JP2003213098A - New electroconductive polymer membrane and method for producing the same - Google Patents

New electroconductive polymer membrane and method for producing the same

Info

Publication number
JP2003213098A
JP2003213098A JP2002011029A JP2002011029A JP2003213098A JP 2003213098 A JP2003213098 A JP 2003213098A JP 2002011029 A JP2002011029 A JP 2002011029A JP 2002011029 A JP2002011029 A JP 2002011029A JP 2003213098 A JP2003213098 A JP 2003213098A
Authority
JP
Japan
Prior art keywords
conductive polymer
poly
dna
deoxyribonucleic acid
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002011029A
Other languages
Japanese (ja)
Other versions
JP4036255B2 (en
Inventor
Naoya Ogata
直哉 緒方
Reiri O
麗莉 王
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP2002011029A priority Critical patent/JP4036255B2/en
Publication of JP2003213098A publication Critical patent/JP2003213098A/en
Application granted granted Critical
Publication of JP4036255B2 publication Critical patent/JP4036255B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a electroconductive polymer membrane capable of being processed to form a device having an arbitrary shape by which the thickness is freely regulated even to ≤1 μm, and a shape of the membrane is arbitrarily formed, and to provide the electroconductive polymer membrane obtained thereby, having excellent electroconductivity, and a nonlinear optic effect. <P>SOLUTION: This method for producing the electroconductive polymer membrane comprises mixing an electroconductive polymer with a deoxyribonucleic acid (DNA)-lipid complex in a solvent, and casting the mixed solution. The electroconductive polymer membrane is produced by the method. The composite material contains the electroconductive polymer and the deoxyribonucleic acid (DNA)-lipid complex. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、例えば非線形光学
材料や医療用部材等としての用途が期待できる新規な導
電性高分子材料とその製造法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel conductive polymer material which can be expected to be used as, for example, a nonlinear optical material or a medical member, and a method for producing the same.

【0002】[0002]

【従来の技術】1977年に白川(日本)及びMacDiarm
id(米国)によってポリ(アセチレン)の薄膜をハロゲ
ン元素によりドーピングすると飛躍的に電気伝導度が増
大して、ほぼ金属並の電導度となることが見出されて以
来、世界各国において導電性高分子に関する研究が展開
され、その応用が広がっている。たとえばポリ(アニリ
ン)は電地の電極材料に、ポリ(ピロール)は電解コン
デンサー(キャパシタ)に応用されて、それらの用途は
拡大している。これらの共役系高分子の合成は、たとえ
ばポリ(アセチレン)はアセチレンの有機金属解媒によ
る重合、アニリンまたはピロールの重合は酸化剤による
化学的酸化反応あるいは電気分解による陽極酸化によっ
て得られている。これらの共役系高分子は一般に剛直な
高分子であって溶媒との親和性に乏しいために薄膜への
成形が困難であり、電子材料あるいは光学材料に応用す
る場合は薄膜化が要素技術となるために導電性高分子の
成形技術が極めて重要な鍵を握っている。一般的に共役
系導電性高分子はその側鎖に極性のある基を結合させな
ければ有機溶媒には溶解しない。例えばポリ(アセチレ
ン)、ポリ(ピロール)、ポリ(アニリン)などは共役
系高分子であるために溶剤に対する溶解性は低く、濃硫
酸などの強酸にしか溶けない。そこで薄膜化するために
はこれらの共役系高分子の側鎖に種々の官能基を導入し
て溶媒との親和性を増すことによって溶媒に溶かしてキ
ャスト法で溶媒を飛ばして薄膜化する。この場合は合成
上の手間がかかるだけでなく、得られた薄膜の導電性は
一般に低下する。ポリ(ピロール)、ポリ(アニリン)
は水中にピロール、アニリンを溶解して食塩などの支持
電解質の存在下で5〜10Vの直流電流を流すと陽極上
で酸化重合が起こり、陽極上にポリマーの薄膜ができ
る。この方法では薄膜は得られるが、平膜しか得られ
ず、任意の形のデバイスへの加工はできない。また、膜
厚も1ミクロン以上の厚い膜は出来難い。
[Prior Art] Shirakawa (Japan) and MacDiarm in 1977
Since it was found by id (US) that poly (acetylene) thin films were doped with halogen elements to dramatically increase the electrical conductivity and become almost as conductive as metals, it has become highly conductive in many countries around the world. Research on molecules is expanding and its applications are expanding. For example, poly (aniline) is applied to an electrode material for an electric field, and poly (pyrrole) is applied to an electrolytic capacitor (capacitor), and their applications are expanding. Synthesis of these conjugated polymers has been obtained, for example, by polymerization of poly (acetylene) with an organometallic solvent of acetylene and polymerization of aniline or pyrrole by a chemical oxidation reaction with an oxidizing agent or anodization by electrolysis. Since these conjugated polymers are generally rigid polymers and have poor affinity with solvents, it is difficult to form them into thin films. When applied to electronic materials or optical materials, thinning becomes an elemental technology. For this reason, the conductive polymer molding technology holds the extremely important key. In general, a conjugated conductive polymer will not dissolve in an organic solvent unless a polar group is bonded to its side chain. For example, poly (acetylene), poly (pyrrole), poly (aniline) and the like are conjugated polymers and therefore have low solubility in solvents and are soluble only in strong acids such as concentrated sulfuric acid. Therefore, in order to form a thin film, various functional groups are introduced into the side chains of these conjugated polymers to increase the affinity with the solvent, and the resulting polymer is dissolved in the solvent and the solvent is removed by a casting method to form a thin film. In this case, not only is it troublesome in synthesis, but the conductivity of the obtained thin film is generally lowered. Poly (pyrrole), Poly (aniline)
When pyrrole or aniline is dissolved in water and a direct current of 5 to 10 V is applied in the presence of a supporting electrolyte such as salt, oxidative polymerization occurs on the anode, and a polymer thin film is formed on the anode. Although a thin film can be obtained by this method, only a flat film can be obtained, and it cannot be processed into a device having an arbitrary shape. Further, it is difficult to form a thick film having a thickness of 1 micron or more.

