JP2003212791A - Composition for modulating cell adhesion activity and/or cell motility activity containing laminin-6 - Google Patents

Composition for modulating cell adhesion activity and/or cell motility activity containing laminin-6

Info

Publication number
JP2003212791A
JP2003212791A JP2002009227A JP2002009227A JP2003212791A JP 2003212791 A JP2003212791 A JP 2003212791A JP 2002009227 A JP2002009227 A JP 2002009227A JP 2002009227 A JP2002009227 A JP 2002009227A JP 2003212791 A JP2003212791 A JP 2003212791A
Authority
JP
Japan
Prior art keywords
leu
gly
ser
glu
ala
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002009227A
Other languages
Japanese (ja)
Inventor
Ko Miyazaki
香 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP2002009227A priority Critical patent/JP2003212791A/en
Publication of JP2003212791A publication Critical patent/JP2003212791A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composition containing a laminin-6 capable of modulating cell adhesion activity and cell motility activity. <P>SOLUTION: The short-chain type laminin-6 has α3-chain, β1-chain and γ1-chain where G4 and G5 domains are deleted. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、細胞接着活性及び
/又は細胞運動活性を調節可能なラミニン−6を含む組
成物に関する。
TECHNICAL FIELD The present invention relates to a composition containing laminin-6 capable of regulating cell adhesion activity and / or cell motility activity.

【0002】[0002]

【従来の技術】基底膜成分は、組織構造を支持するだけ
でなく、多様な細胞機能、例えば細胞の接着、移動、分
化、成長及びアポトーシスを制御している。中でも、ラ
ミニン分子は多様な上皮組織、神経組織、筋肉等の基底
膜において最も重要な成分の1つである。これらの組織
において、ラミニンは細胞と直接相互作用し、正常組織
の構築と維持、及び細胞機能の調節に重要な役割を果た
していることが知られている。細胞の生命維持に不可欠
な足場としての役割を担うラミニンの欠損によって、細
胞の生命活動、並びに組織としての機能が維持できなく
なり、各種疾患を引き起こす。こうした生命維持にはラ
ミニンと細胞膜表面に存在する受容体との相互作用が深
く関係しており、受容体としてのインテグリンを介した
細胞内へのシグナル伝達が重要視されてきた(Gian
cotti,F.G.,and Ruoslahti,
E.,Science,285:1028−1032,
1999; Howe,A.et al.,Curr.
Opin.Cell Biol.,10:220−23
1,1998)。しかしながら、異なるリガンド−イン
テグリン相互作用がどのような機構で異なる生物学的効
果を生じるかを説明した例は少ない。
BACKGROUND OF THE INVENTION Basement membrane components not only support tissue structure but also control a variety of cell functions such as cell adhesion, migration, differentiation, growth and apoptosis. Among them, the laminin molecule is one of the most important components in various epithelial tissues, nerve tissues, basement membranes such as muscles. It is known that in these tissues, laminin directly interacts with cells and plays an important role in the construction and maintenance of normal tissues and the regulation of cell function. Deletion of laminin, which plays a role as an essential scaffold for maintaining the life of cells, makes it impossible to maintain the vital activity of cells and the function of tissues, causing various diseases. The interaction between laminin and the receptor on the cell membrane surface is closely related to such life support, and intracellular signal transduction via integrin as a receptor has been emphasized (Gian).
cotti, F.F. G. , And Ruoslahti,
E. , Science, 285: 1028-1032.
1999; Howe, A .; et al. Curr.
Opin. Cell Biol. , 10: 220-23
1, 1998). However, few examples explain how different ligand-integrin interactions produce different biological effects.

【0003】ラミニンは、様々な組織の基底膜に主とし
て局在し、組織構造の維持及び細胞機能の制御において
重要な役割を果たす細胞外マトリックスタンパク質のフ
ァミリーである(Aumailley,M.,and
Rousselle,P.,Matrix Bio
l.,18:19−28,1999; Cologna
to,H.,and Yurchenco,P.D.,
Dev.Dyn.,218:213−234,200
0)。中でもラミニン−5(α3β3γ2)は特に皮
膚、消化器、腎臓、肺等の上皮組織の基底膜に多く存在
する。ラミニン−5は表皮の真皮への安定な接着に必須
のタンパク質であり、ラミニン−5の欠損によって表皮
剥離性水痘症を招く。一方、ラミニン−6(α3β1γ
1)は皮膚や羊膜においてラミニン−5と共存すること
が報告されているが、その生理的役割の詳細については
明らかにされていない。本発明者による研究では、ヒト
小腸基底膜においてラミニン−5は絨毛先端部分に多く
存在し、ラミニン−6は細胞分裂が活発なクリプト(陰
窩)部分に多いことが示唆されている。即ち、ラミニン
−5とラミニン−6のバランスによって、絨毛を構成す
る上皮細胞の増殖・分化が調節されていることが推察さ
れる。
Laminins are a family of extracellular matrix proteins that are primarily localized to the basement membranes of various tissues and play important roles in maintaining tissue structure and controlling cell function (Aumailley, M., and.
Rousselle, P.M. , Matrix Bio
l. , 18: 19-28, 1999; Cologna.
to, H.M. , And Yurchenco, P .; D. ,
Dev. Dyn. , 218: 213-234,200.
0). Among them, laminin-5 (α3β3γ2) is particularly abundant in the basement membrane of epithelial tissues such as skin, digestive organs, kidneys and lungs. Laminin-5 is a protein essential for stable adhesion of the epidermis to the dermis, and deficiency of laminin-5 causes epidermolytic varicella. On the other hand, laminin-6 (α3β1γ
1) has been reported to coexist with laminin-5 in the skin and amniotic membrane, but the details of its physiological role have not been clarified. Studies by the present inventors suggest that laminin-5 is abundant in the villus tip portion and laminin-6 is abundant in the crypt (crypt) where cell division is active in the human small intestinal basement membrane. That is, it is assumed that the balance of laminin-5 and laminin-6 regulates the proliferation and differentiation of epithelial cells forming villi.

【0004】ラミニンは、α鎖、β鎖及びγ鎖がそれぞ
れジスルフィド結合で架橋されたヘテロ3量体分子で、
特徴的な十字架構造をとる。各鎖(またはサブユニッ
ト)は複数のドメインからなり、ドメインI及びIIは
トリプルヘリックスを形成している。本出願前に、ラミ
ニン分子は、その発生学的に異なる5種類のα鎖(α1
ないしα5)、3種類のβ鎖(β1ないしβ3)、3種
類のγ鎖(γ1ないしγ3)の異なる組み合わせによっ
て、胚の発生過程及び成人の組織において特異的に発現
される、少なくとも15種類が同定されており(表
1)、実際にはその数倍の種類が存在することが示唆さ
れている(宮崎ら、実験医学 Vol.16No.16
(増刊)1998年 第114頁−第119頁; Co
lognato,H.,and Yurchenco,
P.D.,2000、上述; Libby,R.T.e
t al.,J.Neurosci.,20:6517
−6528,2000)。これらのラミニンの性質はそ
れぞれ異なり、生体内でも異なる役割分担を果たすと考
えられる。
Laminin is a heterotrimeric molecule in which α-chain, β-chain and γ-chain are cross-linked by disulfide bonds.
It has a characteristic cross structure. Each chain (or subunit) is composed of multiple domains, and domains I and II form a triple helix. Prior to the filing of the present application, the laminin molecule had five developmentally different α chains (α1
To α5), at least 15 kinds of which are specifically expressed in the embryonic development process and adult tissues by different combinations of three kinds of β chains (β1 to β3) and three kinds of γ chains (γ1 to γ3) It has been identified (Table 1), and it is suggested that there are actually several times as many species (Miyazaki et al., Experimental Medicine Vol. 16 No. 16).
(Special Issue) 1998 114-119; Co
lognato, H .; , And Yurchenco,
P. D. , 2000, supra; Libby, R .; T. e
t al. J. Neurosci. , 20: 6517
-6528, 2000). These laminins have different properties and are considered to play different roles in vivo.

【0005】[0005]

【表1】 表1 ラミニン分子種とサブユニット構成正式名 構成 別名 ラミニン−1 α1β1γ1 EHSラミニン ラミニン−2 α2β1γ1 メロシン ラミニン−3 α1β2γ1 s−ラミニン ラミニン−4 α2β2γ1 s−メロシン ラミニン−5 α3β3γ2 ラドシン/エピリグリン/ カリニン/ナイセイン ラミニン−6 α3β1γ1 k−ラミニン ラミニン−7 α3β2γ1 ks−ラミニン ラミニン−8 α4β1γ1 ラミニン−9 α4β2γ1 ラミニン−10 α5β1γ1 ラミニン−11 α5β2γ1 ラミニン−12 α2β1γ3 ラミニン−13 α3β2γ3 ラミニン−14 α4β2γ3 ラミニン−15 α5β2γ3 全てのラミニンα鎖はそれらのカルボキシル(C)末端
領域に巨大球状(G)ドメインを共有し、これは、しば
しばラミニンG様分子(LG1−5)と呼ばれる、5つ
の相同タンデム整列化小Gサブユニット(G1−5)か
らなる(Timpl,R.et al.,Matrix
Biol.,19:309−317,2000)。各
Gドメインは約200個のアミノ酸からなり、この領域
は、細胞外マトリックスタンパク質(例えば、パールカ
ン及びフィブリン−1)、並びにインテグリン、シンデ
カン、ヘパリン及びα−ジストログリカンを含む細胞の
受容体に対する結合部位を含む(Colognato,
H.,and Yurchenco,P.D.,200
0、上述; Nomizu,M.et al.,J.B
iol.Chem.,270:20583−2059
0,1995; Aumailley,M.,and
Krieg,T.,J.Invest.Dermato
l.,106:209−214,1996; Niel
sen,P.K.et al.,J.Biol.Che
m.,275:14517−14523,2000;
Talts,J.F.et al.,EMBO J.,
18:863−870,1999)。
[Table 1] Table 1 Laminin molecular species and subunit composition Official name Composition Alias laminin-1 α1β1γ1 EHS laminin laminin-2 α2β1γ1 merosin laminin-3 α1β2γ1 s-laminin laminin-4 α2β2γ1 s-merocin laminin-5 α3β3γ2 / radin Epiligrin / Calinine / Nicein Laminin-6 α3β1γ1 k-Laminin Laminin-7 α3β2γ1 ks-Laminin Laminin-8 α4β1γ1 Laminin-9 α4β2γ1 Laminin-10 α5β3γ2 Laminin α3β2γ1 La2 Laminin ααββγγ2 Laminin-11 α5β2γ3 Laminin 15 α5β2γ3 All laminin α chains share a large globular (G) domain in their carboxyl (C) terminal region, which is often a laminin G-like molecule (LG1). -5) consisting of five homologous tandem aligned small G subunits (G1-5) (Timpl, R. et al., Matrix).
Biol. , 19: 309-317, 2000). Each G domain consists of about 200 amino acids, and this region is a binding site for extracellular matrix proteins (eg, perlecan and fibulin-1) and cellular receptors that include integrins, syndecans, heparins and α-dystroglycans. Including (Clognato,
H. , And Yurchenco, P .; D. , 200
0, supra; Nomiz, M .; et al. J. B
iol. Chem. , 270: 20583-2059.
0, 1995; Aumailley, M .; , And
Krieg, T .; J. Invest. Dermato
l. , 106: 209-214, 1996; Niel.
sen, P.M. K. et al. J. Biol. Che
m. , 275: 14517-14523, 2000;
Talts, J. et al. F. et al. , EMBO J .; ,
18: 863-870, 1999).

【0006】近年、ラミニンα2鎖のLG5及びLG4
−5の結晶構造が報告されたが、これは各々のモジュー
ルにおいて7本の折り畳まれたβ−ストランドがコンパ
クトな二重のβ−シート構造を形成することを示してい
た(Hohenester,E.et al.,Mo
l.Cell,4:783−792,1999; Ti
si,D.,EMBO J.,19:1432−144
0,2000)。同様のモジュール構造がニューレキシ
ン(Rudenko,G.et al.,Cell,9
9:93−101,1999)及び性ホルモン結合グロ
ブリン(Grishkovskaya,I.et a
l.,EMBO J.,19:504−512,200
0)において示されている。様々な細胞外及び膜貫通タ
ンパク質が同様のLGモジュールを有するものと推定さ
れている(Timpl,R.et al.,2000、
上述)。
Recently, LG5 and LG4 of laminin α2 chain
A crystal structure of -5 was reported, indicating that in each module the seven folded β-strands form a compact double β-sheet structure (Hohenester, E. et. al., Mo
l. Cell, 4: 783-792, 1999; Ti
si, D.D. , EMBO J .; , 19: 1432-144
0, 2000). A similar modular structure is found in Neulexin (Rudenko, G. et al., Cell, 9
9: 93-101, 1999) and sex hormone-binding globulin (Grishkovskaya, I. et a.
l. , EMBO J .; , 19: 504-512, 200
0). It has been postulated that various extracellular and transmembrane proteins have similar LG modules (Timpl, R. et al., 2000,
Above).

【0007】α鎖のうち、特に本発明者らが着目したα
3鎖は、α1鎖に比べてN末端側のいくつかのドメイン
が欠失した短腕(短鎖)構造をとっており、α1鎖との
アミノ酸配列の相同性は50%以下である。特に、α鎖
のC末端領域に存在する球状(G)ドメインの相同性は
低く(25%)、この領域が各ラミニン分子に特有な機
能に関係すると考えられる。
Among the α chains, the α that the present inventors have paid particular attention to
The 3 chain has a short arm (short chain) structure in which several domains on the N-terminal side are deleted compared to the α1 chain, and the homology of the amino acid sequence with the α1 chain is 50% or less. In particular, the homology of the globular (G) domain existing in the C-terminal region of the α chain is low (25%), and it is considered that this region is related to the function unique to each laminin molecule.

【0008】また、α3鎖には、腕(N末端部分)が短
いα3A及び長いα3Bの種類がある(Ryan,M.
C.et al.,J.Biol.Chem.269:
22779−22787,1994)。これまでα3B
の発現は知られているが、α3Bをもつラミニンは得ら
れていない。従って、本明細書中においてラミニン−
5、ラミニン−6、及びラミニン−7のα3鎖は好まし
くはα3Aである。この2種のα3鎖は、選択的スプラ
イシングによる違いによるものであるため、α3Aの構
造はα3Bに含まれる。なお、α4もα3Aと同様の短
鎖型であり、その他のα1鎖、α2鎖及びα5鎖は全て
長腕型である。
The α3 chain is classified into α3A having a short arm (N-terminal portion) and α3B having a long arm (Ryan, M. et al.
C. et al. J. Biol. Chem. 269:
22779-22787, 1994). So far α3B
Is known, but laminin with α3B has not been obtained. Therefore, in the present specification, laminin-
The α3 chain of 5, laminin-6, and laminin-7 is preferably α3A. The structure of α3A is included in α3B because the two α3 chains are different due to alternative splicing. It should be noted that α4 is also a short chain type similar to α3A, and the other α1 chain, α2 chain and α5 chain are all long arm types.

【0009】ラミニン−5(LN5)は、α3、β3及
びγ2鎖を含み、当初、ケラチノサイトのアンカーリン
グフィラメント(anchoring filamen
t)成分(カリニン/エピリグリン/ナイセイン)(R
ousselle,P.etal.,J.Cell B
iol.,114:567−576,1991;Car
ter,W.G.et al.,Cell,65:59
9−610,1991; Verrando,P.et
al.,Biochem.Biophys.Act
a.,942:45−56,1988)、及び胃粘膜腫
瘍細胞によって分泌される細胞伸展因子(ラドシン)
(Miyazaki,K.et al.,Proc.N
atl.Acad.Sci.USA,90:11767
−11771,1993)として見出された。その後、
ラドシンは、表皮細胞由来のラミニン分子であるラミニ
ン−5(エピリグリン、カリニンまたはナイセインとも
言う)と同一分子であることが明らかとなった(Miz
ushima,H.etal.,J.Biochem.
(Tokyo),120:1196−1202,199
6)。以下、本明細書において、「ラミニン−5」と統
一して記載する。
Laminin-5 (LN5) contains α3, β3 and γ2 chains and is initially an anchoring filament of keratinocytes.
t) component (kalinin / epiligulin / nicein) (R
ousselle, P.M. et al. J. Cell B
iol. , 114: 567-576, 1991; Car.
ter, W. G. et al. , Cell, 65:59.
9-610, 1991; Verrando, P .; et
al. , Biochem. Biophys. Act
a. , 942: 45-56, 1988), and a cell spreading factor (radosine) secreted by gastric mucosal tumor cells.
(Miyazaki, K. et al., Proc. N.
atl. Acad. Sci. USA, 90: 11767.
-117771, 1993). afterwards,
It was revealed that radsin is the same molecule as laminin-5 (also called epiligulin, kalinin, or neisine), which is a laminin molecule derived from epidermal cells (Miz.
Ushima, H .; et al. J. Biochem.
(Tokyo), 120: 1196-1202, 199.
6). Hereinafter, in the present specification, the term "laminin-5" will be used as a standard.

【0010】ラミニン−5は、その生理活性及び構造に
おいて独特である。ラミニン−5は、培養において、細
胞接着と細胞運動の両方を強く刺激する(Miyaza
ki,K.et al.,1993、上述; Kikk
awa,Y.et al.,J.Biochem.,1
16:862−829,1994; Rossell
e,P.,and Aumailley,M.,J.C
ell Biol.,125:205−214,199
4)。ラミニン−5は、今のところ、3つ全てのサブユ
ニットについてアミノ末端領域が切断された唯一のラミ
ニン分子である(Colognato,H.,and
Yurchenco,P.D.,2000、上述)。即
ち、ラミニン−5のβ3鎖及びγ2鎖は、β1鎖及びγ
1鎖に比べてN末端側のいくつかのドメインが欠失した
短腕(短鎖)構造をとっている。α鎖、β鎖及びγ鎖の
すべてが短鎖型である既知のラミニンは、ラミニン−5
のみである(Colognato,H.,and Yu
rchenco,P.D.,2000、上述)。ラミニ
ン−5の構成サブユニットの構造をラミニン−1と比較
すると、各サブユニット間のアミノ酸配列の相同性は5
0%以下である。また、β3鎖及びγ2鎖は、LN5に
おいてのみ見出されるが、α3鎖はラミニン−6(LN
6;α3β1γ1)、ラミニン−7(LN7;α3β2
γ1)及びラミニン−13(LN13;α3β2γ3)
において見出される。ラミニン−5は、組織及び培養の
様々なタイプの上皮細胞から分泌される(Miyaza
ki,K.et al.,1993、上述; Mizu
shima,H.et al.,1996、上述)。i
n vivoでは基底膜中に集積する。ヘミデスモソー
ムにおけるLN5とインテグリンα6β4との相互作用
は、基底細胞の安定な基質への接着、上皮シートの極
性、及び中間径フィラメントを介する細胞構築の安定化
に不可欠である(Roussell,P.et a
l.,1991、上述;Carter,W.G.et
al.,1991、上述)。
Laminin-5 is unique in its bioactivity and structure. Laminin-5 strongly stimulates both cell adhesion and cell motility in culture (Miyaza).
ki, K.K. et al. , 1993, supra; Kikk
awa, Y. et al. J. Biochem. , 1
16: 862-829, 1994; Rossell.
e, P. , And Aumailley, M .; J. C
ell Biol. , 125: 205-214, 199.
4). Laminin-5 is currently the only laminin molecule with the amino-terminal region truncated for all three subunits (Colognato, H., and.
Yurchenco, P.M. D. , 2000, supra). That is, the β3 chain and γ2 chain of laminin-5 are the β1 chain and the γ chain.
It has a short-arm (short chain) structure in which several domains on the N-terminal side are deleted as compared with one chain. Known laminin in which all of α-chain, β-chain and γ-chain are short-chain type is laminin-5.
(Colognato, H., and Yu
rchenco, P.R. D. , 2000, supra). When the structure of the constituent subunits of laminin-5 is compared with that of laminin-1, the homology of the amino acid sequence between each subunit is 5
It is 0% or less. Also, the β3 chain and the γ2 chain are found only in LN5, while the α3 chain is laminin-6 (LN5
6; α3β1γ1), laminin-7 (LN7; α3β2
γ1) and laminin-13 (LN13; α3β2γ3)
Found in. Laminin-5 is secreted by epithelial cells of various types in tissues and cultures (Miyaza).
ki, K.K. et al. , 1993, supra; Mizu
Shima, H .; et al. , 1996, supra). i
In n vivo, it accumulates in the basement membrane. The interaction of LN5 with integrin α6β4 in hemidesmosomes is essential for adhesion of basal cells to stable substrates, polarity of epithelial sheets, and stabilization of cellular architecture through intermediate filaments (Roussell, P. et a.
l. Carter, W .; G. et
al. , 1991, supra).

【0011】ラミニン−5は、190kDaのα3鎖、
140kDaのβ3鎖、及び150kDaのγ2鎖を含
む前駆体として合成及び分泌されるが、α3鎖及びγ2
鎖は、それぞれ160kDa及び105kDaのより小
さい種類にタンパク質分解プロセシングを受ける(Ma
rinokovich,M.P.et al.,J.B
iol.Chem.267:17900−17906,
1992)。最近の研究では、ラミニン−5分子の翻訳
後のプロセシングはラミニン−5分子の機能に変化を与
えることが示唆されている。ゼラチナーゼA又はMT1
−MMPによるγ2鎖のタンパク質分解はラミニン−5
の細胞運動活性を増加させ(Giannelli,G.
et al.,Science,277:225−22
8,1997; Koshikawa,N.et a
l.,J.Cell Biol.,148:615−6
24,2000)、細胞接着活性を減少させる(Gag
noux−Palacios,L.et al.,J.
Cell Biol.,153:835−850,20
01)。同様に、プラスミンによるα3鎖の190kD
aから160kDaへのプロセシングによって、ヘミデ
スモソーム中でラミニン−5前駆体を移動用リガンドか
ら足場用リガンドへ変換することが報告されている(G
oldfinger,L.E.et al.,J.Ce
ll Biol.,141:255−265,199
8)。しかし、プロセシングされたα3鎖を有する成熟
型ラミニン−5はインテグリンα3β1を介した細胞運
動又は細胞分散を強力に促進することが示されている
(Miyazaki,K.,et al.,1993、
上述; Kikkawa,Y.,et al.,199
4、上述)。α3鎖の切断はG3及びG4ドメイン間で
起こり、G4−5断片が遊離すること(Tsubot
a,Y.,et al.,Biochem.Bioph
ys.Res.Commun.,278:614−62
0,2000)、及びG3ドメインは細胞接着及び細胞
移動を促進するラミニン−5の強力な活性に不可欠であ
ること(Hirosaki,T.et al.,J.B
iol.Chem.,275:22495−2250
2,2000)が最近見出された。G2ドメインがイン
テグリンα3β1結合部位を含むこともまた見出されて
いる(Mizushima,H.et al.,Cel
l Growth Differ.,8:979−98
7,1997)。これらの研究は、α3鎖のG1−3ド
メインが細胞表面受容体を結合する根本的な部位である
が、γ2鎖及び短腕となる可能性のあるβ3鎖がラミニ
ン−5の生理活性に影響を与えるらしいことを示してい
る。
Laminin-5 is a 190 kDa α3 chain,
Synthesized and secreted as a precursor containing a 140 kDa β3 chain and a 150 kDa γ2 chain, the α3 chain and γ2
The chains are proteolytically processed into smaller species of 160 and 105 kDa, respectively (Ma
rinokovich, M .; P. et al. J. B
iol. Chem. 267: 17900-17906.
1992). Recent studies have suggested that post-translational processing of the laminin-5 molecule alters the function of the laminin-5 molecule. Gelatinase A or MT1
-Proteolysis of γ2 chain by MMP is laminin-5
The cell motility activity of G. (Giannelli, G. et al.
et al. , Science, 277: 225-22.
8, 1997; Koshikawa, N .; et a
l. J. Cell Biol. , 148: 615-6
24, 2000) and decrease cell adhesion activity (Gag.
noux-Palacios, L .; et al. J.
Cell Biol. , 153: 835-850, 20.
01). Similarly, 190kD of α3 chain by plasmin
Conversion of the laminin-5 precursor from a migratory ligand to a scaffolding ligand in hemidesmosomes has been reported by processing a to 160 kDa (G
oldfinger, L .; E. et al. J. Ce
ll Biol. , 141: 255-265,199
8). However, mature laminin-5, which has a processed α3 chain, has been shown to potently promote integrin α3β1-mediated cell motility or cell dispersal (Miyazaki, K., et al., 1993,).
Above; Kikkawa, Y .; , Et al. , 199
4, above). Cleavage of the α3 chain occurs between the G3 and G4 domains, releasing the G4-5 fragment (Tsubot
a, Y. , Et al. , Biochem. Bioph
ys. Res. Commun. , 278: 614-62.
0, 2000), and the G3 domain is essential for the potent activity of laminin-5 to promote cell adhesion and cell migration (Hirosaki, T. et al., JB.
iol. Chem. , 275: 22495-2250.
2, 2000) was recently found. It has also been found that the G2 domain contains an integrin α3β1 binding site (Mizushima, H. et al., Cel.
l Growth Differ. , 8: 979-98.
7, 1997). Although these studies show that the G1-3 domain of the α3 chain is the fundamental site for binding cell surface receptors, the γ2 chain and the possible short arm β3 chain influence the physiological activity of laminin-5. It shows that it seems to give.

