JP2003213380A - Rolling apparatus - Google Patents

Rolling apparatus

Info

Publication number
JP2003213380A
JP2003213380A JP2002013495A JP2002013495A JP2003213380A JP 2003213380 A JP2003213380 A JP 2003213380A JP 2002013495 A JP2002013495 A JP 2002013495A JP 2002013495 A JP2002013495 A JP 2002013495A JP 2003213380 A JP2003213380 A JP 2003213380A
Authority
JP
Japan
Prior art keywords
rolling
weight
quenching
nitriding
hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002013495A
Other languages
Japanese (ja)
Other versions
JP2003213380A5 (en
JP3941520B2 (en
Inventor
Hiroyasu Yoshioka
宏泰 吉岡
Kenji Yamamura
賢二 山村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2002013495A priority Critical patent/JP3941520B2/en
Publication of JP2003213380A publication Critical patent/JP2003213380A/en
Publication of JP2003213380A5 publication Critical patent/JP2003213380A5/ja
Application granted granted Critical
Publication of JP3941520B2 publication Critical patent/JP3941520B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Rolling Contact Bearings (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rolling apparatus which has excellent wear resistance and corrosion resistance, and has an elongated rolling life. <P>SOLUTION: In a rolling bearing, at least one of an outer ring 1 as an outward member and an inner ring 2 and a rolling element 3 as inward members consists of a steel base metal comprising, by weight, 8.0 to 18.0% Cr, 0 to 0.7% C, 0 to 3.0% Mo, 0 to 2.0% V, 0 to 3.5% Ni, 0 to 10.0% Co, 0 to 0.2% N, and Fe with elements essential in steel making and inevitable impurities, and is subjected to nitriding treatment, induction hardening and tempering, so that corrosion resistance by Cr, sufficient strength by a surface nitrided layer, and straightening properties for deformation by toughness in a core part can be obtained. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、転がり軸受、ボー
ルネジ、直動案内装置(リニアガイド)等のように、外
方部材と内方部材との間に転動体を配設する転動装置に
関し、特に連続鋳造設備の転がり軸受のように、高い耐
食性及び耐摩耗性が要求される転動装置に好適なもので
ある。 【0002】 【従来の技術】転がり軸受をはじめとする転動装置は、
その構成部品として外方部材と内方部材と両者に接触し
ながら転動する転動体とを備えており、当該転動体を含
み、外方部材並びに内方部材と転動体とが接触しながら
転動している面を転動面という。また、外方部材とは、
転がり軸受にあっては外輪、リニアガイドにあってはス
ライダ又は案内レール、ボールねじにあってはナットを
示し、内方部材とは、転がり軸受にあっては内輪又は軸
体、リニアガイドにあっては案内レール又はスライダ、
ボールねじにあってはねじ軸を示す。従って、外方部材
の転動面とは、転がり軸受にあっては外輪の軌道面、リ
ニアガイドにあってはスライダ又は案内レールの軌道
溝、ボールねじにあってはナットのねじ溝を示し、内方
部材の転動面とは、転がり軸受にあっては内輪の軌道
面、リニアガイドにあっては案内レール又はスライダの
軌道溝、ボールねじにあってはねじ軸のねじ溝を示す。 【0003】一般に、転がり軸受をはじめとする転動装
置は、軌道輪と転動体との間で転がり運動をして接触圧
力を受けるため、これらの材料には、硬くて負荷に耐
え、転がり寿命が長く、滑りに対する耐摩耗性が良好で
あることなどが要求される。そこで、一般的にこれらの
材料には、軸受鋼のSUJ2やSUJ3等が使用され
る。そして、転がり軸受は高面圧下で繰り返し剪断応力
を受けて用いられるため、その剪断応力に耐えて転がり
疲労寿命を確保すべく、これらの材料に焼入れ及び焼戻
しを施し、表面硬度HRC58〜64として用いられて
いる。また、前記軸受鋼では、水混入や潤滑等の腐食環
境下での早期の発錆が懸念されるため、耐食性に優れる
と共に軸受に必要とされる硬度HRC58以上が可能な
SUS440Cのようなマルテンサイト系ステンレス鋼
も使用されている。 【0004】 【発明が解決しようとする課題】ところで、前述のよう
な材料の熱処理には、構成部材の芯部まで焼入れ温度に
加熱して急冷する、所謂ずぶ焼入れが行われる。しかし
ながら、近年、転動装置の使用条件に対する要求が厳し
くなってきており、従来よりも長寿命の転動装置が求め
られているが、これに対して、従来のずぶ焼入れのみの
熱処理では長寿命化に限界がある。 【0005】そこで、転動装置の長寿命化を行う手段と
して高周波焼入れが考えられる。高周波焼入れを行う
と、被熱処理物の表面に圧縮残留応力が生じるため、面
圧疲労強度や捩り疲労強度が向上する。更に、高周波焼
入れは、被熱処理物の表面のみを焼入れるため、ずぶ焼
入れよりも被熱処理物の熱処理変形の総量が減少し、研
削や仕上加工の取り代を少なくすることができる。更
に、芯部の硬さが低い、つまり芯部に靱性部があるの
で、曲がり直しなどの後加工が容易である。 【0006】しかしながら、マルテンサイト系ステンレ
ス鋼として多用されるSUS440Cに高周波焼入れを
行うと、鋼中に粗大な炭化物が多量に含まれていること
が多いため、炭化物の固溶が困難となり、十分な焼入れ
硬さを得ることが難しい。また、粗大な共晶炭化物を固
溶させるために焼入れ温度を高くすると、残留オーステ
ナイトが過剰となり、転動装置に必要な表面硬さHRC
58以上に達しない恐れがあるだけでなく、オーバヒー
トを起こす恐れがある。粗大な共晶炭化物の生成を抑制
するには、母材の炭素量を少なくすれば効果的であり、
例えば炭素量が0.26〜0.4%と少ないSUS42
0J2では、粗大な共晶炭化物は殆ど見られない。その
ため、このSUS420J2は高周波焼入れ性が良好で
あるものの、炭素量が少ないために焼入れ硬さが低く、
転動装置に必要なHRC58という硬度に達しないた
め、転動装置の材料としては不適である。 【0007】この問題に対し、高周波焼入れに適するマ
ルテンサイト系ステンレス鋼として、特開2000−3
28204号公報では、母材炭素量を減少させて共晶炭
化物の生成を抑制する代わりに、窒素を添加することで
焼入れ硬さを確保し、更にCrと(C+N)の比を一定
として炭化物の生成を抑制することで、高周波焼入れ性
を向上させる方法が提案されている。母材の炭素濃度を
少なくする代わりに窒素を添加すれば、焼入れ硬度を確
保したまま、共晶炭化物の析出を抑制できるだけでな
く、従来のステンレス鋼に比べて著しく耐食性が向上
し、微細な窒化物が形成されることにより、高い耐摩耗
性が得られるという効果もある。 【0008】しかしながら、大気圧中で溶鋼中に窒素を
添加する製鋼法では、溶鋼の窒素溶解度が小さく、0.
2%以上の窒素を添加することが困難であるため、窒素
添加による焼入れ硬度や耐摩耗性の向上効果には限界が
ある。高圧窒素雰囲気で製鋼を行えば0.2%以上の窒
素を添加することも可能であるが、特別な生産設備を必
要とするため、コストアップは避けられないという問題
がある。 【0009】更に、特開平9−287058号公報に
は、母材の炭素量を減少する代わりに窒素を添加した母
材に窒化又は浸炭窒化した後、窒素の拡散処理を行い、
次いで焼入れを施す方法が提案されている。この方法で
は、表面窒素濃度を高くすることができるため、耐摩耗
性や疲労寿命や耐食性が向上するといった特徴がある
が、焼入れがずぶ焼入れで行われるため、疲労強度向上
には限界があり、更には焼入後に曲がり直しを必要とす
る部材や、熱処理変形が問題になる大型部材には不適で
ある。 【0010】本発明は前記諸問題を解決すべく開発され
たものであり、表面硬度が高く耐摩耗性に優れると共
に、表面の残留圧縮応力によって転動寿命も優れた転動
装置を提供することを目的とするものである。 【0011】 【課題を解決するための手段】かかる諸問題を解決する
ために、本発明者等は、母材C量を減少することで粗大
な共晶炭化物の析出を抑えたステンレス母材に窒化処理
を行い、高周波で焼入れを行う方法を検討した。本発明
の転動装置は、表面硬度が高く耐摩耗性に優れること
や、表面に残留圧縮応力が生じるために転動寿命が向上
する。 【0012】上記問題を解決するため、本発明に係る転
動装置は、外方部材と内方部材との間に転動体を配設す
る転動装置において、前記外方部材及び内方部材及び転
動体の少なくとも一つを、Cr:8.0〜18.0重量
%、C:0〜0.7重量%、Mo:0〜3.0重量%、
V:0〜2.0重量%、Ni:0〜3.5重量%、C
o:0〜10.0重量%、N:0〜0.2重量%、Fe
及び製鋼上不可欠な元素及び不可避不純物を含む鋼母材
で構成し、それに窒化処理及び高周波焼入れ及び焼戻し
を施したことを特徴とするものである。 【0013】以下に、本発明の臨界的意義について説明
する。 [母材のCr:8.0〜18.0重量%]Crは鋼に耐
食性を与えるために最も必要な元素であり、含有量が
8.0重量%未満であると良好な耐食性が得られない。
Cr添加量を増加させると、耐食性や高周波焼入れ性が
向上するという効果があるが、δフェライトが生成して
脆化し易くなるため、上限を18.0重量%とした。ま
た、Crを多量に添加するとMs点(マルテンサイト変
態開始温度)が下がりすぎてサブゼロオーダとなり、十
分な焼入れ硬さが得られなくなる恐れがあるので、好ま
しくは上限を16.0重量%とする。また、耐食性の観
点からは、好ましくは下限を10.0重量%とする。 【0014】[母材のC:0〜0.7重量%]Cは基地
をマルテンサイト化することにより強度を増加させる元
素であり、更に芯部靱性を低下させるδフェライトの析
出を抑制する作用がある。しかし、含有量が多すぎる
と、焼入れ時に多量の残留オーステナイトが生成して適
正な焼入れ硬さが得られない。また、製鋼時に粗大な共
晶炭化物が形成されやすく、粗大な炭化物の周辺では、
基地のCr濃度が減少するために十分な耐食性が得られ
ないだけでなく、転動寿命や靱性を低下させる原因とも
なる。また、粗大炭化物は固溶しにくいため、加熱・保
持が短時間で行われる高周波焼入れ等では焼入れ硬さが
不十分となる。また、これらの炭化物を固溶させるため
に焼入れ温度を高くすると、残留オーステナイトが多く
なり、焼入れ硬さが不十分となるだけでなく、オーバヒ
ートを起こす恐れがある。この傾向は、C量が0.7重
量%を越えると顕著であることから、Cの上限は0.7
重量%とし、好ましくは0.5%以下とする。また、C
量が少ないとδフェライトの抑制効果が減少するため、
好ましくは下限を0.1重量%とする。 【0015】[選択的に添加される元素]Moは焼入れ
性及び焼戻し軟化抵抗性を著しく増大させる元素であ
り、耐孔食性を改善する作用がある。また、窒素が固溶
されている場合、熱処理により窒化物を形成して強度を
高める作用がある。高温強度を必要とされる場合など、
必要に応じて添加させてよいが、過剰に添加すると靱性
が低下するため、上限を3.0重量%とした。 【0016】Vは強力な窒化物生成元素であり、Cr窒
化物の析出を抑制すると共に強度を高める作用がある。
特に高温強度を必要とされる場合など、必要に応じて添
加させてよいが、多量に添加すると靱性や加工性が低下
するため2.0重量%以下とする。Niは強力なオース
テナイト安定化元素であり、δフェライトの生成を抑制
し、更に基地に固溶して靱性を向上させ、高温特性を高
める作用がある。しかし、必要以上に添加すると多量の
残留オーステナイトが生成して十分な焼入れ硬さが得ら
れなくなることがあるので、上限を3.5重量%とす
る。 【0017】CoもNiと同様にオーステナイト安定化
元素であり、δフェライトの生成を抑え、更に基地中に
固溶して炭化物の凝集を抑制し、高温硬さを向上させる
作用がある。しかし、多量に添加すると加工性が低下
し、更にコストが高くなるので上限を10.0重量%以
下とする。母材に添加されるNは、C含有量が多い場合
には粗大な一次共晶炭化物の形成を抑制し、逆にC含有
量が少ない場合にはδフェライトの形成を抑制する作用
があり、芯部靱性の向上に寄与する。また、窒素添加に
よって炭素含有量を低減させることができるので耐食性
が著しく改善される。そのため必要に応じて母材に窒素
を添加させてもよい。但し、製鋼時の段階で窒素を0.
2重量%を越えて添加すると、凝固の際に気泡が発生し
て鋼塊に多数の気孔が導入されることがあるため、母材
のN添加量を好ましくは0.2重量%以下、更に好まし
くは0.15重量%以下とする。 【0018】[製鋼上不可欠な元素について]Siは、
製鋼時の脱酸剤として必要な元素であり、0.1重量%
以上添加されることが望ましい。また、焼戻し軟化抵抗
性を高めるが、多量に添加すると靱性を低下させるた
め、上限を2.0重量%とする。Mnは脱酸剤として
0.1重量%以上必要であるが、多量に添加すると鍛造
性、被削性が低下するだけでなく、S、P等の不純物を
共存して耐食性を低下させるので上限を1.5重量%と
する。 【0019】[不可避不純物について]鋼中に含まれる
不純物のうち、重要なものに酸化物系介在物がある。鋼
中の酸素量含有量が多くなると、疲労破壊の起点になる
粗大な酸化物系介在物の存在量が多くなり、転動寿命が
低下する。また、窒化層に粗大な酸化物系介在物が存在
すると、窒化層の早期剥離が発生する恐れがあることか
ら、酸素含有量は可及的に低く抑えられることが望まし
い。鋼中の酸素含有量は15ppm以下、更に好ましく
は10ppm以下とする。 【0020】[母材のδフェライトについて]鋼中のC
量を低減させると粗大な共晶炭化物が減少するため、高
周波焼入れ性が向上するが、その一方で芯部靱性に悪影
響を及ぼすδフェライトが生成されやすくなる。鋼中に
添加される元素の中でCr、Mo、V、Si等のフェラ
イト安定化元素はδフェライト生成を促進させ、Ni、
Co、Mn、N、C等のオーステナイト安定化元素はδ
フェライト生成を抑制する。これらオーステナイト安定
化元素とフェライト安定化元素の相互関係によってδフ
ェライトの生成の有無が決まることから、下記1式を満
たせばδフェライトの生成を抑制できる。つまり、母材
の合金成分が下記1式を満たせばδフェライトの生成は
抑制される。 【0021】 【数1】 【0022】[転動装置の作製方法について]まず、窒
化処理前の粗加工の一例を述べる。外方部材及び内方部
材の場合は、棒材又は管材に熱間鍛造又は旋削を行い、
転動体の場合は冷間引抜した線材をヘッダで冷間加工
後、バリ取りを行って、夫々目的の形状に加工する。な
お、この工程は一例であり、生産性を確保できるのであ
れば如何なる方法も適用可能である。例えば、窒化層の
つきまわり性、つまり窒化層厚さの安定性を向上させる
ために研削工程を加えるなどしてもよい。 【0023】[窒化処理について]まず、窒化後の母材