【0003】[0003]

【発明が解決しようとする課題】本発明は、上記した如
き現状に鑑みなされたもので、膜厚は1ミクロン以下で
も以上でも自由に制御ができ、膜の形状も任意にでき
て、任意の形のデバイスへの加工が可能な導電性高分子
膜の製造方法と、それによって得られる導電性に優れ、
且つ非線形光学効果を有する導電性高分子膜を提供する
ことを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned circumstances, and the film thickness can be freely controlled even if it is 1 micron or less, and the shape of the film can be arbitrarily set. Of a conductive polymer film that can be processed into a shape-shaped device, and excellent conductivity obtained by the method,
Another object of the present invention is to provide a conductive polymer film having a nonlinear optical effect.

【0004】[0004]

【課題を解決するための手段】本発明は、導電性高分子
とデオキシリボ核酸(DNA)−脂質複合体とを溶媒中
で混合し、その混合溶液をキャストすることにより得ら
れる導電性高分子膜に関する。
The present invention provides a conductive polymer membrane obtained by mixing a conductive polymer and a deoxyribonucleic acid (DNA) -lipid complex in a solvent and casting the mixed solution. Regarding

【0005】また、本発明は、導電性高分子とデオキシ
リボ核酸(DNA)−脂質複合体とを溶媒中で混合し、
その混合溶液をキャストすることにより製造することを
特徴とする導電性高分子膜の製造方法に関する。
In the present invention, a conductive polymer and a deoxyribonucleic acid (DNA) -lipid complex are mixed in a solvent,
The present invention relates to a method for producing a conductive polymer film, which is produced by casting the mixed solution.

【0006】更に、本発明は、導電性高分子とデオキシ
リボ核酸(DNA)又はデオキシリボ核酸(DNA)−
脂質複合体を含んでなる複合材料に関する。
Furthermore, the present invention provides a conductive polymer and deoxyribonucleic acid (DNA) or deoxyribonucleic acid (DNA)-
It relates to a composite material comprising a lipid complex.

【0007】即ち、ポリ(ピロール)、ポリ(アニリ
ン)などの共役系導電性高分子とDNA−脂質複合体と
を溶媒中で混合して、その混合溶液をキャストすること
によって均一なブレンド膜が得られる。このブレンド膜
は導電性を有し、光照射に対して波長交換を行なう非線
形光学効果を示す。さらにDNAは抗血栓性などの生体
適合性を有するので、人工臓器などの材料への応用が可
能である。本発明においては、導電性高分子の溶媒性を
促進するためにデオキシリボ核酸(DNA)を溶解助剤
として用いて導電性高分子の薄膜化を容易にし、導電性
高分子が持つ電子的、あるいは光機能性を損なうこと無
くデバイスへの応用を可能とすることを特徴としてい
る。
That is, a conjugated conductive polymer such as poly (pyrrole) or poly (aniline) and a DNA-lipid complex are mixed in a solvent, and the mixed solution is cast to form a uniform blend film. can get. This blend film has conductivity and exhibits a non-linear optical effect of exchanging wavelengths with respect to light irradiation. Furthermore, since DNA has biocompatibility such as antithrombogenicity, it can be applied to materials such as artificial organs. In the present invention, in order to promote the solvent property of the conductive polymer, deoxyribonucleic acid (DNA) is used as a solubilizing agent to facilitate thinning of the conductive polymer, and the electronic or The feature is that it can be applied to devices without impairing optical functionality.