【0012】ラミニン−5及びラミニン−6は共通のα
3鎖を有し、これらラミニンは同じタイプの細胞から産
生される。よって、ラミニン−5の構造と機能の関係を
明らかにするためにはラミニン−6を特徴づけることが
重要である。ラミニン−6は、ヒトのケラチノサイト及
び扁平上皮癌細胞株の培養液からKラミニンとしてはじ
めて同定された(Marinkovich,K.et
al.,1992、上述)。ヒト羊膜においては、ラミ
ニン−5の約半分がラミニン−6又はラミニン−7との
複合体として存在している(Champliaud,
M.F.et al.,J.Cell Biol.,1
32:1189−1198,1996)。この複合体を
回転投影画像解析(rotary−shadowed
imageanalysis)(Engel,J.,M
ethods Enzymol.,245:469−4
88,1994)に供することによって、ラミニン−5
はラミニン−6又はラミニン−7の短腕の相互作用を介
して結合することが示唆されている。複合体を形成する
ことによって、ラミニン−5と羊膜の基底膜との間に安
定な結合を可能にすると想定されている(Champl
iaud,M.F.et al.,1996、上述)。
しかし、これまでラミニン−6又はラミニン−7の生理
活性を調べる研究はされていない。おそらく、ラミニン
−5の遊離体を用いてラミニン−6及びラミニン−7を
単離することは困難であるためと考えられる。よって、
ラミニン−6については、各構成サブユニット(α3、
β1、γ1)のアミノ酸配列は知られていたが、その生
理活性等は解明されていなかった。
Laminin-5 and laminin-6 have a common α
Having three chains, these laminins are produced by cells of the same type. Therefore, it is important to characterize laminin-6 in order to clarify the relationship between the structure and function of laminin-5. Laminin-6 was first identified as K-laminin from cultures of human keratinocytes and squamous cell carcinoma cell lines (Marinkovich, K. et.
al. , 1992, supra). In human amniotic membrane, about half of laminin-5 exists as a complex with laminin-6 or laminin-7 (Champliaud,
M. F. et al. J. Cell Biol. , 1
32: 1189-1198, 1996). This complex is subjected to rotation-shadowed image analysis (rotary-shadowed).
image analysis) (Engel, J., M
methods Enzymol. , 245: 469-4
88, 1994) to provide laminin-5
Have been suggested to bind via laminin-6 or laminin-7 short arm interactions. It is postulated that the formation of a complex allows for a stable association between laminin-5 and the amnion basement membrane (Champl).
iaud, M .; F. et al. , 1996, supra).
However, no studies have been conducted so far to investigate the physiological activity of laminin-6 or laminin-7. Probably because it is difficult to isolate laminin-6 and laminin-7 using the laminin-5 educt. Therefore,
For laminin-6, each constituent subunit (α3,
The amino acid sequences of β1 and γ1) have been known, but their physiological activities have not been elucidated.

【0013】[0013]

【発明が解決しようとする課題】本発明は、細胞接着活
性及び細胞運動活性を調節可能なラミニン−6を含む組
成物を提供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a composition containing laminin-6 capable of regulating cell adhesion activity and cell motility activity.

【0014】本発明の組成物は、一態様において、配列
番号2のアミノ酸配列を有するα3鎖、配列番号4のア
ミノ酸配列を有するβ1鎖及び配列番号6のアミノ酸配
列を有するγ1鎖の各サブユニットからなるラミニン−
6であるか、あるいはこれらの配列において、1または
それ以上のアミノ酸残基が欠失、付加または置換してい
るアミノ酸配列を有し、そして、弱い細胞接着活性を有
し、及び/又は実質的に細胞運動活性を有しないラミニ
ン−6を含むことを特徴とする。
In one embodiment, the composition of the present invention comprises each subunit of α3 chain having the amino acid sequence of SEQ ID NO: 2, β1 chain having the amino acid sequence of SEQ ID NO: 4, and γ1 chain having the amino acid sequence of SEQ ID NO: 6. Laminine consisting of
6, or has an amino acid sequence in which one or more amino acid residues are deleted, added or substituted in these sequences, and has weak cell adhesion activity, and / or substantially Is characterized by containing laminin-6 having no cell motility activity.

【0015】本発明の好ましい一態様において、本発明
の組成物は、配列番号2のアミノ酸配列を有するα3
鎖、配列番号4のアミノ酸配列を有するβ1鎖及び配列
番号6のアミノ酸配列を有するγ1鎖からなるラミニン
−6を含む。
In a preferred embodiment of the present invention, the composition of the present invention comprises α3 having the amino acid sequence of SEQ ID NO: 2.
A laminin-6 comprising a chain, a β1 chain having the amino acid sequence of SEQ ID NO: 4 and a γ1 chain having the amino acid sequence of SEQ ID NO: 6.

【0016】本発明の組成物はまた、一態様において、
配列番号2のアミノ酸配列においてアミノ酸残基132
5−1713の全部または一部が削除されたα3鎖、配
列番号4のアミノ酸配列を有するβ1鎖及び配列番号6
のアミノ酸配列を有するγ1鎖からなるラミニン−6で
あるか、あるいは、これらの配列において1またはそれ
以上のアミノ酸残基が欠失、付加または置換しているア
ミノ酸配列を有し、そして、細胞接着活性を有し、及び
/又は弱い細胞運動活性を有するラミニン−6を含むこ
とを特徴とする。
The composition of the invention is also in one aspect:
Amino acid residue 132 in the amino acid sequence of SEQ ID NO: 2
Α-17 chain in which all or part of 5-1713 is deleted, β1 chain having the amino acid sequence of SEQ ID NO: 4, and SEQ ID NO: 6
Laminin-6 consisting of a γ1 chain having the amino acid sequence of, or having an amino acid sequence in which one or more amino acid residues are deleted, added or substituted in these sequences, and cell adhesion It is characterized in that it comprises laminin-6 which has activity and / or has weak cell motility activity.

【0017】本発明の組成物は、上皮組織、神経組織、
筋肉の機能を維持または処置するために用いられる。本
発明の組成物はまた、移植用細胞の培養用の添加物、又
は接着器材として使用される。
The composition of the present invention comprises epithelial tissue, nerve tissue,
Used to maintain or treat muscle function. The composition of the present invention is also used as an additive for culturing cells for transplantation or as an adhesive device.

【0018】本発明はさらに、該組成物を用いて、細胞
接着活性及び/又は細胞運動活性を調節する方法を提供
することを目的とする。
A further object of the present invention is to provide a method for regulating cell adhesion activity and / or cell motility activity using the composition.

【0019】[0019]

【課題を解決するための手段】本発明者は、上記問題の
解決を目的として鋭意研究に努めた結果、ラミニン−6
をプロセシングされない1つのタンパク質として単離
し、そしてラミニン−6のα鎖においてG4−5又はG
3−5ドメインが欠損している切断型(それぞれLN6
ΔG4−5、LN6ΔG3−5)を単離した。さらに、
ラミニン−6またはα3鎖のG4−5ドメインを削除し
たラミニン−6が、ラミニン−5とは異なる細胞接着活
性及び/又は細胞運動活性を示し、よってこれらを調節
することを見出し、本発明を完成するに至った。
The inventor of the present invention has conducted extensive research to solve the above problems, and as a result, laminin-6
As a single unprocessed protein, and G4-5 or G in the α chain of laminin-6
Truncated form lacking 3-5 domain (LN6
ΔG4-5, LN6ΔG3-5) were isolated. further,
It was found that laminin-6 or laminin-6 in which the G4-5 domain of the α3 chain is deleted exhibits cell adhesion activity and / or cell motility activity different from that of laminin-5, and thus regulates these, thus completing the present invention. Came to do.

【0020】ラミニン−6 本発明は、細胞接着活性及び/又は細胞運動活性を調節
可能なラミニン−6を含む組成物に関する。本発明のラ
ミニン−6は、本明細書に記載した特徴を有する限り、
その起源、製法などは限定されない。即ち、本発明のラ
ミニン−6は、遺伝子工学的手法によりDNAから発現
させた組換えタンパク質、または化学合成タンパク質の
何れであってもよい。あるいは、本明細書に記載した特
徴を有する限り、人為的に改変を施したものでなく天然
に得られたタンパク質であってもよい。あるいは、タン
パク質レベルで天然由来のタンパク質に改変を施したも
のでもよい。
Laminin-6 The present invention relates to a composition containing laminin-6 capable of regulating cell adhesion activity and / or cell motility activity. The laminin-6 of the present invention, as long as it has the characteristics described herein,
The origin and manufacturing method are not limited. That is, the laminin-6 of the present invention may be either a recombinant protein expressed from DNA by a genetic engineering method or a chemically synthesized protein. Alternatively, it may be a naturally obtained protein that is not artificially modified as long as it has the characteristics described in the present specification. Alternatively, a naturally-occurring protein may be modified at the protein level.

【0021】本発明におけるラミニン−6は、限定され
るわけではないが、典型的には、配列番号2のアミノ酸
配列を有するα3鎖(アミノ酸残基1−1713)(R
yan,M.C.et al.,1994、上述)、配
列番号4のアミノ酸配列を有するβ1鎖(アミノ酸残基
1−1786)(Vuolteenaho,R.eta
l.,J.Biol.Chem.,265:15611
−15616,1990)および配列番号6のアミノ酸
配列を有するγ1鎖(アミノ酸残基1−1609)(P
ikkaraine,T.et al.,J.Bio
l.Chem.,263:6751−6758,199
8)の各サブユニットからなるタンパク質である。α3
鎖はC末端に5つの球状(G)ドメイン(又はLGモジ
ュール)を有しており、各ドメインのコア配列はG1:
配列番号2のアミノ酸残基769−974、G2:98
0−1148、G3:1149−1324、G4:13
66−1537およびG5:1538−1713に相当
する(各ドメイン間の配列(アミノ酸残基975−97
9及び1325−1365)はリンカー配列に相当す
る)。各ドメイン間での相同性は低く、約25%以下で
ある。
Laminin-6 in the present invention is typically, but not exclusively, α3 chain (amino acid residue 1-1713) (R residue) having the amino acid sequence of SEQ ID NO: 2.
yan, M. C. et al. , 1994, supra), β1 chain having the amino acid sequence of SEQ ID NO: 4 (amino acid residues 1-1786) (Vuolteenaho, R. eta.
l. J. Biol. Chem. , 265: 15611
-15616, 1990) and the γ1 chain having the amino acid sequence of SEQ ID NO: 6 (amino acid residues 1-1609) (P
ikkaraine, T .; et al. J. Bio
l. Chem. , 263: 6751-6758, 199.
It is a protein consisting of each subunit of 8). α3
The chain has five globular (G) domains (or LG modules) at the C-terminus, and the core sequence of each domain is G1:
Amino acid residues 769-974 of SEQ ID NO: 2, G2: 98
0-1148, G3: 1149-1324, G4: 13
66-1537 and G5: 1538-1713 (the sequence between each domain (amino acid residues 975-97
9 and 1325-1365) correspond to linker sequences). Homology between the domains is low, about 25% or less.

【0022】実施例2では、ラミニン−6(LN6)の
特徴を調べるために、ラミニン−5のG4及びG5ドメ
インをもたないmat−LN5(成熟型ラミニン−
5)、及び他のマトリックスタンパク質と比較検討し
た。その結果、HT1080細胞を用いた細胞接着アッ
セイ、細胞運動アッセイにおいて、ラミニン−6はma
t−LN5より細胞接着活性が弱く、実質的に、細胞運
動活性(及び細胞分散活性)を促進しなかった(図3、
図5及び図6参照)。
In Example 2, in order to examine the characteristics of laminin-6 (LN6), mat-LN5 (mature laminin-free) lacking the G4 and G5 domains of laminin-5.
5) and other matrix proteins. As a result, in the cell adhesion assay and the cell motility assay using HT1080 cells, laminin-6 was found to be ma.
The cell adhesion activity was weaker than that of t-LN5 and substantially did not promote cell motility activity (and cell dispersion activity) (FIG. 3,
(See FIGS. 5 and 6).

【0023】よって、全長のラミニン−6は、好ましく
は弱い細胞接着活性を有し、及び/又は実質的に細胞運
動活性を有しない。限定されるわけではないが、弱い細
胞接着活性を有するとは、何も加えない場合よりも細胞
接着活性が有意に上昇するが、後述するα3鎖のうちG
4−G5を削除した短鎖型LN−6(LN6ΔG4−
5)と比較して、細胞接着活性が2/3以下、より好ま
しくは1/2以下、さらに好ましくは2/5以下程度で
あることを意味する。実質的に細胞運動活性を有しない
とは、限定されるわけではないが、LN6ΔG4−5と
比較して、細胞接着活性が1/2以下、より好ましくは
2/5以下、さらに好ましくは1/3以下程度であるこ
とを意味する。また、各基質上に接着した細胞形態を比
較すると、mat−LN5上の細胞は伸展するのに対
し、LN6上の細胞は球状の形態を維持していた。した
がって、LN6は細胞分裂を誘導可能な接着器材として
使用し得る(図4参照)。
Thus, full length laminin-6 preferably has weak cell adhesion activity and / or substantially no cell motility activity. Although not limited thereto, having a weak cell adhesion activity means that the cell adhesion activity is significantly increased as compared with the case where nothing is added.
Short-chain type LN-6 (LN6ΔG4-
It means that the cell adhesion activity is 2/3 or less, more preferably 1/2 or less, further preferably 2/5 or less, as compared with 5). Although it is not limited to have substantially no cell motility activity, it has a cell adhesion activity of ½ or less, more preferably 2/5 or less, further preferably 1 /, as compared with LN6ΔG4-5. It means about 3 or less. In addition, comparing the cell morphology adhered to each substrate, the cells on mat-LN5 spread, while the cells on LN6 maintained a spherical morphology. Therefore, LN6 can be used as an adhesion device capable of inducing cell division (see FIG. 4).

【0024】なお、天然のタンパク質またはポリペプチ
ドの中には、それを生産する生物種の違いや、生態型
(ectotype)の違いによる遺伝子の変異の存在
などに起因して、1から複数個のアミノ酸変異を有する
変異タンパク質またはポリペプチドが存在することは周
知である。よって、本発明のLN6は、細胞接着活性及
び/又は細胞運動活性を調節する機能を有する限り、配
列番号2のアミノ酸配列を有するα3鎖、配列番号4の
アミノ酸配列を有するβ1鎖及び配列番号6のアミノ酸
配列を有するγ1鎖の各サブユニットにおいて、1また
はそれ以上のアミノ酸残基が欠失、付加または置換して
いるアミノ酸配列を有していてもよい。
It should be noted that among natural proteins or polypeptides, one to a plurality of natural proteins or polypeptides may be present due to differences in the species of organisms that produce them or the presence of gene mutations due to differences in ecotype. It is well known that there are muteins or polypeptides with amino acid mutations. Therefore, the LN6 of the present invention has an α3 chain having the amino acid sequence of SEQ ID NO: 2, a β1 chain having the amino acid sequence of SEQ ID NO: 4 and the SEQ ID NO: 6 as long as it has a function of regulating cell adhesion activity and / or cell motility activity. Each subunit of the γ1 chain having the amino acid sequence of may have an amino acid sequence in which one or more amino acid residues are deleted, added or substituted.

【0025】本発明のタンパク質は、典型的には遺伝子
の塩基配列からの推測に基づいて、配列番号2のアミノ
酸配列を有するα3鎖、配列番号4のアミノ酸配列を有
するβ1鎖及び配列番号6のアミノ酸配列を有するγ1
鎖の各サブユニットからなる。しかしながら、その配列
を有するタンパク質のみに限定されるわけではなく、本
明細書中に記載した特性を有する限り全ての相同タンパ
ク質を含むことが意図される。アミノ酸変異は1から複
数個、好ましくは、1ないし20個、より好ましくは1
ないし10個、最も好ましくは1ないし5個である。
The protein of the present invention typically comprises α3 chain having the amino acid sequence of SEQ ID NO: 2, β1 chain having the amino acid sequence of SEQ ID NO: 4 and SEQ ID NO: 6, based on the inference from the nucleotide sequence of a gene. Γ1 having an amino acid sequence
It consists of each subunit in the chain. However, it is not limited to only proteins having that sequence, but is intended to include all homologous proteins as long as they have the properties described herein. 1 to a plurality of amino acid mutations, preferably 1 to 20, more preferably 1
To 10 and most preferably 1 to 5.

【0026】配列番号2のアミノ酸配列を有するα3
鎖、配列番号4のアミノ酸配列を有するβ1鎖及び配列
番号6のアミノ酸配列を有するγ1鎖の各サブユニット
のアミノ酸配列と、少なくとも50%以上、好ましくは
60%以上、より好ましくは70%以上、さらに好まし
くは80%以上、特に好ましくは90%以上、最も好ま
しくは95%以上同一である。
Α3 having the amino acid sequence of SEQ ID NO: 2
Chain, the amino acid sequence of each subunit of the β1 chain having the amino acid sequence of SEQ ID NO: 4 and the γ1 chain having the amino acid sequence of SEQ ID NO: 6, at least 50% or more, preferably 60% or more, more preferably 70% or more, It is more preferably 80% or more, particularly preferably 90% or more, and most preferably 95% or more.

【0027】同一性パーセントは、視覚的検査及び数学
的計算により決定してもよい。あるいは、2つのタンパ
ク質配列の同一性パーセントは、Needleman,
S.B.及びWunsch,C.D.(J.Mol.B
iol.,48:443−453,1970)のアルゴ
リズムに基づき、そしてウィスコンシン大学遺伝学コン
ピューターグループ(UWGCG)より入手可能なGA
Pコンピュータープログラムを用い配列情報を比較する
ことにより、決定してもよい。GAPプログラムの好ま
しいデフォルトパラメーターには:(1)Heniko
ff,S及びHenikoff,J.G.(Proc.
Natl.Acad.Sci.USA,89:1091
5−10919,1992)に記載されるような、スコ
アリング・マトリックス、blosum62;(2)1
2のギャップ加重;(3)4のギャップ長加重;及び
(4)末端ギャップに対するペナルティなし、が含まれ
る。
The percent identity may be determined by visual inspection and mathematical calculation. Alternatively, the percent identity of two protein sequences can be calculated according to Needleman,
S. B. And Wunsch, C .; D. (J. Mol. B
iol. , 48: 443-453, 1970) and available from the University of Wisconsin Genetics Computer Group (UWGCG).
It may be determined by comparing the sequence information using the P computer program. The preferred default parameters for the GAP program are: (1) Heniko
ff, S and Henikoff, J .; G. (Proc.
Natl. Acad. Sci. USA, 89: 1091.
5-10919, 1992), scoring matrix, blosum62; (2) 1.
Gap weight of 2; (3) Gap length weight of 4; and (4) No penalty for end gaps.

【0028】当業者に用いられる、配列比較の他のプロ
グラムもまた、用いてもよい。同一性のパーセントは、
例えばAltschulら(Nucl.Acids.R
es.25.,p.3389−3402,1997)に
記載されているBLASTプログラムを用いて配列情報
と比較し決定することが可能である。当該プログラム
は、インターネット上でNational Cente
r for Biotechnology Infor
mation(NCBI)、あるいはDNA Data
Bank of Japan(DDBJ)のウェブサ
イトから利用することが可能である。BLASTプログ
ラムによる相同性検索の各種条件(パラメーター)は同
サイトに詳しく記載されており、一部の設定を適宜変更
することが可能であるが、検索は通常デフォルト値を用
いて行う。
Other programs used by those skilled in the art of sequence comparison may also be used. The percent identity is
For example, Altschul et al. (Nucl. Acids. R
es. 25. , P. 3389-3402, 1997) and can be determined by comparison with the sequence information. The program is on the Internet at National Center
r for Biotechnology Info
mation (NCBI) or DNA Data
It is available from the Bank of Japan (DDBJ) website. Various conditions (parameters) for homology search by the BLAST program are described in detail on the same site, and some settings can be changed as appropriate, but the search is usually performed using default values.

【0029】一般的に、同様の性質を有するアミノ酸同
士の置換(例えば、ある疎水性アミノ酸から別の疎水性
アミノ酸への置換、ある親水性アミノ酸から別の親水性
アミノ酸への置換、ある酸性アミノ酸から別の酸性アミ
ノ酸への置換、あるいはある塩基性アミノ酸から別の塩
基性アミノ酸への置換)を導入した場合、得られる変異
タンパク質は元のタンパク質と同様の性質を有すること
が多い。遺伝子組換え技術を使用して、このような所望
の変異を有する組換えタンパク質を作製する手法は当業
者に周知であり、このような変異タンパク質も本発明の
範囲に含まれる。
Generally, substitution of amino acids having similar properties (for example, substitution of one hydrophobic amino acid with another hydrophobic amino acid, substitution of one hydrophilic amino acid with another hydrophilic amino acid, certain acidic amino acid) To another acidic amino acid, or from one basic amino acid to another basic amino acid), the resulting mutant protein often has the same properties as the original protein. Techniques for producing recombinant proteins having such desired mutations using gene recombination techniques are well known to those skilled in the art, and such mutant proteins are also included in the scope of the present invention.