表面に形成される窒化層について述べる。窒化処理を行
うと、図1に示すように、母材の最表面にはζ−Fe2
N、ε−Fe2-3 N、γ'−Fe4 N、CrN、Cr2
N等の窒化物のみで緻密に構成されている層(以下、化
合物層とも記す)が形成され、それよりも深い部分で
は、基地である窒素拡散相に上記の窒化物が分散した層
(以下、窒素拡散層とも記す)が形成される。ここで
は、これら化合物層と窒素拡散層とを合わせて窒化層と
称する。 【0024】窒化処理については、ガス窒化及び塩浴窒
化又はイオン窒化等の何れの方法を選択してもよい。窒
化後に行う高周波焼入れは、加熱・保持時間が短いた
め、窒素の拡散は殆ど起こらないものと考えてよく、そ
のため、高周波焼入れ前には適当な窒化層パターンを得
ておくことが必要となる。高周波焼入れ後に仕上加工を
行うために、高周波焼入れ前の窒化層深さは少なくとも
仕上加工の取り代以上としておく。好ましくは完成品の
窒化層厚さが0.2mm以上となるように高周波焼入れ
前の窒化層パターンを得ておく。なお、加工の取り代は
部材によって異なるため、必要とされる窒化層パターン
は各部材毎に決定する。 【0025】窒化の処理温度や時間は、上記窒化層パタ
ーンを満足するものであれば如何なるものでもよい。通
常は窒化処理で生じる歪みを極力抑えるために、Ac1
変態点未満の温度で窒化処理が行われる。しかし、本発
明では窒化処理後に高周波焼入れを行うため、必ずしも
窒化による歪みを抑える必要はなく、Ac1変態点以上
の温度で窒化処理を行ってもかまわない。但し、110
0℃以上のオーステナイト領域でアンモニアや窒素ガス
で窒化を行うと、極めて高い純度の窒素ガスが必要とさ
れることから、生産性に劣り、また長時間窒化処理を行
うと、オーステナイト粒が成長するために疲労強度が低
下する。よって、窒化温度は好ましくは900℃以下と
する。また、α相とγ相とでは、同じ温度であれば、α
相の方が窒素の拡散係数が大きいため、更に好ましくは
Ac1変態点以下で窒化処理を行う。 【0026】窒化処理の更に好ましい形態の一例として
は、比較的低温で処理が可能なNv窒化プロセス(エア
・ウオーター株式会社の商品名)がある。Nv窒化プロ
セスは、窒化処理前に行えば、NF3 (三フッ化窒素)
などのフッ素系ガスを用いて250〜400℃でフッ化
処理を行うプロセスと、NH3 ガスによる窒化処理を行
うプロセスとからなる。フッ化処理は窒化反応を阻害す
るCr窒化物を除去し、表面を活性化するフッ化層を形
成するため、処理時間が短くても非常に均一な窒化層を
形成することが可能となる。 【0027】[熱処理について]焼入れは高周波焼入れ
で行う。高周波焼入れは、被熱処理物表面に残留圧縮応
力を生じさせるために面圧疲労強度が向上する。また、
芯部は焼入れされないため、靱性に優れるという特徴も
ある。更には、高周波焼入れは、被熱処理物の表面にの
み焼入れを行うために、ずぶ焼入れよりも被熱処理物全
体としての熱処理変形が減少し、後加工を少なくできる
という利点もある。なお、冷却は油冷や水冷などのよう
な方法を用いてもかまわない。 【0028】また、母相中にCやN、更にはCr等の合
金元素が多いほど、Ms点が低下するが、Ms点が室温
以下まで低下するような合金系の場合はサブゼロ処理を
行う。通常のサブゼロ処理は−80℃近辺で行われるこ
とが多いが、−80℃の処理で十分に焼きが入らない場
合は−190℃程度で処理を行ってもよい。焼戻しは通
常の方法、つまり160〜200℃程度で行えばよい。
寸法安定性が特に必要とされる場合や二次硬化を起こさ
せる場合には400℃以上の高温焼戻しを施してもよ
い。 【0029】[仕上加工について]熱処理を施した転動
部材は、研削や研磨、超仕上げ等を行って目的の形状寸
法にする。仕上加工後の窒化層厚さをより深く得るため
には、仕上加工取り代は極力少なくすることが望まし
い。例えば、熱処理変形が少ない小型の部材などでは、
要求される寸法精度を満たすことができるのであれば研
削工程を省いてもよい。また、リニアガイドなどの棒状
の製品では、必要に応じて曲げ加工を行ってもよい。 【0030】また、後段に詳述するように、完成品表面
のC及びN及びCr含有量の関係が重量%で、下記2式
及び3式を満足するように取り代を設定する。なお、仕
上加工を行う前に、必要な部位に圧縮残留応力を付与す
る目的でショットピーニング等の表面加工処理を施して
もよい。 【0031】 【数2】 【0032】[完成品品質について]完成品表面層の硬
さについて述べる。本発明の表面層とは、完成品表面か
ら0.2mmまでの深さか、転動体であれば直径の2%
までの深さの何れか深い方とし、その硬さは転動装置に
必要な硬さHRC58以上、好ましくはHRC60以
上、更に好ましくはHRC62以上とする。 【0033】次に、完成品表面層のC+N濃度について
述べる。窒化により添加されるNはCと同様にマルテン
サイトを強化し、耐食性や耐摩耗性を向上させる。マル
テンサイト強化及び二次硬化により表面硬さを転動装置
に必要な硬さHRC58以上とするためには、表面のC
+Nを0.45%以上とすることが望ましい。しかし、
表面のC+N濃度が高すぎると、Ms点が低下するため
に焼入後の表面にオーステナイトが多量に残留する。残
留オーステナイトは、高い靱性と加工硬化特性とを有
し、亀裂の発生や進展を抑える働きをするが、多量に含
まれると硬さの低下を招き、寿命低下を引き起こす。本
発明者等の詳細な調査の結果、表面層が上記の窒素拡散
層である場合、完成品表面の焼入れ硬さを十分に得るた
めには、仕上加工を完了した完成品表面のN及びC及び
Crの含有量の関係が前記2式を満足すればよい。 【0034】また、熱処理を行うと、部材内には残留応
力が発生する。転動装置の表面に残留圧縮応力が生じて
いる場合、荷重が付加されたときに部材内に発生する剪
断応力を減少させるため、疲労強度が向上する。転動寿
命を向上させるためには、残留圧縮応力が150MPa
以上であることが望ましい。また、Hv500以上の硬
さとなる有効硬化層深さは、前述のように転動部材の転
動体直径の2%深さの位置、つまり最大剪断応力発生部
位まで形成されるのが望ましい。 【0035】なお、外方部材、内方部材、転動体の何れ
か一つが上記の材料で構成されていればよく、それ以外
の部材に上記以外の材料を使用する場合は、前記SUJ
2の他、マルテンサイト系ステンレス鋼SUS440C
や肌焼鋼のSCR420やSCM420など、そのよう
な軸受用鋼を用いてもよい。但し、完成品の表面硬さは
Hv580以上であり、更に含有される炭化物の長径が
5μm以下、鋼中酸素量は15ppm以下、好ましくは
10ppm以下とすることが望ましい。 【0036】 【発明の実施の形態】以下、本発明の実施の形態につい
て説明する。図2は本実施形態の転がり軸受の断面図で
ある。この転がり軸受は単列スラスト玉軸受であり、外
方部材に相当する外輪(固定輪)1、内方部材に相当す
る内輪(回転輪)2、転動体3、及び保持器4から構成
される。 【0037】この転がり軸受の特性を調べるために、ま
ず下記表1に示す実施例A〜K、比較例L〜Qの材料を
用意した。 【0038】 【表1】【0039】また、熱処理は下記に示す5つのパターン
の何れかを採用する。 熱処理A ガス窒化〜高周波焼入れ〜サブゼロ処理〜焼
戻し 高周波焼入れ:950〜1100℃(表面温度)×5秒 サブゼロ処理:−60〜−190℃×20分 焼戻し:180℃×2時間 熱処理B ガス窒化〜高周波焼入れ〜サブゼロ処理〜焼
戻し 高周波焼入れ:950〜1100℃(表面温度)×5秒 サブゼロ処理:−60〜−190℃×20分 焼戻し:400〜550℃×2時間 熱処理C 高周波焼入れ〜サブゼロ処理〜焼戻し 高周波焼入れ:950〜1100℃(表面温度)×5秒 サブゼロ処理:−60〜−190℃×20分 焼戻し:180℃×2時間 熱処理D ガス窒化〜ずぶ焼入れ〜サブゼロ処理〜焼戻
し ずぶ焼入れ:950〜1100℃×30分 サブゼロ処理:−60〜−190℃×20分 焼戻し:180℃×2時間 熱処理E ずぶ焼入れ〜サブゼロ処理〜焼戻し ずぶ焼入れ:1050℃×30分 サブゼロ処理:−80℃×1時間 焼戻し:180℃×2時間 前述した表1の各材料と前記各熱処理の組合せで試験片
を作製し、以下の試験を行って特性を調べた。 [摩耗試験]摩耗試験は、図3に示す二円筒摩耗試験機
を用いた。この二円筒摩耗試験機は、上下に対向する一
対の円筒に、上方から荷重を負荷しながら互いに接触常
置で低速回転させるものであり、上下の円筒試験片の摩
耗量を求める。試験条件は、荷重50kgf、回転数1
00rpm、すべり率10%、潤滑油は鉱油、試験温度
は室温にて行った。試験片は、表面粗さが0.1μmR
a以下となるように仕上加工を施した。上下の試験片は
同一の材料、同一の熱処理とした。表面硬さはロックウ
エル硬さ試験機で測定した。窒素濃度及び炭素濃度は表
面をEPMA(Electron Probe Micro Analyser )で分
析した測定値とした。摩耗量は上下の円筒の平均値を求
め、試験結果は、SUS440Cずぶ焼きの結果(比較
例26)との比で示す。 [寿命試験]寿命試験にはスラスト転がり試験機を用い
て、面圧4GPa、回転数1000rpm、潤滑油は鉱
油、試験温度は室温の条件で試験を行った。試験結果
は、SUS440Cずぶ焼き(比較例26)との比で示
す。 [耐食性試験]耐食性は塩水噴霧試験で評価を行った。
塩水噴霧試験はJISZ2371に準ずる方法で、35
℃、5%塩化ナトリウム水溶液を用いて試験時間50時
間後の供試片で外観を判定した。全く発錆が認められな
かったものをA、僅かに発錆が認められたものをB、ほ
ぼ全面に発錆が認められたものをC、著しく発錆したも
のをDとした。 【0040】各試験片の材料(鋼種)、熱処理、表面層
の窒素濃度、表面層の炭素濃度、表面層の硬さ、摩耗量
の比、転動寿命の比、耐食性について下記表2に示す。
なお、比較例の鋼種N(比較例16)は、焼入れ組織に
δフェライトが認められたため、その後の評価は行わな
かった。また、比較例の鋼種O〜Q(比較例17〜1
9)は粗大共晶炭化物が多く、高周波焼入れが困難であ
ったため、その後の評価は行わなかった。 【0041】 【表2】【0042】試験を行った結果、本発明の実施例1〜1
3は、SUS440Cずぶ焼きの比較例26と比較し
て、表面硬さがHRC58以上と良好な硬さを示し、耐
摩耗性や転動寿命、耐食性の何れも良好であった。特に
高温焼戻しを行った実施例12、実施例13は、微細な
窒化物が析出したため、表面硬度や耐摩耗性が向上し、
良好な寿命が得られている。また、母材のC量も低く抑
えられているため、粗大な共晶炭化物は認められず、高
周波焼入れ性も良好であった。なお、何れの試料もδフ
ェライトは認められなかった。 【0043】これに対し、比較例14は、表面硬度や耐
摩耗性は各実施例と同様に良好であるが、Cr量が8.
0重量%未満であるため、耐食性は不十分であった。ま
た、比較例15及び比較例24及び比較例25は、N含
有量、C含有量、Cr含有量が、前記2式の関係を満足
していないため、表面硬さが転動部材に必要とされる硬
さHRC58を満たさず、耐摩耗性や寿命も低下してい
る。また、比較例20及び比較例21は、表面C+N濃
度が0.45%に満たなかった、つまり前記3式を満足
していないため、耐摩耗性や寿命が低下している。ま
た、比較例22及び比較例23は、窒化後の焼入れをず
ぶ焼入れで行った例で、耐摩耗性や寿命は比較例26と
比較して良好な結果を得ているが、同一の材料で高周波
焼入れを行った実施例3及び実施例5ほどの耐摩耗性や
寿命は得られていない。 【0044】次に、加工性の評価を変形矯正性で評価し
た。試料は10mm角の長さ300mmの棒材を使用し
た。変形矯正処理は、図4に示すように長手方向に所定
量ずつ送りながら三点支持で加圧による矯正を繰り返
し、変形量を測定する。変形量sの測定は、図5に示す
ように、一定の力をかけた状態で、基台に対する試料上
面の高さHを測定し、その高さHと基準値との差分値か
ら求めた。変形矯正性は、下記4式で表される変形矯正
率が80%以上のものを○とし、80%未満のものを△
で表した。 【0045】 【数3】 【0046】加工性の結果を下記表3に示す。 【0047】 【表3】 【0048】表から明らかなように、比較例A及び比較
例Bは芯部までマルテンサイト変形しているため、変形
矯正が困難であることが分かる。これに対し、高周波焼
入れによって表面層のみ焼入れした実施例A及び実施例
Bは、変形矯正性に優れている。以上から、本発明の転
動装置は、芯部靱性や曲げ矯正性にも優れていることが
分かる。 【0049】なお、補実施形態では、窒化処理後に高周
波焼入れを行ったが、窒化処理後に窒素を芯部方向に拡
散させるための拡散処理を行ってもよい。例えば、12
00℃以下の任意の温度に加熱し、数時間〜数十時間保
持を行う。但し、高周波焼入後の芯部靱性を確保するた
めに、拡散処理後の冷却は、部材心部が焼入れされない
ような冷却速度とする。 【0050】また、本発明の転動装置では、先に高周波
焼入れを行い、次いで窒化処理をするようにしてもよ
い。また、本発明の転動装置は、前記転がり軸受に限ら
ず、ボールネジやリニアガイド等の各構成部材に広く適
用可能である。 【0051】 【発明の効果】以上説明したように、本発明の転動装置
によれば、外方部材及び内方部材及び転動体の少なくと
も一つを、Cr:8.0〜18.0重量%、C:0〜
0.7重量%、Mo:0〜3.0重量%、V:0〜2.
0重量%、Ni:0〜3.5重量%、Co:0〜10.
0重量%、N:0〜0.2重量%、Fe及び製鋼上不可
欠な元素及び不可避不純物を含む鋼母材で構成し、それ
に窒化処理及び高周波焼入れ及び焼戻しを施したことに
より、高い耐摩耗性及び耐食性を有する長寿命な転動装
置が得られる。
DETAILED DESCRIPTION OF THE INVENTION [0001] BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rolling bearing,
Screws, linear motion guides (linear guides), etc.
The rolling device that arranges the rolling element between the side member and the inner member
Especially for rolling bearings in continuous casting equipment.
Suitable for rolling equipment requiring corrosion resistance and wear resistance
is there. [0002] 2. Description of the Related Art Rolling devices such as rolling bearings include:
The outer member and the inner member come in contact with both
A rolling element that rolls while rolling.
The outer and inner members and the rolling element
The rolling surface is called a rolling surface. Also, the outer member is
Rolling bearings have an outer ring, linear guides have a
For lidar or guide rails and ball screws, use nuts
The inner member is the inner ring or shaft in the case of a rolling bearing.
Body, guide rail or slider for linear guide,
In the case of a ball screw, the screw shaft is shown. Therefore, the outer member
The rolling surface of a rolling bearing means the raceway surface of the outer ring,
In the case of a near guide, the track of the slider or guide rail
For grooves and ball screws, indicate the screw groove of the nut.
The rolling surface of a member is the raceway of the inner ring in a rolling bearing.
Surface, linear guide, guide rail or slider
