channel can be measured by the SPR method.

【0008】次に、本発明に係る曲面反射光センサの第
2実施例について説明する。図5(a)〜(d)は、曲
面反射光センサ用のセンサチップの製造工程を示す図で
ある。図中10は、BK7のガラス板(スライドグラ
ス)であり、始めに、このガラス板10にディスコ社製
のダイシングソー(型番DAD521)で断面半円形の
溝11を掘り、次いで、溝内を研磨して鏡面とする(図
5(a)及び(b))。次に、溝11の内面に日本シー
ド研究所社製のスパッタ装置を用いてスパッタ法で厚さ
50nmの金薄膜12を形成する(図5(c))。そし
て、この溝11のある面にガラス板13を光硬化性接着
剤を使って貼付け(図5(d))、この溝11の両端部
にガラスキャピラリー14を差込、液体が漏れないよう
に光硬化性接着剤で固定することでセンサチップは完成
する(図6参照)。上記したようにして構成したセンサ
チップに、レーザー光を図6における矢印方向から入射
し、図6における上面に出射する光を不図示のCCDカ
メラで測定した。測定の結果、実施例1同様に流路を流
れる液体のSPR測定ができた。
Next, a second embodiment of the curved reflected light sensor according to the present invention will be described. 5A to 5D are views showing manufacturing steps of a sensor chip for a curved reflected light sensor. In the figure, 10 is a glass plate (slide glass) of BK7. First, a groove 11 having a semicircular cross section is dug in the glass plate 10 with a dicing saw (model number DAD521) manufactured by Disco Corporation, and then the inside of the groove is polished. To give a mirror surface (FIGS. 5A and 5B). Next, a gold thin film 12 having a thickness of 50 nm is formed on the inner surface of the groove 11 by a sputtering method using a sputtering device manufactured by Japan Seed Research Institute (FIG. 5C). Then, a glass plate 13 is attached to the surface having the groove 11 by using a photo-curable adhesive (FIG. 5 (d)), and glass capillaries 14 are inserted into both ends of the groove 11 so that liquid does not leak. The sensor chip is completed by fixing with a photocurable adhesive (see FIG. 6). Laser light was incident on the sensor chip configured as described above in the direction of the arrow in FIG. 6, and the light emitted to the upper surface in FIG. 6 was measured by a CCD camera (not shown). As a result of the measurement, the SPR of the liquid flowing through the flow channel could be measured in the same manner as in Example 1.

【0009】[0009]