【0030】短鎖型ラミニン−6 本発明はまた、細胞接着活性及び/又は細胞運動活性を
調節可能な短鎖型ラミニン−6を含む組成物に関する。
本発明の短鎖型ラミニン−6は、本明細書に記載した特
徴を有する限り、その起源、製法などは限定されない。
即ち、本発明の短鎖型ラミニン−6は、遺伝子工学的手
法によりDNAから発現させた組換えタンパク質、また
は化学合成タンパク質の何れであってもよい。あるい
は、本明細書に記載した特徴を有する限り、人為的に改
変を施したものでなく天然に得られたタンパク質であっ
てもよい。あるいは、タンパク質レベルで天然由来のタ
ンパク質に改変を施したものでもよい。
Short-Chain Laminin-6 The present invention also relates to a composition containing short-chain laminin-6 capable of regulating cell adhesion activity and / or cell motility activity.
The short-chain laminin-6 of the present invention is not limited in its origin, production method, etc., as long as it has the characteristics described in the present specification.
That is, the short-chain laminin-6 of the present invention may be either a recombinant protein expressed from DNA by a genetic engineering method or a chemically synthesized protein. Alternatively, it may be a naturally obtained protein that is not artificially modified as long as it has the characteristics described in the present specification. Alternatively, a naturally-occurring protein may be modified at the protein level.

【0031】こうした方法を用いて生産されるタンパク
質の改変体には、変異体、誘導体、オリゴマーと共に、
融合タンパク質またはその断片が含まれる。本発明にお
ける短鎖型ラミニン−6は、限定されるわけではない
が、典型的には、配列番号2のアミノ酸配列においてア
ミノ酸残基1325−1713の全部又は一部が削除さ
れたα3鎖、配列番号4のアミノ酸配列を有するβ1鎖
(アミノ酸残基1−1786)(Vuolteenah
o,R.et al.,1990、上述)及び配列番号
6のアミノ酸配列を有するγ1鎖(アミノ酸残基1−1
609)(Pikkaraine,T.et al.,
1998、上述)の各サブユニットからなるタンパク質
である。
Variants of proteins produced by such a method include mutants, derivatives and oligomers,
Fusion proteins or fragments thereof are included. Although the short-chain laminin-6 in the present invention is not limited, it is typically an α3 chain or sequence in which all or part of amino acid residues 1325-1713 are deleted in the amino acid sequence of SEQ ID NO: 2. Β1 chain having the amino acid sequence of number 4 (amino acid residues 1-1786) (Vuolteenah
o, R. et al. , 1990, supra) and γ1 chain having the amino acid sequence of SEQ ID NO: 6 (amino acid residue 1-1
609) (Pikkaraine, T. et al.,
1998, supra).

【0032】本明細書において、LN6ΔG4−5と
は、α3鎖のうちG4−5ドメイン(配列番号2のアミ
ノ酸配列においてアミノ酸残基1366−1713)全
体が削除された欠失突然変異体をいう。LN6ΔG4−
5は、さらにリンカー配列を含むG4−5ドメイン、即
ちアミノ酸残基1325−1713の全体が削除されて
いてもよい。リンカー配列を含むG4−G5ドメインが
削除された欠失突然変異体も、G4−5ドメインのみの
欠失突然変異体と同様の細胞接着活性及び/又は細胞運
動活性を有する。G3ドメインのアミノ酸残基1299
−1301の配列KRDがラミニン5の細胞接着活性に
重要であることが明らかになっている。従って、G3ド
メインのカルボキシル末端部分の一部を含む、アミノ酸
残基1302−1713の一部又は全体が削除されたL
N−6もLN−6ΔG4−5と同等の細胞接着活性及び
/又は細胞運動活性を有する可能性がある。
In the present specification, LN6ΔG4-5 refers to a deletion mutant in which the entire G4-5 domain (amino acid residues 1366-1713 in the amino acid sequence of SEQ ID NO: 2) of the α3 chain has been deleted. LN6ΔG4-
5, G4-5 domain further including a linker sequence, that is, the entire amino acid residues 1325-1713 may be deleted. The deletion mutant in which the G4-G5 domain containing the linker sequence has been deleted also has the same cell adhesion activity and / or cell motility activity as the deletion mutant in the G4-5 domain alone. Amino acid residue 1299 of G3 domain
It has been revealed that the sequence KRD of -1301 is important for the cell adhesion activity of laminin-5. Therefore, part or all of amino acid residues 1302-1713, including part of the carboxyl-terminal portion of the G3 domain, have been deleted.
N-6 may also have the same cell adhesion activity and / or cell motility activity as LN-6ΔG4-5.

【0033】あるいは、本発明の短鎖型ラミニン−6
は、限定されるわけではないが、G3−5ドメイン(配
列番号2のアミノ酸配列においてアミノ酸残基1149
−1713)の全部または一部が削除されたα3鎖、配
列番号4のアミノ酸配列を有するβ1鎖および配列番号
6のアミノ酸配列を有するγ1鎖(アミノ酸残基1−1
609)の各サブユニットからなるタンパク質であって
もよい。
Alternatively, the short-chain laminin-6 of the present invention
Includes, but is not limited to, the G3-5 domain (amino acid residue 1149 in the amino acid sequence of SEQ ID NO: 2).
-1713) in which all or part thereof is deleted, a β1 chain having the amino acid sequence of SEQ ID NO: 4 and a γ1 chain having the amino acid sequence of SEQ ID NO: 6 (amino acid residue 1-1
It may be a protein consisting of each subunit of 609).

【0034】本明細書において、G3−5ドメインと
は、配列番号2のアミノ酸配列においてアミノ酸残基1
149−1713に相当するドメインをいう。さらに、
本明細書において、LN6ΔG3−5とは、α3鎖のう
ち前記G3−5ドメイン全体が削除された欠失突然変異
体をいう。後述する実施例では、アミノ酸残基1154
−1173を削除した欠失突然変異体を作成、使用して
いるが、これはG3−G5ドメイン全体(アミノ酸残基
1149−1173)を削除した欠失変異体と実施的に
同等の活性を示す。
In the present specification, the G3-5 domain means amino acid residue 1 in the amino acid sequence of SEQ ID NO: 2.
It refers to the domain corresponding to 149-1713. further,
As used herein, LN6ΔG3-5 refers to a deletion mutant in which the entire G3-5 domain in the α3 chain has been deleted. In the examples described below, amino acid residue 1154
A deletion mutant in which -1173 has been deleted has been prepared and used, which shows substantially the same activity as the deletion mutant in which the entire G3-G5 domain (amino acid residues 1149-1173) has been deleted. .

【0035】(1)G4−5ドメイン欠失突然変異体 限定されるわけではないが、本発明の好ましい一態様に
おいて、α3鎖のG4−5ドメイン全体が変異、好まし
くは削除されている。後述される実施例2で示すよう
に、G4−5ドメイン全体が削除された欠失突然変異体
(LN6ΔG4−5)は、HT1080細胞及びBRL
細胞において成熟型ラミニン−5(mat−LN5)と
同等の細胞接着活性を示し(図3参照)、LN6よりも
高いがmat−LN5よりは低い、細胞運動活性を示し
た(図6参照)。よって、本発明のLN−6のG4−5
ドメイン欠失突然変異体は、細胞接着活性を有し、及び
/又は弱い細胞運動活性を有する。
(1) G4-5 Domain Deletion Mutant In a preferred embodiment of the present invention, although not limited thereto, the entire G4-5 domain of the α3 chain is mutated, preferably deleted. As shown in Example 2 described later, the deletion mutant (LN6ΔG4-5) in which the entire G4-5 domain was deleted was HT1080 cells and BRL.
The cells showed cell adhesion activity equivalent to that of mature laminin-5 (mat-LN5) (see FIG. 3), and cell motility activity higher than LN6 but lower than mat-LN5 (see FIG. 6). Therefore, G4-5 of LN-6 of the present invention
Domain deletion mutants have cell adhesion activity and / or weak cell motility activity.

【0036】具体的には、細胞接着活性の半最大活性の
ための有効濃度(ED50)を比較すると、LN6ΔG4
−5は、LN6よりも約1.5倍高かった。以上より、
G4−5ドメインはLN6の細胞接着活性に重要な機能
を担っていると考えられる。G4−5ドメインは全体が
削除されていても、一部が削除されていてもよい。限定
されるわけではないが、削除により好ましくは、細胞接
着活性がLN6の10倍以上、より好ましくは5倍以
上、さらに好ましくは2.5以上、さらにより好ましく
は2倍以上、最も好ましくは1.5倍以上に増加してい
る。好ましくは、細胞接着活性は、成熟型LN5と同程
度である。
Specifically, comparing the effective concentrations (ED 50 ) for the half-maximal cell adhesion activity, LN6ΔG4
-5 was about 1.5 times higher than LN6. From the above,
The G4-5 domain is considered to have an important function for the cell adhesion activity of LN6. The G4-5 domain may be deleted entirely or partially. Although not limited, the deletion preferably has a cell adhesion activity of 10 times or more, more preferably 5 times or more, still more preferably 2.5 times or more, still more preferably 2 times or more, and most preferably 1 times that of LN6. .5 times or more. Preferably, the cell adhesion activity is similar to that of mature LN5.

【0037】また、BRL細胞をmat−LN5上に接
着させた場合、あるいはBRL細胞とmat−LN5を
混合して培養した場合には、細胞分散及び細胞移動は有
意に活性化された。しかしながら、BRL細胞とLN6
ΔG4−5を混合した場合には細胞分散は起こらなかっ
た。一方、LN6ΔG4−5を接着基質としてコーティ
ングして用いた場合にLN6に比べて高い分散活性を示
した。さらに、細胞移動速度を測定することによって細
胞運動活性を比較すると、接着基質としたLN6ΔG4
−5は、弱い細胞運動活性を示した。具体的には、LN
6ΔG4−5に接着した細胞は、mat−LN5に接着
した細胞の移動活性の約半分程度を有し、一方、LN6
と比較すると約2倍高かった。(図6参照)。
When BRL cells were allowed to adhere to mat-LN5 or when BRL cells and mat-LN5 were mixed and cultured, cell dispersion and cell migration were significantly activated. However, BRL cells and LN6
Cell dispersion did not occur when ΔG4-5 was mixed. On the other hand, when LN6ΔG4-5 was coated as an adhesive substrate and used, a higher dispersion activity was exhibited as compared with LN6. Furthermore, comparing cell motility activity by measuring cell migration rate, LN6ΔG4 used as an adhesion substrate
-5 showed weak cell motility. Specifically, LN
Cells attached to 6ΔG4-5 have approximately half the migration activity of cells attached to mat-LN5, while LN6
It was about 2 times higher than (See Figure 6).

【0038】以上より、限定されるわけではないが、G
4−5ドメインは全体が削除されていても、一部が削除
されていてもよい。限定されるわけではないが、削除に
より好ましくは、細胞運動活性がLN−6の10倍以
上、より好ましくは5倍以上、さらに好ましくは3倍以
上、さらにより好ましくは2.5倍以上、最も好ましく
は2倍以上に増加している。そして、限定されるわけで
はないが、mat−LN5と比較して、細胞運動活性
が、1/2以下、より好ましくは2/5以下、さらに好
ましくは1/3以下程度である。
From the above, although not limited, G
The 4-5 domain may be deleted entirely or partially. Although not limited thereto, the deletion preferably has a cell motility activity of 10 times or more, more preferably 5 times or more, still more preferably 3 times or more, still more preferably 2.5 times or more, as compared with LN-6. It is preferably increased by a factor of 2 or more. And, although not limited, the cell motility activity is ½ or less, more preferably 2/5 or less, still more preferably ⅓ or less, as compared with mat-LN5.

【0039】本発明の好ましい一態様において、LN6
ΔG4−5は、実質的に細胞移動をほとんど伴わない安
定な接着器材として使用してもよい。本発明のLN6Δ
G4−5は、限定されるわけではないが、好ましくはm
at−LN5及びLN6を混合して、より好ましくはL
N5を混合して、さらに好ましくは単独で使用してもよ
い。
In a preferred embodiment of the present invention LN6
ΔG4-5 may be used as a stable adhesive device with substantially no cell migration. LN6Δ of the present invention
G4-5 is preferably, but not limited to, m
at-LN5 and LN6 are mixed, more preferably L
N5 may be mixed and more preferably used alone.

【0040】(2)G3−5ドメイン欠失突然変異体 限定されるわけではないが、本発明の好ましい一態様に
おいてα3鎖のG3−5ドメイン全体が変異、好ましく
は削除されている。後述される実施例2で示すように、
G3−5ドメイン全体が削除された欠失突然変異体(L
N6ΔG3−5)は、HT1080細胞及びBRL細胞
においてフィブロネクチンと同様に細胞接着活性及び細
胞運動活性を促進しなかった(図3及び図6)。
(2) G3-5 domain deletion mutant In a preferred embodiment of the present invention, the entire G3-5 domain of the α3 chain is mutated, preferably deleted, although not limited thereto. As shown in Example 2 described later,
Deletion mutants with the entire G3-5 domain deleted (L
N6ΔG3-5) did not promote cell adhesion activity and cell motility activity in HT1080 cells and BRL cells similarly to fibronectin (FIGS. 3 and 6).

【0041】したがって、本発明のLN6ΔG3−5
は、これらに限定されるわけではないが、LN5、LN
6又はLN6ΔG4−5によって誘導される細胞接着活
性又は細胞運動活性を下方に制御できる接着器材として
使用してもよい。本発明のLN6ΔG3−5は、好まし
くはmat−LN5、LN6及びLN6ΔG4−5を混
合して、より好ましくは単独で使用してもよい。
Therefore, the LN6ΔG3-5 of the present invention
Include, but are not limited to, LN5, LN
6 or LN6ΔG4-5 may be used as an adhesion device that can down-regulate cell adhesion activity or cell motility activity. The LN6ΔG3-5 of the present invention may be used preferably as a mixture of mat-LN5, LN6 and LN6ΔG4-5, and more preferably used alone.

【0042】なお、G4−5ドメイン欠失LN6突然変
異体及びG3−5ドメインLN6欠失突然変異体も、全
長LN6の場合と同様に、G4−5又はG3−5ドメイ
ン以外の領域については特に限定されず、細胞接着活性
及び/又は細胞運動活性を調節する機能を有する限り、
配列番号2のアミノ酸配列を有するα3鎖、配列番号4
のアミノ酸配列を有するβ1鎖及び配列番号6のアミノ
酸配列を有するγ1鎖の各サブユニットにおいて、1ま
たはそれ以上のアミノ酸残基が欠失、付加または置換し
ているアミノ酸配列を有していてもよい。本明細書中に
記載した特性を有する限り全ての相同タンパク質を含む
ことが意図される。「アミノ酸変異」は1から複数個、
好ましくは、1ないし20個、より好ましくは1ないし
10個、最も好ましくは1ないし5個である。
The G4-5 domain-deleted LN6 mutant and the G3-5 domain LN6 deleted mutant are also particularly similar to the case of the full-length LN6 in the regions other than the G4-5 or G3-5 domain. Without limitation, as long as it has a function of regulating cell adhesion activity and / or cell motility activity,
Α3 chain having the amino acid sequence of SEQ ID NO: 2, SEQ ID NO: 4
In each subunit of the β1 chain having the amino acid sequence of 1 and the γ1 chain having the amino acid sequence of SEQ ID NO: 6, even if it has an amino acid sequence in which one or more amino acid residues are deleted, added or substituted Good. It is intended to include all homologous proteins as long as they have the properties described herein. "Amino acid mutation" is 1 to multiple,
It is preferably 1 to 20, more preferably 1 to 10, and most preferably 1 to 5.

【0043】よって、配列番号2のアミノ酸配列におい
てアミノ酸残基1366−1713またはアミノ酸残基
1154−1713の全部または一部が削除されたα3
鎖、配列番号4のアミノ酸配列を有するβ1鎖及び配列
番号6のアミノ酸配列を有するγ1鎖の各サブユニット
のアミノ酸配列と、少なくとも50%以上、好ましくは
60%以上、より好ましくは70%以上、さらに好まし
くは80%以上、特に好ましくは90%以上、最も好ま
しくは95%以上同一である。
Therefore, in the amino acid sequence of SEQ ID NO: 2, α3 is obtained by deleting all or part of amino acid residues 1366-1713 or amino acid residues 1154-1713.
Chain, the amino acid sequence of each subunit of the β1 chain having the amino acid sequence of SEQ ID NO: 4 and the γ1 chain having the amino acid sequence of SEQ ID NO: 6, at least 50% or more, preferably 60% or more, more preferably 70% or more, It is more preferably 80% or more, particularly preferably 90% or more, and most preferably 95% or more.

【0044】ラミニン−6及び短鎖型ラミニン−6の調
製方法 本発明のラミニン−6(LN6)及び短鎖型ラミニン−
6(LN6ΔG4−5及びLN6ΔG3−5)の発現、
単離及び精製は、任意公知の技術を用いて行ってよい。
例えば、非限定的に以下の手法を適用することができ
る。
Preparation of laminin-6 and short-chain laminin-6
Production Method Laminin-6 (LN6) and short chain laminin of the present invention
6 (LN6ΔG4-5 and LN6ΔG3-5) expression,
Isolation and purification may be performed using any known technique.
For example, the following method can be applied without limitation.

【0045】本発明の短鎖型LN6は、配列番号2のア
ミノ酸配列においてアミノ酸残基1366−1713又
はアミノ酸残基1154−1713の全部または一部が
削除されたα3鎖を有することを特徴とする。
The short-chain LN6 of the present invention is characterized by having an α3 chain in which all or part of amino acid residues 1366-1713 or amino acid residues 1154-1713 in the amino acid sequence of SEQ ID NO: 2 are deleted. .

【0046】簡単に述べると、先ずα3鎖を構成成分と
するラミニン、例えばラミニン−5を発現する細胞系の
cDNAライブラリーからラミニンα3鎖をコードする
cDNAクローンを単離することができる。例えば、M
izushima,H.etal.,1996(上述)
に記載されたcDNAライブラリーを使用することがで
きる。さらにポリメラーゼ連鎖反応(PCR)用の各種
プライマーを作製し、プライマーの組み合わせにより、
当該cDNAクローンを鋳型としてPCRを行い、種々
の組換えラミニン変異体をコードする発現プラスミドを
作製することができる。ここで、PCRプライマーのア
ンチセンスプライマーには、終止コドン(TGA)とそ
れに続く制限酵素部位を含めることができる。
Briefly, first, a cDNA clone encoding the laminin α3 chain can be isolated from a cell line cDNA library which expresses laminin having the α3 chain as a constituent, for example, laminin-5. For example, M
izushima, H .; et al. , 1996 (supra)
The cDNA library described in 1. can be used. Furthermore, various primers for polymerase chain reaction (PCR) were prepared, and by combining the primers,
PCR can be performed using the cDNA clone as a template to prepare expression plasmids encoding various recombinant laminin mutants. Here, the antisense primer of the PCR primer can include a stop codon (TGA) followed by a restriction enzyme site.

【0047】上述のようにして得られたα3鎖をコード
するcDNAに、公知の方法、例えばSambroo
k,J.ら,Molecular Cloning,A
Laboratory Manual(3rd ed
ition),Cold Spring Harbor
Laboratory,2001を使用して変異を施
すことが可能である。例えば、前記G4−5またはG3
−5の一部または全部を欠失させる場合、例えば、ラミ
ニン−6をコードする核酸のうちα3鎖のG4−5ドメ
インまたはG3−5ドメインの所期の領域をコードする
部分を含まないように適当なプライマーを合成し、PC
Rを使用してDNAを増幅して、α3鎖の欠失突然変異
体をコードするDNAを得ることができる。あるいは、
上記G4−5またはG3−5の特定の1つまたは複数の
アミノ酸残基を置換させる場合、公知の点突然変異法
(Mullis,K.B.,In Les Prix
Nobel(ed.T.Frangsmyr),p.1
07.Almqvist and Wilsell I
nternational,Stockholm,19
93; Smith,M.,In Les Prix
Nobel(ed.T.Frangsmyr),p.1
23.Almqvist and Wilsell I
nternational,Stockholm,19
93)を用いてもよい。
The cDNA encoding the α3 chain obtained as described above can be added to a known method such as Sambrook.
k, J. Et al., Molecular Cloning, A
Laboratory Manual (3rd ed
edition), Cold Spring Harbor
It is possible to make mutations using Laboratory, 2001. For example, the above G4-5 or G3
When a part or all of -5 is deleted, for example, the laminin-6-encoding nucleic acid should not include the part encoding the desired region of the G4-5 domain or G3-5 domain of the α3 chain. Synthesize appropriate primer and
DNA can be amplified using R to obtain DNA encoding a deletion mutant of the α3 chain. Alternatively,
When substituting one or more specific amino acid residues of G4-5 or G3-5 described above, known point mutation methods (Mullis, KB, In Les Prix) are used.
Nobel (ed.T.Frangsmyr), p. 1
07. Almqvist and Wilsell I
international, Stockholm, 19
93; Smith, M .; , In Les Prix
Nobel (ed.T.Frangsmyr), p. 1
23. Almqvist and Wilsell I
international, Stockholm, 19
93) may be used.

【0048】得られたα3鎖変異体をコードするDNA
を、β鎖をコードするDNA、γ鎖をコードするDNA
とともに、大腸菌や酵母あるいは昆虫の動物細胞に、そ
れぞれ宿主で増幅可能な発現ベクターを用いて導入、発
現させることにより、所期のα3鎖変異体を含むラミニ
ンタンパク質を遺伝子工学的に大量に得ることができ
る。
DNA encoding the obtained α3 chain mutant
Is a DNA encoding a β chain, a DNA encoding a γ chain
At the same time, a large amount of laminin protein containing the desired α3 chain mutant can be genetically engineered by introducing and expressing into E. coli, yeast, or insect animal cells using an expression vector that can be amplified in each host. You can

【0049】各鎖をコードする遺伝子は、一つの発現ベ
クター内に組み込んで発現させてもよく、または別個の
発現ベクターに組み込んで各々を発現させてもよい。但
し、α3鎖、β鎖及びγ鎖の各サブユニットはいずれも
1000以上のアミノ酸残基を有する非常に大きなポリ
ペプチドであり、各々をコードする遺伝子も3000以
上の核酸残基からなる。よって、限定されるわけではな
いが、所期のβ鎖及びγ鎖を発現する細胞について、α
3鎖サブユニットまたはその欠失置換体をコードする遺
伝子で形質転換するのが好ましい。このように欠失して
いるα3鎖サブユニットのみを遺伝子工学的に発現する
ことにより、本発明の変異体α3鎖を含むラミニンヘテ
ロトリマーを得ることができる。これは、全てのサブユ
ニットを遺伝子工学的に発現させる場合よりも簡便であ
り、特に本発明において人為的に変異体を得たい場合に
有用である。
The gene encoding each chain may be incorporated into one expression vector for expression, or may be incorporated into a separate expression vector to express each. However, each subunit of α3 chain, β chain and γ chain is a very large polypeptide having 1000 or more amino acid residues, and the gene encoding each is also composed of 3000 or more nucleic acid residues. Thus, but not limited to, for cells expressing the desired β and γ chains, α
It is preferable to transform with a gene encoding a 3-chain subunit or a deletion substitution product thereof. A laminin heterotrimer containing the mutant α3 chain of the present invention can be obtained by genetically expressing only the α3 chain subunit thus deleted. This is simpler than the case of expressing all subunits by genetic engineering, and is particularly useful in the present invention when it is desired to artificially obtain a mutant.