In the case of the raceway groove and ball screw, it indicates the thread groove of the screw shaft. [0003] Generally, rolling devices such as rolling bearings
The rolling motion between the race and the rolling element
Because of these forces, these materials are hard and load-bearing.
It has a long rolling life and good abrasion resistance
Something is required. So, generally these
The material used is SUJ2 or SUJ3 bearing steel.
You. Rolling bearings are subjected to repeated shear stress under high surface pressure.
To withstand the shear stress and roll
Quenching and tempering these materials to ensure fatigue life
And used as surface hardness HRC 58-64
I have. In addition, in the bearing steel, corrosion rings such as mixing of water and lubrication are required.
Excellent corrosion resistance due to concerns about early rusting under the environment
Along with the required hardness of bearing HRC 58 or more
Martensitic stainless steel such as SUS440C
Is also used. [0004] However, as described above,
For heat treatment of various materials, the quenching temperature is
So-called so-called quenching, in which heating and rapid cooling are performed, is performed. However
However, in recent years, the requirements for the use conditions of rolling devices have become severe.
And a longer life rolling device is required.
However, in contrast to this, only conventional hardening
The heat treatment has a limitation in extending the life. Therefore, means for extending the life of the rolling device and
Then induction hardening can be considered. Perform induction hardening
And compressive residual stress on the surface of the workpiece
Pressure fatigue strength and torsional fatigue strength are improved. In addition, induction baking
Since the quenching only quenches the surface of the workpiece,
The total amount of heat treatment deformation of the heat-treated
It is possible to reduce the allowance for cutting and finishing. Change
In addition, the hardness of the core is low, that is, the core has a tough part
Post-processing such as re-bending is easy. [0006] However, martensitic stainless steel
Induction hardening for SUS440C, which is frequently used as stainless steel
If done, the steel will contain large amounts of coarse carbides
Quenching makes it difficult for carbides to form a solid solution.
It is difficult to obtain hardness. Also, coarse eutectic carbides are solidified.
If the quenching temperature is increased to melt
Knight becomes excessive and surface hardness HRC required for rolling device
Not only may not reach 58 or more,
May cause damage. Suppress formation of coarse eutectic carbide
It is effective to reduce the carbon content of the base material,
For example, SUS42 having a small carbon content of 0.26 to 0.4%
At 0J2, coarse eutectic carbides are hardly seen. That
Therefore, SUS420J2 has good induction hardening properties and
Despite that, the quenching hardness is low due to the low carbon content,
It does not reach the hardness of HRC 58 required for rolling devices
Therefore, it is not suitable as a material for a rolling device. To solve this problem, a machine suitable for induction hardening is used.
Japanese Patent Laid-Open No. 2000-3 as rutensitic stainless steel
No. 28204 discloses that eutectic coal is produced by reducing the amount of base material carbon.
Instead of suppressing the formation of
Ensuring quenching hardness, and constant ratio of Cr to (C + N)
Induction hardenability by suppressing carbide formation
There have been proposed methods for improving the quality. Base material carbon concentration
By adding nitrogen instead of reducing the hardness, the quench hardness can be assured.
Eutectic carbides can be suppressed while maintaining
And significantly improved corrosion resistance compared to conventional stainless steel
High wear resistance due to the formation of fine nitrides
There is also an effect that the property can be obtained. However, nitrogen is introduced into molten steel at atmospheric pressure.
In the steelmaking method to be added, the nitrogen solubility of molten steel is small, and
Since it is difficult to add 2% or more of nitrogen,
There is a limit to the effect of adding quenching hardness and wear resistance
is there. If steelmaking is performed in a high-pressure nitrogen atmosphere,
Can be added, but special production equipment is required.
The problem that costs are inevitable because it is necessary
There is. Further, Japanese Patent Application Laid-Open No. 9-287058 discloses
Is a base material with nitrogen added instead of reducing the carbon content of the base material.
After nitriding or carbonitriding the material, perform nitrogen diffusion treatment,
Then, a method of performing quenching has been proposed. using this method
Can increase the surface nitrogen concentration, so
Features such as improved durability, fatigue life and corrosion resistance
However, since quenching is performed by soaking, fatigue strength is improved.
Has limitations and needs to be bent again after quenching
And is not suitable for large parts where heat treatment deformation is a problem.
is there. The present invention has been developed to solve the above problems.
With high surface hardness and excellent wear resistance.
Rolling with excellent rolling life due to residual compressive stress on the surface
It is intended to provide a device. [0011] [MEANS FOR SOLVING THE PROBLEMS] To solve these problems
For this reason, the present inventors have found that the amount of
Nitriding of stainless steel base material with reduced precipitation of complex eutectic carbides
And examined a method of quenching with high frequency. The present invention
Rolling devices have high surface hardness and excellent wear resistance
And the rolling life is improved due to residual compressive stress on the surface
I do. [0012] In order to solve the above problem, the present invention relates to
The driving device arranges a rolling element between the outer member and the inner member.
In the rolling device, the outer member, the inner member, and the rolling member
At least one of the moving bodies is Cr: 8.0 to 18.0 weight.
%, C: 0 to 0.7% by weight, Mo: 0 to 3.0% by weight,
V: 0 to 2.0% by weight, Ni: 0 to 3.5% by weight, C
o: 0 to 10.0% by weight, N: 0 to 0.2% by weight, Fe
Steel base material containing essential elements and unavoidable impurities for steelmaking
And nitriding and induction hardening and tempering
It is characterized by having performed. The critical significance of the present invention will be described below.
I do. [Cr of base material: 8.0 to 18.0% by weight] Cr is resistant to steel
It is the most necessary element to give food, its content is
If it is less than 8.0% by weight, good corrosion resistance cannot be obtained.
Increasing the amount of Cr increases corrosion resistance and induction hardening.
It has the effect of improving
The upper limit was set to 18.0% by weight because the material was easily embrittled. Ma
When a large amount of Cr is added, the Ms point (martensitic transformation)
Temperature) is too low to reach sub-zero order,
It may not be possible to obtain an adequate quench hardness.
Alternatively, the upper limit is 16.0% by weight. In addition, the corrosion resistance
From the viewpoint, the lower limit is preferably set to 10.0% by weight. [C of base material: 0 to 0.7% by weight] C is a base
Element that increases the strength by converting it to martensite
