JP2003214784A - Thermal storage vessel - Google Patents

Thermal storage vessel

Info

Publication number
JP2003214784A
JP2003214784A JP2002017240A JP2002017240A JP2003214784A JP 2003214784 A JP2003214784 A JP 2003214784A JP 2002017240 A JP2002017240 A JP 2002017240A JP 2002017240 A JP2002017240 A JP 2002017240A JP 2003214784 A JP2003214784 A JP 2003214784A
Authority
JP
Japan
Prior art keywords
heat storage
storage tank
thermal storage
capsules
capsule
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002017240A
Other languages
Japanese (ja)
Inventor
Naotatsu Yano
直達 矢野
Yuji Tsubota
祐二 坪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Kubota Corp filed Critical Tokyo Electric Power Co Inc
Priority to JP2002017240A priority Critical patent/JP2003214784A/en
Publication of JP2003214784A publication Critical patent/JP2003214784A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Abstract

<P>PROBLEM TO BE SOLVED: To provide a means for aligning thermal storage capsules and a draining means for draining the generated water outside in the condition that they can function independently of each other. <P>SOLUTION: Thermal storage capsules are arranged in a first direction so that a first wall surface of one of the adjacent thermal storage capsules and a second wall surface of the other thermal storage capsule face to each other to form a thermal storage capsule line, and a plurality of the thermal storage capsule lines are aligned in a second direction along the first wall surface. A bottom surface 54 of the thermal storage vessel 2 is formed with positioning recessed and projecting parts 57 for aligning the thermal storage capsules in the first direction. The bottom surface 54 is formed with vertical drains 58 extended in the first direction at each position corresponding to the thermal storage capsule line, and lateral drains 59 to be communicated with a plurality of vertical drain 58 are formed in the bottom surface in the condition that the lateral drains 59 are obliquely extended in a direction inclined against the second direction. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、対向配置される第
1壁面と第2壁面との間に、蓄熱材充填用の内部空間を
形成してある蓄熱カプセルの多数を収容自在な蓄熱槽の
排水構造に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat storage tank capable of accommodating a large number of heat storage capsules in which an internal space for filling a heat storage material is formed between a first wall surface and a second wall surface which are arranged to face each other. It concerns the drainage structure.

【0002】[0002]

【従来の技術】蓄熱槽は、その内部に風を通すことで、
内装されている多数の蓄熱カプセルとの熱交換を行うも
のであり、特開2000−18864号公報において示
されたものが知られている。即ち、融点が23℃や18
℃等の蓄熱材が充填された蓄熱カプセルの多数を、適宜
の間隙を設けて縦横に整列配置させるとともに、送風フ
ァンによる風をそれら蓄熱カプセル間の間隙に通すこと
で空気式の熱交換作用が行われるように構成されてい
た。
2. Description of the Related Art A heat storage tank is constructed by passing air through it.
Heat exchange with a large number of heat storage capsules installed therein is known, and the one disclosed in JP-A-2000-18864 is known. That is, the melting point is 23 ° C or 18
A large number of heat storage capsules filled with heat storage material such as ℃ are arranged vertically and horizontally with appropriate gaps, and the air from the blower fan is passed through the gaps between the heat storage capsules to achieve an air heat exchange action. Was configured to take place.

【0003】[0003]

【発明が解決しようとする課題】そのためには、蓄熱槽
内において、多数の蓄熱カプセルをそれらの隣合うもの
どうしの間に適宜の間隙を空けて配置することが要求さ
れるが、前記従来技術のものではその点に付いては一切
開示されていなかった。又、熱交換により、蓄熱層内に
おける凝縮、或いは温度低下による結露によって水が生
成されることがあり、その水を蓄熱層外に排出する機能
を持たせることも必要になるが、この点に付いても従来
では開示されていなかった。
To this end, it is required to arrange a large number of heat storage capsules between adjacent ones of them in a heat storage tank with an appropriate gap between them. Nothing was disclosed about that point. Further, water may be generated by condensation in the heat storage layer due to heat exchange or dew condensation due to a temperature decrease, and it is necessary to have a function of discharging the water to the outside of the heat storage layer. Even if it was attached, it was not disclosed in the past.

【0004】本発明の目的は、蓄熱カプセルを適宜の間
隔を空けて配置する手段、及び生成された水を外部に取
出すための排水手段の双方を、お互いに悪影響無く機能
し得る状態で装備された蓄熱層を提供する点にある。
The object of the present invention is to equip both the means for arranging the heat storage capsules at appropriate intervals and the drainage means for taking out the produced water to the outside in a state where they can function without adversely affecting each other. The point is to provide a heat storage layer.

【0005】[0005]

【課題を解決するための手段】〔構成〕請求項1の構成
は、図7、図9〜図11に例示する如く、対向配置され
る第1壁面41と第2壁面42との間に、蓄熱材充填用
の内部空間43を形成してある蓄熱カプセルCの多数を
収容自在な蓄熱槽であって、蓄熱カプセルCを、それら
のうちの隣り合うものどうしにおける一方の蓄熱カプセ
ルCの第1壁面41と他方の蓄熱カプセルCの第2壁面
42とが対面する状態となる第1方向に整列させて形成
される蓄熱カプセル列Lの複数を、第1又は第2壁面4
1又は42の面に沿う第2方向に整列させ、かつ、蓄熱
槽2の底面54に、蓄熱カプセルCを第1方向に整列さ
せるための位置決め用凹凸部57を形成し、蓄熱カプセ
ル列Lに対応する位置において第1方向に延びる縦排水
溝58を底面54に形成するとともに、これら複数の縦
排水溝58に連通される横排水溝59を、第2方向に対
して傾斜した斜め方向に延びる状態で底面に形成してあ
ることを特徴とする。
[Structure] According to the structure of claim 1, as illustrated in FIGS. 7 and 9 to 11, between a first wall surface 41 and a second wall surface 42 which are arranged to face each other, A heat storage tank capable of accommodating a large number of heat storage capsules C forming an internal space 43 for filling the heat storage material, wherein the heat storage capsule C is the first one of the heat storage capsules C in adjacent ones of them. A plurality of heat storage capsule rows L formed by being aligned in the first direction in which the wall surface 41 and the second wall surface 42 of the other heat storage capsule C face each other are provided in the first or second wall surface 4
1 or 42 is aligned in the second direction, and the bottom surface 54 of the heat storage tank 2 is provided with a positioning uneven portion 57 for aligning the heat storage capsules C in the first direction. Vertical drainage grooves 58 extending in the first direction at corresponding positions are formed on the bottom surface 54, and horizontal drainage grooves 59 communicating with the plurality of vertical drainage grooves 58 extend in an oblique direction inclined with respect to the second direction. It is characterized in that it is formed on the bottom surface in a state.

【0006】請求項2の構成は、図10、図11に例示
する如く、請求項1の構成において、蓄熱カプセル列L
を第2方向に複数並べて成る蓄熱カプセル群Gに対する
送風の入口空間55と出口空間56とを、蓄熱カプセル
群Gに第2方向で隣接する箇所に振り分けて形成すると
ともに、横排水溝59に連通される排水桝60を、入口
空間55又は出口空間56における底面54に形成して
あることを特徴とするものである。
As shown in FIGS. 10 and 11, the structure of claim 2 is different from the structure of claim 1 in the heat storage capsule array L.
And an inlet space 55 and an outlet space 56 for blowing air to the heat storage capsule group G formed by arranging a plurality of them in the second direction are distributed to the locations adjacent to the heat storage capsule group G in the second direction and communicated with the lateral drainage groove 59. The drainage basin 60 to be formed is formed on the bottom surface 54 in the inlet space 55 or the outlet space 56.