【発明の効果】以上説明したように、本発明に係る曲面
反射光センサは、反射面を有するセンサチップと、光源
と、光検出装置とを備え、光源からの反射面への光の入
射角度に依存した反射光強度の差を光検出装置で検出す
る光センサにおいて、前記センサチップの反射面を曲面
で構成し、前記光検出装置で異なる位置の反射光を測定
できるようにし、反射光を測定する位置によって異なる
入射角度の反射強度が測定できるように構成しているの
で、従来、機械的走査や、複雑な光学系を用いなければ
測定できなかった入射角度に依存して変化する反射光強
度を、機械的稼動部が無く簡単な光学系で測定できるよ
うになる。これによって測定装置の小型化、堅牢化が計
られ、微量サンプルの測定、容易に交換で、安価で量産
可能なセンサチップが実現できる。さらに、前記センサ
チップを、板状の透明体に貫通孔を形成し、この貫通孔
の内面に表面プラズモン共鳴現象を起こす金属薄膜を形
成し、前記貫通孔に試料を流すことができるように構成
するか、又は、板状の透明体の一面に、断面半円形の溝
を形成し、この溝の表面に表面プラズモン共鳴現象を起
こす金属薄膜を形成すると共に、前記溝の上面を塞ぎ、
前記溝の端部から溝の中に試料を流すことができるよう
に構成することにより、センサチップの試料を流す通路
が管状となるので、既存の液体用チューブ接続用の部品
を使うことができ、安価な部品で容易に漏洩を防ぐこと
ができる利点があり、かつ、HPLCの検出装置などの
ように流路内部の流体のSPR測定に使用する場合、既
存の送液用のチューブに容易にセンサチップを接続で
き、液漏れの問題がほとんどないセンサとすることがで
きる。また、センサの製造においては、スパッタ法など
で製膜すれば、容易にSPR測定可能な金属薄膜を量産
できる。以上のように、特に化学・医療・環境分野で用
いられるセンサとして本発明の効果は極めて大きい。
As described above, the curved surface reflected light sensor according to the present invention includes the sensor chip having the reflecting surface, the light source, and the light detecting device, and the incident angle of the light from the light source to the reflecting surface. In an optical sensor that detects a difference in reflected light intensity with a photodetection device, the reflection surface of the sensor chip is configured by a curved surface, and the photodetection device can measure the reflected light at different positions. Since it is configured so that the reflection intensity at different incident angles can be measured depending on the measurement position, the reflected light changes depending on the incident angle, which could not be measured without mechanical scanning or a complicated optical system. The strength can be measured with a simple optical system without a mechanical moving part. As a result, the measuring device can be made compact and robust, and it is possible to realize a sensor chip that can be mass-produced at low cost by measuring a small amount of sample and easily replacing it. Further, the sensor chip is configured such that a through hole is formed in a plate-shaped transparent body, a metal thin film that causes a surface plasmon resonance phenomenon is formed on an inner surface of the through hole, and a sample can be flown into the through hole. Or, on one surface of the plate-shaped transparent body, a groove having a semicircular cross section is formed, and a metal thin film that causes a surface plasmon resonance phenomenon is formed on the surface of this groove, and the upper surface of the groove is closed,
By configuring so that the sample can flow from the end of the groove into the groove, the passage through which the sample of the sensor chip flows becomes tubular, so that existing parts for connecting tubes for liquids can be used. In addition, it has the advantage of being able to easily prevent leakage with inexpensive parts, and when used for SPR measurement of the fluid inside the flow path, such as in HPLC detection devices, it can be easily added to existing liquid transfer tubes. A sensor chip can be connected, and a sensor having almost no liquid leakage problem can be obtained. Further, in manufacturing the sensor, if a film is formed by a sputtering method or the like, it is possible to easily mass-produce a metal thin film capable of SPR measurement. As described above, the effect of the present invention is extremely large especially as a sensor used in the fields of chemistry, medical care, and the environment.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明に係る曲面反射光センサの原理を示す
概略模式図
FIG. 1 is a schematic diagram showing the principle of a curved surface reflected light sensor according to the present invention.

【図2】 本発明に係るSPRセンサの概略上面図FIG. 2 is a schematic top view of an SPR sensor according to the present invention.

【図3】 図2における右側面図FIG. 3 is a right side view of FIG.

【図4】 貫通孔5bの内部を空気にして反射光強度の
分布を測定した結果を示すグラフである。
FIG. 4 is a graph showing the results of measuring the distribution of reflected light intensity with the inside of the through hole 5b being air.

【図5】 (a)〜(d)は、曲面反射光センサ用のセ
ンサチップの製造工程を示す図である。
5A to 5D are views showing manufacturing steps of a sensor chip for a curved-surface reflected light sensor.

【図6】 図5に示す工程で完成したセンサチップの概
略上面図である。
FIG. 6 is a schematic top view of the sensor chip completed in the step shown in FIG.

【図7】 光の反射を用いるセンサの代表的な光学配置
の模式図である。
FIG. 7 is a schematic diagram of a typical optical arrangement of a sensor that uses light reflection.

【図8】 代表的SPR測定の光学系の模式図である。FIG. 8 is a schematic diagram of a typical SPR measurement optical system.