【0008】DNA分子は主鎖がポリリン酸エステル
で、二本のDNA分子の間で遺伝情報を担っているアデ
ニン(A)、グアニン(T)、シトシン(C)、チミン
(T)の四種の核酸塩基がそれぞれA−T,C−Gの組
み合わせでベースペアを作ることによって二重らせんの
構造を取ることがよく知られている。DNA分子の主鎖
のくり返し単位のリン酸エステルはアニオンであり、対
イオンは一般的にはナトリウムカチオンである。即ち、
DNA分子はナトリウムカチオンを対イオンとするポリ
アニオン分子 である。一方、共役系高分子は一重結合
と二重結合が交互に配列した共役構造を持っているため
に分子中に移動性電子を多数有している。特にポリ(ア
ニリン)、ポリ(ピロール)或いはポリ(チオフェン)
などの共役系高分子は窒素、イオウなどの電子供与性原
子を主鎖中に有するために、電子親和性分子との相互作
用が大きくて電荷移動錯体を作りやすい。従って、ポリ
(アニリン)、ポリ(ピロール)あるいはポリ(チオフ
ェン)などの導電性高分子はポリアニオンであるDNA
分子との電荷移動的相互作用が働きやすくなり、このた
めにこれらの導電性高分子の溶媒に対する溶解性が著し
く向上する。従って、薄膜化が困難である導電性高分子
の成形に当たって、DNAを加えることによりN−メチ
ルピロリドン(NMP)やジメチルアセトアミド(DM
Ac)などの極性溶媒に容易に溶解するようになり、溶
媒キャスト法によってDNAと導電性高分子とが混合し
たブレンド薄膜を容易に得ることができる。
The main chain of a DNA molecule is a polyphosphate ester, and the four kinds of adenine (A), guanine (T), cytosine (C), and thymine (T) that carry the genetic information between two DNA molecules. It is well known that each of the nucleobases has a double helix structure by forming a base pair with a combination of AT and CG. The phosphate ester of the repeating unit of the main chain of a DNA molecule is an anion, and the counterion is generally a sodium cation. That is,
A DNA molecule is a polyanion molecule having a sodium cation as a counter ion. On the other hand, the conjugated polymer has a large number of mobile electrons in the molecule because it has a conjugated structure in which single bonds and double bonds are alternately arranged. Especially poly (aniline), poly (pyrrole) or poly (thiophene)
Since such conjugated polymers have electron-donating atoms such as nitrogen and sulfur in their main chains, they have a large interaction with electron-affinity molecules and are easy to form charge-transfer complexes. Therefore, a conductive polymer such as poly (aniline), poly (pyrrole), or poly (thiophene) is a polyanion.
The charge transfer interaction with the molecule is facilitated, which significantly improves the solubility of these conductive polymers in a solvent. Therefore, N-methylpyrrolidone (NMP) or dimethylacetamide (DM) is added by adding DNA in forming a conductive polymer that is difficult to form into a thin film.
It becomes easy to dissolve in a polar solvent such as Ac), and a blended thin film in which DNA and a conductive polymer are mixed can be easily obtained by the solvent casting method.

【0009】DNA分子は二重らせん構造の中で核酸塩
基が層状に積み重なっているためにこれらの核酸塩基層
の中を電子移動が起こり、電気伝導度を有することが認
めらている。従って、DNA分子と導電性高分子のブレ
ンドによって得られた薄膜の導電性あるいは光機能特性
は大きく損なわれることが無いのが特長である。更に、
DNA分子は本来、生体由来の高分子であり、動植物な
どのあらゆる生体はDNA分子によって遺伝情報を伝達
しているために生体に対する適合性は非常に大きい。一
方、導電性高分子は一般に全く生体適合を待たないため
に人工臓器用の材料に用いることはできない。本発明に
よって導電性高分子は薄膜化が容易となるばかりでな
く、得られたDNAとのブレンド薄膜は生体に対する適
合性が大きく、人工臓器用に応用することができる。特
にDNA分子は酸素に対する親和性が大きいために本特
許によって得られるブレンド膜は導電性高分子による補
強効果を持った耐久性の大きな人工心肺の薄膜として応
用することが可能と考えられる。
It has been recognized that DNA molecules have electric conductivity due to electron transfer in these nucleic acid base layers because the nucleic acid bases are stacked in layers in a double helix structure. Therefore, the thin film obtained by blending the DNA molecule and the conductive polymer is characterized in that the conductivity or the optical functional property is not significantly impaired. Furthermore,
DNA molecules are originally macromolecules derived from living organisms, and all living organisms such as animals and plants transmit genetic information by DNA molecules, and therefore have great compatibility with living organisms. On the other hand, conductive polymers generally cannot wait for biocompatibility and cannot be used as materials for artificial organs. According to the present invention, not only the conductive polymer can be easily formed into a thin film, but the obtained thin film blended with DNA has great compatibility with living organisms and can be applied to artificial organs. In particular, since the DNA molecule has a large affinity for oxygen, it is considered that the blended film obtained by this patent can be applied as a thin film of a highly durable artificial heart lung having a reinforcing effect by the conductive polymer.