Precipitation of δ-ferrite, which further reduces core toughness
It has the effect of suppressing outflow. But too much content
Generates a large amount of retained austenite during quenching,
Positive quenching hardness cannot be obtained. In addition, coarse steelmaking
Crystalline carbides are easily formed, and around coarse carbides,
Sufficient corrosion resistance is obtained because the Cr concentration of the base decreases.
Not only cause a decrease in rolling life and toughness
Become. Also, since coarse carbides are hard to dissolve,
In case of induction hardening, etc., where
Will be insufficient. In order to form a solid solution of these carbides,
When the quenching temperature is increased, more retained austenite
Not only inadequate quenching hardness, but also
May cause accidents. This tendency is due to the fact that the carbon content is 0.7 times
%, The upper limit of C is 0.7%.
%, Preferably 0.5% or less. Also, C
If the amount is small, the effect of suppressing δ ferrite decreases,
Preferably, the lower limit is 0.1% by weight. [Elements to be added selectively] Mo is quenched
Element that significantly increases the heat resistance and temper softening resistance
Has the effect of improving pitting corrosion resistance. In addition, nitrogen is dissolved
If so, heat treatment forms nitrides to increase strength.
Has the effect of increasing. When high temperature strength is required,
It may be added as necessary, but if it is added excessively, toughness
, The upper limit was set to 3.0% by weight. V is a strong nitride-forming element,
Has the effect of suppressing the precipitation of oxides and increasing the strength.
If necessary, especially when high-temperature strength is required,
May be added, but if added in large amounts, toughness and workability will decrease.
To 2.0% by weight or less. Ni is a powerful aus
It is a tenite stabilizing element and suppresses the formation of δ ferrite
And dissolve in the matrix to improve toughness and improve high temperature properties.
Has the effect of However, if added more than necessary, a large amount
Retained austenite is formed and sufficient quenching hardness is not obtained.
The upper limit is set to 3.5% by weight.
You. Austenitic stabilization of Co as well as Ni
Element, suppresses the formation of δ ferrite,
Solid solution suppresses carbide agglomeration and improves high temperature hardness
There is action. However, when added in a large amount, processability decreases
And the cost is further increased, so the upper limit is 10.0% by weight or less.
Below. N added to the base metal when the C content is high
Suppresses the formation of coarse primary eutectic carbides and conversely contains C
Action to suppress the formation of δ ferrite when the amount is small
And contributes to improvement of core toughness. Also, for nitrogen addition
Corrosion resistance because the carbon content can be reduced
Is significantly improved. Therefore, if necessary, add nitrogen to the base material.
May be added. However, at the stage of steelmaking, nitrogen was added at 0.
If added over 2% by weight, bubbles will be generated during coagulation.
May introduce many pores into the steel ingot.
Is preferably 0.2% by weight or less, more preferably
Or less than 0.15% by weight. [Essential Elements for Steelmaking] Si is
It is an element necessary as a deoxidizing agent in steel making. 0.1% by weight
It is desirable to add above. Also, tempering softening resistance
Increases the toughness, but when added in large amounts, reduces toughness.
Therefore, the upper limit is set to 2.0% by weight. Mn is a deoxidizer
0.1% by weight or more is required.
Not only deteriorates the workability and machinability, but also removes impurities such as S and P.
The upper limit is 1.5% by weight because it coexists and lowers the corrosion resistance.
I do. [Inevitable impurities] contained in steel
Among the impurities, important ones are oxide inclusions. steel
High oxygen content in steel can be a starting point for fatigue fracture
The amount of coarse oxide-based inclusions increases and the rolling life
descend. Coarse oxide inclusions in the nitride layer
Then, is there a possibility that premature peeling of the nitrided layer will occur?
Therefore, it is desirable that the oxygen content be kept as low as possible.
No. Oxygen content in steel is 15 ppm or less, more preferably
Is 10 ppm or less. [Regarding δ Ferrite of Base Material] C in Steel
When the amount is reduced, coarse eutectic carbides are reduced.
Improves the frequency hardenability, but on the other hand, adversely affects core toughness
Δ ferrite which exerts an influence is easily generated. In steel
Among the added elements, ferrous metals such as Cr, Mo, V, and Si
The stabilizing element promotes the formation of δ ferrite, Ni,
Austenite stabilizing elements such as Co, Mn, N and C are δ
Suppress ferrite formation. These austenitic stable
Due to the interrelationship between the fluoride element and the ferrite stabilizing element
Since the presence or absence of ferrite is determined,
If so, the formation of δ ferrite can be suppressed. In other words, the base material
If the alloy component of satisfies the following equation,
Be suppressed. [0021] (Equation 1) [Method of Manufacturing Rolling Apparatus]
An example of the rough processing before the chemical conversion treatment will be described. Outer member and inner part
In the case of materials, hot forging or turning is performed on bars or tubes,
In the case of rolling elements, cold-drawn wires are cold-worked with headers
Thereafter, deburring is performed, and each is processed into a desired shape. What
This process is an example, and productivity can be secured.
Any method can be applied. For example, the nitride layer
Improves throwing power, that is, the stability of the nitride layer thickness
For this purpose, a grinding step may be added. [Nitriding treatment] First, the base material after nitriding
The nitride layer formed on the surface will be described. Perform nitriding
As shown in FIG. 1, 最 -FeTwo
N, ε-Fe2-3N, γ'-FeFourN, CrN, CrTwo
A layer densely composed of only nitrides such as N
Compound layer) is formed, and at a deeper part
Is a layer in which the above-mentioned nitrides are dispersed in the base nitrogen diffusion phase
(Hereinafter also referred to as a nitrogen diffusion layer). here
Is a combination of these compound layer and nitrogen diffusion layer
Name. The nitriding treatment includes gas nitriding and salt bath nitriding.
Any method such as chemical conversion or ion nitriding may be selected. Nitrification
Induction hardening performed after
Therefore, it can be considered that nitrogen diffusion hardly occurs.
Therefore, an appropriate nitride layer pattern must be obtained before induction hardening.
It is necessary to keep it. Finishing after induction hardening
To perform, the nitride layer depth before induction hardening should be at least
Allow more than the allowance for finishing. Preferably of the finished product
Induction hardening so that the thickness of the nitride layer is 0.2 mm or more
A previous nitride layer pattern is obtained. The processing allowance is
Required nitride layer pattern because it depends on the member
Is determined for each member. The nitriding temperature and time are determined by the above-mentioned nitride layer pattern.
Anything that satisfies the requirements can be used. Through