【0007】請求項3の構成は、図10に例示する如
く、請求項2の構成において、排水桝60に溜まった水
を蓄熱槽2外に導く排水管61を設けてあることを特徴
とするものである。
As shown in FIG. 10, the structure of claim 3 is characterized in that, in the structure of claim 2, a drain pipe 61 for guiding the water accumulated in the drainage basin 60 to the outside of the heat storage tank 2 is provided. It is a thing.

【0008】尚、上述のように、図面との対照を便利に
するために符号を記したが、該記入により本発明は添付
図面の構成に限定されるものではない。
As mentioned above, the reference numerals are given for the sake of convenience in comparison with the drawings, but the present invention is not limited to the constructions of the accompanying drawings by the entry.

【0009】〔作用〕蓄熱槽においては、蓄熱カプセル
を並べるにあたり、隣合う蓄熱カプセルにおける一方の
第1壁面と他方の第2壁面とが対面す箇所に形成される
風通し用の間隙は、面どうしによる偏平で比較的長さの
長いものであって、熱交換の主たる役割を担う箇所であ
るに対して、第1又は第2壁面の面に沿う第2方向で隣
合う蓄熱カプセルどうしの間に形成される間隙は、その
長さが極短いものであり、例え風が通ったとしても熱交
換に影響を殆ど与えない箇所である。つまり、実際には
前記第1方向での位置を的確に定めることが重要であ
り、第2方向での位置決めに関する重要度は低く、精度
は要求されないものである。
[Operation] In arranging the heat storage capsules in the heat storage tank, the ventilation gaps formed at the locations where the first wall surface and the second wall surface of the adjacent heat storage capsules face each other It is flat and relatively long and is a place that plays a major role in heat exchange, whereas it is formed between adjacent heat storage capsules in the second direction along the surface of the first or second wall surface. The created gap has a very short length, and is a place that has little effect on heat exchange even if wind passes. That is, it is actually important to accurately determine the position in the first direction, the degree of importance regarding positioning in the second direction is low, and accuracy is not required.

【0010】そこで、請求項1の構成によれば、蓄熱カ
プセルが対面状態で並ぶ第1方向、即ち、前述したよう
に位置決めすることが重要な方向、に整列させるための
位置決め用凹凸部を底面に形成してあるから、風の通り
道となる隣合う蓄熱カプセル間の間隙を設定通りの寸法
の空間として確保することができ、所期の熱交換作用を
得ることができるようになる。
Therefore, according to the structure of claim 1, the positioning concave-convex portion for aligning the heat storage capsules in the first direction in which they are aligned facing each other, that is, the direction in which it is important to perform positioning as described above, is the bottom surface. Since it is formed, the space between the adjacent heat storage capsules, which serves as a passage for the wind, can be secured as a space having the set dimensions, and the desired heat exchange action can be obtained.

【0011】一方、蓄熱カプセル列に対応する位置にお
いて第1方向に延びる縦排水溝を底面に形成し、これら
複数の縦排水溝に連通される横排水溝を、第2方向に対
して傾斜した斜め方向に延びる状態で底面に形成したの
で、前述の位置決め用凹凸部に支障をきたすこと無く排
水設備を構築することができる。
On the other hand, a vertical drain groove extending in the first direction is formed on the bottom surface at a position corresponding to the heat storage capsule row, and the horizontal drain groove communicating with the plurality of vertical drain grooves is inclined with respect to the second direction. Since it is formed on the bottom surface in a state of extending in the oblique direction, it is possible to construct the drainage facility without disturbing the above-mentioned positioning irregularities.

【0012】即ち、第1方向に延びる縦排水溝は、凹凸
部を単に横切ることになるので、凹凸分部の幅寸法が溝
幅分狭くなるだけであって、スペーサー機能には何ら支
障を及ぼさないが、これら複数の縦排水溝を連通するべ
く、仮に第1方向と90度の角度を為す方向に横溝を形
成すると、その方向は凹凸部の長手方向と合致するの
で、場合によっては凹凸部がその全幅に亘って欠如又は
消失してしまい、前述した第1方向での位置決め機能が
損なわれるおそれがある。そこで、横排水溝を前述のよ
うに斜め方向に形成したので、横排水溝は凹凸部を斜め
に横切ることになり、部分的欠如や消失はあっても全幅
に亘って凹凸部が欠如又は消失することは回避され、ど
の凹凸部においても第1方向への位置決め機能が確保す
ることができるのである。
That is, since the vertical drainage groove extending in the first direction simply crosses the uneven portion, the width dimension of the uneven portion is narrowed by the groove width, and the spacer function is not affected at all. However, if a horizontal groove is formed in a direction that makes an angle of 90 degrees with the first direction in order to connect these vertical drainage grooves, that direction coincides with the longitudinal direction of the uneven portion. May be missing or disappear over its entire width, and the above-described positioning function in the first direction may be impaired. Therefore, since the horizontal drainage groove was formed diagonally as described above, the horizontal drainage groove crosses the uneven portion diagonally, and even if there is partial lack or disappearance, the unevenness portion is missing or disappears over the entire width. This can be avoided, and the positioning function in the first direction can be ensured in any uneven portion.

【0013】請求項2の構成によれば、蓄熱層内にて生
じた水を集めて溜めるところである排水桝を、蓄熱カプ
セル群の送風上手側又は下手側に隣接する入口空間又は
出口空間に設けたので、排水桝は位置決め用凹凸部とは
無関係に配置することができるとともに、蓄熱カプセル
を置く場所である凹凸部の強度低下を招かない点でも好
都合でる。
According to the second aspect of the present invention, the drainage basin, which collects and collects the water generated in the heat storage layer, is provided in the inlet space or the outlet space adjacent to the upstream side or the downstream side of the heat storage capsule group. Therefore, the drainage basin can be arranged independently of the positioning unevenness portion, and it is also advantageous in that the strength of the unevenness portion where the heat storage capsule is placed is not reduced.

【0014】請求項3の構成によれば、排水桝に溜まっ
た水は排水管を用いて蓄熱層外に取出せるので、蓄熱層
内に水が溜まり続けることが無く、余分な水が存在しな
い良好な状態を維持することができるようになる。排水
桝に溜まった水はポンプを用いて蓄熱層外に取出せるの
で、蓄熱層内に水が溜まり続けることが無く、余分な水
が存在しない良好な状態を維持することができるように
なるとともに、排水箇所が排水桝より高い位置にあると
か、蓄熱槽から離れた箇所に排水することが行えるよう
になる。
According to the third aspect of the present invention, since the water accumulated in the drainage basin can be taken out of the heat storage layer by using the drainage pipe, the water does not continue to be accumulated in the heat storage layer and there is no excess water. You will be able to maintain a good condition. Since the water accumulated in the drainage basin can be taken out of the heat storage layer by using a pump, the water will not continue to accumulate in the heat storage layer, and it will be possible to maintain a good condition with no excess water. The drainage point is located higher than the drainage basin, or it can be drained to a location away from the heat storage tank.