【0010】[0010]

【発明の実施の形態】本発明で用いられる導電性高分子
の好ましいものとしては、共役系導電性高分子が挙げら
れる。共役系導電性高分子の具体例としては、例えば、
ポリ(アニリン)、ポリ(ピロール)、ポリ(チオフェ
ン)等が挙げられる。本発明で用いられる導電性高分子
の分子量としては、それぞれその用途により自ずから異
なるが、通常1万〜100万、好ましくは1万〜50
万、より好ましくは、1万〜20万である。
Preferred examples of the conductive polymer used in the present invention include conjugated conductive polymers. Specific examples of the conjugated conductive polymer include, for example,
Examples include poly (aniline), poly (pyrrole), poly (thiophene), and the like. The molecular weight of the conductive polymer used in the present invention varies depending on its use, but is usually 10,000 to 1,000,000, preferably 10,000 to 50.
10,000, more preferably 10,000 to 200,000.

【0011】本発明で用いられるDNAとしては、どの
ような由来のものでも良く、特に制約はないが、安価で
且つ容易に入手できるものとしては、例えば鮭の精子
(白子)由来のもの等が挙げられる。本発明で用いられ
るDNAの分子量としては、通常10万〜1000万、
好ましくは10万〜500万、より好ましくは、10万
〜100万である。本発明で用いられる導電性高分子と
DNAの使用割合は、導電性高分子1molに対し、D
NAは、通常0.01〜1.5mol、好ましくは0.
05〜1.2mol、より好ましくは0.05〜1.0
molである。
The DNA used in the present invention may be of any origin and is not particularly limited, but examples of inexpensive and easily available DNA include those derived from salmon sperm (shirako). Can be mentioned. The molecular weight of the DNA used in the present invention is usually 100,000 to 10,000,000,
It is preferably 100,000 to 5,000,000, more preferably 100,000 to 1,000,000. The ratio of the conductive polymer and DNA used in the present invention is D per 1 mol of the conductive polymer.
NA is usually 0.01 to 1.5 mol, preferably 0.
05-1.2 mol, more preferably 0.05-1.0
mol.

【0012】本発明で用いられるDNA−脂質複合体に
おける脂質としては、例えば長鎖アルキル基を有する第
四級アンモニウム塩等が挙げられる。本発明において用
いられる長鎖アルキル基を有する第四級アンモニウム塩
における長鎖アルキル基としては、通常炭素数12〜1
8の直鎖状又は分枝状のアルキル基が挙げられ、このよ
うな長鎖アルキル基を有する第四級アンモニウム塩の具
体例としては、例えば、セチルトリメチルアンモニウム
クロリド、セチルピリジニウムクロリド、ベンジルジメ
チルヘキサデシルアンモニウムクロリド、ジメチルピリ
ジニウムヘキサメチルアンモニウムクロリド等が挙げら
れる。
Examples of the lipid in the DNA-lipid complex used in the present invention include quaternary ammonium salts having a long chain alkyl group. The long-chain alkyl group in the quaternary ammonium salt having a long-chain alkyl group used in the present invention usually has 12 to 1 carbon atoms.
8 straight-chain or branched alkyl groups can be mentioned, and specific examples of the quaternary ammonium salt having such a long-chain alkyl group include, for example, cetyltrimethylammonium chloride, cetylpyridinium chloride, and benzyldimethylhexa. Decyl ammonium chloride, dimethylpyridinium hexamethyl ammonium chloride and the like can be mentioned.

【0013】本発明の導電性高分子膜は、導電性高分子
とDNA−脂質複合体とを溶媒中で混合し、その混合溶
液をキャストすることにより得られるが、ここで用いら
れる溶媒としては、極性溶媒が好ましく、その具体例と
しては、例えば、N−メチルピロリドン、ジメチルアセ
トアミド、ヘキサフロロイソプロパノール、クロロホル
ム/メタノール(4/1)等が挙げられる。
The conductive polymer membrane of the present invention can be obtained by mixing the conductive polymer and the DNA-lipid complex in a solvent and casting the mixed solution. The solvent used here is A polar solvent is preferable, and specific examples thereof include N-methylpyrrolidone, dimethylacetamide, hexafluoroisopropanol, chloroform / methanol (4/1) and the like.