In order to minimize the distortion caused by the nitriding process, Ac1
The nitriding treatment is performed at a temperature lower than the transformation point. However,
In Ming, induction hardening is performed after nitriding, so it is not necessarily
It is not necessary to suppress the strain due to nitriding, and it is above the Ac1 transformation point
The nitriding treatment may be performed at the above temperature. However, 110
Ammonia and nitrogen gas in the austenite region above 0 ° C
Nitriding requires extremely high purity nitrogen gas.
Therefore, productivity is poor and nitriding
Austenitic grains grow, resulting in low fatigue strength
Down. Therefore, the nitriding temperature is preferably 900 ° C. or less.
I do. Further, if the same temperature is used for the α phase and the γ phase, α
More preferably, the phase has a higher diffusion coefficient of nitrogen.
A nitriding treatment is performed below the Ac1 transformation point. As an example of a more preferred form of the nitriding treatment,
Is an Nv nitridation process (air
・ Product name of Water Corporation. Nv nitriding pro
If the process is performed before nitriding, NFThree(Nitrogen trifluoride)
Fluoride at 250-400 ° C using fluorine-based gas such as
Process for processing and NHThreeNitriding with gas
Process. Fluoride treatment inhibits nitridation reaction
To form a fluoride layer that activates the surface by removing Cr nitride
A very uniform nitrided layer even if the processing time is short.
It can be formed. [About heat treatment] Quenching is induction hardening
Do with. Induction quenching applies residual compression
The surface pressure fatigue strength is improved due to the generation of force. Also,
The core is not quenched, so it has excellent toughness.
is there. Furthermore, induction hardening is applied to the surface of the heat-treated object.
In order to perform quenching, it is necessary to
Heat treatment deformation as a body is reduced, and post-processing can be reduced
There is also an advantage. Cooling is performed by oil cooling or water cooling.
Any other method may be used. Further, when C or N, and further Cr or the like is contained in the matrix,
As the amount of gold element increases, the Ms point decreases,
In the case of alloys that decrease to below
Do. Normal sub-zero treatment should be performed around -80 ° C.
But if burning at -80 ° C is not enough
In this case, the treatment may be performed at about -190 ° C. Tempering
What is necessary is just to carry out by the usual method, ie, about 160-200 degreeC.
When dimensional stability is particularly required or secondary curing occurs
When tempering, high temperature tempering of 400 ° C or more may be applied.
No. [About finishing] Rolling after heat treatment
The members are ground, polished, super-finished, etc.
Make it law. To obtain a deeper nitrided layer after finishing
It is desirable to minimize the finishing allowance
No. For example, for small members with little heat treatment deformation,
If the required dimensional accuracy can be satisfied,
The cutting step may be omitted. In addition, rod-shaped such as linear guide
May be bent as needed. As will be described in detail later, the surface of the finished product
The relationship between the C, N, and Cr contents in wt.
And an allowance is set so as to satisfy Equation (3). Note that
Before performing upper working, apply compressive residual stress to necessary parts.
Surface treatment such as shot peening for the purpose of
Is also good. [0031] (Equation 2) [About finished product quality] Hardness of finished product surface layer
I will describe it. The surface layer of the present invention is the surface of the finished product.
To 0.2mm depth or 2% of the diameter for rolling elements
To the rolling device.
Required hardness HRC 58 or more, preferably HRC 60 or more
Above, more preferably HRC62 or more. Next, the C + N concentration of the finished product surface layer
State. N added by nitriding is the same as
Strengthens the site and improves corrosion and wear resistance. Mar
Rolling device for surface hardness by strengthening and secondary hardening of tensite
In order to make the hardness HRC 58 or more necessary for
It is desirable that + N be 0.45% or more. But,
If the C + N concentration on the surface is too high, the Ms point decreases.
A large amount of austenite remains on the surface after quenching. Remaining
Retained austenite has high toughness and work hardening properties.
Work to suppress the generation and propagation of cracks.
If it is rare, the hardness will be reduced and the life will be shortened. Book
As a result of detailed investigations by the inventors, the surface layer was found to be
Layer, it is necessary to obtain sufficient quench hardness on the surface of the finished product.
The N and C of the surface of the finished product after finishing
It suffices that the relationship between the Cr contents satisfies the above two equations. Further, when heat treatment is performed, residual reaction is left in the member.
Force is generated. Residual compressive stress is generated on the surface of the rolling device
The shear generated in the member when a load is applied.
Since the shear stress is reduced, the fatigue strength is improved. Rolling life
To improve the life, the residual compressive stress is 150MPa
It is desirable that this is the case. In addition, Hv500 or more
As described above, the effective hardened layer depth
2% depth of moving body diameter, that is, maximum shear stress generating part
It is desirable to form to the order of magnitude. Any of the outer member, the inner member, and the rolling element
It is sufficient if at least one is made of the above materials,
When a material other than the above is used for the member of
2, martensitic stainless steel SUS440C
Such as SCR420 and SCM420 of case hardened steel
A suitable bearing steel may be used. However, the surface hardness of the finished product is
Hv 580 or more, and the long diameter of the contained carbide is
5 μm or less, oxygen content in steel is 15 ppm or less, preferably
It is desirable that the content be 10 ppm or less. [0036] Embodiments of the present invention will be described below.
Will be explained. FIG. 2 is a sectional view of the rolling bearing according to the present embodiment.
is there. This rolling bearing is a single row thrust ball bearing.
Outer ring (fixed ring) 1 corresponding to the inner member, corresponding to the inner member
Consisting of an inner ring (rotating wheel) 2, a rolling element 3, and a retainer 4.
Is done. In order to examine the characteristics of this rolling bearing,
The materials of Examples A to K and Comparative Examples L to Q shown in Table 1 below were used.
Prepared. [0038] [Table 1]The heat treatment is performed in the following five patterns.
Is adopted. Heat treatment A Gas nitriding-induction hardening-sub-zero treatment-quenching
Return Induction hardening: 950 to 1100 ° C (surface temperature) x 5 seconds Sub-zero treatment: -60 to -190 ° C x 20 minutes Tempering: 180 ° C x 2 hours Heat Treatment B Gas Nitriding-Induction Hardening-Subzero Treatment-Quenching
Return Induction hardening: 950 to 1100 ° C (surface temperature) x 5 seconds Sub-zero treatment: -60 to -190 ° C x 20 minutes Tempering: 400 to 550 ° C x 2 hours Heat treatment C Induction quenching-Sub-zero treatment-Tempering Induction hardening: 950 to 1100 ° C (surface temperature) x 5 seconds Sub-zero treatment: -60 to -190 ° C x 20 minutes Tempering: 180 ° C x 2 hours Heat treatment D Gas nitridation-soot quenching-sub-zero treatment-tempering