【0050】本明細書では、配列番号1及び2におい
て、ヒトのラミニンα3鎖のアミノ酸配列、及びそれら
をコードするDNA配列が開示されている。当該配列ま
たはその一部を利用して、ハイブリダイゼーション、P
CR等の核酸増幅反応などの遺伝子工学的手法により、
他の生物種から同様の生理活性を有するタンパク質をコ
ードする遺伝子を容易に単離することができる。このよ
うな場合、それらの遺伝子、及び当該遺伝子がコードす
るタンパク質またはポリペプチドも、本発明のα3鎖の
欠失置換体を得るために利用可能である。
Disclosed herein are the amino acid sequences of human laminin α3 chain in SEQ ID NOS: 1 and 2, and the DNA sequences encoding them. By using the sequence or a part thereof, hybridization, P
By genetic engineering techniques such as nucleic acid amplification reaction such as CR,
A gene encoding a protein having similar physiological activity can be easily isolated from other organism species. In such a case, those genes and the proteins or polypeptides encoded by the genes can also be used to obtain the deletion substitution product of the α3 chain of the present invention.

【0051】相同遺伝子のスクリーニングのために使用
するハイブリダイゼーション条件は特に限定されない
が、一般的にはストリンジェントな条件が好ましく、例
えば、6×SSC、5×Denhardt’s、0.1
%SDS、25℃ないし68℃などのハイブリダイゼー
ション条件を使用することが考えられる。この場合、ハ
イブリダイゼーションの温度としては、より好ましくは
45℃ないし68℃(ホルムアミド無し)または25℃
ないし50℃(50%ホルムアミド)を挙げることがで
きる。ホルムアミド濃度、塩濃度及び温度などのハイブ
リダイゼーション条件を適宜設定することによりある一
定の相同性以上の相同性を有する塩基配列を含むDNA
をクローニングできることは当業者に周知であり、この
ようにしてクローニングされた相同遺伝子は全て本発明
の範囲の中に含まれる。
Hybridization conditions used for screening homologous genes are not particularly limited, but generally, stringent conditions are preferable, for example, 6 × SSC, 5 × Denhardt's, 0.1.
It is contemplated to use hybridization conditions such as% SDS, 25 ° C to 68 ° C. In this case, the hybridization temperature is more preferably 45 ° C to 68 ° C (without formamide) or 25 ° C.
To 50 ° C. (50% formamide). A DNA containing a base sequence having a certain homology or higher by appropriately setting hybridization conditions such as formamide concentration, salt concentration and temperature.
It is well known to those skilled in the art that H. homologous genes can be cloned, and all homologous genes thus cloned are included in the scope of the present invention.

【0052】核酸増幅反応は、例えば、複製連鎖反応
(PCR)(Saiki,R.K.et al.,Sc
ience,230:1350−1354,198
5)、ライゲース連鎖反応(LCR)(Wu,D.
Y.,and Wallace,R.B.,Genom
ics,4:560−569,1989; Barri
nger,K.J.,Gene,89:117−12
2,1990; Barany,F.,Proc.Na
tl.Acad.Sci.USA,88:189−19
3,1991)及び転写に基づく増幅(Kwoh,D.
Y.et al.,Proc.Natl.Acad.S
ci.USA,86:1173−1177,1989)
等の温度循環を必要とする反応、並びに鎖置換反応(S
DA)(Walker,G.T.et al.,Pro
c.Natl.Acad.Sci.USA,89:39
2−396,1992; Walker,G.T.et
al.,Nuc.Acids Res.20:169
1−1696,1992)、自己保持配列複製(3S
R)(Guatelli,JC,1990,Proc.
Natl.Acad.Sci.USA 87,p.18
74−1878)及びQβレプリカーゼシステム(リザ
イルディら,BioTechnology,6:119
7−1202,1988)等の恒温反応を含む。また、
欧州特許第0525882号に記載されている標的核酸
と変異配列の競合増幅による核酸配列に基づく増幅(N
ucleic Acid Sequence Base
d Amplification:NASABA)反応
等も利用可能である。好ましくはPCR法である。
The nucleic acid amplification reaction is carried out, for example, by a replication chain reaction (PCR) (Saiki, RK et al., Sc).
ience, 230: 1350-1354, 198.
5), ligase chain reaction (LCR) (Wu, D. et al.
Y. , And Wallace, R .; B. , Genom
ics, 4: 560-569, 1989; Barri.
Nger, K .; J. , Gene, 89: 117-12.
2, 1990; Barany, F .; , Proc. Na
tl. Acad. Sci. USA, 88: 189-19.
3, 1991) and transcription-based amplification (Kwoh, D .;
Y. et al. , Proc. Natl. Acad. S
ci. USA, 86: 1173-1177, 1989).
Etc., which require temperature circulation, as well as the strand displacement reaction (S
DA) (Walker, GT et al., Pro
c. Natl. Acad. Sci. USA, 89:39.
2-396, 1992; Walker, G .; T. et
al. , Nuc. Acids Res. 20: 169
1-1696, 1992), self-retaining sequence replication (3S
R) (Guatelli, JC, 1990, Proc.
Natl. Acad. Sci. USA 87, p. 18
74-1878) and the Qβ replicase system (Resaildi et al., BioTechnology, 6: 119.
7-1202, 1988) and the like. Also,
Nucleic acid sequence-based amplification by the competitive amplification of a target nucleic acid and a mutant sequence described in EP 0525882 (N
ucleic Acid Sequence Base
d Amplification: NASABA) reaction and the like can also be used. The PCR method is preferred.

【0053】上記のようなハイブリダイゼーション、核
酸増幅反応等を使用してクローニングされる相同遺伝子
は、配列番号1に記載の塩基配列に対して、領域II及
びIIIをコードする部分以外において、少なくとも5
0%以上、好ましくは60%以上、より好ましくは70
%以上、さらに好ましくは80%以上、特に好ましくは
90%以上、最も好ましくは95%以上の相同性を有す
る。
The homologous gene cloned using the above-mentioned hybridization, nucleic acid amplification reaction, etc. has at least 5 nucleotides in the nucleotide sequence shown in SEQ ID NO: 1 except for the regions II and III.
0% or more, preferably 60% or more, more preferably 70%
% Or more, more preferably 80% or more, particularly preferably 90% or more, and most preferably 95% or more.

【0054】同一性パーセントは、視覚的検査及び数学
的計算により決定してもよい。あるいは、2つの核酸配
列の同一性パーセントは、Devereuxら(Nuc
l.Acids Res.,12:387(198
4))に記載され、そしてウィスコンシン大学遺伝学コ
ンピューターグループ(UWGCG)より入手可能なG
APコンピュータープログラム、バージョン6.0を用
い配列情報を比較することにより、決定してもよい。G
APプログラムの好ましいデフォルトパラメーターに
は:(1)ヌクレオチドに関する単一(unary)比
較マトリックス(同一に対し1及び非同一に対し0の値
を含む)、及びSchwartz及びDayhoff監
修,Atlas of Protein Sequen
ce andStructure, National
Biomedical Research Foun
dation,pp.353−358(1979)に記
載されるような、Gribskov及びBurges
s, Nucl. AcidsRes., 14:67
45(1986)の加重比較マトリックス;(2)各ギ
ャップに対する3.0のペナルティ及び各ギャップ中の
各記号に対しさらに0.10のペナルティ;及び(3)
末端ギャップに対するペナルティなし、が含まれる。当
業者に用いられる、配列比較の他のプログラムもまた、
用いてもよい。
The percent identity may be determined by visual inspection and mathematical calculation. Alternatively, the percent identity of the two nucleic acid sequences can be calculated as described by Devereux et al. (Nuc
l. Acids Res. , 12: 387 (198
4)) and available from the University of Wisconsin Genetics Computer Group (UWGCG).
It may be determined by comparing the sequence information using the AP computer program, version 6.0. G
Preferred default parameters for the AP program include: (1) unary comparison matrix for nucleotides (including values of 1 for identical and 0 for non-identical), and supervision of Schwartz and Dayhoff, Atlas of Protein Sequence.
ce andStructure, National
Biomedical Research Foun
date, pp. 353-358 (1979), as described in Gribskov and Burges.
s, Nucl. Acids Res. , 14:67
45 (1986) weighted comparison matrix; (2) 3.0 penalty for each gap and an additional 0.10 penalty for each symbol in each gap; and (3).
Includes no penalty for end gaps. Other programs used by those of skill in the art for sequence comparison also
You may use.

【0055】変異を含むα3鎖をコードする核酸を、ク
ローニング用ベクター、例えば、T−Easyベクター
(Promega、Madison、WI、USA)に
ライゲートし、配列決定により検証することができる。
各種表現型選択可能マーカーもまたクローニングに使用
され得る。さらに、前記クローニング用ベクターに組込
んだ挿入断片を、対応する制限酵素を用いて、発現ベク
ターに組込むことができる。
The nucleic acid encoding the α3 chain containing the mutation can be ligated to a cloning vector, for example, a T-Easy vector (Promega, Madison, WI, USA) and verified by sequencing.
Various phenotypic selectable markers can also be used for cloning. Furthermore, the insert fragment incorporated into the cloning vector can be incorporated into an expression vector using a corresponding restriction enzyme.

【0056】調製した発現ベクターを、例えば前述した
ようにラミニンβ1鎖及びγ1鎖は発現するがα3鎖は
発現しない細胞株、ヒト線維細胞株HT1080(Mi
zushima,H.et al.,1996、上述)
等に形質導入し、α3鎖改変体を含むラミニンの組換え
体を産生させることができる。各宿主細胞で増幅可能な
発現ベクターを用いて導入、発現させることにより、当
該ラミニンα3鎖の改変体を遺伝子工学的に大量に得る
ことができる。細菌、真菌、酵母、及び哺乳動物細胞の
宿主において使用に適したクローニング用及び発現ベク
ターは、例えば、Pouwels,P.H.et a
l.,Cloning Vector;ALabora
tory Manual,Elsevier,NY,1
986に記載されている。また、各鎖をコードする遺伝
子は、一つの発現ベクター内に組込んで発現させてもよ
く、または別個の発現ベクターに組込んで各々を発現さ
せてもよい。発現させた組換えラミニンを、モレキュラ
ーシーブ・クロマトグラフィー、ゼラチンカラム・クロ
マトグラフィー及び抗ラミニンα3鎖抗体を用いるイム
ノアフィニティー・クロマトグラフィーの組み合わせに
よって精製することができる。精製した組換えラミニン
α3鎖の改変体を、抗ラミニンα3鎖抗体、抗ラミニン
β1鎖抗体及び抗ラミニンγ1鎖抗体を用いるウェスタ
ンブロット法並びに銀染色法によって分析することが可
能である。
The prepared expression vector is used as a cell line which expresses laminin β1 chain and γ1 chain but not α3 chain, as described above, human fiber cell line HT1080 (Mi.
zushima, H .; et al. , 1996, supra)
Etc. to produce a recombinant laminin containing the α3 chain variant. A large amount of the modified laminin α3 chain can be genetically engineered by introducing and expressing it using an expression vector that can be amplified in each host cell. Cloning and expression vectors suitable for use in bacterial, fungal, yeast, and mammalian cell hosts are described, for example, in Pouwels, P .; H. et a
l. , Cloning Vector; ALabora
tory Manual, Elsevier, NY, 1
986. In addition, the genes encoding each chain may be incorporated into one expression vector for expression, or may be incorporated into separate expression vectors to express each. Expressed recombinant laminin can be purified by a combination of molecular sieve chromatography, gelatin column chromatography and immunoaffinity chromatography using anti-laminin α3 chain antibody. The purified variant of recombinant laminin α3 chain can be analyzed by Western blotting and silver staining using anti-laminin α3 chain antibody, anti-laminin β1 chain antibody and anti-laminin γ1 chain antibody.

【0057】より詳細には、先ず本発明において遺伝子
を組み込んでタンパク質を発現させるための組換えベク
ターは既知の方法を用いて作製することができる。プラ
スミドなどのベクターに本発明の遺伝子のDNA断片を
組み込む方法としては、例えば、Sambrook,
J.,and Russell,D.W.,Molec
ular Cloning, A Laborator
y Manual(2nd edition),Col
d Spring Harbor Laborator
y,1.53(1989)に記載の方法などが挙げられ
る。簡便には、市販のライゲーションキット(例えば、
宝酒造製等)を用いることもできる。このようにして得
られる組換えベクター(例えば、組換えプラスミド)
は、宿主細胞(例えば、E.coil TB1, LE
392 またはXL−1Blue等)に導入される。
More specifically, first, a recombinant vector for incorporating a gene in the present invention to express a protein can be prepared using a known method. Examples of the method for incorporating the DNA fragment of the gene of the present invention into a vector such as a plasmid include, for example, Sambrook,
J. , And Russell, D .; W. , Molec
ural Cloning, A Laborator
y Manual (2nd edition), Col
d Spring Harbor Laborator
y, 1.53 (1989) and the like. For convenience, use a commercially available ligation kit (for example,
Takara Shuzo etc.) can also be used. Recombinant vector (eg, recombinant plasmid) thus obtained
Is a host cell (eg, E. coil TB1, LE
392 or XL-1 Blue etc.).

【0058】プラスミドを宿主細胞に導入する方法とし
ては、Sambrook,J.ら,Molecular
Cloning, A Laboratory Ma
nual(2nd edition),Cold Sp
ring Harbor Laboratory,1.
74(1989)に記載のリン酸カルシウム法または塩
化カルシウム/塩化ルビジウム法、エレクトロポレーシ
ョン法、エレクトロインジェクション法、PEGなどの
化学的な処理による方法、遺伝子銃などを用いる方法な
どが挙げられる。
As a method for introducing a plasmid into a host cell, Sambrook, J. et al. Et al, Molecular
Cloning, A Laboratory Ma
numerical (2nd edition), Cold Sp
ring Harbor Laboratory, 1.
74 (1989), calcium chloride method or calcium chloride / rubidium chloride method, electroporation method, electroinjection method, method by chemical treatment such as PEG, method using gene gun and the like.

【0059】べクターは、簡便には当業界において入手
可能な組換え用べクター(例えば、プラスミドDNAな
ど)に所望の遺伝子を常法により連結することによって
調製することができる。用いられるべクターの具体例と
しては、大腸菌由来のプラスミドとして、例えば、pB
luescript、pUC18、pUC19、pBR
322などが例示されるがこれらに限定されない。
The vector can be conveniently prepared by ligating a desired gene to a recombinant vector (for example, plasmid DNA etc.) available in the art by a conventional method. Specific examples of the vector used include plasmids derived from E. coli, such as pB
luescript, pUC18, pUC19, pBR
However, the present invention is not limited to these.

【0060】所望のタンパク質を生産する目的において
は、特に、発現べククーが有用である。発現べクターの
種類は、原核細胞及び/又は真核細胞の各種の宿主細胞
中で所望の遺伝子を発現し、所望のタンパク質を生産す
る機能を有するものであれば特に限定されないが、例え
ば、大腸菌用発現ベクターとして、pQE−30、pQ
E−60、pMAL−c2、pMAL−p2、pSE4
20などが好ましく、酵母用発現べクターとしてpYE
S2(サッカロマイセス属)、pPIC3.5K、pP
IC9K、pAO815(以上ピキア属)、昆虫用発現
ベクターとしてpBacPAK8/9、pBK283、
pVL1392、pBlueBac4.5などが好まし
い。
The expression vector is particularly useful for the purpose of producing the desired protein. The type of expression vector is not particularly limited as long as it has a function of expressing a desired gene in various host cells such as prokaryotic cells and / or eukaryotic cells, and producing a desired protein. Expression vector, pQE-30, pQ
E-60, pMAL-c2, pMAL-p2, pSE4
20 or the like is preferable, and pYE is used as an expression vector for yeast.
S2 (Saccharomyces), pPIC3.5K, pP
IC9K, pAO815 (above Pichia), pBacPAK8 / 9, pBK283 as an insect expression vector,
Preferred are pVL1392, pBlueBac4.5 and the like.

【0061】哺乳動物発現用のベクターの例としては、
Okayama及びBerg(Mol.Cell Bi
ol.,3:280、1983)が開示されているよう
に構築されたベクターである。C127マウス乳腺上皮
細胞における、哺乳動物cDNAの安定した高レベル発
現に有用な系を実質上Cosmanら(Mol.Imm
unol.23:935,1986)が記載したように
構築してもよい。あるいは、in vivoまたはin
vitroにおいて神経細胞中で発現させるためのベ
クターとしては、例えば、アデノウイルスベクター、あ
るいはpEF−BOSベクター(Mizushima,
S.et al.,Nucleic Acid Re
s.18:p.5322、1990)を改変したベクタ
ー(pEF−CITE−neo: Miyata,S.
et al.,Clin.Exp.Metastasi
s,16:613−622,1998)を使用すること
ができる。
Examples of mammalian expression vectors include:
Okayama and Berg (Mol. Cell Bi
ol. , 3: 280, 1983). A system useful for stable, high-level expression of mammalian cDNA in C127 mouse mammary epithelial cells has been essentially constructed by Cosman et al. (Mol.
unol. 23: 935, 1986). Alternatively, in vivo or in
Examples of the vector for expressing in a neuron in vitro include an adenovirus vector or a pEF-BOS vector (Mizushima,
S. et al. , Nucleic Acid Re
s. 18: p. 5322, 1990) modified vector (pEF-CITE-neo: Miyata, S. et al.
et al. , Clin. Exp. Metastasi
s, 16: 613-622, 1998).

【0062】形質転換体は、所望の発現べクターを宿主
細胞に導入することにより調製することができる。用い
られる宿主細胞としては、発現べクターに適合し、形質
転換され得るものであれば特に制限はなく、本発明の技
術分野において通常使用される天然の細胞、または人工
的に樹立された組換え細胞など種々の細胞を用いること
が可能である。例えば、細菌(エシェリキア属菌、バチ
ルス属菌)、酵母(サッカロマイセス属、ピキア属な
ど)、動物細胞、昆虫細胞、植物細胞などが挙げられ
る。具体的には、大腸菌(M15、JM109、BL2
1等)、酵母(INVSc1(サッカロマイセス属)、
GS115、KM71(以上ピキア属)など)、昆虫細
胞(BmN4、カイコ幼虫など)などが例示される。、
動物細胞としてはマウス由来、アフリカツメガエル由
来、ラット由来、ハムスタ−由来、サル由来またはヒト
由来の細胞若しくはそれらの細胞から樹立した培養細胞
株などが例示される。さらに、植物細胞に関しては、細
胞培養が可能であれば特に限定されないが、例えば、タ
バコ、アラビドプシス、イネ、トウモロコシ、コムギ由
来の細胞などが例示される。好ましくは、ラミニンβ1
鎖及びγ1鎖は発現するがα3鎖は発現しない細胞株、
例えば、ヒト線維細胞株HT1080(Mizushi
ma,H.et al.,1996、上述)、ヒトケラ
チノサイト細胞株HaCaT(Boukamp,P.e
t al.,J.Cell Biol.,106:76
1−771,1988)、等である。
The transformant can be prepared by introducing a desired expression vector into a host cell. The host cell used is not particularly limited as long as it is compatible with the expression vector and can be transformed, and a natural cell usually used in the technical field of the present invention, or an artificially established recombinant cell. Various cells such as cells can be used. For example, bacteria (Escherichia, Bacillus), yeast (Saccharomyces, Pichia, etc.), animal cells, insect cells, plant cells and the like can be mentioned. Specifically, E. coli (M15, JM109, BL2
1), yeast (INVSc1 (genus Saccharomyces),
Examples thereof include GS115, KM71 (above Pichia) and insect cells (BmN4, silkworm larva, etc.). ,
Examples of animal cells include mouse-derived cells, Xenopus-derived cells, rat-derived cells, hamster-derived cells, monkey-derived cells, human-derived cells, and cultured cell lines established from these cells. Furthermore, the plant cells are not particularly limited as long as cell culture is possible, and examples thereof include cells derived from tobacco, Arabidopsis, rice, corn, wheat and the like. Preferably, laminin β1
Cell line that expresses a chain and a γ1 chain but not an α3 chain,
For example, the human fiber cell line HT1080 (Mizushi
ma, H.M. et al. , 1996, supra), the human keratinocyte cell line HaCaT (Boukamp, P. e.
t al. J. Cell Biol. , 106: 76
1-771, 1988), etc.

【0063】宿主細胞として細菌、特に大腸菌を用いる
場合、一般に発現べクターは少なくとも、プロモーター
/オペレーター領域、開始コドン、所望の抗菌タンパク
質をコードする遺伝子、終止コドン、ターミネーター及
び複製可能単位から構成される。
When bacteria, in particular Escherichia coli, are used as host cells, the expression vector is generally composed of at least a promoter / operator region, a start codon, a gene encoding a desired antibacterial protein, a stop codon, a terminator and a replicable unit. .

【0064】宿主細胞として酵母、植物細胞、動物細胞
または昆虫細胞を用いる場合には、一般に発現べクター
は少なくとも、プロモーター、関始コドン、所望の抗菌
タンパク質をコードする遺伝子、終止コドン、ターミネ
ーターを合んでいることが好ましい。またシグナルペブ
チドをコードするDNA、エンハンサー配列、所望の遺
伝子の5’側及び3’側の非翻訳領域、選択マーカー領
域または複製可能単位などを適宜含んでいてもよい。
When yeast, plant cells, animal cells or insect cells are used as host cells, the expression vector generally comprises at least a promoter, a start codon, a gene encoding the desired antibacterial protein, a stop codon and a terminator. Preferably. In addition, it may appropriately contain a DNA encoding a signal peptide, an enhancer sequence, 5 ′ and 3 ′ untranslated regions of a desired gene, a selectable marker region, a replicable unit and the like.

【0065】本発明のべクタ−において、好適な開始コ
ドンとしては、メチオニンコドン(ATG)が例示され
る。また、終止コドンとしては、常用の終止コドン(例
えば、TAG、TGA、TAAなど)が例示される。
In the vector of the present invention, an example of a suitable initiation codon is methionine codon (ATG). Examples of the stop codon include commonly used stop codons (eg, TAG, TGA, TAA, etc.).

【0066】複製可能単位とは、宿主細胞中でその全D
NA配列を複製することができる能力をもつDNAを意
味し、天然のプラスミド、人工的に修飾されたプラスミ
ド(天然のプラスミドから調製されたプラスミド)及び
合成プラスミド等が含まれる。好適なプラスミドとして
は、E.coliではブラスミドpQE30、pETま
たはpCALもしくはそれらの人工的修飾物(pQE3
0、pETまたはpCALを適当な制限酵素で処理して
得られるDNAフラグメント)が、酵母ではプラスミド
pYES2もしくはpPIC9Kが、また昆虫細胞では
プラスミドpBacPAK8/9等があげられる。
A replication-competent unit is the entire D in a host cell.
It means a DNA capable of replicating the NA sequence, and includes natural plasmids, artificially modified plasmids (plasmids prepared from natural plasmids), synthetic plasmids and the like. Suitable plasmids include E. In E. coli, the plasmids pQE30, pET or pCAL or their artificial modifications (pQE3
0, pET or pCAL) and a plasmid pYES2 or pPIC9K in yeast, and a plasmid pBacPAK8 / 9 in insect cells.