【0014】本発明の導電性高分子膜の製造方法は大略
以下の通りである。即ち、例えば酸化重合、電解重合等
により得られた共役系導電性高分子、例えばポリ(アニ
リン)、ポリ(ピロール)等を適当な有機溶剤、例えば
N−メチルピロリドン(NMP)やヘキサフロロイソプ
ロパノール等の極性溶媒中に分散させ、これに室温下、
DNA−脂質複合体の有機溶剤溶液、例えばエタノール
溶液を撹拌しながら、徐々に加えると分散していたポリ
(アニリン)やポリ(ピロール)等の導電性高分子は次
第に溶解して均一な溶液となる。この溶液をガラス基板
や樹脂基板或いは樹脂でコートしたガラス基板等の上に
流し込み展開した後(キャストした後)、溶媒を室温乃
至40℃位の温度で、常圧若しくは減圧下に、蒸発させ
れば透明な薄膜が得られる。
The method for producing the conductive polymer film of the present invention is generally as follows. That is, for example, a conjugated conductive polymer obtained by, for example, oxidative polymerization, electrolytic polymerization, etc., such as poly (aniline), poly (pyrrole), etc., and a suitable organic solvent such as N-methylpyrrolidone (NMP), hexafluoroisopropanol, etc. Dispersed in a polar solvent of, at room temperature,
When a solution of the DNA-lipid complex in an organic solvent, for example, an ethanol solution is slowly added with stirring, the dispersed conductive polymer such as poly (aniline) or poly (pyrrole) is gradually dissolved to form a uniform solution. Become. This solution is poured onto a glass substrate, a resin substrate, a resin-coated glass substrate, or the like and developed (after casting), and then the solvent is evaporated at room temperature to 40 ° C. under normal pressure or reduced pressure. A transparent thin film can be obtained.

【0015】かくして得られたDNA−脂質複合体と共
役系導電性高分子のブレンド膜は当該共役系導電性高分
子と同等の導電性を有し、且つ当該共役系導電性高分子
と同様に光照射に対して波長交換を行なう非線形光学効
果を示す。更に、DNAは抗血栓性などの生体適合性を
有するので、当該ブレンド膜は、人工臓器などの材料へ
の応用が可能である。
The blend film of the DNA-lipid complex and the conjugated conductive polymer thus obtained has the same conductivity as that of the conjugated conductive polymer, and like the conjugated conductive polymer. The nonlinear optical effect of wavelength switching for light irradiation is shown. Furthermore, since DNA has biocompatibility such as antithrombogenicity, the blend film can be applied to materials such as artificial organs.

【0016】本発明で用いられるDNA−脂質複合体
は、例えば以下の如くして容易に調製し得る。即ち、先
ず、例えば鮭精子由来のDNA(分子量10万〜100
万)を適当量の水に溶解し、次いでこの溶液に脂質であ
る長鎖アルキル基を有する第四級アンモニウム塩、例え
ばセチルトリメチルアンモニウムクロリドを一気に加え
ると、直ちにイオン交換が起こりDNAと脂質の複合体
が沈殿する。この沈殿を遠心分離等により単離し、乾燥
すれば目的とするDNA−脂質複合体が得られる。
The DNA-lipid complex used in the present invention can be easily prepared, for example, as follows. That is, first, for example, salmon sperm-derived DNA (molecular weight 100,000 to 100
10) is dissolved in an appropriate amount of water, and then a quaternary ammonium salt having a long-chain alkyl group, such as cetyltrimethylammonium chloride, which is a lipid, is added to the solution all at once, ion exchange occurs immediately, and DNA-lipid complex formation occurs. The body precipitates. The desired DNA-lipid complex can be obtained by isolating this precipitate by centrifugation or the like and drying it.

【0017】[0017]

【実施例】以下、実施例により本発明をより具体的に説
明するが、本発明はこれら実施例により何ら限定される
ものではない。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.

【0018】実施例1 化学的酸化重合によって得られた分子量約5万のポリ
(アニリン)の粉末1gをN−メチルピロリドン(NM
P)100ml中に分散させ室温で撹拌混合した。一
方、鮭精子由来の分子量50万のDNA 1gを水10
0ml中に撹拌溶解した。このDNA水溶液中に第四級
アンモニウム塩であるセチルトリメチルアンモニウムク
ロリド(脂質)5gを一度に加えると、直ちにイオン交
換が起こりDNAと脂質の複合体が沈殿した。この沈殿
を遠心分離して乾燥し、100mlのエタノールにこの
複合体を溶解した。得られたDNA−脂質エタノール溶
液を先に用意したポリ(アニリン)のNMP分散液の中
に撹拌しながら徐々に加えると分散していたポリ(アニ
リン)は次第に溶解して均一な溶液となった。この溶液
をテフロン(登録商標)でコートしたガラストレーの中
に流し込み、溶媒を一定の蒸発スピードでゆっくりと蒸
発させると紫色の透明な薄膜(膜厚10μ)が得られ
た。得られたDNA−脂質複合体とポリ(アニリン)と
のブレンド膜の電気伝導度を四端子法によって測定した
ところ、室温における電気伝導度は120S/cmであ
り、通常のポリ(アニリン)の電気伝導度とほぼ同程度
であった。
Example 1 1 g of powder of poly (aniline) having a molecular weight of about 50,000 obtained by chemical oxidative polymerization was mixed with N-methylpyrrolidone (NM).
P) Dispersed in 100 ml and mixed with stirring at room temperature. On the other hand, 1 g of DNA with a molecular weight of 500,000 derived from salmon sperm was added to 10 g of water.
Dissolved with stirring in 0 ml. When 5 g of cetyltrimethylammonium chloride (lipid), which is a quaternary ammonium salt, was added at once to this aqueous DNA solution, ion exchange occurred immediately and a complex of DNA and lipid was precipitated. The precipitate was centrifuged and dried, and the complex was dissolved in 100 ml of ethanol. When the obtained DNA-lipid ethanol solution was gradually added to the previously prepared NMP dispersion of poly (aniline) while stirring, the dispersed poly (aniline) was gradually dissolved to form a uniform solution. . This solution was poured into a glass tray coated with Teflon (registered trademark), and the solvent was slowly evaporated at a constant evaporation speed to obtain a purple transparent thin film (film thickness 10 μm). When the electric conductivity of the obtained blend film of the DNA-lipid complex and poly (aniline) was measured by the four-terminal method, the electric conductivity at room temperature was 120 S / cm, and the electric conductivity of ordinary poly (aniline) was measured. It was almost the same as the conductivity.