【0015】〔効果〕請求項1に記載の蓄熱槽では、蓄
熱カプセル列における隣り合う蓄熱カプセルどうしの間
隙を規定する凹凸部を設けるとともに、これら凹凸部を
横切る縦排水溝、及び縦排水溝を連通する斜めの向きの
横排水溝を設ける工夫により、対面する蓄熱カプセルど
うしの間隙を所期の風通し用空間部として存在させるこ
とができて、良好な熱交換作用を確実に発揮できるよう
にしながら、蓄熱槽内にて生じた水を集めて槽外に支障
無く取出すことが可能にできた。
[Effect] In the heat storage tank according to the first aspect, an uneven portion that defines a gap between adjacent heat storage capsules in the heat storage capsule row is provided, and a vertical drain groove and a vertical drain groove that cross these uneven portions are provided. By devising a diagonal drainage groove that communicates with each other, the gap between the heat storage capsules facing each other can be made to exist as a desired ventilation space, while ensuring a good heat exchange effect. , It was possible to collect the water generated in the heat storage tank and take it out of the tank without any trouble.

【0016】請求項2に記載の蓄熱槽では、請求項1の
構成による前記効果を奏するとともに、蓄熱カプセルの
配置されない箇所である入口空間又は出口空間に排水桝
を設けることにより、蓄熱槽としての強度低下や凹凸部
の位置決め機能に支障を来たすこと無く、溜まった水が
槽内に溢れ出ることが生じない排水構造を実現すること
ができた。
According to a second aspect of the present invention, in addition to the effect of the first aspect, the heat storage tank is provided with a drainage basin in an inlet space or an outlet space where the heat storage capsules are not arranged. It was possible to realize a drainage structure that does not cause the accumulated water to overflow into the tank without reducing the strength or hindering the positioning function of the uneven portion.

【0017】請求項3に記載の蓄熱槽では、請求項1又
は2の構成によるいずれかの前記効果を奏するととも
に、排水桝に連通する排水管を設けることで、重力を利
用した省エネルギーな状態で良好に排水できる利点があ
る。
According to the third aspect of the present invention, in the heat storage tank, any one of the effects according to the first or second aspect can be obtained, and by providing the drain pipe communicating with the drainage basin, energy can be saved by utilizing gravity. It has the advantage of being able to drain well.

【0018】[0018]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて説明する。図1、図2に個人住宅に適用され
た蓄熱空調装置Aが示されている。この蓄熱空調装置A
は、空調機1と、この空調機1によって蓄熱自在な蓄熱
槽2を備えた蓄熱空調ユニットUを床Fの下側に配置す
るとともに、空調機1からの吐出風を各部屋(空調対象
の一例)R11〜R23に送るために1階の天井裏Y1
と2階の天井裏Y2とに順次配策される導風ダクト3を
設けて構成されている。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. 1 and 2 show a heat storage air conditioner A applied to a private house. This heat storage air conditioner A
Arrange | positions the heat storage air conditioning unit U provided with the air conditioner 1 and the heat storage tank 2 which can store the heat freely by this air conditioner 1 while arrange | positioning the discharge wind from the air conditioner 1 to each room (air-conditioning target). For example, the ceiling Y1 on the first floor to send to R11 to R23
And the air ducts 3 that are sequentially routed to the ceiling Y2 on the second floor.

【0019】蓄熱槽2の一方の開口2aには、先端に戻
りガラリ29が装備された戻りダクト30、及び短絡ダ
クト6の一端とが接続され、空調機1の吐出口1bには
導風ダクト3、及び短絡ダクト6の他端が接続されると
ともに、蓄熱槽2の他方の開口2bと空調機1の吸引口
1aとを接続ダクト7で連通してある。そして、導風ダ
クト3の根元部には往路切換機構aが、かつ、戻りダク
ト30の付根部には復路切換機構bが夫々装備されてい
る。往路切換機構aは、支点p1で揺動自在な第1ガイ
ド板8を設けて構成され、復路切換機構bは、支点p2
で揺動自在な第2ガイド板9を設けて構成されている。
A return duct 30 equipped with a return gallery 29 at one end and one end of a short-circuit duct 6 are connected to one opening 2a of the heat storage tank 2, and an air guide duct is provided at a discharge port 1b of the air conditioner 1. 3 and the other end of the short-circuit duct 6 are connected, and the other opening 2b of the heat storage tank 2 and the suction port 1a of the air conditioner 1 are connected by a connection duct 7. A forward path switching mechanism a is provided at the root of the air guide duct 3, and a return path switching mechanism b is provided at the root of the return duct 30. The forward path switching mechanism a is configured by providing a first guide plate 8 which is swingable at a fulcrum p1, and the backward path switching mechanism b is provided at a fulcrum p2.
A second guide plate 9 which can swing freely is provided.

【0020】導風ダクト3は、1階の外壁内を通して、
先ず1階の天井裏Y1に配策され第1分岐ボックス10
を経てから、2階の外壁内を通して2階の天井裏Y2に
配策され、第2分岐ボックス11に至る。1階における
各部屋R11〜R13には、第1分岐ボックス10から
個別ダクトd11〜d23が延びており、2階における
各部屋R21〜R23には、第2分岐ボックス11から
個別ダクトd21〜d23が延びている。これら各個別
ダクトd11〜d23毎に、個別ダクトを遮断自在な開
閉弁4と送風ファン5とを設けてある。各個別ダクトd
11〜d23の先端には、各部屋R11〜R13に対す
る開口部12が装備されている。
The air duct 3 passes through the outer wall on the first floor,
First, the first branch box 10 is installed in the ceiling Y1 on the first floor.
After passing through, it is routed through the outer wall on the second floor to the ceiling Y2 on the second floor and reaches the second branch box 11. Individual ducts d11 to d23 extend from the first branch box 10 to the rooms R11 to R13 on the first floor, and individual ducts d21 to d23 from the second branch box 11 to the rooms R21 to R23 on the second floor. It is extended. An open / close valve 4 and a blower fan 5 are provided for each of the individual ducts d11 to d23 so that the individual ducts can be shut off. Each individual duct d
Openings 12 for the respective rooms R11 to R13 are provided at the tips of the sections 11 to d23.

【0021】分岐ボックス10,11には、複数の個別
ダクトd11〜d13,d21〜d23が接続される所
であり、2階用の第2分岐ボックス11のもので構造を
説明する。図2に示すように、第2分岐ボックス11
は、導風ダクト3の基準断面よりも大きな断面積を有し
ており、その横側壁11aに、開閉弁4と送風ファン5
とを直接接続して成る送風ユニットsuを部屋の数と同
数配設するための開口部15が形成されている。つま
り、断面積を大きくすることで、送られてくる空調エア
を極力均等的に各送風ユニットsuに分配できるように
してある。
A plurality of individual ducts d11 to d13 and d21 to d23 are connected to the branch boxes 10 and 11, and the structure of the second branch box 11 for the second floor will be described. As shown in FIG. 2, the second branch box 11
Has a cross-sectional area larger than the reference cross-section of the air duct 3, and has an opening / closing valve 4 and a blower fan 5 on its lateral side wall 11a.
The openings 15 are formed for arranging the same number of air-blowing units su that are directly connected to each other as the number of rooms. That is, by increasing the cross-sectional area, the conditioned air that is sent can be evenly distributed to the blower units su as much as possible.