【0067】エンハンサー配列、ターミネーター配列に
ついては、例えば、それぞれSV40に由来するもの
等、当業者において通常使用されるものを用いることが
できる。
As the enhancer sequence and the terminator sequence, those normally used by those skilled in the art such as those derived from SV40 can be used.

【0068】選択マーカーとしては、通常使用されるも
のを常法により用いることができる。例えばテトラサイ
クリン、アンピシリン、またはカナマイシンもしくはネ
オマイシン、ハイグロマイシンまたはスペクチノマイシ
ン等の抗生物質耐性遺伝子などが例示される。
As the selectable marker, a commonly used one can be used by a conventional method. Examples include tetracycline, ampicillin, and antibiotic resistance genes such as kanamycin or neomycin, hygromycin, and spectinomycin.

【0069】発現べクターは、少なくとも、上述のプロ
モータ−、開始コドン、所望の抗菌タンパク質をコード
する遺伝子、終止コドン、及びターミネーター領域を連
続的かつ環状に適当な複製可能単位に連結することによ
って調製することができる。またこの際、所望により制
限酵素での消化やT4DNAリガーゼを用いるライゲー
ション等の常法により適当なDNAフラグメント(例え
ば、リンカー、他の制限酵素部位など)を用いることが
できる。
An expression vector is prepared by linking at least the above promoter, start codon, gene encoding the desired antimicrobial protein, stop codon, and terminator region in a continuous and circular fashion to a suitable replicable unit. can do. At this time, if desired, an appropriate DNA fragment (eg, linker, other restriction enzyme site, etc.) can be used by a conventional method such as digestion with a restriction enzyme or ligation using T4 DNA ligase.

【0070】前記発現べクターの宿主細胞への導入は従
来公知の方法を用いて行うことができる。例えば、細菌
(E.coli,Bacillus subtilis
等)の場合は、例えばCohenらの方法(Proc.
Natl.Acad.Sci.USA,69:211
0,1972)、プロトプラスト法(Mol.Gen.
Genet.,168:111,1979)やコンピテ
ント法(J.Mol.Biol.,56:209,19
71)によって、Saccharomycescere
visiaeの場合は、例えばHinnenらの方法
(Proc.Natl.Acad.Sci.USA,7
5:1927,1978)やリチウム法(J.Bact
eriol.,153:163,1983)によって、
植物細胞の場合は、例えばリーフディスク法(Scie
nce,227:129,1985)、エレクトロポレ
−ション法(Nature,319:791,198
6)によって、動物細胞の場合は、例えばGraham
の方法(Virology,52:456,197
3)、昆虫細胞の場合は、例えばSummersらの方
法(Mol.Cell Biol.,3:2156−2
165,1983)によってそれぞれ形質転換すること
ができる。
The expression vector can be introduced into a host cell by a conventionally known method. For example, bacteria (E. coli, Bacillus subtilis
Etc.), the method of Cohen et al. (Proc.
Natl. Acad. Sci. USA, 69: 211
0,1972), the protoplast method (Mol. Gen.
Genet. , 168: 111, 1979) and the competent method (J. Mol. Biol., 56: 209, 19).
71) by Saccharomyces cere
In the case of visiae, for example, the method of Hinnen et al. (Proc. Natl. Acad. Sci. USA, 7
5: 1927, 1978) and the lithium method (J. Bact).
eriol. , 153: 163, 1983),
In the case of plant cells, for example, the leaf disk method (Scie)
No., 227: 129, 1985), electroporation method (Nature, 319: 791, 198).
According to 6), in the case of animal cells, for example, Graham
Method (Virology, 52: 456, 197)
3) In the case of insect cells, for example, the method of Summers et al. (Mol. Cell Biol., 3: 2156-2).
165, 1983).

【0071】本発明のタンパク質またはポリペプチドの
精製及び単離は、硫安沈殿法、イオン交換クロマトグラ
フィー(Mono Q、Q Sepharoseまたは
DEAEなど)などのタンパク質の精製及び単離のため
に慣用される方法を適宜組み合わせて行うことができ
る。例えば、本発明のラミニンα3鎖の改変体を含むラ
ミニンが宿主細胞内に蓄積する場合には、遠心分離やろ
過などの操作により宿主細胞を集め、これを適当な緩衝
液(例えば濃度が10Mないし100mM程度のトリス
緩衝液、リン酸緩衝液、HEPES緩衝液、MES緩衝
液などの緩衝液。pHは用いる緩衝液によって異なる
が、pH5.0ないし9.0の範囲が望ましい)に懸濁
した後、用いる宿主細胞に適した方法で細胞を破壊し、
遠心分離により宿主細胞の内容物を得る。一方、本発明
のラミニン−5タンパク質が宿主細胞外に分泌される場
合には、遠心分離やろ過などの操作により宿主細胞と培
地を分離し、培養ろ液を得る。宿主細胞破壊液、あるい
は培養ろ液はそのまま、または硫安沈殿と透析を行った
後に、タンパク質の精製、単離に供することができる。
精製・単離の方法としては、以下の方法が挙げることが
できる。即ち、当該タンパク質に6×ヒスチジンやGS
T、マルトース結合タンパクといったタグを付けている
場合には、一般に用いられるそれぞれのタグに適したア
フィニティークロマトグラフィーによる方法を挙げるこ
とができる。一方、そのようなタグを付けずに本発明の
タンパク質を生産した場合には、例えば抗体アフィニテ
ィークロマトグラフィーによる方法を挙げることができ
る。また、これに加えてイオン交換クロマトグラフィ
ー、ゲルろ過や疎水性クロマトグラフィー、等電点クロ
マトグラフィーなどを組み合わせる方法も挙げることが
できる。
Purification and isolation of the protein or polypeptide of the present invention can be carried out by conventional methods for protein purification and isolation such as ammonium sulfate precipitation, ion exchange chromatography (Mono Q, Q Sepharose or DEAE, etc.). Can be appropriately combined and performed. For example, when laminin containing the modified laminin α3 chain of the present invention accumulates in host cells, the host cells are collected by an operation such as centrifugation or filtration, and this is collected in an appropriate buffer solution (for example, at a concentration of 10 M or A buffer solution such as about 100 mM Tris buffer solution, phosphate buffer solution, HEPES buffer solution, MES buffer solution, etc. After being suspended in a pH range of 5.0 to 9.0, although it depends on the buffer solution to be used) , Destroy the cells by a method suitable for the host cell used,
The contents of the host cell are obtained by centrifugation. On the other hand, when the laminin-5 protein of the present invention is secreted outside the host cell, the host cell and the medium are separated by an operation such as centrifugation or filtration to obtain a culture filtrate. The host cell disruption solution or the culture filtrate can be used for protein purification and isolation as it is, or after ammonium sulfate precipitation and dialysis.
Examples of the purification / isolation method include the following methods. That is, 6x histidine or GS
When a tag such as T or maltose binding protein is attached, a method by affinity chromatography suitable for each commonly used tag can be mentioned. On the other hand, when the protein of the present invention is produced without adding such a tag, for example, a method by antibody affinity chromatography can be mentioned. In addition to this, a method of combining ion exchange chromatography, gel filtration, hydrophobic chromatography, isoelectric focusing chromatography and the like can also be mentioned.

【0072】なお、遺伝子工学的にG4−5ドメインを
削除したα3鎖を含むラミニン−6を発現させる方法を
記載したが、本明細書に記載した特徴を有する限り、人
為的に改変を施したものでなく天然に得られたタンパク
質であってもよい。あるいは、タンパク質レベルで天然
由来のタンパク質に改変を施したものでもよい。
Although a method for expressing laminin-6 containing an α3 chain in which the G4-5 domain has been deleted by genetic engineering has been described, it is artificially modified as long as it has the characteristics described in this specification. It may be a naturally-occurring protein instead of a protein. Alternatively, a naturally-occurring protein may be modified at the protein level.

【0073】細胞アッセイ 本発明の精製した短鎖型ラミニン−6による細胞への効
果を、いかなる適切なアッセイにおいて試験してもよ
い。アッセイには、細胞接着活性、細胞分散活性あるい
は細胞運動活性のアッセイが含まれる。
Cellular Assay The effect of the purified short chain laminin-6 of the present invention on cells may be tested in any suitable assay. Assays include cell adhesion activity, cell dispersal activity or cell motility activity assays.

【0074】細胞接着活性のアッセイは、従来記述され
ている方法(Mizushima,H.et al.,
1997、上述)に従って行うことができる。具体的に
は、後述する実施例2に記載したように、ラミニンα3
鎖の欠失突然変異体または野生型を含むラミニン−6を
様々な濃度で、細胞培養用プレートにコーティングし、
その後、細胞培養株、例えば、バッファロー系ラット肝
細胞株BRL、ヒトケラチノサイト細胞株HaCaT、
またはヒト線維肉腫細胞株HT1080を播種し、所定
時間後の細胞接着率を野生型ラミニンをコーティングし
た場合と比較することにより細胞接着活性を測定する。
The assay of cell adhesion activity is performed by the method described previously (Mizushima, H. et al.,
1997, supra). Specifically, as described in Example 2 described later, laminin α3
Laminin-6, including chain deletion mutants or wild type, was coated at varying concentrations on cell culture plates,
Thereafter, a cell culture line, for example, a buffalo rat liver cell line BRL, a human keratinocyte cell line HaCaT,
Alternatively, the human fibrosarcoma cell line HT1080 is seeded, and the cell adhesion activity is measured by comparing the cell adhesion rate after a predetermined time with the case of coating with wild-type laminin.

【0075】細胞分散活性のアッセイは、従来記述され
ている方法(Hirosaki,T.et al.,2
000、上述)に従って行うことができる。具体的に
は、後述する実施例2に記載したように、細胞培養プレ
ートに細胞懸濁液を播種後、精製したラミニンα3鎖の
変異体及び野生型を所定濃度で添加し、所定時間後の細
胞分散の程度を測定する。
The assay of cell-dispersing activity was carried out by the method described previously (Hirosaki, T. et al., 2).
000, above). Specifically, as described in Example 2 described later, after seeding the cell suspension on a cell culture plate, the purified laminin α3 chain variant and wild type were added at a predetermined concentration, and after a predetermined time, Measure the degree of cell dispersion.

【0076】細胞運動活性は、従来記述されている方法
(Hirosaki,T.et al.,2000、上
述)に従って行うことができる。具体的には、後述する
実施例にも記述したように、ラミニンα3鎖の変異体及
び野生型を様々な濃度で、細胞培養用プレートにコーテ
ィングし、その後、細胞培養株、例えば、バッファロー
系ラット肝細胞株BRL、ヒトケラチノサイトHaCa
T、またはヒト表皮細胞(keratinocyte)
を播種する。この際に、阻害アッセイとして、細胞の播
種に先立ち、異なるタイプのインテグリンに対するモノ
クローナル抗体を細胞と共に所定時間プレインキュベー
トしてもよい。細胞播種後、細胞運動を顕微鏡下で観察
し、細胞の移動距離を定量し、低速度撮影ビデオ機器を
使用して所定時間後の細胞移動の軌跡から移動速度を測
定することができる。前記細胞分散活性は、細胞運動活
性と関連する。
The cell motility activity can be determined by the method described previously (Hirosaki, T. et al., 2000, supra). Specifically, as described in Examples described later, laminin α3 chain mutants and wild type are coated at various concentrations on a plate for cell culture, and then, a cell culture strain, for example, a buffalo rat. Hepatocyte cell line BRL, human keratinocyte HaCa
T, or human epidermal cell (keratinocyte)
Sow. At this time, as an inhibition assay, monoclonal antibodies against different types of integrins may be pre-incubated with the cells for a predetermined time prior to seeding the cells. After cell seeding, cell movement can be observed under a microscope to quantify the cell migration distance, and the migration speed can be measured from the trajectory of cell migration after a predetermined time using a time-lapse video equipment. The cell dispersal activity is associated with cell motility activity.

【0077】ラミニン−6または短鎖型ラミニン−6を
含む組成物 本発明において、短鎖型ラミニン−6(LN6ΔG4−
5及びLN6ΔG3−5)は、野生型のラミニン−6
(LN6)と比較して、細胞接着機能及び/又は細胞運
動活性を促進する効果を有することが明らかになった。
Laminin-6 or short-chain laminin-6
In the present invention, a short-chain laminin-6 (LN6ΔG4-
5 and LN6ΔG3-5) are wild-type laminin-6.
It was revealed to have an effect of promoting cell adhesion function and / or cell motility activity as compared with (LN6).

【0078】具体的には、後述する実施例2に記載した
ように、G4−5ドメインを削除したα3鎖、β1鎖及
びγ1鎖の各サブユニットからなる短鎖型ラミニン−6
(LN6ΔG4−5)を用いて細胞接着活性を野生型
(LN6)と比較した場合、LN6ΔG4−5の半最大
活性のための有効濃度(ED50)はLN6よりも約1.
5倍高かった。これは、α3鎖のG4−5ドメインがL
N6への細胞接着活性の重要な部位を含むことを示して
いる。さらに、LN6ΔG4−5は、LN6よりも低濃
度で細胞分散活性を示し、その活性は約2倍であった。
Specifically, as described in Example 2 which will be described later, a short-chain laminin-6 composed of each subunit of α3 chain, β1 chain and γ1 chain in which G4-5 domain is deleted.
When comparing cell adhesion activity with wild type (LN6) using (LN6ΔG4-5), the effective concentration (ED 50 ) for half maximal activity of LN6ΔG4-5 is about 1.
It was 5 times higher. This is because the G4-5 domain of the α3 chain is L
It is shown to contain an important site of cell adhesion activity to N6. Furthermore, LN6ΔG4-5 exhibited cell-dispersing activity at a lower concentration than LN6, and its activity was about 2-fold.

【0079】よって、本発明は、LN6の欠失突然変異
体により細胞接着活性及び/又は細胞運動活性を独立し
て制御できることを初めて明らかにし、有効なLN6ま
たは短鎖型ラミニン−6を含む組成物を提供するもので
ある。本発明の組成物の好ましい一態様において、好ま
しくは短鎖型ラミニンをそれ以外のラミニンと混合し
て、より好ましくは短鎖型ラミニンをLN5と混合し
て、さらにより好ましくはmat−LN5と混合して含
んでも良い。最も好ましくは、短鎖型ラミニンを単独で
含む組成物である。
Therefore, the present invention has revealed for the first time that cell adhesion activity and / or cell motility activity can be independently regulated by a deletion mutant of LN6, and a composition containing an effective LN6 or short chain laminin-6. It is to provide things. In one preferred embodiment of the composition of the present invention, preferably short-chain laminin is mixed with other laminin, more preferably short-chain laminin is mixed with LN5, and even more preferably mat-LN5 is mixed. You may include it. Most preferably, it is a composition containing short-chain laminin alone.

【0080】LN5は、公知であり、α3鎖、β3鎖及
びγ2鎖から構成され、三量体として分泌される。LN
5は分泌後、α3鎖のうちG3及びG4ドメイン間でプ
ロテアーゼによって限定分解を受け、G4−5ドメイン
を有しない切断型(又は成熟型)のLN5(mat−L
N5)として産生される(Colognato,H.,
and Yurchenco,P.D.,2000、上
述)。LN5の配列は、Ryan,M.C.ら(上述)
によって開示され、当業者であれば、これら配列に基づ
いてLN5タンパク質を調製することができる。
LN5 is known and is composed of α3 chain, β3 chain and γ2 chain, and is secreted as a trimer. LN
After secretion, 5 undergoes limited degradation by a protease between the G3 and G4 domains of the α3 chain, and a truncated (or mature) LN5 (mat-L) having no G4-5 domain.
N5) (Colognato, H.,
and Yurchenco, P.M. D. , 2000, supra). The sequence of LN5 is described in Ryan, M .; C. Et al (above)
The LN5 protein can be prepared on the basis of these sequences, as disclosed by Dr.

【0081】LN6または短鎖型ラミニン−6を含む組
成物は、医薬用組成物として有用である。本発明の組成
物は、上皮組織、神経組織及び筋肉の機能を維持又は処
置に使用することができる。あるいは、皮膚移植、網膜
剥離及び表皮剥離性水痘症の治療、または入れ歯に利用
することができ、プラスチックや金属片などを体内に挿
入するとき、これらの表面をラミニンで処理し、細胞の
接着を促進することにも利用できる。一方、運動促進型
LN6である短鎖型ラミニン−6を含む組成物は、怪我
や手術後の傷の修復など細胞の移動が必要な過程におい
て使用することができ、また、神経の修復にも使用可能
である。
The composition containing LN6 or short-chain laminin-6 is useful as a pharmaceutical composition. The composition of the present invention can be used for maintaining or treating the functions of epithelial tissue, nerve tissue and muscle. Alternatively, it can be used for skin transplantation, treatment of retinal detachment and epidermolytic varicella, or for dentures. It can also be used to promote. On the other hand, a composition containing a short-chain laminin-6, which is a motion-promoting LN6, can be used in a process requiring cell migration such as repair of injury or wound after surgery, and also for repair of nerves. It can be used.

【0082】本発明の組成物は、in vivo、in
vitroまたはex vivoにおいて細胞接着機
能及び/又は細胞運動活性を制御し、とりわけ上皮細胞
の機能制御に基づく創傷治癒の促進に用いることができ
る。本発明の組成物は、移植器材、移植用の組織若しく
は細胞の培養器材、又は細胞移植の接着器材として使用
することができる。本発明の組成物は、これらに限定さ
れるものではないが、火傷等の治療を目的とした皮膚移
植、糖尿病治療を目的とした膵臓β細胞移植用に使用す
ることができる。上記移植用として使用する場合、組成
物に含まれるラミニン−6又はラミニン−6欠失突然変
異体の混合比を変化させてもよい。
The composition of the present invention is administered in vivo, in
It may be used for controlling cell adhesion function and / or cell motility activity in vitro or ex vivo, and especially for promoting wound healing based on regulation of epithelial cell function. The composition of the present invention can be used as a transplant device, a tissue or cell culture device for transplant, or an adhesive device for cell transplant. The composition of the present invention can be used for, but not limited to, skin transplantation for treating burns and the like and pancreatic β cell transplantation for treating diabetes. When used for transplantation, the mixing ratio of laminin-6 or laminin-6 deletion mutant contained in the composition may be changed.

【0083】本発明の組成物は、例えば、後述の実施例
2に記載したように、プラスチックプレートやシャーレ
等の培養器に固定し、標的細胞と接触させて使用するこ
とができる。培養器としては、例えば、96ウェルEL
ISAプレート(Costar、Cembridge、
MA、USA)等を使用することができるが、これらに
限定されるものではない。
The composition of the present invention can be used, for example, by immobilizing it on an incubator such as a plastic plate or a petri dish and bringing it into contact with target cells, as described in Example 2 below. As the incubator, for example, 96-well EL
ISA plate (Costar, Cembridge,
MA, USA) and the like can be used, but the present invention is not limited thereto.

【0084】本発明の組成物は、限定されるわけではな
いが、in vitroまたはexvivoで使用する
場合、好ましくは0.001μg/mlないし10μg
/mlの濃度で用いることができる。
The composition of the present invention is preferably, but not limited to, 0.001 μg / ml to 10 μg when used in vitro or ex vivo.
It can be used at a concentration of / ml.

【0085】本発明の組成物はまた、化粧用組成物とし
ても有用である。本発明の医薬用または化粧用の組成物
は、薬学的に受容可能な担体との混合物中に、α3鎖の
当該改変体を含むラミニンを治療上有効な量を含む。本
発明の組成物は、全身的にまたは局所的に、好ましくは
静脈内、皮下内、筋肉内に非経口的に投与し得る。非経
口的に投与可能なラミニン溶液の調剤は、pH、等張
性、安全性等を考慮し、当業者の技術的範囲内において
行い得る。
The composition of the present invention is also useful as a cosmetic composition. The pharmaceutical or cosmetic composition of the present invention comprises a therapeutically effective amount of laminin containing said variant of the α3 chain in a mixture with a pharmaceutically acceptable carrier. The composition of the invention may be administered systemically or locally, preferably intravenously, subcutaneously, intramuscularly and parenterally. Preparation of a laminin solution that can be parenterally administered can be performed within the technical scope of those skilled in the art in consideration of pH, isotonicity, safety and the like.

【0086】本発明の組成物の用量用法は、薬剤の作
用、例えば、患者の症状の性質及び/若しくは重度、体
重、性別、食餌、投与の時間、並びに他の臨床的作用を
左右する種々の因子を考慮し、診察する医師により決定
され得る。当業者は、これらの要素に基づき、本発明の
組成物の用量を決定することができる。
Dosage regimens of the compositions of the present invention may vary according to the effect of the drug, such as the nature and / or severity of the patient's symptoms, weight, sex, diet, time of administration, and other clinical effects. Factors can be considered and determined by the attending physician. One of ordinary skill in the art can determine the dose of the composition of the present invention based on these factors.

【0087】本発明の組成物は、さらに例えば皮膚移植
の際に移植体に適用し、生体内に移植することにより使
用することができる。具体的には、ラミニン−6単独ま
たはラミニン−6欠失突然変異体を含むラミニンを、直
接にまたは適当な支持体にコーティングしたもの、ある
いはコラーゲンゲルまたは生分解性ポリマーゲル内に埋
め込んだものを移植体として生体内に適用することによ
り、細胞接着機能及び/又は細胞運動活性を制御するこ
とが可能である。
The composition of the present invention can be used by further applying it to a transplant body at the time of skin transplantation and transplanting it in vivo. Specifically, laminin-6 alone or laminin containing a laminin-6 deletion mutant is directly or coated on an appropriate support, or is embedded in a collagen gel or a biodegradable polymer gel. When applied in vivo as a transplant, it is possible to control cell adhesion function and / or cell motility activity.

【0088】あるいは、ラミニン−6又はラミニン−6
欠失突然変異体をコードする遺伝子を組込んだ発現ベク
ターを作製し、生体内の標的部位で発現させるか、ある
いは当該発現ベクターを組込んだ細胞を標的部位に輸送
させることにより、標的部位の細胞接着機能及び/又は
細胞運動活性を制御することが可能である。
Alternatively, laminin-6 or laminin-6
By preparing an expression vector incorporating a gene encoding a deletion mutant and expressing it at a target site in vivo, or by transporting cells incorporating the expression vector to the target site, It is possible to control cell adhesion function and / or cell motility activity.