I Sobu quenching: 950-1100 ° C x 30 minutes Sub-zero treatment: -60 to -190 ° C x 20 minutes Tempering: 180 ° C x 2 hours Heat treatment E Zubbu quenching ~ Sub-zero treatment ~ Tempering Sobu quenching: 1050 ° C x 30 minutes Sub-zero treatment: -80 ° C x 1 hour Tempering: 180 ° C x 2 hours A test piece obtained by combining each of the materials shown in Table 1 and each of the heat treatments described above.
Was manufactured and the following tests were performed to examine the characteristics. [Wear test] The wear test was performed using a two-cylinder wear tester shown in FIG.
Was used. This two-cylinder abrasion tester has a vertically
Apply a load to the pair of cylinders from above while
The specimen is rotated at a low speed.
Obtain the amount of wear. The test conditions were a load of 50 kgf and a rotation speed of 1
00rpm, slip rate 10%, lubricating oil is mineral oil, test temperature
Was performed at room temperature. The test piece has a surface roughness of 0.1 μmR
a. The upper and lower specimens
The same material and the same heat treatment were used. Surface hardness is rock
It was measured with an L hardness tester. Tables for nitrogen and carbon concentrations
Separate the surface with EPMA (Electron Probe Micro Analyzer)
The measured value was used. For the amount of wear, calculate the average value of the upper and lower cylinders.
The test results are based on the results of SUS440C
Example 26). [Life test] A thrust rolling tester was used for the life test.
Surface pressure 4GPa, rotation speed 1000rpm, lubricating oil is mineral
The test was performed under the conditions of oil and test temperature of room temperature. Test results
Indicates the ratio with SUS440C sobuyaki (Comparative Example 26).
You. [Corrosion Resistance Test] The corrosion resistance was evaluated by a salt spray test.
The salt spray test is performed in accordance with JISZ2371.
50 ° C, 50% test time using 5% aqueous sodium chloride solution
The appearance was judged with the test piece immediately after. No rust is observed
A was evaluated as good, B was slightly rusted,
If rusting was observed on the entire surface, it was C.
Is D. Material (steel type) of each test piece, heat treatment, surface layer
Nitrogen concentration, surface layer carbon concentration, surface layer hardness, wear
Table 2 below shows the ratio of the rolling life, the ratio of the rolling life, and the corrosion resistance.
Note that the steel type N of the comparative example (Comparative Example 16) had a quenched structure.
Since δ ferrite was recognized, no further evaluation was performed.
won. In addition, steel types O to Q of Comparative Examples (Comparative Examples 17 to 1)
9) contains a lot of coarse eutectic carbides, making induction hardening difficult
Therefore, no further evaluation was performed. [0041] [Table 2]As a result of the test, Examples 1 to 1 of the present invention were obtained.
No. 3 is compared with Comparative Example 26 of SUS440C sobuyaki.
Surface hardness of 58 or more HRC
The abrasion, rolling life and corrosion resistance were all good. In particular
Example 12 and Example 13 in which high-temperature tempering was performed
Since the nitride precipitates, the surface hardness and wear resistance improve,
Good life is obtained. In addition, the C content of the base material is also low.
Coarse eutectic carbides were not observed.
The frequency hardenability was also good. Note that all samples
Cellite was not found. On the other hand, in Comparative Example 14, the surface hardness and the
The abrasion was as good as in each example, but the Cr content was 8.
Since it was less than 0% by weight, the corrosion resistance was insufficient. Ma
Comparative Examples 15 and 24 and Comparative Example 25 were N-containing.
Content, C content and Cr content satisfy the relationship of the above two formulas
Surface hardness is required for rolling members.
HRC58 is not satisfied, wear resistance and life are reduced.
You. Further, Comparative Example 20 and Comparative Example 21 show that the surface C + N concentration
The degree was less than 0.45%, that is, the above three equations were satisfied
As a result, wear resistance and life are reduced. Ma
In Comparative Examples 22 and 23, quenching after nitriding was not performed.
In the case of the case quenching, the wear resistance and the life
Good results are obtained in comparison, but the same material
Abrasion resistance as high as in Examples 3 and 5 where quenching was performed
Life has not been obtained. Next, the workability was evaluated in terms of deformation correction.
Was. The sample is a 10mm square bar with a length of 300mm.
Was. The deformation correction processing is performed in the longitudinal direction as shown in FIG.
Repeated correction by pressurization with three points support while feeding by amount
And measure the amount of deformation. The measurement of the deformation amount s is shown in FIG.
As described above, apply a constant force
The height H of the surface is measured, and the difference between the height H and the reference value is determined.
I asked. Deformation correction is the deformation correction expressed by the following 4 formulas
When the ratio is 80% or more, the result is indicated by ○, and when the ratio is less than 80%, the result is indicated by △
It was expressed by. [0045] [Equation 3] The results of workability are shown in Table 3 below. [0047] [Table 3] As is clear from the table, Comparative Example A and Comparative Example A
Example B is deformed because martensite is deformed up to the core.
It turns out that correction is difficult. In contrast, induction firing
A and Examples in which only the surface layer is quenched by putting
B has excellent deformability. From the above, the method of the present invention
The driving device is also excellent in core toughness and bending straightening
I understand. In the supplementary embodiment, after the nitriding treatment,
Although wave quenching was performed, nitrogen was expanded in the core direction after nitriding.
A diffusion process for scattering may be performed. For example, 12
Heat to any temperature below 00 ° C and keep for several hours to tens of hours
Carry. However, to ensure core toughness after induction hardening
After cooling, the core of the member is not quenched
The cooling rate is set as follows. In the rolling device of the present invention, the high frequency
After quenching, nitriding may be performed.
No. Further, the rolling device of the present invention is not limited to the rolling bearing.
Suitable for various components such as ball screws and linear guides.
Is available. [0051] As described above, the rolling device according to the present invention is used.
According to the above, at least the outer member, the inner member, and the rolling elements
Another is Cr: 8.0 to 18.0% by weight, C: 0 to 0%.
0.7% by weight, Mo: 0 to 3.0% by weight, V: 0 to 2.
0% by weight, Ni: 0 to 3.5% by weight, Co: 0 to 10%.
0% by weight, N: 0 to 0.2% by weight, not possible on Fe and steelmaking
Composed of steel base material containing essential elements and unavoidable impurities,
Nitriding, induction hardening and tempering
Longer life rolling elements with higher wear and corrosion resistance
Is obtained.