【0022】図3、図4に示すように、送風ユニットs
uは、分岐ボックス10,11に取付けられる絞りダク
ト16と、送風ファン5と、開閉弁4との三者をボルト
止め一体化して構成されており、開閉弁4の先端側に個
別ダクトd11〜d23が接続される。
As shown in FIGS. 3 and 4, the blower unit s
u is configured by integrally bolting the throttle duct 16 attached to the branch boxes 10 and 11, the blower fan 5, and the on-off valve 4, and the individual ducts d11 to d11 are provided on the tip side of the on-off valve 4. d23 is connected.

【0023】送風ファン5は、筒フレーム21に固定さ
れた電動モータ5aと、これに取り付けられたファン2
2とで成り、開閉弁4及び絞りダクト16との双方に筒
フレーム21を介してボルト連結自在に構成されてい
る。絞りダクト16は、送風ファン5と分岐ボックス1
1とを連通接続するとともに、電動モータ5aの存在に
よる断面積の変化を相殺する方向に断面積を変化させる
機能を有している。尚、23は電動モータ5aのリード
線である。
The blower fan 5 includes an electric motor 5a fixed to the tubular frame 21 and a fan 2 attached to the electric motor 5a.
2, and is configured to be bolted to both the on-off valve 4 and the throttle duct 16 via the tubular frame 21. The throttle duct 16 includes the blower fan 5 and the branch box 1.
1 has a function of connecting and communicating with 1 and changing the cross-sectional area in a direction that cancels the change of the cross-sectional area due to the presence of the electric motor 5a. Incidentally, 23 is a lead wire of the electric motor 5a.

【0024】開閉弁4は、送風ファン5にボルト止めさ
れる基板17と、極短い筒ダクト18と、筒ダクト18
の開口を開閉するべく支点p1で揺動自在な開閉扉19
と、基板17に装備された開閉機構20とによって2位
置切換型に構成されており、開閉機構20によって全開
と全閉との2位置に切換自在である。この開閉弁4は、
送風ファン5が回転駆動すれば全開位置になり、送風フ
ァン5が停止すれば全閉となる。
The open / close valve 4 includes a base plate 17 bolted to the blower fan 5, an extremely short cylindrical duct 18, and a cylindrical duct 18
Opening and closing door 19 that can swing freely at the fulcrum p1 to open and close the opening
And an opening / closing mechanism 20 mounted on the board 17 constitute a two-position switching type, and the opening / closing mechanism 20 can switch between two positions of fully open and fully closed. This on-off valve 4
When the blower fan 5 is rotationally driven, it is in the fully open position, and when the blower fan 5 is stopped, it is fully closed.

【0025】各部屋R11〜R13には、送風ファン5
の回転数を制御するための制御器13と、温度設定スイ
ッチ14とが設けてあり、温度設定スイッチ14を操作
して設定温度を決めると、それに対応して送風ファン5
の電動モータ5aの回転速度(単位時間当たりの回転
数)が制御器13によって設定されるのである。つま
り、送風ファン5の回転数変動に因る風力調節によって
室温が制御される。
A blower fan 5 is installed in each of the rooms R11 to R13.
A controller 13 for controlling the number of rotations of the fan and a temperature setting switch 14 are provided. When the temperature setting switch 14 is operated to determine the set temperature, the blower fan 5 correspondingly
The rotation speed (the number of rotations per unit time) of the electric motor 5a is set by the controller 13. That is, the room temperature is controlled by adjusting the wind force due to the change in the rotation speed of the blower fan 5.

【0026】一方、蓄熱槽2の内部温度を検出する温度
検出センサ24と、往路切換機構aを動かす第1駆動機
構25と、復路切換機構bを動かす第2駆動機構26
と、空調機1と、運転モード切換用の設定器27とを制
御装置28に接続して、蓄熱空調ユニットUにおいて完
結する制御回路を構成してある。
On the other hand, a temperature detection sensor 24 for detecting the internal temperature of the heat storage tank 2, a first drive mechanism 25 for moving the forward switching mechanism a, and a second driving mechanism 26 for moving the backward switching mechanism b.
The air conditioner 1 and the operation mode switching setter 27 are connected to the control device 28 to form a control circuit completed in the heat storage air conditioning unit U.

【0027】即ち、設定器27を「蓄熱モード」に操作
すると、導風ダクト3が遮断されて短絡ダクト6が開放
される側に第1ガイド板8が揺動するとともに、戻りダ
クト30が遮断されて短絡ダクト6が開放される側に第
2ガイド板9が揺動し、空調器1で蓄熱槽2に蓄熱する
閉鎖的な運転が行われる[図5(イ)参照]。
That is, when the setting device 27 is operated in the "heat storage mode", the first guide plate 8 swings to the side where the air guide duct 3 is cut off and the short circuit duct 6 is opened, and the return duct 30 is cut off. As a result, the second guide plate 9 swings to the side where the short-circuit duct 6 is opened, and a closed operation of storing heat in the heat storage tank 2 in the air conditioner 1 is performed [see FIG. 5 (a)].

【0028】設定器27を「放熱モード」に操作する
と、導風ダクト3が開放されて短絡ダクト6が遮断され
る側に第1ガイド板8が揺動し、かつ、戻りダクト30
が開放されて短絡ダクト6が遮断される側に第2ガイド
板9が揺動し、空調機1は単なる送風ファンとして機能
するので、蓄熱槽2の蓄熱によって空調する運転が行わ
れる[図5(ロ)参照]。
When the setting device 27 is operated in the "heat radiation mode", the first guide plate 8 swings to the side where the air guide duct 3 is opened and the short-circuit duct 6 is shut off, and the return duct 30 is opened.
Is opened and the second guide plate 9 swings to the side where the short-circuit duct 6 is cut off, and the air conditioner 1 functions simply as a blower fan. Therefore, the operation for air conditioning is performed by storing heat in the heat storage tank 2 [FIG. (See (b)].

【0029】設定器27を「放熱空調モード」に操作す
ると、往路切換機構aと復路切換機構bとが作動して、
短絡ダクト6が遮断され、導風ダクト3及び戻りダクト
30が開通した状態で空調機1を空調作動させる運転モ
ードである。これによれば、蓄熱槽2に蓄えられている
蓄熱と空調機1との双方によって空調することができる
ようにり、迅速に冷房又は暖房等の空調を行うことがで
きる[図5(ハ)参照]。
When the setting device 27 is operated in the "radiation air conditioning mode", the forward path switching mechanism a and the backward path switching mechanism b are operated,
This is an operation mode in which the air conditioner 1 is air-conditioned while the short-circuit duct 6 is cut off and the air guide duct 3 and the return duct 30 are open. According to this, it becomes possible to perform air conditioning by both the heat storage stored in the heat storage tank 2 and the air conditioner 1, and it is possible to quickly perform air conditioning such as cooling or heating [FIG. reference].