【図9】 SPRセンサで観測される反射率の入射角度
依存性を示すグラフである。
FIG. 9 is a graph showing the incident angle dependence of the reflectance observed by the SPR sensor.

【符号の説明】[Explanation of symbols]

1 センサチップ 1a 透明体 1b 貫通孔 1c 金属薄膜 2 光源 3 光検出装置 X 入射光 Y 反射光 5 センサチップ 5a 板状ガラス 5b 貫通孔 5d チューブ 6 光源 7 CCDカメラ 7a 偏光フィルタ 10 ガラス板 11 溝 12 金薄膜 13 ガラス板 14 バラスキャピラリー 20 プリズム 21 金薄膜 22 試料 1 sensor chip 1a transparent body 1b through hole 1c Metal thin film 2 light sources 3 Photodetector X incident light Y reflected light 5 sensor chips 5a Plate glass 5b through hole 5d tube 6 light source 7 CCD camera 7a Polarizing filter 10 glass plates 11 grooves 12 gold thin film 13 glass plate 14 Ballas Capillary 20 prism 21 gold thin film 22 samples

───────────────────────────────────────────────────── フロントページの続き (71)出願人 000102739 エヌ・ティ・ティ・アドバンステクノロジ 株式会社 東京都新宿区西新宿二丁目1番1号 (72)発明者 鈴木 孝治 神奈川県川崎市幸区小倉1−1−A705 (72)発明者 栗原 一嘉 神奈川県川崎市中原区井田杉山町4−1− 305 クレールメゾン大瀬戸 (72)発明者 岩崎 弦 東京都千代田区大手町二丁目3番1号 日 本電信電話株式会社内 (72)発明者 堀内 勉 東京都千代田区大手町二丁目3番1号 日 本電信電話株式会社内 (72)発明者 丹羽 修 東京都千代田区大手町二丁目3番1号 日 本電信電話株式会社内 (72)発明者 飛田 達也 東京都新宿区西新宿二丁目1番1号 エ ヌ・ティ・ティ・アドバンステクノロジ株 式会社内 (72)発明者 田部井 久男 東京都新宿区西新宿二丁目1番1号 エ ヌ・ティ・ティ・アドバンステクノロジ株 式会社内 Fターム(参考) 2G059 AA02 BB04 CC20 DD12 EE02 EE05 GG01 GG04 HH02 HH06 JJ19 KK04    ─────────────────────────────────────────────────── ─── Continued front page    (71) Applicant 000102739             NTT Advanced Technology             Corporation             2-1-1, Nishishinjuku, Shinjuku-ku, Tokyo (72) Inventor Koji Suzuki             1-1-705 Kokura, Saiwai-ku, Kawasaki-shi, Kanagawa (72) Inventor Kazuyoshi Kurihara             4-1 Idasugiyama-cho, Nakahara-ku, Kawasaki-shi, Kanagawa             305 Claire Maison Oseto (72) Inventor Tsuru Iwasaki             2-3-1, Otemachi, Chiyoda-ku, Tokyo             Inside Telegraph and Telephone Corporation (72) Inventor Tsutomu Horiuchi             2-3-1, Otemachi, Chiyoda-ku, Tokyo             Inside Telegraph and Telephone Corporation (72) Inventor Osamu Niwa             2-3-1, Otemachi, Chiyoda-ku, Tokyo             Inside Telegraph and Telephone Corporation (72) Inventor Tatsuya Tobita             2-1-1, Nishishinjuku, Shinjuku-ku, Tokyo             Nutty Advance Technology Co., Ltd.             Inside the company (72) Inventor Hisao Tabei             2-1-1, Nishishinjuku, Shinjuku-ku, Tokyo             Nutty Advance Technology Co., Ltd.             Inside the company F term (reference) 2G059 AA02 BB04 CC20 DD12 EE02                       EE05 GG01 GG04 HH02 HH06                       JJ19 KK04