【0019】実施例2 実施例1の方法により得られたDNA−脂質複合体とポ
リ(アニリン)とのブレンド膜について赤外線レーザー
を用いて非線形光学効果の測定を行ったところ、三次非
線形光学効果定数は10−8であり、ポリ(アニリン)
の三次非線形光学効果定数とほぼ同程度であった。
Example 2 The nonlinear optical effect of the blend film of the DNA-lipid complex obtained by the method of Example 1 and poly (aniline) was measured using an infrared laser. Is 10 −8 and is poly (aniline)
It was almost the same as the third-order nonlinear optical effect constant of.

【0020】[0020]

【発明の効果】本発明は、導体や接点、各種電池材料、
電子デバイス、各種センサー、帯電防止材などに応用で
きる導電性高分子膜とその製造方法を提供するものであ
る。本発明の製造方法は、導電性高分子の溶解性を促進
するためにDNAを溶解助剤として用いる点に特徴を有
し、それにより、導電性高分子の薄膜化を容易にし、導
電性高分子が持つ電子的、或いは光機能性を損なうこと
無く各種デバイスへの応用を可能としたものである。ま
た、本発明の方法によれば、濃度によって、膜厚は1ミ
クロン以下でも以上でも自由に制御でき、膜の形状も任
意にできるので、本発明の導電性高分子膜は、上記した
如き種々の用途に使用し得る。更に、本発明の導電性高
分子膜、即ち、導電性高分子とDNA又はDNA−脂質
複合体とのブレンド膜は、導電性を有し、且つ、光照射
に対して波長交換を行なう非線形光学効果を示すので、
半導体等による発光素子、光・電気変換素子、非線形光
学素子などへの応用も可能であり、オプトエレクトロニ
クス産業に寄与するところも大である。更にまた、従来
の導電性高分子は一般に生体適合性を全く持たないため
に人工臓器用の材料に用いることはできないが、本発明
の複合材料は、DNAが抗血栓性などの生体適合性を有
するので、人工臓器などの材料への応用が可能である。
特にDNA分子は酸素に対する親和性が大きいために本
発明のブレンド膜は導電性高分子による補強効果を持っ
た耐久性の大きな人工心肺の薄膜として応用することも
可能と考えられる。
The present invention is directed to conductors, contacts, various battery materials,
The present invention provides a conductive polymer film applicable to electronic devices, various sensors, antistatic materials, etc. and a method for producing the same. The production method of the present invention is characterized in that DNA is used as a solubilizing agent in order to promote the solubility of the conductive polymer, thereby facilitating the thinning of the conductive polymer and increasing the conductivity. It enables application to various devices without impairing the electronic or optical functionality of the molecule. Further, according to the method of the present invention, the film thickness can be freely controlled to 1 μm or less or more depending on the concentration, and the shape of the film can be arbitrarily set. Therefore, the conductive polymer film of the present invention has various properties as described above. Can be used for. Further, the conductive polymer film of the present invention, that is, the blend film of the conductive polymer and the DNA or the DNA-lipid complex has conductivity, and is a nonlinear optical that performs wavelength exchange with respect to light irradiation. Show the effect,
It can be applied to light-emitting devices such as semiconductors, optical / electrical conversion devices, and non-linear optical devices, and it has a large contribution to the optoelectronics industry. Furthermore, since conventional conductive polymers generally have no biocompatibility and therefore cannot be used as materials for artificial organs, the composite material of the present invention has DNA having biocompatibility such as antithrombogenicity. Since it has, it can be applied to materials such as artificial organs.
In particular, since the DNA molecule has a high affinity for oxygen, it is considered that the blend film of the present invention can be applied as a thin film of a highly durable artificial heart lung having a reinforcing effect by the conductive polymer.