【0030】設定器27を「蓄熱空調モード」に操作す
ると、第1ガイド板8及び第2ガイド板9が半開き位置
にに揺動して止まるように往路切換機構aと復路切換機
構bとが作動し、その状態で空調機1が空調作動して、
その吐出風(空調風)が導風ダクト3と短絡ダクト6と
の双方に供給される運転状態が現出される。つまり、蓄
熱槽2への蓄熱と室内空調との双方が行われるモードで
ある[図5(ニ)参照]。
When the setting device 27 is operated in the "heat storage air conditioning mode", the forward switching mechanism a and the backward switching mechanism b are operated so that the first guide plate 8 and the second guide plate 9 swing to the half-open position and stop. The air conditioner 1 operates in that state,
The operating state in which the discharged air (air conditioning air) is supplied to both the air guide duct 3 and the short-circuit duct 6 appears. In other words, this is a mode in which both heat storage in the heat storage tank 2 and indoor air conditioning are performed [see FIG. 5 (d)].

【0031】例えば、放熱モードによる冷房中に、蓄熱
槽2の温度が上限に達したことを温度検出センサ24が
検出すると、空調機1を作動させて空調機1による冷房
状態(空調モード)に切り換わるように制御装置28が
機能する。その後に、全ての部屋に対する送風ファン5
が停止すると、短絡ダクト6が遮断されるように往路切
換機構aと復路切換機構bとが作動して「蓄熱モード」
に切り換わるように制御装置28が機能し、自動的に蓄
熱槽2に蓄熱できるようになる。
For example, when the temperature detection sensor 24 detects that the temperature of the heat storage tank 2 has reached the upper limit during cooling in the heat radiation mode, the air conditioner 1 is operated to enter the cooling state by the air conditioner 1 (air conditioning mode). The controller 28 functions to switch. After that, blower fan 5 for all rooms
Is stopped, the forward path switching mechanism a and the backward path switching mechanism b are operated so that the short-circuit duct 6 is cut off, and the "heat storage mode" is set.
The control device 28 functions so that the heat storage tank 2 automatically stores heat.

【0032】この場合、全ての送風ファン5の停止は、
導風ダクト3が行き止まり状態になって空調機1のファ
ン駆動モータ(図示省略)の負荷が急激に増大し、供給
電流が急増することによる電気的な変化を捉えることに
よって判断することができるので、各温度設定スイッチ
14と制御装置28との連係構造は必要ないものとなて
いる。
In this case, the stop of all the blower fans 5 is
This can be determined by catching an electrical change caused by a sudden increase in the load of the fan drive motor (not shown) of the air conditioner 1 due to the air duct 3 reaching a dead end and a sudden increase in the supply current. The link structure between each temperature setting switch 14 and the controller 28 is not necessary.

【0033】図6、図7に示すように、蓄熱槽2に収容
される蓄熱カプセルCは、対向配置される第1壁面41
と第2壁面42と、これら両壁面41,42の間に形成
される蓄熱材充填用の内部空間43と、両壁面41,4
2の外周縁どうしが気密状に互いに相対連結された状態
の外周シール部45とを備えて構成されている。両壁面
41,42の正面視形状は、上下高さが左右長さよりも
長い縦長の矩形形状に設定され、内部空間43が上下3
箇所の部分空間44に分割されるように、両壁面41,
42どうしがそれらの上下中間部において気密状に連結
された中間シール部46を2箇所に形成してある。つま
り、蓄熱カプセルCは、部分空間44を備えた部分カプ
セル48の3組が上下に連結一体化されたような構造を
採るものである。
As shown in FIGS. 6 and 7, the heat storage capsule C housed in the heat storage tank 2 has a first wall surface 41 oppositely arranged.
And the second wall surface 42, the internal space 43 for filling the heat storage material formed between the both wall surfaces 41, 42, and the both wall surfaces 41, 4
The outer peripheral seal portion 45 is configured so that the outer peripheral edges of the two are hermetically connected to each other. The front wall shape of both the wall surfaces 41, 42 is set to a vertically long rectangular shape whose vertical height is longer than the horizontal length, and the internal space 43 has three vertical surfaces.
Both wall surfaces 41, so as to be divided into a partial space 44 of the place,
The upper and lower intermediate portions 42 are formed with two intermediate seal portions 46 that are airtightly connected to each other. That is, the heat storage capsule C has a structure in which three sets of partial capsules 48 having the partial space 44 are vertically connected and integrated.

【0034】第1及び第2壁面41,42の夫々は、内
部空間43を形成するべく外側に膨出した凸面部47が
3箇所形成された平板状の合成樹脂材によって構成され
ており、凸面部47以外の部分が外周シール部45及び
中間シール部46である。蓄熱カプセルCは、両壁面4
1,42を、夫々の外周シール部45及び中間シール部
46どうしの融着による一体化によって構成されてい
る。部分カプセル48として見た場合、その上部の両端
部に形成された一対の丸孔49と、上1カ所、下2カ所
の計3カ所に形成された溝孔40の夫々において、第1
壁面41と第2壁42とがスポット的に融着されてい
る。各部分空間44には、固化温度が18℃である蓄熱
材39が充填されている。
Each of the first and second wall surfaces 41, 42 is made of a flat plate synthetic resin material having three convex surface portions 47 bulging outward to form the internal space 43. The parts other than the part 47 are the outer peripheral seal part 45 and the intermediate seal part 46. The heat storage capsule C has both wall surfaces 4
The outer peripheral seal portion 45 and the intermediate seal portion 46 are integrated by fusing the outer peripheral seal portion 45 and the intermediate seal portion 46 together. When viewed as a partial capsule 48, a pair of round holes 49 formed at both ends of the upper portion and a groove hole 40 formed at a total of three places, that is, an upper one place and a lower two places, respectively,
The wall surface 41 and the second wall 42 are spot-welded. Each of the partial spaces 44 is filled with the heat storage material 39 having a solidification temperature of 18 ° C.

【0035】凸面部47は、横方向に伸びる比較的小規
模な凹部47a及び凸部47bが繰り返し形成された凹
凸状に構成されている。即ち、凹部47aは内部空間4
3の側に窪んだ形状であり、凸部47bは内部空間43
とは反対側に膨らんだ形状をなしている。そして、第1
壁面41に形成した凹部47aと第2壁面42に形成し
た凸部47bとが、及び、第1壁面41に形成された凸
部47bと第2壁面42に形成された凹部47aとが、
第1壁面41或いは第2壁面42の法線方向において一
致するように形成してある。つまり、第1壁面41に凸
部47bが形成してある位置に対しては、その裏側に位
置する第2壁面42には凹部47aが形成されている構
造である。
The convex surface portion 47 is formed in a concavo-convex shape in which a relatively small-sized concave portion 47a and convex portion 47b extending in the lateral direction are repeatedly formed. That is, the concave portion 47a is the inner space 4
3 has a concave shape, and the convex portion 47b has an internal space 43
It has a bulging shape on the opposite side. And the first
The concave portion 47a formed on the wall surface 41 and the convex portion 47b formed on the second wall surface 42, and the convex portion 47b formed on the first wall surface 41 and the concave portion 47a formed on the second wall surface 42,
The first wall surface 41 and the second wall surface 42 are formed so as to coincide with each other in the normal direction. That is, with respect to the position where the convex portion 47b is formed on the first wall surface 41, the concave portion 47a is formed on the second wall surface 42 located on the back side thereof.