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】反射面を有するセンサチップと、光源と、
光検出装置とを備え、光源からの反射面への光の入射角
度に依存した反射光強度の差を光検出装置で検出する光
センサにおいて、 前記センサチップの反射面を曲面で構成し、 前記光検出装置で異なる位置の反射光を測定できるよう
にし、 反射光を測定する位置によって異なる入射角度の反射強
度が測定できるようにしたことを特徴とする曲面反射光
センサ。
1. A sensor chip having a reflecting surface, and a light source,
A photosensor comprising a photodetector, wherein the photodetector detects the difference in reflected light intensity depending on the incident angle of light from the light source to the reflective surface, and the reflective surface of the sensor chip is formed by a curved surface, A curved reflected light sensor characterized in that it is possible to measure reflected light at different positions with a photodetector, and to measure reflected intensity at different incident angles depending on the position at which the reflected light is measured.
【請求項2】前記曲面反射光センサが、表面プラズモン
共鳴を用いて屈折率を測定するセンサであることを特徴
とする請求項1に記載のセンサ。
2. The sensor according to claim 1, wherein the curved reflected light sensor is a sensor that measures a refractive index using surface plasmon resonance.
【請求項3】前記センサチップが、 板状の透明体に貫通孔を形成し、 この貫通孔の内面に表面プラズモン共鳴現象を起こす金
属薄膜をスパッタ法、蒸着法または、無電解めっき法で
形成し、 前記貫通孔に試料を流すことができるように構成したこ
とを特徴とする請求項2に記載のセンサ。
3. The sensor chip has a through hole formed in a plate-shaped transparent body, and a metal thin film which causes a surface plasmon resonance phenomenon is formed on an inner surface of the through hole by a sputtering method, a vapor deposition method or an electroless plating method. The sensor according to claim 2, wherein the sensor is configured to allow the sample to flow through the through hole.
【請求項4】前記センサチップが、 板状の透明体の一面に、断面半円形の溝を形成し、 この溝の表面に表面プラズモン共鳴現象を起こす金属薄
膜をスパッタ法、蒸着法または、無電解めっき法で形成
すると共に、 前記溝の上面を塞ぎ、 前記溝の端部から溝の中に試料を流すことができるよう
に構成したことを特徴とする請求項2に記載のセンサ。
4. The sensor chip has a groove having a semicircular cross section formed on one surface of a plate-shaped transparent body, and a metal thin film which causes a surface plasmon resonance phenomenon is formed on the surface of the groove by a sputtering method, an evaporation method, or The sensor according to claim 2, wherein the sensor is formed by an electrolytic plating method, and the upper surface of the groove is closed so that the sample can flow from the end of the groove into the groove.
JP2002009644A 2002-01-18 2002-01-18 Curved-surface reflected-light sensor Pending JP2003215027A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002009644A JP2003215027A (en) 2002-01-18 2002-01-18 Curved-surface reflected-light sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002009644A JP2003215027A (en) 2002-01-18 2002-01-18 Curved-surface reflected-light sensor

Publications (1)

Publication Number Publication Date
JP2003215027A true JP2003215027A (en) 2003-07-30

Family

ID=27647603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002009644A Pending JP2003215027A (en) 2002-01-18 2002-01-18 Curved-surface reflected-light sensor

Country Status (1)