【0089】他の態様として、本発明の組成物を含む、
細胞接着活性及び/又は細胞運動活性を調節するための
キットとして使用することができる。キットは、所望に
より、細胞培養用容器、製造者の説明書等を含んでもよ
い。参考文献 1. Aumailley,M., and Rous
selle,P.:Laminins of the
dermo−epidermal junction.
Matrix Biol.,18,p.19−28
(1999) 2. Aumailley,M., and Krie
g,T.: Laminins: a family
of diverse multifunctiona
l molecules of basement m
embranes. J.Invest.Dermat
ol.,106,p.209−214(1996) 3. Boukamp,P., Petrussevs
ka,R.T., Breitkreutz,D.,
Hornung,J., Markham,A., a
nd Fusenig,N.E.: Normal k
eratinization in a sponta
neouly immortalized aneup
loid human keratinocyte c
ellline. J.Cell Biol.,10
6,p.761−771(1988) 4. Carter,W.G., Ryan,M.
C., and Gahr,P.J.: Epilig
rin,a new cell adhesionli
gand for integrin alpha 3
beta 1in epithelial base
ment membranes. Cell,65,
p.599−610(1991) 5. Champliaud,M.F., Lunst
rum,G.P.,Rousselle,P., Ni
shiyama,T., Keene,D.R., a
nd Burgeson,R.E.: Human a
mnioncontrains a novel la
minin variant, laminin 7,
which like laminin 6, co
valently associated with
laminin 5 topromote stabl
e epithelial−stromal atta
chemnt. J.Cell Biol.,132,
p.1189−1198(1996) 6. Colognato,H., and Yurc
henco,P.D.: Form and func
tion: the laminin family
of heterotrimers. Dev.Dy
n.,218,p.213−234(2000) 7. Engel,J.: Electron mic
roscopy ofextracellular m
atrix components. Methods
Enzymol.,245,p.469−488(1
994) 8. Gagnoux−Palacios,L., A
llegra,M.,Spirito,F., Pom
meret,O., Romero,C.,Orton
ne,J.P., and Meneguzzi,
G.: Theshort arm of the l
aminin gamma 2 chain play
s a pivotal role in the i
ncorporation of laminin 5
into the extracellular m
atrix and in cell adhesio
n. J.Cell Biol.,153,p.835
−850(2001) 9. Giancotti,F.G., and Ro
uslahti,E.: Integrin sign
aling. Science,285,p.1028
−1032(1999) 10. Giannelli,G., Falk−Ma
rzillier,J.Schiraldi,O.,
Stetler−Stevenson,W.G., a
nd Quaranta,V.: Induction
of cell migration by mat
rix metalloprotease−2 cle
avage of laminin−5. Scien
ce,277,p.225−228(1997) 11. Goldfinger,L.E., Stac
k,M.S., and Jones,J.C.: P
rocessing of laminin−5 an
d its functional conseque
nces: role of plasmin and
tissue−type plasminogen
activator. J.Cell Biol.,1
41,p.255−265(1998) 12. Grishkovskaya,I., Avv
akumov,G.V., Sklenar,G.,
Dales,D., Hammond,G.L., a
nd Mullre,Y.A.: Crystal s
tructure of human sex hor
mone−binding globulin: st
eroid transport by a lami
ninG−like domain. EMBO
J.,19,p.504−512(2000) 13. Hirosaki,T., Mizushim
a,H., Tsubota,Y., Moriyam
a,K., and Miyazaki,K.: St
ructural requirement of c
arboxyl−terminal globular
domains of laminin alpha
3 chain for promotion of
rapid cell adhesion and
migration by laminin−5.
J.Biol.Chem.,275,p.22495−
22502(2000) 14. Hohenester,E., Tisi,
D., Talts,J.F., and Timp
l,R.: The crystal structu
re of a laminin G−like mo
dule reveals the molecula
r basis of alpha−dystrogl
ycan binding to laminins,
perlecan, and agrin. Mo
l.Cell,4,p.783−792(1999) 15. Howe,A., Aplin,A.E.,
Alahari,S.K., and Julian
o,R.L.: Integrin signalin
g and cell growth contro
l. Curr.Opin. Cell Biol.,
10,p.220−231(1998) 16. Kikkawa,Y., Umeda,M.,
and Miyazaki,K.: Marked
stimulation of cell adhes
ion and motility by ladsi
n, a laminin−like scatter
factor. J.Biochem.(Toky
o),116,p.862−869(1994) 17. Koshikawa,N., Giannel
i,G., Cirulli,V., Miyazak
i,K., and Quaranata,V.: R
ole of cell surface metal
loprotease MT1−MMP in epi
thelial cell migration ov
er laminin−5. J.Cell Bio
l.,148,p.615−624(2000) 18. Koshikawa,N., Moriyam
a,K., Takamura,H., Mizush
ima,H., Nagashima,Y.,Yano
ma,S., and Miyazaki,K.: O
verexpression of laminin
gamma 2 chain monomer in
invading gastric carcinom
a cells. Cancer Res.,59,
p.5596−5601(1999) 19. Libby,R.T., Champliau
d,M.F., Claudepierre,T.,
Xu,Y., Gibbons,E.P.,Koch,
M., Burgeson,R.E., Hunte
r,D.D.,and Brunken,W.J.:
Laminin expression in adu
lt and developing retina
e: evidence of two novel
CNS laminins. J.Neurosc
i.,20,p.6517−6528(2000) 20. Marinokovich,M.P., Lu
nstrum,G.P., and Burgeso
n,R.E.: The anchoringfila
ment protein kalinin is s
ynthesized and secreted a
s a high molecularweight
precursor. J.Biol.Chem.,2
67,p.17900−17906,1992 21. Miyata,S., Miyagi,Y.,
Koshikawa,N., Nagashima,
Y., Kato,Y., Yasumitsu,
H., Hirahara,F., Misugi,
K., and Miyazaki,K.: Stim
ulation of cellular growt
h and adhesion to fibrone
ctin and vitronectin in c
ulture and tumorigenicity
in nude mice by overexpr
ession of trypsinogen in
human gastric cancer cell
s. Clin.Exp.Metastasis,1
6,p.613−622(1998) 22. 宮崎香、水島寛人、廣崎智巳「転移における癌
細胞と細胞外マトリックスの相互作用−特にラミニン5
の機能について」、実験医学、Vol.16、No.1
6(増刊)、第114頁−第119頁(1998) 23. Miyazaki,K., Kikkawa,
Y., Nakamura,A., Yasumits
u,H., and Umeda,M.: Alarg
e cell−adhesion scatter f
actorsecreted by human ga
stric carcinomacells. Pro
c.Natl.Acad.Sci.USA,90,p.
11767−11771(1993) 24. Mizushima,H., Koshika
wa,N., Moriyama,K., Takam
ura,H., Nagashima,Y.,Hira
hara,F., and Miyazaki,K.:
Widedistribution of lami
nin−5 gamma 2 chain in ba
sement membranes of vario
ushuman tissues. Horm.Re
s.,50(Suppl.2),p.7−14(199
8) 25. Mizushima,H., Takamur
a,H., Miyagi,Y., Kikkawa,
Y., Yamanaka,N., Yasumits
u,H., Misugi,K., and Miya
zaki,K.: Identification o
f integrin−dependent and
−independent cell adhesio
n domains in COOH−termina
l globular region of lami
nin−5 alpha 3 chain. Cell
Growth Differ.,8,p.979−98
7(1997) 26. Mizushima,H., Miyagi,
Y., Kikkawa,Y., Yamanaka,
N., Yasumitsu,H., Misugi,
K., and Miyazaki,K.: Diff
erential expression of la
minin−5/ladsin subunits i
n human tissues and cance
r lines and their inducti
on by tumor promoter and
growth factors. J.Bioche
m.(Tokyo),120,p.1196−1202
(1996) 27. Nielsen,P.K., Gho,Y.
S., Hoffman,M.P., Watanab
e,H., Makino,M., Nomizu,
M., and Yamada,Y.: Identi
ficationof a major hepari
n and cell bindingsite in
the LG4 module of the la
minin alpah 5 chain. J.Bi
ol.Chem.,275,p.14517−1452
3(2000) 28. Nomizu,M., Kim.,W.H.,
Yamamura,K., Utami,A., S
ong,S.Y., Otaka,A., Rolle
r,P.P., Kleinman,H.K., an
d Yamada,Y.: Identificati
on of cell bindingsites i
n the laminin alpha 1 cha
incarboxyl−terminal globu
lar domain bysystematic s
creening of synthetic pep
tides. J.Biol.Chem.,270,
p.20583−20590(1995) 29. Pikkaraine,T., Kallun
ki,T., andTryggvason,K.:
Human laminin B2 chain. C
omparison of the complete
aminoacid sequence with
the B1 chain reveals vari
ability in sequence homol
ogy between different str
uctural domains. J.Biol.C
hem.,263,p.6751−6758(199
8) 30. Rousselle,P., and Aum
ailley,M.:Kalinin is more
efficient than laminin i
n promoting adhesion of p
rimarykeratinocytes and s
ome other epithelial cell
s and has a different req
uirement for integrin rec
eptors. J.Cell Biol.,125,
p.205−214(1994) 31. Roussell,P., Lunstru
m,G.P., Keene,D.R., and B
urgeson,R.E.: Kalinin:an
epithelium−specific basem
ent membrane adhesion mol
ecule that is a component
of anchoring filaments.
J.Cell Biol.,114,p.567−57
6(1991) 32. Rudenko,G., Nguyen,
T., Chelliah,Y., Sudhof,
T.C., and Deisenhofer,J.:
The structure of the lig
and−binding domain of neu
rexin I beta: regulation
of LNS domain function by
alternative splicing. Ce
ll,269,p.93−101(1999) 33. Ryan,M.C., Tizard,R.,
VanDevanter,D.R., and Ca
rter,W.G.: Cloning ofthe
LamA3 gene encoding the a
lpha 3chain of the adhesi
ve ligand epiligrin. Expr
ession in wound repair.
J.Biol.Chem.,269,p.22779−
22787(1994) 34. Talts,J.F., Andac,Z.,
Gohring,W., Brancaccio,
A., and Timpl,R.: Binding
of the G domains of lami
nin alpha 1 and alpha 2 c
hains and perlecanto hepa
rin, sulfatides, alpha−sy
stroglycan and several ex
tracellular matrix protei
ns. EMBO J.,18,p.863−870
(1999) 35. Timpl,R., Tisi,D., Ta
lts,J.F.,Andac,Z., Sasak
i,T., and Hohenester,E.:
Structure and function of
laminin LG modules. Matr
ix Biol.,19,p.309−317(200
0) 36. Tisi,D., Talts,J.F.,
Timpl,R.,and Hohenester,
E.: Structure of theC−ter
minal laminin G−like doma
in pair of the laminin al
pha 2 chain harbouring bi
nding sites for alpha−dys
troglycan and heparin. EM
BO J.,19,p.1432−1440(200
0) 37. Tsubota,Y., Mizushim
a,H., Hirosaki,T., Higash
i,S., Yasumitsu,H., and M
iyazaki,K.: Isolation and
activity of proteolytic
fragment of laminin−5 alp
ha 3 chain. Biochem.Bioph
ys.Res.Commun.,278,p.614−
620(2000) 38. Verrando,P., Pisani,
A., and Ortonne,J.P.: The
new basement membraneant
igen recognized by the mo
noclonal antibody GB3 is
a large size glycoprotei
n: modulation of its expr
ession by retinoic acid.
Biochem.Biophys.Acta.,94
2,45−56(1988) 39. Vuolteenaho,R., Chow,
L.T., andTryggvason,K.: S
tructure of the human lam
inin B1 chain gene. J.Bio
l.Chem.,265,15611−15616(1
990)
In another embodiment, the composition of the present invention is included,
It can be used as a kit for regulating cell adhesion activity and / or cell motility activity. The kit may optionally include a cell culture container, manufacturer's instructions, and the like. References 1. Aumailley, M .; , And Rous
selle, P.P. : Laminins of the
dermo-epidemal junction.
Matrix Biol. , 18, p. 19-28
(1999) 2. Aumailley, M .; , And Krie
g, T. : Laminins: a family
of diversity multifunctiona
l molecules of base m
embranes. J. Invest. Dermat
ol. , 106, p. 209-214 (1996) 3. Boukamp, P .; , Petrussevs
ka, R.K. T. Breitkreutz, D .; ,
Hornung, J. et al. Markham, A .; , A
nd Fusenig, N.N. E. : Normal k
eratinization in a sponta
neoly immortalized anneup
loid human keratinocyte c
ellline. J. Cell Biol. , 10
6, p. 761-771 (1988) 4. Carter, W.C. G. Ryan, M .;
C. , And Gahr, P .; J. : Epilig
rin, a new cell adhesionli
gand for integrin alpha 3
beta 1 in epithelial base
ment membranes. Cell, 65,
p. 599-610 (1991) 5. Champliaud, M .; F. , Lunst
rum, G.R. P. Roussel, P .; , Ni
shiyama, T .; , Keene, D .; R. , A
nd Burgeson, R.M. E. : Human a
mionconstraints a novel la
minin variant, laminin 7,
while like laminin 6, co
valently associated with
laminin 5 topromote stabl
e epithelial-stromal atta
chemnt. J. Cell Biol. , 132,
p. 1189-1198 (1996) 6. Colognato, H .; , And Yurc
henco, P.H. D. : Form and func
section: the laminin family
of heterotrimers. Dev. Dy
n. 218, p. 213-234 (2000) 7. Engel, J .; : Electron mic
rocopy of extracellular cellar m
atrix components. Methods
Enzymol. 245, p. 469-488 (1
994) 8. Gagnaux-Palacios, L. et al. , A
llegra, M .; , Spirito, F .; , Pom
meret, O.M. , Romero, C .; , Orton
ne, J. P. , And Meneguzzi,
G. : Theshart arm of the l
amin gamma 2 chain play
sa personal roll in the i
n corporation of laminin 5
into the extracellular m
atrix and in cell adhesio
n. J. Cell Biol. , 153, p. 835
-850 (2001) 9. Giancotti, F.M. G. , And Ro
uslahti, E .; : Integrin sign
aling. Science, 285, p. 1028
-1032 (1999) 10. Giannelli, G .; , Falk-Ma
rzillier, J .; Schiraldi, O .; ,
Stettler-Stevenson, W.M. G. , A
nd Quaranta, V.N. : Instruction
of cell migration by mat
rix metalloprotease-2 cle
average of laminin-5. Scien
ce, 277, p. 225-228 (1997) 11. Goldfinger, L .; E. , Stac
k, M. S. , And Jones, J .; C. : P
processing of laminin-5 an
d it's functional conseque
nces: role of plasma and and
tissue-type plasmaminogen
activator. J. Cell Biol. , 1
41, p. 255-265 (1998) 12. Grishkovskaya, I .; , Avv
akumov, G .; V. Sklenar, G .; ,
Dales, D.D. Hammond, G .; L. , A
nd Mullre, Y .; A. : Crystals
structure of human sex hor
mone-binding globulin: st
eroid transport by a lami
ninG-like domain. EMBO
J. , 19, p. 504-512 (2000) 13. Hirosaki, T .; , Mizushima
a, H.A. , Tsubota, Y .; , Moriyam
a, K. , And Miyazaki, K .; : St
realistic requirement of c
arboxyl-terminal global
domains of laminin alpha
3 chain for promotion of
rapid cell adhesion and
migration by laminin-5.
J. Biol. Chem. 275, p. 22495-
22502 (2000) 14. Hohenester, E .; , Tisi,
D. Talts, J .; F. , And Timp
1, R.I. : The crystal structure
re of a laminin G-like mo
dule revs the molecule
r basis of alpha-dystrogl
ycan binding to laminins,
perlecan, and agrin. Mo
l. Cell, 4, p. 783-792 (1999) 15. Howe, A .; Aplin, A .; E. ,
Alahari, S .; K. , And Julian
o, R. L. : Integrin signalin
g and cell growh contro
l. Curr. Opin. Cell Biol. ,
10, p. 220-231 (1998) 16. Kikkawa, Y .; Umeda, M .; ,
and Miyazaki, K .; : Marked
stimulation of cell adhes
ion and mobility by ladsi
n, a laminin-like scatter
factor. J. Biochem. (Tokyo
o), 116, p. 862-869 (1994) 17. Koshikawa, N .; , Giannel
i, G. Cirulli, V .; , Miyazak
i, K. , And Quaranana, V .; : R
ole of cell surface metal
loprotase MT1-MMP in epi
the cell cell migration ov
er laminin-5. J. Cell Bio
l. , 148, p. 615-624 (2000) 18. Koshikawa, N .; , Moriyam
a, K. , Takamura, H .; , Mizush
ima, H .; , Nagashima, Y .; , Yano
ma, S.M. , And Miyazaki, K .; : O
verexpresion of laminin
gamma 2 chain monomer in
invading gastric carcinom
a cells. Cancer Res. , 59,
p. 5596-5601 (1999) 19. Libby, R .; T. , Champliau
d, M. F. Claudepierre, T .; ,
Xu, Y. , Gibbons, E .; P. , Koch,
M. Burgeon, R .; E. , Hunte
r, D. D. , And Brunken, W .; J. :
Laminin expression in adu
lt and developing retina
e: evidence of two novel
CNS laminins. J. Neurosc
i. , 20, p. 6517-6528 (2000) 20. Marinokovich, M .; P. , Lu
nstrum, G.N. P. , And Burgeso
n, R.N. E. : The anchoring fila
ment protein kalinin is s
ynthesized and secreted a
sa high molecular weight
precursor. J. Biol. Chem. , 2
67, p. 17900-17906, 1992 21. Miyata, S .; , Miyagi, Y .; ,
Koshikawa, N .; , Nagashima,
Y. , Kato, Y. , Yasumitsu,
H. Hirahara, F .; , Misugi,
K. , And Miyazaki, K .; : Stim
ulation of cellular growt
h and adhesion to fibrone
ctin and vitronectin in c
ultra and tumorigenicity
in nude mice by overexpr
session of trypsinogen in
human gastric cancer cell
s. Clin. Exp. Metastasis, 1
6, p. 613-622 (1998) 22. Kaori Miyazaki, Hiroto Mizushima, Tomomi Hirosaki "Interaction between cancer cells and extracellular matrix in metastasis-especially laminin 5
Function of ", Experimental Medicine, Vol. 16, No. 1
6 (Supplement), pp. 114-119 (1998) 23. Miyazaki, K .; , Kikkawa,
Y. , Nakamura, A .; , Yasumits
u, H. , And Umeda, M .; : Alarg
e cell-adhesion scatter f
actorprotected by human ga
tric carcinomacells. Pro
c. Natl. Acad. Sci. USA, 90, p.
11767-11771 (1993) 24. Mizushima, H .; , Koshika
wa, N.W. Moriya, K .; , Takam
ura, H .; , Nagashima, Y .; , Hira
hara, F .; , And Miyazaki, K .; :
Wide distribution of lami
nin-5 gamma 2 chain in ba
semen membranes of vario
ushuman diseases. Horm. Re
s. , 50 (Suppl. 2), p. 7-14 (199
8) 25. Mizushima, H .; , Takamur
a, H.A. , Miyagi, Y .; , Kikkawa,
Y. , Yamanaka, N .; , Yasumits
u, H. , Misugi, K .; , And Miya
zaki, K .; : Identification o
f integrin-dependent and
-Independent cell adhesio
n domains in COOH-termina
l global region of lami
nin-5 alpha 3 chain. Cell
Growth Differ. , 8, p. 979-98
7 (1997) 26. Mizushima, H .; , Miyagi,
Y. Kikkawa, Y .; , Yamanaka,
N. , Yasumitsu, H .; , Misugi,
K. , And Miyazaki, K .; : Diff
erential expression of la
minin-5 / ladsin subunits i
n human issues and cancel
r lines and ther induci
on by tumor promoter and
growth factors. J. Bioche
m. (Tokyo), 120, p. 1196-1202
(1996) 27. Nielsen, P.M. K. , Gho, Y.
S. Hoffman, M .; P. , Watanab
e, H .; , Makino, M .; , Nomizu,
M. , And Yamada, Y .; : Identity
ficationof a major hepari
n and cell binding site in
the LG4 module of the la
minin alpah 5 chain. J. Bi
ol. Chem. 275, p. 14517-1452
3 (2000) 28. Nomiz, M .; , Kim. , W. H. ,
Yamamura, K .; , Utami, A .; , S
ong, S.N. Y. , Otaka, A .; , Rolle
r, P. P. Kleinman, H .; K. , An
d Yamada, Y. : Identificati
on of cell bindings i
n the laminin alpha 1 cha
incarboxyl-terminal globu
lar domain bysystematics
creating of synthetic pepper
tides. J. Biol. Chem. , 270,
p. 20583-20590 (1995) 29. Pickkarine, T .; , Kallun
ki, T .; , AndTryggvason, K .; :
Human laminin B2 chain. C
omparison of the complete
aminoacid sequence with
the B1 chain reveals vari
availability in sequence homol
ody between different str
rectual domains. J. Biol. C
hem. , 263, p. 6751-6758 (199
8) 30. Rousselle, P.M. , And Aum
airley, M.A. : Kalinin is more
efficient than laminin i
n promoting admission of p
rimarykeratinocytes and s
ome other epithelial cell
s and has a different req
unity for integran rec
eptors. J. Cell Biol. , 125,
p. 205-214 (1994) 31. Roussel, P.M. , Lunstru
m, G.M. P. , Keene, D .; R. , And B
Urgeson, R .; E. : Kalinin: an
epithelium-specific basem
ent membrane adhesion mol
e that that is a component
of anchoring filaments.
J. Cell Biol. 114, p. 567-57
6 (1991) 32. Rudenko, G .; , Nguyen,
T. , Celiah, Y .; , Sudhof,
T. C. , And Deisenhofer, J .; :
The structure of the lig
and-binding domain of neu
rexin I beta: regulation
of LNS domain function by
alternate splicing. Ce
11, 269, p. 93-101 (1999) 33. Ryan, M .; C. Tizzard, R .; ,
Van Devanter, D.M. R. , And Ca
rter, W.A. G. : Cloning of the
LamA3 gene encoding the a
lpha 3 chain of the adhesi
ve ligand epiglirin. Expr
session in wound report.
J. Biol. Chem. , 269, p. 22779-
22787 (1994) 34. Talts, J. et al. F. , Andac, Z. ,
Gohring, W.M. , Blancaccio,
A. , And Timpl, R .; : Binding
of the G domains of lami
nin alpha 1 and alpha 2 c
heins and perlecanto hepa
rin, sulfatides, alpha-sy
stroglycan and general ex
tracellular matrix protei
ns. EMBO J.M. , 18, p. 863-870
(1999) 35. Timpl, R.A. Tisi, D .; , Ta
Its, J. et al. F. , Andac, Z .; , Sasak
i, T. , And Hohenester, E .; :
Structure and function of
laminin LG modules. Matr
ix Biol. , 19, p. 309-317 (200
0) 36. Tisi, D.M. Talts, J .; F. ,
Timpl, R.A. , And Hohenester,
E. : Structure of the C-ter
minal laminin G-like domain
in pair of the laminin al
pha 2 chain harvesting bi
nding sites for alpha-dys
troglycan and heparin. EM
BO J. , 19, p. 1434-1440 (200
0) 37. Tsubota, Y. , Mizushima
a, H.A. , Hirosaki, T .; , Higash
i, S. , Yasumitsu, H .; , And M
iyazaki, K .; : Isolation and
activity of proteolytic
fragment of laminin-5 alp
ha 3 chain. Biochem. Bioph
ys. Res. Commun. , 278, p. 614-
620 (2000) 38. Verrando, P .; , Pisani,
A. , And Ortonne, J .; P. : The
new basement membrane
igen recognized by the mo
noclonal antibody GB3 is
a large size glycoprotei
n: modulation of its expr
session by retinoic acid.
Biochem. Biophys. Acta. , 94
2, 45-56 (1988) 39. Vuolteenaho, R .; , Chow,
L. T. , AndTryggvason, K .; : S
structure of the human lam
inin B1 chain gene. J. Bio
l. Chem. , 265, 15611-15616 (1
990)

【0090】[0090]

【実施例】以下、実施例によって本発明を説明するが、
実施例は例証のためのものであり、本発明を制限するも
のではない。本発明の範囲は、請求の範囲の記載に基づ
いて判断される。さらに、当業者は本明細書の記載に基
づいて、容易に修正、変更を加えることが可能である。
EXAMPLES The present invention will be described below with reference to examples.
The examples are illustrative and not limiting of the invention. The scope of the present invention should be determined based on the claims. Furthermore, those skilled in the art can easily make corrections and changes based on the description of the present specification.