フロントページの続き Fターム(参考) 4F071 AA59 AA69 AA70 AA74 AC12 AE15 AF37 AH19 BA02 BB02 BC01 BC17 4J002 AD03X CE00W CM05W EN136 FD11W GB01 GP00 GQ02 HA03 Continued front page    F-term (reference) 4F071 AA59 AA69 AA70 AA74 AC12                       AE15 AF37 AH19 BA02 BB02                       BC01 BC17                 4J002 AD03X CE00W CM05W EN136                       FD11W GB01 GP00 GQ02                       HA03

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】 導電性高分子とデオキシリボ核酸(DN
A)−脂質複合体とを溶媒中で混合し、その混合溶液を
キャストすることにより得られる導電性高分子膜。
1. A conductive polymer and deoxyribonucleic acid (DN)
The conductive polymer membrane obtained by mixing A) -lipid complex in a solvent, and casting the mixed solution.
【請求項2】 脂質が長鎖アルキル基を有する第四級ア
ンモニウム塩である請求項1に記載の導電性高分子膜。
2. The conductive polymer membrane according to claim 1, wherein the lipid is a quaternary ammonium salt having a long chain alkyl group.
【請求項3】 導電性高分子が共役系導電性高分子であ
る請求項1又は2に記載の導電性高分子膜。
3. The conductive polymer film according to claim 1, wherein the conductive polymer is a conjugated conductive polymer.
【請求項4】 共役系導電性高分子がポリ(アニリ
ン)、ポリ(ピロール)又はポリ(チオフェン)である
請求項3に記載の導電性高分子膜。
4. The conductive polymer film according to claim 3, wherein the conjugated conductive polymer is poly (aniline), poly (pyrrole) or poly (thiophene).
【請求項5】 導電性高分子とデオキシリボ核酸(DN
A)−脂質複合体とを溶媒中で混合し、その混合溶液を
キャストすることにより製造することを特徴とする導電
性高分子膜の製造方法。
5. A conductive polymer and deoxyribonucleic acid (DN)
A) -lipid complex is mixed in a solvent, and the mixed solution is cast to produce the conductive polymer membrane.
【請求項6】 脂質が長鎖アルキル基を有する第四級ア
ンモニウム塩である請求項5に記載の製造方法。
6. The production method according to claim 5, wherein the lipid is a quaternary ammonium salt having a long-chain alkyl group.
【請求項7】 導電性高分子が共役系導電性高分子であ
る請求項5又は6に記載の製造方法。
7. The method according to claim 5, wherein the conductive polymer is a conjugated conductive polymer.
【請求項8】 共役系導電性高分子がポリ(アニリ
ン)、ポリ(ピロール)又はポリ(チオフェン)である
請求項7に記載の製造方法。
8. The method according to claim 7, wherein the conjugated conductive polymer is poly (aniline), poly (pyrrole) or poly (thiophene).
【請求項9】 デオキシリボ核酸(DNA)が鮭由来の
デオキシリボ核酸(DNA)である請求項5〜8の何れ
かに記載の製造方法。
9. The production method according to claim 5, wherein the deoxyribonucleic acid (DNA) is a salmon-derived deoxyribonucleic acid (DNA).
【請求項10】 鮭由来のデオキシリボ核酸(DNA)
が鮭精子(白子)由来のデオキシリボ核酸(DNA)で
ある請求項9に記載の製造方法。
10. Salmon-derived deoxyribonucleic acid (DNA)
10. The method according to claim 9, wherein is a deoxyribonucleic acid (DNA) derived from salmon sperm (white egg).
【請求項11】 溶媒が極性溶媒である請求項5〜10
の何れかに記載の製造方法。
11. The solvent according to claim 5, which is a polar solvent.
The manufacturing method according to any one of 1.
【請求項12】 極性溶媒がN−メチルピロリドン又は
ジメチルアセトアミドである請求項11に記載の製造方
法。
12. The production method according to claim 11, wherein the polar solvent is N-methylpyrrolidone or dimethylacetamide.
【請求項13】 導電性高分子とデオキシリボ核酸(D
NA)又はデオキシリボ核酸(DNA)−脂質複合体を
含んでなる複合材料。
13. A conductive polymer and a deoxyribonucleic acid (D
NA) or a deoxyribonucleic acid (DNA) -lipid complex comprising a composite material.
【請求項14】 脂質が長鎖アルキル基を有する第四級
アンモニウム塩である請求項13に記載の複合材料。
14. The composite material according to claim 13, wherein the lipid is a quaternary ammonium salt having a long-chain alkyl group.
【請求項15】 導電性高分子が共役系導電性高分子で
ある請求項13又は14に記載の複合材料。
15. The composite material according to claim 13, wherein the conductive polymer is a conjugated conductive polymer.
【請求項16】 共役系導電性高分子がポリ(アニリ
ン)、ポリ(ピロール)又はポリ(チオフェン)である
請求項15に記載の複合材料。
16. The composite material according to claim 15, wherein the conjugated conductive polymer is poly (aniline), poly (pyrrole) or poly (thiophene).
JP2002011029A 2002-01-21 2002-01-21 Novel conductive polymer film and process for producing the same Expired - Fee Related JP4036255B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002011029A JP4036255B2 (en) 2002-01-21 2002-01-21 Novel conductive polymer film and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002011029A JP4036255B2 (en) 2002-01-21 2002-01-21 Novel conductive polymer film and process for producing the same