Country Link
JP (1) JP2003215027A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013011831A1 (en) * 2011-07-15 2013-01-24 独立行政法人産業技術総合研究所 Target substance detection chip, target substance detection plate, target substance detection device and target substance detection method
JP2013024606A (en) * 2011-07-15 2013-02-04 National Institute Of Advanced Industrial & Technology Target substance detection chip, target substance detector and target substance detection method
JP2013024607A (en) * 2011-07-15 2013-02-04 National Institute Of Advanced Industrial & Technology Target substance detection plate, target substance detector and target substance detection method
JP2014531038A (en) * 2011-10-26 2014-11-20 メルセー,ティボーMERCEY,Thibaut Fine structure chip for surface plasmon resonance analysis, analysis apparatus including the fine structure chip, and use of the apparatus
JP2017026425A (en) * 2015-07-21 2017-02-02 京セラ株式会社 Optical sensor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013011831A1 (en) * 2011-07-15 2013-01-24 独立行政法人産業技術総合研究所 Target substance detection chip, target substance detection plate, target substance detection device and target substance detection method
JP2013024606A (en) * 2011-07-15 2013-02-04 National Institute Of Advanced Industrial & Technology Target substance detection chip, target substance detector and target substance detection method
JP2013024607A (en) * 2011-07-15 2013-02-04 National Institute Of Advanced Industrial & Technology Target substance detection plate, target substance detector and target substance detection method
EP2725344A4 (en) * 2011-07-15 2015-06-03 Nat Inst Of Advanced Ind Scien Target substance detection chip, target substance detection plate, target substance detection device and target substance detection method
JP2014531038A (en) * 2011-10-26 2014-11-20 メルセー,ティボーMERCEY,Thibaut Fine structure chip for surface plasmon resonance analysis, analysis apparatus including the fine structure chip, and use of the apparatus
US9746467B2 (en) 2011-10-26 2017-08-29 Prestodiag Microstructured chip for surface plasmon resonance analysis, analysis device containing said microstructured chip and use of said device
JP2017026425A (en) * 2015-07-21 2017-02-02 京セラ株式会社 Optical sensor

Similar Documents

Publication Publication Date Title
US6862398B2 (en) System for directed molecular interaction in surface plasmon resonance analysis
US8178046B2 (en) Microfluidic devices with SPR sensing capabilities
US7586615B2 (en) Measuring unit
US6320991B1 (en) Optical sensor having dielectric film stack
US6480282B1 (en) Capillary surface plasmon resonance sensors and multisensors
US7915053B2 (en) Substrate for target substance detecting device, target substance detecting device, target substance detecting apparatus and method using the same, and kit therefor
US8537353B2 (en) Sensor chip for biological and chemical sensing
JP6505260B2 (en) Use of a radiation carrier in a radiation carrier and an optical sensor
JP4455362B2 (en) Measuring device using total reflection attenuation
JP2000508062A (en) Lens and connectable flow cell
KR20030047567A (en) Surface plasmon resonance sensor system
JPH0583141B2 (en)
JP2007192806A (en) Substrate for target material detection element, target material detection element, device and method of detecting target material using it, and kit therefor
CN110023739B (en) Liquid immersion micro-channel measuring device and method based on prism incident type silicon with trapezoidal incident structure
US20200225419A1 (en) Dual grating sensing system, dual grating sensor and detecting method thereof
JP5241274B2 (en) Detection method of detected substance
JP5344828B2 (en) Sensing device
JP5920692B2 (en) Target substance detection chip, target substance detection device, and target substance detection method
CN101825629A (en) Waveguide coupling metal photonic crystal biosensor and detecting method thereof
JP2003215027A (en) Curved-surface reflected-light sensor
KR100922578B1 (en) Disposable surface plasmon resonance biosensor and system using the same
Zeller et al. Single-pad scheme for integrated optical fluorescence sensing
JPWO2014007134A1 (en) Sensor chip
KR20080051002A (en) Surface plasmon resonance sensor and system capable of absolute calibration
Hausler et al. Miniaturized Surface Plasmon Resonance based Sensor System.

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Effective date: 20031031

Free format text: JAPANESE INTERMEDIATE CODE: A712

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040129

A621 Written request for application examination

Effective date: 20040805

Free format text: JAPANESE INTERMEDIATE CODE: A621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051206

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060120

A521 Written amendment

Effective date: 20060203

Free format text: JAPANESE INTERMEDIATE CODE: A523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060517

A02 Decision of refusal

Effective date: 20060920

Free format text: JAPANESE INTERMEDIATE CODE: A02