【0091】材料及び方法 本発明の実施例においては、特に明記しない限り、下記
の材料及び方法に随って行った。
Materials and Methods In the examples of the present invention, unless otherwise stated, the following materials and methods were followed.

【0092】(1)抗体等の材料 ヒト ラミニンα3鎖に対するマウス モノクローナル
抗体(LSα3c4)及びγ2鎖に対するマウス モノ
クローナル抗体(D4B5)は、以前に開示された方法
により調製した(Hirosaki,T.et a
l.,J.Biol.Chem.,275:22495
−22502,2000; Mizushima,H.
et al.,Horm.Res.,2:7−14,1
998)。ラミニンα3のG4ドメインに対するウサギ
ポリクローナル抗体は、本発明者の研究室において調
製した(Tsubota,Y.et al.,Bioc
hem.Biophys.Res.Commun.,2
78:614−620,2000; Hirosak
i,T.et al.,2000、上述)。使用した他
の抗体は下記より入手した:ヒト ラミニンβ3に特異
的なマウス モノクローナル抗体、Transduct
ion Laboratories(Lexingto
n,KY);ラミニンβ1鎖に対するラット モノクロ
ーナル抗体(VNR147)、ヒトラミニンγ1鎖に対
するマウス モノクローナル抗体(2E8)及びヒト
インテグリンα5サブユニットに対するマウス モノク
ローナル抗体(P1D6)、Chemicon Int
ernational Inc.(Temecula,
CA);インテグリンα2サブユニットに対するマウス
モノクローナル抗体(P1D6)、α3サブユニット
に対する抗体(P1B5)、及びβ1サブユニットに対
する抗体(P4C10)、Life Technolo
gies;ヒト インテグリンα6に対するラット モ
ノクローナル抗体(G0H3)、PharMingen
(San Diego,CA)。
(1) Materials such as Antibodies Mouse monoclonal antibody against human laminin α3 chain (LSα3c4) and mouse monoclonal antibody against γ2 chain (D4B5) were prepared by the method previously disclosed (Hirosaki, T. et a.
l. J. Biol. Chem. , 275: 22495
-22502, 2000; Mizushima, H .;
et al. , Horm. Res. , 2: 7-14,1
998). Rabbit polyclonal antibodies against the G4 domain of laminin α3 were prepared in our laboratory (Tsubota, Y. et al., Bioc.
hem. Biophys. Res. Commun. , 2
78: 614-620, 2000; Hirosak.
i, T. et al. , 2000, supra). Other antibodies used were obtained from: Human laminin β3 specific mouse monoclonal antibody, Transduct.
Ion Laboratories (Lexingto
n, KY); rat monoclonal antibody against laminin β1 chain (VNR147), mouse monoclonal antibody against human laminin γ1 chain (2E8) and human
Mouse monoclonal antibody (P1D6) against integrin α5 subunit, Chemicon Int
international Inc. (Temecula,
CA); a mouse monoclonal antibody against the integrin α2 subunit (P1D6), an antibody against the α3 subunit (P1B5), and an antibody against the β1 subunit (P4C10), Life Technology.
genes; rat monoclonal antibody against human integrin α6 (G0H3), PharMingen
(San Diego, CA).

【0093】マウスEHS−ラミニン(ラミニン−1;
LN1)、ヒト ラミニン−10/11(LN10/1
1)、及びヒト 血漿フィブロネクチンはTransd
uction Laboratories、及びIwa
ki Glass(東京、日本)からそれぞれ購入し
た。
Mouse EHS-Laminin (Laminin-1;
LN1), human laminin-10 / 11 (LN10 / 1
1), and human plasma fibronectin is Transd
action Laboratories, and Iwa
Purchased from ki Glass (Tokyo, Japan) respectively.

【0094】(2)細胞培養物細胞と細胞培養 ヒト線維肉腫細胞株HT1080はJCRB(Japa
nese Collection of Resear
ch Bioresources)細胞バンク(東京、
日本)から得た。バッファロー系ラット(buffal
o rat)肝由来表皮細胞株BRLは、従来の研究に
おいて用いられる(Miyazaki,K.et a
l.,Proc.Natl.Acad.Sci.U.
S.A.,90:11767−11771,1993;
Hirosaki,T.et al.,2000、上
述)。自然発生的に不死化したヒトケラチノサイト細胞
株HaCaT(Boukamp,P.et al.,
J.Cell Biol.,106:761−771,
1988)は、N.E.Fusenig博士(Deut
sches Krebsforshungszentr
um,Heidelberg,Germany)より贈
呈された。形質導入細胞のインテグリン発現プロフィー
ルは、アッセイ前にフローサイトメトリーによって検証
した。
(2) Cell culture cells and cell culture The human fibrosarcoma cell line HT1080 was prepared using JCRB (Japan).
nese Collection of Rear
ch Bioresources) cell bank (Tokyo,
I got it from Japan. Buffalo rat
The rat-derived epidermal cell line BRL has been used in previous studies (Miyazaki, K. et a.
l. , Proc. Natl. Acad. Sci. U.
S. A. , 90: 11767-11771, 1993;
Hirosaki, T .; et al. , 2000, supra). Spontaneously immortalized human keratinocyte cell line HaCaT (Boukamp, P. et al.,
J. Cell Biol. , 106: 761-771,
1988), N. E. Dr. Fusenig (Deut
sches Krebsforshungszentr
um, Heidelberg, Germany). The integrin expression profile of transduced cells was verified by flow cytometry before the assay.

【0095】全ての種類の細胞は、10%ウシ胎児血清
(FBS)、ペニシリン及び硫酸ストレプトマイシンを
添加したダルベッコ変法イーグル培地:ハムF12培地
の1:1混合培地(DME/F12)(Life Te
chnologies,Gaithersburg,M
D)中に維持した。
All cell types were prepared as follows: Dulbecco's modified Eagle medium: Ham's F12 medium 1: 1 mixed medium (DME / F12) (Life Te) supplemented with 10% fetal bovine serum (FBS), penicillin and streptomycin sulfate.
chnologies, Gaithersburg, M
Maintained in D).

【0096】馴化培地の調製 10%FBSを含むDME/F12培地において、HT
1080及び形質導入したHT1080細胞をコンフル
エントになるまで増殖させ、それらの培養物をCa2+
びMg2+不含リン酸緩衝生理食塩水(PBS(−))で
洗浄し、次いで血清不含培地中で一晩インキュベートし
た。次いで、これらの培地を新鮮な血清不含培地で置き
換え、2日間インキュベートした。生じた馴化培地(C
M)を回収し、遠心によって清澄化して純水に対して透
析した。透析したCMを凍結乾燥させ、1/50容積の
PBS(−)に溶解した。
Preparation of conditioned medium HT was added to DME / F12 medium containing 10% FBS.
1080 and transduced HT1080 cells were grown to confluence and their cultures washed with Ca 2+ and Mg 2+ free phosphate buffered saline (PBS (−)) then serum free medium. Incubated overnight. These media were then replaced with fresh serum-free media and incubated for 2 days. The resulting conditioned medium (C
M) was recovered, clarified by centrifugation and dialyzed against pure water. The dialyzed CM was lyophilized and dissolved in 1/50 volume of PBS (-).

【0097】実施例1 ラミニン−6及び短鎖型ラミニ
ン−6の発現及び精製 ラミニン−6はラミニン−5と共通のα3鎖を有し、ラ
ミニン−5では、G3及びG4ドメインの間でタンパク
分解作用を受けて細胞外へと分泌され(Tsubot
a,Y.et al.,2000、上述)、一方、ラミ
ニン−6はタンパク分解作用をほとんど受けずに分泌さ
れる(図1)。これまで、α3鎖を有するラミニン−6
の生理活性については明らかになっていない。ラミニン
−5の活性化にはG4−5ドメインの切断が重要である
ことが知られているため、ラミニン−6の生理活性を調
べるためにG4−5を切断した短鎖型ラミニン−6の調
製を試みた。
Example 1 Laminin-6 and short chain laminin
Expression and Purification of Nin-6 Laminin-6 has an α3 chain in common with laminin-5, and in laminin-5, it is secreted extracellularly by undergoing proteolytic action between G3 and G4 domains (Tsubot).
a, Y. et al. , 2000, supra), while laminin-6 is secreted with almost no proteolytic action (Fig. 1). So far, laminin-6 having α3 chain
The physiological activity of is not clear. Since it is known that cleavage of G4-5 domain is important for activation of laminin-5, preparation of short-chain laminin-6 in which G4-5 was cleaved in order to investigate physiological activity of laminin-6. Tried.

【0098】ヒト ラミニンα3鎖の全長のcDNA
(LS/CX WT:配列番号1のヌクレオチド1−5
139)及び以下の2つのG4−5及びG3−5欠失突
然変異体を各々発現するための発現ベクターを構築し
た:G4−5を欠失したΔG4−5(配列番号2のアミ
ノ酸残基1−1365);及びG3−5を欠失したΔG
3−5(配列番号2のアミノ酸残基1−1153)。
Full-length cDNA of human laminin α3 chain
(LS / CX WT: nucleotides 1-5 of SEQ ID NO: 1
139) and the following two G4-5 and G3-5 deletion mutants, respectively, were constructed: ΔG4-5 deleted from G4-5 (amino acid residue 1 of SEQ ID NO: 2). -1365); and ΔG lacking G3-5
3-5 (amino acid residues 1-1153 of SEQ ID NO: 2).

【0099】(1)発現プラスミドの作製 具体的には、本発明の短鎖型ラミニン−6をコードする
発現プラスミドを、以下のように作製した。
(1) Preparation of expression plasmid Specifically, an expression plasmid encoding the short chain laminin-6 of the present invention was prepared as follows.

【0100】先ず、ヒトの胃癌細胞のcDNAライブラ
リー(Mizushima,H.et al.,J.B
iochem.(Tokyo),120:1196−1
202,1996)から、ヒト ラミニンα3鎖をコー
ドするcDNAクローンLS/CXを単離した。前記c
DNAクローンを鋳型とし、TaKaRa ExTaq
(宝酒造(株)、京都、日本)を用いてポリメラーゼ連
鎖反応(PCR)を行い、種々の組換えラミニン変異体
をコードする発現プラスミドを作製した。使用したPC
Rプライマーは以下の通りである(下線は制限部位を示
す;1)及び3):BamHI、2)ないし4):Xb
aI):
First, a human gastric cancer cell cDNA library (Mizushima, H. et al., J. B.
iochem. (Tokyo), 120: 1196-1
202, 1996), a cDNA clone LS / CX encoding human laminin α3 chain was isolated. The c
TaKaRa ExTaq using DNA clone as a template
Polymerase chain reaction (PCR) was performed using (Takara Shuzo Co., Ltd., Kyoto, Japan) to prepare expression plasmids encoding various recombinant laminin mutants. PC used
The R primers are as follows (underlines indicate restriction sites; 1) and 3): BamHI, 2) to 4): Xb.
aI):

【0101】[0101]

【化1】 1)G3−5’ 5’−CAG GAT CCA GTG GTG TCG TTA GA−3’ (配列番号:7) 1125-Ser Gly Val Val Arg-1129 (配列番号1のヌクレオチド3373−3387、センス) 2)G3X−3’ 5’−GGT CTA GAT CAT CCA TGA TTG GCC TG−3’ (配列番号:8) 1365-Gly His Asn Ala Gln-1361 (配列番号1のヌクレオチド4081−4095、アンチセンス) 3)G2−5’ 5’−CAG GAT CCG TTC TGA GCT TGT AC−3’ (配列番号:9) 951-Val Leu Ser Leu Tyr-955 (配列番号1のヌクレオチド2851−2865、センス) 4)G2X−3’ 5’−CCT CTA GAT CAG GAG AAT GAG GCA GA−3’ (配列番号:10) 1153-Ser Phe Ser Ala Ser-1149 (配列番号1のヌクレオチド3445−3459、アンチセンス) 各々のアンチセンスプライマーは、終止コドン(TG
A)とそれに続くXbaI部位(TCTAGA、下線)
を含んでいる。プライマー1及び2はLN6ΔG4−
5、及びプライマー3及び4はLN6ΔG3−5の作製
に使用した。PCR産物をT−Easyベクター(Pr
omega、Madison、WI、USA)にライゲ
ートし、配列決定によって検証した。
Embedded image 1) G3-5 ′ 5′-CA G GAT CC A GTG GTG TCG TTA GA-3 ′ (SEQ ID NO: 7) 1125-Ser Gly Val Val Arg-1129 (nucleotides 3373-3387 of SEQ ID NO: 1) sense) 2) G3X-3 '5' -GG T CTA GA T CAT CCA TGA TTG GCC TG-3' ( SEQ ID NO: 8) 1365-Gly His Asn Ala Gln-1361 ( SEQ ID NO: 1 nucleotides 4081-4095 , Antisense) 3) G2-5 '5'-CA G GAT CC G TTC TGA GCT TGT AC-3' (SEQ ID NO: 9) 951-Val Leu Ser Leu Tyr-955 (nucleotides 2851 to 2865 of SEQ ID NO: 1) , Sense) 4) G2X-3 ′ 5′-CC T CTA GA T CAG GAG AAT GAG GCA GA-3 ′ (SEQ ID NO: 10) 1153-Ser Phe Ser Ala Ser-1149 (nucleotides 3445-3459 of SEQ ID NO: 1) , Antisense) Each antisense primer has a stop codon (TG
A) followed by XbaI site (TCTAGA, underlined)
Is included. Primers 1 and 2 are LN6ΔG4-
5 and primers 3 and 4 were used to make LN6ΔG3-5. The PCR product was added to the T-Easy vector (Pr
(Omega, Madison, WI, USA) and verified by sequencing.

【0102】次いで、pGEM−G3Xに由来するCl
aI/SphI断片、及びpGEM−G2Xに由来する
XhoI/SphI断片をそれぞれLS/CXのCla
I/SacI部位にライゲートし、それぞれ、pGEM
−LS/CXの対応する制限部位に挿入することにより
pGEM−ΔG4−5及びpGEM−ΔG3−5を作製
した。
Then, Cl derived from pGEM-G3X was used.
The aI / SphI fragment and the XhoI / SphI fragment derived from pGEM-G2X were respectively clas of LS / CX.
Ligated to the I / SacI site, and pGEM
PGEM-ΔG4-5 and pGEM-ΔG3-5 were created by inserting into the corresponding restriction sites of -LS / CX.

【0103】さらに、発現ベクターを調製するため、続
いて、各々の欠失突然変異体のXbaIインサートを、
pEF−BOS−CITE NEOの改変バージョンで
ある哺乳動物発現ベクターpEF−BOS−CITE
NEO2(Miyata,S.et al.,Cli
n.Exp.Metastasis,16:613−6
22,1998)のXbaI部位にクローン化した。
In addition, the XbaI insert of each deletion mutant was subsequently prepared in order to prepare an expression vector.
Mammalian expression vector pEF-BOS-CITE which is a modified version of pEF-BOS-CITE NEO
NEO2 (Miyata, S. et al., Cli.
n. Exp. Metastasis, 16: 613-6.
22, 1998) at the XbaI site.

【0104】(2)各種ラミニン−6タンパク質の発現 (1)で作製したヒト ラミニンα3鎖の野生型(W
T)、G4−5ドメイン欠失突然変異体及びG3−5ド
メイン欠失突然変異体をコードする種々の発現ベクター
を、ラミニンβ1及びγ1鎖は発現するがα3鎖は発現
しないヒト線維肉腫細胞株HT1080(Mizush
ima,H.et al.,1996、上述)に公知の
リン酸カルシウム法によって形質導入し、500μg/
mlのG418(Gibco)で選択した。次いで、欠
失突然変異を含む各組換えラミニン−6タンパク質を、
モレキュラーシーブ・クロマトグラフィー、ゼラチンカ
ラム・クロマトグラフィー及び抗ラミニンα3鎖抗体を
用いるイムノアフィニティー・クロマトグラフィーの組
み合せによって精製した。精製した組換えタンパク質
を、抗ラミニンα3、β1及びγ1鎖抗体を用いるウェ
スタンブロット法並びに銀染色によって分析した(図1
及び図2)。
(2) Expression of various laminin-6 proteins Wild type (W of human laminin α3 chain prepared in (1))
T), various expression vectors encoding G4-5 domain deletion mutants and G3-5 domain deletion mutants, human fibrosarcoma cell line expressing laminin β1 and γ1 chains but not α3 chains HT1080 (Mizush
ima, H .; et al. , 1996, supra) by the known calcium phosphate method, 500 μg /
Selected with ml G418 (Gibco). Each recombinant laminin-6 protein containing the deletion mutation is then
Purified by a combination of molecular sieve chromatography, gelatin column chromatography and immunoaffinity chromatography using anti-laminin α3 chain antibody. The purified recombinant protein was analyzed by Western blotting using anti-laminin α3, β1 and γ1 chain antibodies and silver staining (FIG. 1).
And Figure 2).

【0105】具体的には、先ずHT1080/WT形質
導入細胞が分泌するラミニン−6タンパク質を、血清不
含の培養上清から従来報告されるものと本質的に同じ方
法によって精製した(Hirosaki,T.,et
al.,2000、上述)。血清不含培養上清は、ロー
ラーボトル(Becton Dickinson、Fr
anklin Lakes、NJ、USA)を使用し
て、上述の通りに調製した。回収した培養上清を80%
飽和で硫酸アンモニウム沈殿に処した。簡単には、HT
1080/WT細胞の無血清の馴化培地は、セファロー
ス4Bカラム(Amersham Pharmacia
Biotech)上のモレキュラーシーブ・クロマト
グラフィー、次いでヘパリン−セファロースカラムによ
って分画した。ヘパリンカラムに結合したタンパク質
は、0.5M NaClで溶出し、その後、1.0M
NaClで溶出した。各画分は、ゼラチン−セファロー
スカラムを通すことによりフィブロネクチンを除去し、
次いで、2種のイムノアフィニティークロマトグラフィ
ーに供した。
Specifically, first, laminin-6 protein secreted by HT1080 / WT transduced cells was purified from serum-free culture supernatant by essentially the same method as previously reported (Hirosaki, T. ., Et
al. , 2000, supra). Serum-free culture supernatant was transferred to roller bottles (Becton Dickinson, Fr.
was prepared as described above using anklin Lakes, NJ, USA). 80% of collected culture supernatant
Subjected to ammonium sulfate precipitation at saturation. HT
Serum-free conditioned medium of 1080 / WT cells was a Sepharose 4B column (Amersham Pharmacia).
Fractionation by molecular sieve chromatography on Biotech) followed by a heparin-sepharose column. Protein bound to the heparin column was eluted with 0.5M NaCl and then 1.0M
Elute with NaCl. Fibronectin was removed from each fraction by passing through a gelatin-sepharose column,
Then, it was subjected to two types of immunoaffinity chromatography.

【0106】ラミニン−6タンパク質を単離するため
に、ヘパリンカラムからの1.0MNaCl溶出物を1
0倍に希釈し、NaCl濃度を減少させ、その後、Q−
セファロースHPLCカラム(Amersham Ph
armacia Biotech)に通した。0.3及
び0.4M NaCl間で溶出したものをD4B5−セ
ファロースカラムに通し、同時に発現されるラミニン−
5タンパク質を除去した。最後に、結合していないもの
をLSα3c4−セファロースイムノアフィニティーカ
ラムに通した。結合したラミニン−6は、0.05%ト
リフルオロ酢酸で溶出し、すぐに中和した。ラミニンα
3鎖のG4−5ドメインを欠失したLN−6突然変異体
(LN6Δ4−5)及びG3−5ドメインを欠失したL
N−6突然変異体(LN6Δ3−5)は、それぞれHT
1080/ΔG4−5及びHT1080/ΔG3−5細
胞の馴化培地から、LN−6に関して上述した方法と本
質的に同様の方法によって精製した。
To isolate the laminin-6 protein, the 1.0 M NaCl eluate from the heparin column was added to the 1 column.
Dilute 0-fold to reduce NaCl concentration, then
Sepharose HPLC column (Amersham Ph
Armacia Biotech). Those eluted between 0.3 and 0.4 M NaCl were passed through a D4B5-Sepharose column and coexpressed with laminin-.
5 proteins were removed. Finally, the unbound one was passed through a LSα3c4-Sepharose immunoaffinity column. Bound laminin-6 was eluted with 0.05% trifluoroacetic acid and immediately neutralized. Laminin α
LN-6 mutant (LN6Δ4-5) lacking the G4-5 domain of 3 chains and L lacking the G3-5 domain
N-6 mutant (LN6Δ3-5) was HT
Purified from conditioned medium of 1080 / ΔG4-5 and HT1080 / ΔG3-5 cells by essentially the same method as described above for LN-6.

【0107】SDS−ポリアクリルアミドゲル電気泳動
(SDS−PAGE)及びイムノブロッティングは以前
に記載したように実行した(Hirosaki,T.e
tal.,2000、上述)。二次元電気泳動解析は、
以前に報告した方法に従って行った(Koshikaw
a,N.et al.,Cancer Res.,5
9:5596−5601,1999)。一次元SDS−
PAGEは4% ポリアクリルアミノドゲルディスクゲ
ル(直径2mm、長さ70mm)上で非還元条件下で行
った。電気泳動後、5% 2−メルカプトエタノールを
含むSDSサンプルバッファー中でゲルを室温で15分
間インキュベートし、6% ポリアクリルアミドスラブ
ゲル(幅85mm、厚さ1mm、長さ70mm)上に置
き、次いで二次元SDS−PAGEを開始した。続いて
スラブゲル上で分離したタンパク質をイムノブロティン
グ法に供した。
SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblotting were performed as previously described (Hirosaki, T. e.
tal. , 2000, supra). Two-dimensional electrophoresis analysis
It was carried out according to the method previously reported (Koshikawa).
a, N.A. et al. , Cancer Res. , 5
9: 5596-5601, 1999). One-dimensional SDS-
PAGE was performed on non-reducing conditions on a 4% polyacrylaminodo gel disc gel (2 mm diameter, 70 mm length). After electrophoresis, the gel was incubated in SDS sample buffer containing 5% 2-mercaptoethanol for 15 minutes at room temperature, placed on a 6% polyacrylamide slab gel (width 85 mm, thickness 1 mm, length 70 mm) and then two-dimensional. SDS-PAGE was started. Subsequently, the proteins separated on the slab gel were subjected to the immunoblotting method.