【0036】中間シール部45,45とその上下の第1
及び第2壁面41,42とによって形成される凹入溝3
8に、凹入溝38としての断面積を縮小させる規制部材
37を配置してある。図6に示すように、蓄熱槽2内で
は、第1及び第2壁面41,42が接近する状態で隣合
う蓄熱カプセルC、Cが配列されており、これら蓄熱カ
プセルC、C間の空間部を熱交換のための風が流れるこ
とになる。
The intermediate seal portions 45, 45 and the upper and lower first portions
And the recessed groove 3 formed by the second wall surfaces 41 and 42.
8, a regulating member 37 that reduces the cross-sectional area of the recessed groove 38 is arranged. As shown in FIG. 6, in the heat storage tank 2, adjacent heat storage capsules C and C are arranged with the first and second wall surfaces 41 and 42 approaching each other, and the space between the heat storage capsules C and C is arranged. The wind for heat exchange will flow.

【0037】この場合、凹入溝38を開放したままで
は、隣合う凹入溝38,38が重なって比較的大きな空
間部となって風が集中して流れ込み、風を多く流すべき
隣合う第1及び第2壁面41,42の間の狭い空間部に
はあまり流れなくなることになる。そこで、それを防止
するべくスポンジパッド等の比重の軽い材料で成る規制
部材37を凹入溝38に入れ込んで接着してあり、側面
視でほぼ凹入溝38が規制部材37で埋まるような状態
としてある。規制部材37としては、ウレタン、PP、
PE、アルミ合金、ゴム等、種々の材料によるものが可
能である。又、規制部材37は、図7に示す長尺状の
他、複数個の短い長さの規制部材37を凹入溝38に間
隔を空けて配置する構造のものでも良い。
In this case, if the recessed groove 38 is left open, the adjacent recessed grooves 38, 38 overlap each other to form a relatively large space, and the wind concentrates and flows into the adjacent recessed grooves 38, 38. It will not flow so much into the narrow space between the first and second wall surfaces 41, 42. Therefore, in order to prevent this, a regulating member 37 made of a material having a low specific gravity such as a sponge pad is put in the concave groove 38 and adhered thereto, and the concave groove 38 is almost completely filled with the regulating member 37 in a side view. It is in a state. As the regulating member 37, urethane, PP,
Various materials such as PE, aluminum alloy, and rubber are possible. Further, the regulating member 37 may have a structure in which a plurality of regulating members 37 having a short length are arranged in the recessed groove 38 with a space in addition to the elongated shape shown in FIG. 7.

【0038】図6に示すように、蓄熱槽2に内装されて
いる蓄熱カプセルCは、それらのうちの隣り合うものど
うしにおける一方の蓄熱カプセルCの第1壁面41と他
方の蓄熱カプセルCの第2壁面42とが対面する状態と
なる矢印イ方向(第1方向の一例)に並べられて蓄熱カ
プセル列Lを形成してある。そして、この蓄熱カプセル
列Lの複数を第1又は第2壁面41又は42の面に沿う
矢印ロ方向(第2方向の一例)で並べるに、矢印ロ方向
で隣り合う蓄熱カプセルCどうしが、矢印イ方向に互い
に位置ずれする状態(千鳥格子状態)に設定してある。
As shown in FIG. 6, the heat storage capsule C installed in the heat storage tank 2 has a first wall surface 41 of one heat storage capsule C and a second heat storage capsule C of the other heat storage capsule C adjacent to each other. The heat storage capsule rows L are formed by being arranged in the arrow A direction (an example of the first direction) in which the two wall surfaces 42 face each other. When a plurality of the heat storage capsule rows L are arranged in the arrow B direction (an example of the second direction) along the surface of the first or second wall surface 41 or 42, the heat storage capsules C adjacent to each other in the arrow B direction are indicated by arrows. It is set in a state where they are displaced from each other in the a direction (staggered lattice state).

【0039】つまり、隣り合う蓄熱カプセル列Lどうし
を、矢印イ方向で隣り合う蓄熱カプセルC,Cの配列ピ
ッチ(第1方向スパンの一例)Pの半分であるP/2で
もって位置ずれさせてあり、送風の通り道がジグザグ経
路となるようにしてある。これにより、風は蓄熱カプセ
ルC,C間の隙間を素通りするのではなく、必ずいずれ
かの蓄熱カプセルCの側面に衝突して風向を絶えず変動
させながら、即ち、蓄熱カプセルC,C間の隙間を蛇行
するような状態で流れるようになるので、蓄熱カプセル
表面を摺接しながら流れる風の速さ、並びに風量を従来
よりも大にすることができ、風による熱交換の効率が向
上するのである。
That is, the adjacent heat storage capsule rows L are displaced from each other by P / 2 which is half of the arrangement pitch (an example of the first direction span) P of the heat storage capsules C, C adjacent to each other in the arrow A direction. Yes, the path of the blast is zigzag. As a result, the wind does not pass through the gap between the heat storage capsules C and C, but always collides with the side surface of one of the heat storage capsules C to constantly change the wind direction, that is, the gap between the heat storage capsules C and C. Since the air flows in a meandering state, the speed of the air flowing while sliding on the surface of the heat storage capsule and the air volume can be made larger than before, and the efficiency of heat exchange by the air is improved. .

【0040】次に、蓄熱槽2について説明する。図9〜
図13に示すように、蓄熱槽2は、前後の側面50,5
1、左右の側面52,53、及び底面54を有した無蓋
状の槽本体2Aと、この槽本体2Aに対して着脱可能に
装備される蓋2Bとから成る発泡スチロール製の直方体
に構成されている。蓄熱槽2の内部は、左右両端に送風
入口空間55と送風出口空間56とが振り分け配置さ
れ、それらの間に蓄熱カプセルCの収容部Sに割り当て
られている。
Next, the heat storage tank 2 will be described. 9-
As shown in FIG. 13, the heat storage tank 2 includes front and rear side surfaces 50, 5
1. A rectangular parallelepiped body made of styrofoam, which includes an uncovered tank body 2A having left and right side surfaces 52, 53 and a bottom surface 54, and a lid 2B detachably attached to the tank body 2A. . Inside the heat storage tank 2, a blower inlet space 55 and a blower outlet space 56 are separately arranged at both left and right ends, and a storage portion S of the heat storage capsule C is allocated between them.

【0041】前面50の左右端部には、送風入口空間5
5に対応した入口開口50iと、送風出口空間56に対
応した出口開口50oとが形成されている。そして、収
容部Sに相当する部分の底面54には、多数の蓄熱カプ
セルCを矢印イ方向(第1方向)及び矢印ロ方向(第2
方向)の夫々に整列状態で位置決めして、蓄熱カプセル
列Lの3列で成る蓄熱カプセル群Gを実現するための凹
凸部57を形成してある。
At the left and right ends of the front surface 50, the air inlet space 5
5 and an outlet opening 50o corresponding to the blower outlet space 56 are formed. Then, on the bottom surface 54 of the portion corresponding to the accommodating portion S, a large number of heat storage capsules C are provided in the arrow A direction (first direction) and the arrow B direction (second direction).
(3) of the heat storage capsules L are formed in an aligned state in order to realize the heat storage capsule group G including three rows.