Publications (2)

Publication Number Publication Date
JP2003213098A true JP2003213098A (en) 2003-07-30
JP4036255B2 JP4036255B2 (en) 2008-01-23

Family

ID=27648605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002011029A Expired - Fee Related JP4036255B2 (en) 2002-01-21 2002-01-21 Novel conductive polymer film and process for producing the same

Country Status (1)

Country Link
JP (1) JP4036255B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007091647A (en) * 2005-09-29 2007-04-12 Trekion Co Ltd Antimicrobial dna salt composition
JP2009263430A (en) * 2008-04-22 2009-11-12 Ogata Zairyo Kagaku Kenkyusho:Kk Composite electronic material and method for producing same
WO2021060939A1 (en) * 2019-09-27 2021-04-01 울산과학기술원 Nucleic acid-based solid-state single ion conductor, electrolyte comprising same, and lithium ion battery comprising same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007091647A (en) * 2005-09-29 2007-04-12 Trekion Co Ltd Antimicrobial dna salt composition
JP2009263430A (en) * 2008-04-22 2009-11-12 Ogata Zairyo Kagaku Kenkyusho:Kk Composite electronic material and method for producing same
WO2021060939A1 (en) * 2019-09-27 2021-04-01 울산과학기술원 Nucleic acid-based solid-state single ion conductor, electrolyte comprising same, and lithium ion battery comprising same
KR20210037373A (en) * 2019-09-27 2021-04-06 울산과학기술원 Nucleic acid based solid state single ion conductor, electrolyte having the same, and lithium ion cell having the same
KR102270252B1 (en) 2019-09-27 2021-06-28 울산과학기술원 Nucleic acid based solid state single ion conductor, electrolyte having the same, and lithium ion cell having the same

Also Published As

Publication number Publication date
JP4036255B2 (en) 2008-01-23

Similar Documents

Publication Publication Date Title
TWI300419B (en) Process for the preparation of neutral polyethylenedioxythiophene, and corresponding polyethlenedioxythiophenes
Mawad et al. Conductive polymer hydrogels
KR101295763B1 (en) Composite conductive polymer composition, method for producing same, solution containing the composition, and use of the composition
JPS5998165A (en) Electroconductive polymer composition
Higgins et al. Grafting and electrochemical characterisation of poly-(3, 4-ethylenedioxythiophene) films, on Nafion and on radiation-grafted polystyrenesulfonate–polyvinylidene fluoride composite surfaces
JP2003022709A (en) Blended polymer electrolyte, electrolytic membrane having the electrolyte as main component, and membrane /electrode junction containing the electrolyte
JP2005171025A (en) Method of manufacturing proton conductive film
JP3066431B2 (en) Method for producing conductive polymer composite
JP2003022708A (en) Blended polymer electrolyte, electrolytic membrane having the electrolyte as main component, and membrane /electrode junction containing the electrolyte
JP3186328B2 (en) Conductive composite and manufacturing method thereof
Feng et al. A redox poly (ionic liquid) hydrogel: Facile method of synthesis and electrochemical sensing
Djellab et al. Stabilization of the conductivity of poly (3-methylthiophene) by triflimide anions
JP4036255B2 (en) Novel conductive polymer film and process for producing the same
JP3182239B2 (en) Novel water-soluble conductive polymer and method for producing the same
JP2003022824A (en) Acid base blended polymer electrolyte, electrolyte membrane having same as main component, and membrane/ electrode assembly using same
Lokshin et al. Polyaniline-containing interpolymer complexes synthesized in low-polar organic media
JP2003055457A (en) Sulfonic acid-containing ion conductive polybenzimidazole
Ates et al. Synthesis of 2‐(9H‐carbazole‐9‐yl) ethyl methacrylate: Electrochemical impedance spectroscopic study of poly (2‐(9H‐carbazole‐9‐yl) ethyl methacrylate) on carbon fiber
JP3413958B2 (en) Novel conductive polymer and method for producing the same
JP2004131530A (en) Solution consisting essentially of polybenzimidazole compound having ionic group and molded product and method for producing the same molded product
Jadoun et al. Ionic liquid–polymer based nanocomposites and applications
JP2003100143A (en) Conductive composition, conductor and its formation method
JP2002124126A (en) Ion conductor and manufacturing method of the same
Scotto et al. Conducting polymers-based electrochemical platforms: From biosensing to energy storage
JP2005350525A (en) Conductive polyaniline derivative and composition thereof

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20031210

A977 Report on retrieval

Effective date: 20040720

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20040803

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20040916

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20050705

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050902

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051004

A521 Written amendment

Effective date: 20060203

Free format text: JAPANESE INTERMEDIATE CODE: A523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070913

A61 First payment of annual fees (during grant procedure)

Effective date: 20071023

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20111109

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20121109

LAPS Cancellation because of no payment of annual fees