【図面の簡単な説明】 【図1】本発明の転動装置の窒化層の説明図である。 【図2】本発明の転動倒置の一実施形態を示す縦断面図
である。 【図3】二円筒摩耗試験の説明図である。 【図4】変形矯正試験の説明図である。 【図5】試料の変形量の測定方法の説明図である。 【符号の説明】 1は外輪(外方部材) 2は内輪(内方部材) 3は転動体 4は保持器
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory view of a nitride layer of a rolling device according to the present invention. FIG. 2 is a longitudinal sectional view showing one embodiment of the rolling and inversion of the present invention. FIG. 3 is an explanatory diagram of a two-cylinder wear test. FIG. 4 is an explanatory diagram of a deformation correction test. FIG. 5 is an explanatory diagram of a method for measuring the amount of deformation of a sample. [Description of Signs] 1 is an outer ring (outer member) 2 is an inner ring (inner member) 3 is a rolling element 4 is a cage

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F16C 33/34 F16C 33/34 33/62 33/62 Fターム(参考) 3J101 AA01 BA10 BA70 DA02 DA03 EA02 FA08 FA15 FA31 GA60 4K042 AA22 BA03 BA06 CA04 CA07 CA08 CA10 CA13 DA01 DA02 DA06 DB01 DD03 DE02 DE05──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI theme coat ゛ (reference) F16C 33/34 F16C 33/34 33/62 33/62 F term (reference) 3J101 AA01 BA10 BA70 DA02 DA03 EA02 FA08 FA15 FA31 GA60 4K042 AA22 BA03 BA06 CA04 CA07 CA08 CA10 CA13 DA01 DA02 DA06 DB01 DD03 DE02 DE05