【0042】凹凸部57は、底面54の上面側に一体に
隆起形成された多数の横長突起62から成り、矢印イ方
向で隣り合う横長突起62,62間に形成される凹部6
3に蓄熱カプセルCの外周シール部45が嵌まり込み、
かつ、横長突起62の両傾斜上面62a,62aに第1
及び第2壁面41,42の傾斜側面41a,42aが載
置されることにより、多数の蓄熱カプセルCを均等間隔
でもって矢印イ方向に整列させることに寄与させてあ
る。
The concavo-convex portion 57 is composed of a large number of horizontally long protrusions 62 integrally formed on the upper surface side of the bottom surface 54, and the recess 6 formed between the horizontally long protrusions 62, 62 adjacent to each other in the arrow A direction.
3, the outer peripheral seal portion 45 of the heat storage capsule C is fitted in,
In addition, the first protrusions are formed on both the inclined upper surfaces 62a, 62a of the horizontally long protrusions 62.
By mounting the inclined side surfaces 41a, 42a of the second wall surfaces 41, 42, it is possible to contribute to aligning a large number of heat storage capsules C in the arrow A direction at equal intervals.

【0043】又、蓄熱カプセル列L、送風入口空間55
及び送風出口空間56の夫々に対応する位置において矢
印イ方向に延びる縦排水溝58を、底面54に計5本形
成するとともに、これら複数の縦排水溝58に連通され
る横排水溝59を、矢印ロ方向に対して傾斜した斜め方
向に延びる状態で底面54に形成してある。
In addition, the heat storage capsule array L and the blast inlet space 55
And, a total of five vertical drainage grooves 58 extending in the direction of arrow A are formed on the bottom surface 54 at positions corresponding to the respective blower outlet spaces 56, and horizontal drainage grooves 59 communicating with the plurality of vertical drainage grooves 58 are formed. It is formed on the bottom surface 54 in a state of extending in an oblique direction inclined with respect to the arrow B direction.

【0044】横排水溝59の一端には、入口空間55又
は出口空間56における底面54に形成された平面視円
形の排水桝60が連通されており、最左端の縦排水溝5
8は排水桝60を介して横排水溝59に連通されてい
る。そして、排水桝60に溜まった水分を左側面52を
通して蓄熱槽2外に導く排水管61と、排水管61の先
端側に接続される吸出し用のポンプ64とを設けてあ
る。
A drainage basin 60, which is circular in plan view and is formed on the bottom surface 54 of the inlet space 55 or the outlet space 56, communicates with one end of the horizontal drainage groove 59, and the leftmost vertical drainage groove 5 is formed.
8 is connected to the lateral drainage groove 59 via a drainage basin 60. Further, a drainage pipe 61 that guides the water accumulated in the drainage basin 60 to the outside of the heat storage tank 2 through the left side surface 52, and a suction pump 64 connected to the tip end side of the drainage pipe 61 are provided.

【0045】収容部Sにおける3本の縦排水溝58は、
各横長突起62を寸断するようにその横幅中央部を横切
って形成されているとともに、横排水溝59は、対応す
る横長突起62を斜めに横切って形成されている。従っ
て、いずれの横長突起62も部分的に欠如されることは
あっても、蓄熱カプセルCに対するスペーサー機能を持
つ状態に構成されており、排水溝58,59を有しなが
らも蓄熱カプセルCの整列配置を損なわない合理的な構
造となっている。
The three vertical drainage grooves 58 in the storage section S are
The lateral drainage grooves 59 are formed diagonally across the corresponding laterally elongated projections 62 while being formed so as to cross each laterally elongated projection 62 so as to be cut into pieces. Therefore, even if any of the horizontally long protrusions 62 is partially omitted, it is configured to have a spacer function for the heat storage capsules C, and the heat storage capsules C are aligned even though the drainage grooves 58 and 59 are provided. It has a rational structure that does not impair the layout.

【0046】〔別実施形態〕 《1》 縦排水溝58を、蓄熱カプセル列L当たりに2
本以上設けるとか、横排水溝59をV字状やジグザグ
状、或いは曲線として設ける構成等も可能である。排水
桝60は、入口空間55の入口開口50i側や、出口区
間56に設けるようにしても良い。又、ポンプ64を槽
本体2Aに内装しても良く、その場合にはポンプ64の
吐出側に接続される排水管61が、槽本体2Aを貫通し
て外部に延出されるようになる。
[Another Embodiment] << 1 >> Two vertical drainage grooves 58 are provided for each heat storage capsule array L.
It is also possible to provide more than one, or to provide the lateral drainage grooves 59 in a V shape, a zigzag shape, or as a curved line. The drainage basin 60 may be provided on the inlet opening 50i side of the inlet space 55 or on the outlet section 56. Further, the pump 64 may be incorporated in the tank main body 2A, in which case the drainage pipe 61 connected to the discharge side of the pump 64 penetrates the tank main body 2A and extends to the outside.

【0047】《2》 図14に示すように、送風ユニッ
トsuを図2に示す状態とは逆に装着しても良い。即
ち、開閉弁4が分岐ボックス10,11内で開閉自在
で、かつ、絞りダクト16に個別ダクトd11が装着さ
れる状態に配置するのである。この場合、ファン5は逆
回転仕様にしておく。
<< 2 >> As shown in FIG. 14, the blower unit su may be mounted in a state opposite to that shown in FIG. That is, the on-off valve 4 is arranged so that it can be opened and closed in the branch boxes 10 and 11, and the individual duct d11 is attached to the throttle duct 16. In this case, the fan 5 has a reverse rotation specification.

【図面の簡単な説明】[Brief description of drawings]

【図1】蓄熱空調ユニットによる空調装置を示す概略図FIG. 1 is a schematic diagram showing an air conditioner using a heat storage air conditioning unit.

【図2】分岐ボックスの構造を示す平面図FIG. 2 is a plan view showing the structure of a branch box.

【図3】送風ユニットを示す平面図FIG. 3 is a plan view showing a blower unit.

【図4】送風ファンを示す背面図FIG. 4 is a rear view showing the blower fan.

【図5】各種運転モードを示す概略図FIG. 5 is a schematic diagram showing various operation modes.

【図6】蓄熱カプセルの配列構造を示す要部の平面図FIG. 6 is a plan view of a main part showing an arrangement structure of a heat storage capsule.

【図7】(イ)は蓄熱カプセルの正面図、(ロ)は蓄熱
カプセルの側面図
FIG. 7A is a front view of the heat storage capsule, and FIG. 7B is a side view of the heat storage capsule.

【図8】規制部材を示す蓄熱カプセルの部分拡大断面図FIG. 8 is a partially enlarged sectional view of a heat storage capsule showing a regulation member.

【図9】蓄熱槽の構造を示す斜視図FIG. 9 is a perspective view showing the structure of a heat storage tank.

【図10】槽本体の平面図FIG. 10 is a plan view of the tank body

【図11】蓋がされた状態の蓄熱槽を示す部分断面の斜
視図
FIG. 11 is a perspective view of a partial cross section showing the heat storage tank in a state where the lid is closed.