Claims (1)

【特許請求の範囲】 【請求項1】 外方部材と内方部材との間に転動体を配
設する転動装置において、前記外方部材及び内方部材及
び転動体の少なくとも一つを、Cr:8.0〜18.0
重量%、C:0〜0.7重量%、Mo:0〜3.0重量
%、V:0〜2.0重量%、Ni:0〜3.5重量%、
Co:0〜10.0重量%、N:0〜0.2重量%、F
e及び製鋼上不可欠な元素及び不可避不純物を含む鋼母
材で構成し、それに窒化処理及び高周波焼入れ及び焼戻
しを施したことを特徴とする転動装置。
Claims 1. A rolling device having a rolling element disposed between an outer member and an inner member, wherein at least one of the outer member, the inner member, and the rolling element is Cr: 8.0 to 18.0
% By weight, C: 0 to 0.7% by weight, Mo: 0 to 3.0% by weight, V: 0 to 2.0% by weight, Ni: 0 to 3.5% by weight,
Co: 0 to 10.0% by weight, N: 0 to 0.2% by weight, F
A rolling device comprising a steel base material containing e and essential elements and unavoidable impurities in steelmaking, and subjected to nitriding treatment, induction hardening and tempering.
JP2002013495A 2002-01-22 2002-01-22 Rolling device Expired - Lifetime JP3941520B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002013495A JP3941520B2 (en) 2002-01-22 2002-01-22 Rolling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002013495A JP3941520B2 (en) 2002-01-22 2002-01-22 Rolling device

Publications (3)

Publication Number Publication Date
JP2003213380A true JP2003213380A (en) 2003-07-30
JP2003213380A5 JP2003213380A5 (en) 2005-08-04
JP3941520B2 JP3941520B2 (en) 2007-07-04

Family

ID=27650437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002013495A Expired - Lifetime JP3941520B2 (en) 2002-01-22 2002-01-22 Rolling device

Country Status (1)

Country Link
JP (1) JP3941520B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005035802A1 (en) * 2003-10-08 2005-04-21 Ntn Corporation Heat treatment system
WO2005067469A3 (en) * 2003-12-23 2007-05-31 Rolls Royce Corp Method for carburizing steel components
WO2007102306A1 (en) * 2006-03-09 2007-09-13 Ntn Corporation Method of high-frequency quenching, high-frequency quenching apparatus, and product of high-frequency quenching
DE102006020078A1 (en) * 2006-04-29 2007-10-31 Schaeffler Kg Roller bearing for dry running or medium lubricating applications, has bearing rings formed from rustproof steel and with roller bodies e.g. needle roller, held in cage, where roller bodies are made of corrosion resistant steel
CN100460530C (en) * 2003-10-08 2009-02-11 Ntn株式会社 Heat treatment system
KR101356951B1 (en) * 2011-12-26 2014-01-28 주식회사 포스코 Martensite stainless steel with excellent hardness and the method of manufacturing the same
JP2015094015A (en) * 2013-11-13 2015-05-18 日本精工株式会社 Method of manufacturing mechanical element using martensitic stainless steel and rotating device
JP2019167630A (en) * 2016-03-04 2019-10-03 日立金属株式会社 Martensitic stainless steel member
KR20210014811A (en) * 2019-07-30 2021-02-10 주식회사 포스코 Ferritic stainless steel, martensitic stainless steel with high corrosion resistance and high hardness using the same, and manufacturing method thereof
WO2021153549A1 (en) * 2020-01-27 2021-08-05 日立金属株式会社 Method for producing martensitic stainless steel strip, and martensitic stainless steel strip
JP7581621B2 (en) 2020-01-27 2024-11-13 株式会社プロテリアル Manufacturing method of martensitic stainless steel strip and martensitic stainless steel strip

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005035802A1 (en) * 2003-10-08 2005-04-21 Ntn Corporation Heat treatment system
CN100460530C (en) * 2003-10-08 2009-02-11 Ntn株式会社 Heat treatment system
WO2005067469A3 (en) * 2003-12-23 2007-05-31 Rolls Royce Corp Method for carburizing steel components
US7648588B2 (en) 2003-12-23 2010-01-19 Rolls-Royce Corporation Method for carburizing steel components
WO2007102306A1 (en) * 2006-03-09 2007-09-13 Ntn Corporation Method of high-frequency quenching, high-frequency quenching apparatus, and product of high-frequency quenching
DE102006020078A1 (en) * 2006-04-29 2007-10-31 Schaeffler Kg Roller bearing for dry running or medium lubricating applications, has bearing rings formed from rustproof steel and with roller bodies e.g. needle roller, held in cage, where roller bodies are made of corrosion resistant steel
KR101356951B1 (en) * 2011-12-26 2014-01-28 주식회사 포스코 Martensite stainless steel with excellent hardness and the method of manufacturing the same
WO2015072523A1 (en) * 2013-11-13 2015-05-21 日本精工株式会社 Machine part production method using martensitic stainless steel, and rotating device, rolling bearing, and rolling bearing unit
JP2015094015A (en) * 2013-11-13 2015-05-18 日本精工株式会社 Method of manufacturing mechanical element using martensitic stainless steel and rotating device
EP3070180A4 (en) * 2013-11-13 2016-11-23 Nsk Ltd Machine part production method using martensitic stainless steel, and rotating device, rolling bearing, and rolling bearing unit
KR101858880B1 (en) 2013-11-13 2018-05-16 닛본 세이고 가부시끼가이샤 Machine part production method using martensitic stainless steel, and rotating device, rolling bearing, and rolling bearing unit
EP3483291A1 (en) * 2013-11-13 2019-05-15 NSK Ltd. Manufacturing method of mechanical component using martensitic stainless steel
US10494692B2 (en) 2013-11-13 2019-12-03 Nsk Ltd. Manufacturing method of mechanical component using martensitic stainless steel, rotating device, rolling bearing and rolling bearing unit
US10851433B2 (en) 2013-11-13 2020-12-01 Nsk Ltd. Manufacturing method of mechanical component using martensitic stainless steel, rotating device, rolling bearing and rolling bearing unit
JP2019167630A (en) * 2016-03-04 2019-10-03 日立金属株式会社 Martensitic stainless steel member
KR20210014811A (en) * 2019-07-30 2021-02-10 주식회사 포스코 Ferritic stainless steel, martensitic stainless steel with high corrosion resistance and high hardness using the same, and manufacturing method thereof
KR102255910B1 (en) 2019-07-30 2021-05-26 주식회사 포스코 Ferritic stainless steel, martensitic stainless steel with high corrosion resistance and high hardness using the same, and manufacturing method thereof
WO2021153549A1 (en) * 2020-01-27 2021-08-05 日立金属株式会社 Method for producing martensitic stainless steel strip, and martensitic stainless steel strip
JP7581621B2 (en) 2020-01-27 2024-11-13 株式会社プロテリアル Manufacturing method of martensitic stainless steel strip and martensitic stainless steel strip

Also Published As

Publication number Publication date
JP3941520B2 (en) 2007-07-04

Similar Documents

Publication Publication Date Title
JP5958652B2 (en) Soft nitrided induction hardened steel parts with excellent surface fatigue strength
EP2383359B1 (en) Hardfacing steel for machine structure, and steel component for machine structure
EP3088550A1 (en) Carburized-steel-component production method, and carburized steel component
EP3550048B1 (en) Steel for soft nitriding, and component
JP5477111B2 (en) Nitriding induction hardening steel and nitriding induction hardening parts
EP3176278A1 (en) Carbonitrided bearing member
JP5333682B2 (en) Rolled steel bar or wire rod for hot forging
KR20130057970A (en) Gas-carburized steel component with excellent surface fatigue strength, gas-carburizing steel material, and process for producing gas-carburized steel component
JP6652019B2 (en) Machine structural steel and induction hardened steel parts for induction hardening
JP5561436B2 (en) Rolled steel bar or wire rod for hot forging
KR20040088016A (en) Carburized and quenched member and method for production thereof
JP5258458B2 (en) Gears with excellent surface pressure resistance
JP4352261B2 (en) gear
JP2003213380A (en) Rolling apparatus
JPH10306343A (en) Steel for soft-nitriding, excellent in cold forgeability and pitting resistance
JPWO2020138450A1 (en) Steel material used as a material for carburized nitriding bearing parts
JP2015218359A (en) Surface-hardened component, steel for surface-hardened component, and method for producing the surface-hardened component
JP7364895B2 (en) Steel parts and their manufacturing method
JP2009263767A (en) Method for manufacturing high-strength case hardened steel part
JPH10219402A (en) Rolling supporting device
KR100629217B1 (en) Steel for case hardening bearing excellent in toughness and rolling fatigue life in quasi-high temperature region
JP6521089B2 (en) Machine structural steels and induction hardened steel parts
CN113260717B (en) Steel material
JP2018199838A (en) Carburized part
JP7139692B2 (en) Steel for induction hardening, materials for induction hardening parts, and induction hardening parts

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050107

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070326

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140413

Year of fee payment: 7

S801 Written request for registration of abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311801

ABAN Cancellation of abandonment
R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350