【図12】凹凸部の構造を示す蓄熱槽底部の断面図FIG. 12 is a sectional view of the bottom of the heat storage tank showing the structure of the uneven portion.

【図13】蓄熱槽の断面図FIG. 13 is a sectional view of a heat storage tank.

【図14】送風ユニットの分岐ボックスとの別取付構造
を示す側面図
FIG. 14 is a side view showing another attachment structure of the blower unit with the branch box.

【符号の説明】[Explanation of symbols]

41 第1壁面 42 第2壁面 43 内部空間 54 底面 57 凹凸部 58 縦排水溝 59 横排水溝 60 排水桝 61 排水管 C 蓄熱カプセル L 蓄熱カプセル列 41 First wall 42 Second wall 43 Internal space 54 Bottom 57 Concavo-convex part 58 Vertical drain 59 Horizontal drain 60 drainage basin 61 drainage pipe C heat storage capsule L heat storage capsule row

───────────────────────────────────────────────────── フロントページの続き (72)発明者 坪田 祐二 神奈川県横浜市鶴見区江ヶ崎町4番1号 東京電力株式会社電力技術研究所内 Fターム(参考) 3L050 BF07 3L053 BB10    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Yuji Tsubota             4-1, Egasaki-cho, Tsurumi-ku, Yokohama-shi, Kanagawa             Tokyo Electric Power Co., Inc. F-term (reference) 3L050 BF07                 3L053 BB10

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 対向配置される第1壁面と第2壁面との
間に、蓄熱材充填用の内部空間を形成してある蓄熱カプ
セルの多数を収容自在な蓄熱槽であって、 前記蓄熱カプセルを、それらのうちの隣り合うものどう
しにおける一方の蓄熱カプセルの第1壁面と他方の蓄熱
カプセルの第2壁面とが対面する状態となる第1方向に
整列させて形成される蓄熱カプセル列の複数を、前記第
1又は第2壁面の面に沿う第2方向に整列させ、かつ、
前記蓄熱槽の底面に、前記蓄熱カプセルを前記第1方向
に整列させるための位置決め用凹凸部を形成し、 前記蓄熱カプセル列に対応する位置において前記第1方
向に延びる縦排水溝を前記底面に形成するとともに、こ
れら複数の縦排水溝に連通される横排水溝を、前記第2
方向に対して傾斜した斜め方向に延びる状態で前記底面
に形成してある蓄熱槽。
1. A heat storage tank capable of accommodating a large number of heat storage capsules in which an internal space for filling a heat storage material is formed between first and second wall surfaces facing each other. A plurality of heat storage capsule rows formed by aligning the first wall surface of one heat storage capsule and the second wall surface of the other heat storage capsule in adjacent ones of them in a first direction. Are aligned in a second direction along the surface of the first or second wall surface, and
Positioning irregularities for aligning the heat storage capsules in the first direction are formed on the bottom surface of the heat storage tank, and vertical drainage grooves extending in the first direction are provided on the bottom surface at positions corresponding to the heat storage capsule rows. The horizontal drains that are formed and communicate with the plurality of vertical drains are
A heat storage tank formed on the bottom surface in a state of extending in an oblique direction inclined with respect to the direction.
【請求項2】 前記蓄熱カプセル列を前記第2方向に複
数並べて成る蓄熱カプセル群に対する送風の入口空間と
出口空間とを、前記蓄熱カプセル群に前記第2方向で隣
接する箇所に振り分けて形成するとともに、前記横排水
溝に連通される排水桝を、前記入口空間又は前記出口空
間における前記底面に形成してある請求項1に記載の蓄
熱槽。
2. An inlet space and an outlet space for blowing air to the heat storage capsule group formed by arranging a plurality of the heat storage capsule rows in the second direction are formed by allocating to the location adjacent to the heat storage capsule group in the second direction. The heat storage tank according to claim 1, wherein a drainage basin communicating with the lateral drainage groove is formed on the bottom surface of the inlet space or the outlet space.
【請求項3】 前記排水桝に溜まった水を蓄熱槽外に導
く排水管を設けてある請求項2に記載の蓄熱槽。
3. The heat storage tank according to claim 2, further comprising a drain pipe that guides the water accumulated in the drainage basin to the outside of the heat storage tank.
JP2002017240A 2002-01-25 2002-01-25 Thermal storage vessel Pending JP2003214784A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002017240A JP2003214784A (en) 2002-01-25 2002-01-25 Thermal storage vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002017240A JP2003214784A (en) 2002-01-25 2002-01-25 Thermal storage vessel

Publications (1)

Publication Number Publication Date
JP2003214784A true JP2003214784A (en) 2003-07-30

Family

ID=27653000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002017240A Pending JP2003214784A (en) 2002-01-25 2002-01-25 Thermal storage vessel

Country Status (1)

Country Link
JP (1) JP2003214784A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014020643A (en) * 2012-07-17 2014-02-03 Mitsubishi Plastics Inc Heat storage box
KR101935717B1 (en) * 2018-04-25 2019-01-04 에이치엘비생명과학(주) Heat Storage Unit for Thermal Energy Delivery
KR101935718B1 (en) * 2018-04-25 2019-01-04 에이치엘비생명과학(주) Heat Storage Module Assembly for Thermal Energy Delivery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014020643A (en) * 2012-07-17 2014-02-03 Mitsubishi Plastics Inc Heat storage box
KR101935717B1 (en) * 2018-04-25 2019-01-04 에이치엘비생명과학(주) Heat Storage Unit for Thermal Energy Delivery
KR101935718B1 (en) * 2018-04-25 2019-01-04 에이치엘비생명과학(주) Heat Storage Module Assembly for Thermal Energy Delivery

Similar Documents

Publication Publication Date Title
JP5842194B1 (en) Intake / exhaust unit and double skin system using the same
US7987680B2 (en) Air conditioner
KR100826688B1 (en) Ventilating device with air circulation control structure
KR102106702B1 (en) Heat exchanger
KR101658644B1 (en) a Total heat exchanger having bypass tunnel
JP5219283B2 (en) Air conditioning system and air conditioning control method
JP5591061B2 (en) Air conditioner
JP6357258B2 (en) Air conditioning method and air conditioner
JP4017483B2 (en) Air conditioner
JP6920934B2 (en) Ventilation control system and ventilation control method of double skin structure of building
KR20070051220A (en) Ventilating apparatus and controlling method of the same
JP2003214784A (en) Thermal storage vessel
JP4853127B2 (en) Heat exchange ventilator
WO2015155902A1 (en) Poultry house ventilation structure and poultry house ventilation method
JP3982240B2 (en) Air conditioner outdoor equipment
JP6976431B2 (en) Heat exchange ventilator
JP2003214785A (en) Thermal storage vessel
JP3451621B2 (en) Under-floor air-conditioning unit
JP5567542B2 (en) Air conditioning method and air conditioner
JP4851629B2 (en) Air conditioning method and air conditioner
JP2009058220A (en) Air conditioning method and air-conditioner
JP2003214783A (en) Thermal storage capsule arrangement structure
JP2010048468A (en) Air conditioner
KR20240005275A (en) Total heat exchanging element and heat exchanger having the same
JP2007010237A (en) Windbreak chamber, and method for reducing flow of air between interior and exterior in windbreak chamber