【0108】ヒト ラミニンα3鎖のcDNAをヒト線
維細胞株HT1080に形質導入した場合、外因性のα
3鎖は内因性のβ3及びγ2鎖と集合してα3β3γ2
のLN5ヘテロ三量体を生産することが以前に見出され
ている(Hirosaki,T.et al.,200
0、上述)。HT1080形質転換体(HT1080/
WT)の馴化培地は190kDa及び160kDaのα
3鎖の両方を含む。160kDaのα3鎖は、G3及び
G4ドメイン(Tsubota,Y.et al.,2
000、上述)の間でタンパク分解されたものである。
LN−5に関しては、160kDaのα3鎖を有するも
ののみが馴化培地から精製された。ラミニンβ3鎖及び
γ2鎖に対する抗体は、馴化培地から160kDaのα
3鎖を沈降するが、190kDaのものは沈降しない。
これは、LN5以外のα3を含むラミニンの存在を示唆
している。
When human laminin α3 chain cDNA was transduced into human fiber cell line HT1080, exogenous α
The 3 chain assembles with the endogenous β3 and γ2 chains to form α3β3γ2
Were previously found to produce the LN5 heterotrimer of H. hirosaki (Hirosaki, T. et al., 200).
0, above). HT1080 transformant (HT1080 /
The conditioned medium of (WT) is 190 kDa and 160 kDa α
Includes both 3 chains. The 160 kDa α3 chain is associated with the G3 and G4 domains (Tsubota, Y. et al., 2
000, above).
For LN-5, only those with the 160 kDa α3 chain were purified from the conditioned medium. Antibodies to the laminin β3 chain and γ2 chain were isolated from conditioned medium at an α of 160 kDa.
Three chains are precipitated, but one with 190 kDa does not.
This suggests the presence of laminin containing α3 other than LN5.

【0109】本発明においては、HT1080/WT細
胞の馴化培地を、二次元SDS−PAGEによって解析
し、次にラミニンα3鎖及びγ2鎖に対する抗体でイム
ノブロットした。一次元目の非還元SDS−PAGE上
で、α3鎖は少なくとも異なる4つの分子サイズ、即
ち、1,000kDa以上(ゲルの一番上)、600k
Da、450kDa及び400kDaとして分離された
(図1A)。450kDa及び400kDaのα3鎖は
γ2鎖と結合し、これらはそれぞれ150kDaと10
5kDaのγ2を有するLN5体であることを示した
(図1B)。これらの結果は、LN5分子においては、
190kDaのα3鎖が完全に160kDaの成熟型に
変換したことを示す。
In the present invention, conditioned medium of HT1080 / WT cells was analyzed by two-dimensional SDS-PAGE and then immunoblotted with antibodies against laminin α3 and γ2 chains. On the first dimension non-reducing SDS-PAGE, the α3 chain has at least four different molecular sizes, namely 1,000 kDa or more (top of gel), 600 k
It was isolated as Da, 450 kDa and 400 kDa (FIG. 1A). The 450 kDa and 400 kDa α3 chains bind to the γ2 chain, which is 150 kDa and 10 respectively.
It was shown to be an LN5 body having γ2 of 5 kDa (FIG. 1B). These results show that in the LN5 molecule,
It shows that the 190 kDa α3 chain was completely converted to the mature form of 160 kDa.

【0110】一方、600kDa複合体におけるα3鎖
はγ2鎖と結合しなかった(図1B)。二次元目の還元
SDS−PAGE上で、この位置におけるα3鎖は19
0kDaの大きいスポットと160kDaの小さいスポ
ットに分離した。これらの結果は、190kDaのα3
鎖がLN6(α3β1γ1)又はLN7(α3β2γ
1)として存在し得ることを示唆した。この結果はま
た、ラミニンα3鎖のタンパク質分解プロセシングがH
T1080/WT細胞においてLN5に優先的に起こる
ことを意味する。
On the other hand, the α3 chain in the 600 kDa complex did not bind to the γ2 chain (FIG. 1B). On the second dimension reduced SDS-PAGE, the α3 chain at this position is 19
It was separated into a large spot of 0 kDa and a small spot of 160 kDa. These results show that the 190 kDa α3
The chain is LN6 (α3β1γ1) or LN7 (α3β2γ)
It was suggested that it could exist as 1). This result also indicates that the proteolytic processing of the laminin α3 chain is H
It means that it occurs preferentially to LN5 in T1080 / WT cells.

【0111】ラミニンα3鎖を含む600kDaの複合
体を同定するために、本発明者は、HT1080/WT
の馴化培地からラミニンの異性体の単離を試みた。馴化
培地を、分子ふるいクロマトグラフィーによって分画
し、続いてヘパリンアフィニティークロマトグラフィー
によって分画した。190kDa及び160kDaのα
3鎖の両方がヘパリンカラムに結合したが、190kD
aのα3鎖は1.0MNaClで溶出され、一方、16
0kDaのα3鎖は主として0.5M NaClで溶出
された(データは示さず)。ヘパリンへの親和性の相違
は、α3鎖のG4−5断片がヘパリンカラムに強固に結
合するという本発明者の以前の観察と一致していた(T
subota,Y.et al.,2000、上述)。
溶出した190kDaのα3鎖をさらにアニオン交換H
PLCによって精製し、その後、抗ラミニンγ2抗体カ
ラムに通してLN5を除去した。最後に、抗ラミニンα
3抗体を結合させたイムノアフィニティーカラムによっ
て精製した。
To identify a 600 kDa complex containing the laminin α3 chain, the present inventor used HT1080 / WT.
An attempt was made to isolate isomers of laminin from the conditioned medium of. The conditioned medium was fractionated by molecular sieve chromatography followed by heparin affinity chromatography. 190 kDa and 160 kDa α
Both 3 chains bound to the heparin column, but 190 kD
The α3 chain of a was eluted with 1.0 M NaCl, while 16
The 0 kDa α3 chain was eluted mainly with 0.5 M NaCl (data not shown). The difference in affinity for heparin was consistent with our previous observation that the G4-5 fragment of the α3 chain bound tightly to the heparin column (T
subota, Y .; et al. , 2000, supra).
The eluted 190 kDa α3 chain was further subjected to anion exchange H
Purified by PLC, then passed through an anti-laminin γ2 antibody column to remove LN5. Finally, anti-laminin α
It was purified by an immunoaffinity column to which 3 antibody was bound.

【0112】精製したラミニン−6を、SDS−PAG
E及び5種類の抗体を用いてイムノブロティングするこ
とによって解析した。単離・精製したタンパク質は、非
還元条件下で、マウス ラミニン1の下方にある約60
0kDaの単一バンドとして泳動された(図2A)。還
元SDS−PAGEにおいて、600kDaのラミニン
が220、210及び190kDaの分子量を有する3
つのバンドに分かれ(図2B)、これらのバンドはそれ
ぞれラミニンβ1鎖、γ1鎖及びα3鎖として同定され
た(図2C)。抗β3抗体及び抗γ2抗体はいずれとも
反応しなかった(図2C)。これらの結果は、精製した
600kDaのラミニンがラミニン−6であることを示
している。抗γ2抗体を用いたイムノアフィニティーク
ロマトグラフィーによって精製したLN5は、160k
Daのα3鎖体のみを有し、さらに135kDaのβ3
鎖及び150/105kDaのγ2鎖(以下、本明細書
中、成熟型LN5、「mat−LN5」と言及すること
がある)によって構成される(図2B、C)。
The purified laminin-6 was treated with SDS-PAG.
Analysis was performed by immunoblotting using E and 5 kinds of antibodies. The isolated and purified protein is about 60 below the mouse laminin 1 under non-reducing conditions.
It migrated as a single band of 0 kDa (Fig. 2A). Laminin of 600 kDa has a molecular weight of 220, 210 and 190 kDa in reduced SDS-PAGE 3.
It was divided into two bands (Fig. 2B), and these bands were respectively identified as laminin β1, γ1 and α3 chains (Fig. 2C). Neither the anti-β3 antibody nor the anti-γ2 antibody reacted (Fig. 2C). These results indicate that the purified 600 kDa laminin is laminin-6. LN5 purified by immunoaffinity chromatography using anti-γ2 antibody has
It has only the α3 chain of Da, and β3 of 135 kDa.
Chain and a 150/105 kDa γ2 chain (hereinafter sometimes referred to as mature LN5, “mat-LN5”) (FIG. 2B, C).

【0113】本発明者はまた、ヘパリンカラムの0.5
M NaCl溶出物から160kDaのα3鎖を有する
少量のLN6を精製した。この160kDaのα3鎖は
G4ドメインに対する抗体と反応しなかった(データ示
さず)。160kDaのα3鎖は、G3及びG4ドメイ
ンの間で切断され、mat−LN5の160kDaのα
3鎖と同じであることを示している。そこで、本発明者
は、HT1080/ΔG4−5細胞の馴化培地から高収
率で精製することを試みた。LN−6に関する上記と同
様の精製法によって、G4及びG5ドメインを欠損した
ラミニン6突然変異体(LN6ΔG4−5)を精製し
た。さらに、非還元条件下のSDS−PAGEによって
解析すると、220kDaのβ1鎖、210kDaのγ
1鎖、及び160kDaのα3鎖から構成されていた
(図2B、C)。また、本発明者は、HT1080/Δ
G3−5細胞からG3、G4及びG5を欠損したLN6
突然変異体(LN6ΔG3−5)を調製した。実施例2 ラミニン−6の欠失突然変異体の細胞接着活
性、細胞分散活性及び細胞運動活性 実施例1で調製したLN6、LN6ΔG4−5、及びL
N6ΔG3−5を様々な濃度でHT1080細胞及びB
RL細胞に対する細胞接着活性、細胞分散活性及び細胞
運動活性について調べた。
The present inventor has also determined that heparin column 0.5
A small amount of LN6 with a 160 kDa α3 chain was purified from the M NaCl eluate. The 160 kDa α3 chain did not react with antibodies to the G4 domain (data not shown). The 160 kDa α3 chain is cleaved between the G3 and G4 domains, and the 160 kDa α of mat-LN5.
It is shown to be the same as the 3 chain. Therefore, the present inventor tried to purify the HT1080 / ΔG4-5 cells from the conditioned medium in high yield. A laminin 6 mutant lacking the G4 and G5 domains (LN6ΔG4-5) was purified by the same purification method as described above for LN-6. Furthermore, when analyzed by SDS-PAGE under non-reducing conditions, 220 kDa β1 chain and 210 kDa γ
It was composed of one chain and an α3 chain of 160 kDa (Fig. 2B, C). In addition, the present inventor has found that HT1080 / Δ
L36 lacking G3, G4 and G5 from G3-5 cells
A mutant (LN6ΔG3-5) was prepared. Example 2 Cell Adhesion Activity of Deletion Mutants of Laminin-6
, Cell dispersal activity and cell motility activity LN6, LN6ΔG4-5 and L prepared in Example 1
N6ΔG3-5 at various concentrations in HT1080 cells and B
The cell adhesion activity, cell dispersion activity and cell motility activity on RL cells were examined.

【0114】細胞接着アッセイ 細胞接着アッセイを従来記述される通りに行った(Hi
rosaki,T.et al.,2000、上述)。
簡単に述べると、96ウェルのマイクロタイタープレー
ト(Corning Costar,Cembridg
e,Acton,MA,USA)の各ウェルを50μl
の基質溶液(0.05〜50μg/mlのLN6、LN
6ΔG4−5、LN6ΔG3−5、mat−LN5、マ
ウスLN1、LN10/11及びフィブロネクチンのC
2+及びMg2+不含リン酸緩衝生理食塩水(Dulbe
cco’s PBS(−);8g/l NaCl,0.
2g/l KCl,1.15g/l Na2HPO4
0.2g/l KH2PO4))を用いて4℃で一晩コー
トした。これらのプレートを、37℃で1.5時間、P
BS(−)中の1.2%(w/v)ウシ血清アルブミン
200μl/ウェルでブロックした。細胞をトリプシン
処理後、血清不含DMEM/F12培地で1回洗浄し、
血清不含培地に2×105細胞/mlの細胞密度で懸濁
させ、100μlの細胞懸濁液をプレートに撒いた。3
7℃でインキュベーションした後、接着細胞を2.5%
グルタルアルデヒドで固定し、0.005% ヘキス
ト33342−0.001% Triton X−10
0で1.5時間染色した。プレートの各ウェルの蛍光強
度をCytoFluor2350フルオロメーター(M
illipore,Bedford,MA,USA)を
用いて測定した。空のウェルに対応するブランク値を自
動的に差し引いた。
Cell Adhesion Assay The cell adhesion assay was performed as previously described (Hi.
rosaki, T .; et al. , 2000, supra).
Briefly, 96-well microtiter plates (Corning Costar, Cembridge).
e, Acton, MA, USA) 50 μl of each well
Substrate solution (0.05-50 μg / ml LN6, LN
6ΔG4-5, LN6ΔG3-5, mat-LN5, mouse LN1, LN10 / 11, and fibronectin C
a 2+ and Mg 2+ free phosphate buffered saline (Dulbe
cco's PBS (−); 8 g / l NaCl, 0.
2 g / l KCl, 1.15 g / l Na 2 HPO 4 ,
0.2 g / l KH 2 PO 4 )) was coated overnight at 4 ° C. Plate these plates at 37 ° C. for 1.5 hours, P
Blocked with 200 μl / well of 1.2% (w / v) bovine serum albumin in BS (−). After treating the cells with trypsin, the cells were washed once with serum-free DMEM / F12 medium,
The cells were suspended in a serum-free medium at a cell density of 2 × 10 5 cells / ml, and 100 μl of the cell suspension was spread on the plate. Three
2.5% of adherent cells after incubation at 7 ° C
Fixed with glutaraldehyde, 0.005% Hoechst 33342-0.001% Triton X-10
Stained at 0 for 1.5 hours. The fluorescence intensity of each well of the plate was measured by CytoFluor 2350 Fluorometer (M
illipore, Bedford, MA, USA). Blank values corresponding to empty wells were automatically subtracted.

【0115】図3は、異なる濃度でマトリックスタンパ
ク質をプレコートしたプラスチッククプレートへのHT
1080細胞(図3A)及びBRL細胞(図3B)の接
着活性を示す。mat−LN5、LN6及びLN6ΔG
4−5は細胞接着を効率的に促進したが、LN6ΔG3
−5はほとんど促進しなかった。LN6ΔG4−5とL
N6ΔG3−5の間での細胞接着活性の有意な相違は、
G3ドメインはLN6がインテグリンに高親和的な結合
するために不可欠であることを示す。細胞接着活性の半
最大活性のための有効濃度(ED50)を比較すると、L
N6ΔG4−5はLN6よりも約1.5倍低かった。
FIG. 3 shows HT on plastic cuprates precoated with matrix proteins at different concentrations.
Shows the adhesive activity of 1080 cells (Figure 3A) and BRL cells (Figure 3B). mat-LN5, LN6 and LN6ΔG
4-5 efficiently promoted cell adhesion, but LN6ΔG3
-5 did not promote much. LN6ΔG4-5 and L
A significant difference in cell adhesion activity between N6ΔG3-5 was
The G3 domain indicates that LN6 is essential for high affinity binding to integrins. Comparing the effective concentrations (ED 50 ) for half maximal cell adhesion activity, L
N6ΔG4-5 was about 1.5 times lower than LN6.

【0116】各基質上に接着したHT1080細胞の形
態を観察した(図4)。mat−LN5、LN6及びL
N6ΔG4−5は、前記で示したようにHT1080細
胞の高い接着活性を促進するにもかかわらず、接着した
細胞の形態はLN6及びLN6ΔG4−5において異な
っていた。対照としたmat−LN5上では、細胞接着
を開始した20分後には、著しい膜ラッフリングが細胞
の周囲で見られ、細胞表面突起が60分でも形成してい
た。LN6ΔG4−5上での細胞においても十分に伸展
をしていた。これとは対称的に、LN6基質上では、H
T1080細胞はほとんど伸展せず、60分でさえほと
んど極性せずに顕著なスパイク形成又は小さな突起を発
現していた。これらの結果は、ラミニンα3鎖のプロセ
シングが細胞接着活性においてLN6を活性型に変換し
ていることを示す。
The morphology of HT1080 cells adhered on each substrate was observed (FIG. 4). mat-LN5, LN6 and L
Although N6ΔG4-5 promotes high adhesive activity of HT1080 cells as shown above, the morphology of adherent cells was different in LN6 and LN6ΔG4-5. On mat-LN5 as a control, 20 minutes after initiation of cell adhesion, significant membrane ruffling was observed around the cells, and cell surface protrusions were formed even at 60 minutes. Sufficient spreading was also observed in cells on LN6ΔG4-5. In contrast to this, on LN6 substrates, H
T1080 cells barely spread and expressed marked spike formation or small protrusions with little polarity even at 60 minutes. These results indicate that processing of the laminin α3 chain converts LN6 to its active form in cell adhesion activity.

【0117】細胞分散アッセイ 精製したラミニン−6及びラミニン−6欠失突然変異体
によるBRL細胞の分散を、従来報告した通りにアッセ
イした(Hirosaki,T.et al.,200
0、上述)。簡単に述べると、500μlの細胞懸濁液
(DME/F12+1%FBS中に7,000細胞/ウ
ェル)を24ウェルプレート(Sumibe Medi
cal、東京、日本)の各ウェルに播種し、次いで、基
質溶液(最終濃度10〜200ng/mlのLN6、L
N6ΔG4−5、LN6ΔG3−5及びmat−LN5
のCa2+及びMg2+不含リン酸緩衝生理食塩水)を培養
中に直接添加し、37℃でインキュベートした。2日後
にこれらの細胞をギムザ染色法により染色し、細胞総数
及び分散した単一の細胞数を3つの無作為に選択した顕
微鏡視野内で測定した。細胞分散の程度は各視野内で単
一細胞のパーセンテージで示した。
Cell Dispersion Assay Dispersion of BRL cells by purified laminin-6 and laminin-6 deletion mutants was assayed as previously reported (Hirosaki, T. et al., 200.
0, above). Briefly, 500 μl of cell suspension (7,000 cells / well in DME / F12 + 1% FBS) was added to a 24-well plate (Sumibe Medi).
cal, Tokyo, Japan) and then seeded with substrate solution (final concentration 10-200 ng / ml LN6, L
N6ΔG4-5, LN6ΔG3-5 and mat-LN5
Ca 2+ and Mg 2+ free phosphate buffered saline) was added directly into the culture and incubated at 37 ° C. Two days later, the cells were stained by Giemsa staining and the total number of cells and the number of dispersed single cells were determined in three randomly selected microscopic fields. The degree of cell dispersion was expressed as the percentage of single cells within each field.

【0118】あるいは、24ウェルプレートを各種の基
質溶液(0.01〜1μg/ml)のLN6、LN6Δ
G4−5、LN6ΔG3−5及びmat−LN5のCa
2+及びMg2+不含リン酸緩衝生理食塩水)でコートし、
細胞を播種した後、上記と同様に培養2日後の細胞分散
の程度を測定した。
Alternatively, a 24-well plate was subjected to various substrate solutions (0.01 to 1 μg / ml) of LN6 and LN6Δ.
Ca of G4-5, LN6ΔG3-5 and mat-LN5
2+ and Mg 2+ free phosphate buffered saline),
After seeding the cells, the degree of cell dispersion after 2 days of culture was measured in the same manner as above.

【0119】LN5は他の細胞外マトリックスタンパク
質よりも非常に強力に多くの細胞株の細胞分散及び移動
を促進する(Miyazaki,K.et al.,1
993、上述; Kikkawa,Y.et al.,
J.Biochem.,116:862−829,19
94)。これらの活性を2つのLN6体及びmat−L
N5についてアッセイした。各ラミニンを1% FBS
を含む培地のBRL細胞の培養物に直接添加した場合
に、典型的な細胞分散がmat−LN5を用いた場合の
み観察された(図5)。mat−LN5は、10ng/
mlより少ない濃度で細胞分散を示したが、一方、LN
6およびLN6ΔG4−5はともに200ng/mlで
さえ示さなかった(図6A)。
LN5 promotes cell dispersal and migration of many cell lines much more potently than other extracellular matrix proteins (Miyazaki, K. et al., 1).
993, supra; Kikkawa, Y .; et al. ,
J. Biochem. , 116: 862-829, 19
94). These activities were confirmed by two LN6 bodies and mat-L.
Assayed for N5. 1% FBS for each laminin
When added directly to a culture of BRL cells in a medium containing C, typical cell dispersal was only observed with mat-LN5 (FIG. 5). mat-LN5 is 10 ng /
It showed cell dispersion at concentrations less than ml, while LN
Both 6 and LN6ΔG4-5 did not show even 200 ng / ml (FIG. 6A).

【0120】細胞分散活性を様々な濃度のラミニンでプ
レコートしたプラスチックプレート上でアッセイしたと
ころ、mat−LN5は著しい細胞分散を促進した(図
6B)。LN6ΔG4−5は弱い細胞分散活性を誘導す
るが、LN6ではほとんど誘導しなかった(図6B)。
Cell-dispersion activity was assayed on plastic plates precoated with various concentrations of laminin, and mat-LN5 promoted significant cell-dispersion (FIG. 6B). LN6ΔG4-5 induced a weak cell-dispersing activity, but LN6 hardly induced it (FIG. 6B).

【0121】細胞運動アッセイ 上述のように24ウェルプレートを500μl/ウェル
の基質溶液(0.01〜5μg/ml、LN6、LN6
ΔG4−5及びmat−LN5のリン酸緩衝生理食塩水
(Dulbecco’s PBS(−);8g/l N
aCl,0.2g/l KCl,1.15g/l Na
2HPO4,0.2g/l KH2PO4))でコートした
後、1ml/ウェルのウシ血清アルブミンでブロックし
た。500μlの細胞懸濁液(DME/F12+1%F
BS中に7,000細胞/ウェル)を各ウェルに播種
し、37℃で1時間インキュベートして細胞を基質上に
付着させた。細胞の移動を、従来報告されるように(H
irosaki,T.etal.,2000、上述)、
低速度撮影ビデオ機器(ソニー、東京、日本)を使用し
て37℃で10時間監視した。細胞移動速度を各細胞の
核の移動を追跡することによって定量し、その移動距離
をビデオ・マイクロメーター(VM−30、オリンパ
ス、東京、日本)で測定した。ビデオ顕微鏡を用いてラ
ミニンをコートしたプレート上でのBRL細胞の移動速
度を測定した結果、mat−LN5は最も高い細胞移動
を誘導したが、LN6は細胞移動を誘導しなかった(図
6C)。LN6ΔG4−5は培養液中への投与量に依存
して細胞移動を誘導したが、mat−LN5よりはその
程度が低かった。これは、LN6ΔG4−5はmat−
LN5と同様にG4−5を欠損したα3サブユニットを
有するにもかかわらずに、LN6ΔG4−5による細胞
移動はmat−LN5よりかなり低いことを示してい
る。細胞運動活性を比較すると、LN6ΔG4−5はL
N6よりも約2倍高かった。実施例3 ラミニン−6欠失突然変異体とインテグリン
との相互作用 LN5と2つのLN6体(LN6及びLN6ΔG4−
5)のインテグリン要求性について、機能遮蔽性抗イン
テグリン抗体を用いて調べた。阻害アッセイのために、
細胞接着アッセイで調製した細胞懸濁液を機能遮断性抗
インテグリン抗体またはヘパリンと共に室温で20分間
プレインキュベートした。100μlの細胞懸濁液をプ
レートの各ウェルに加えた後、37℃で1時間インキュ
ベートした。非接着細胞を穏やかに攪拌することによっ
て除去し、接着細胞を2.5%(v/v)グルタルアル
デヒドで固定した。次いで、0.0005% ヘキスト
33342−0.001% Triton X−100
を用いて、室温で1.5時間染色した。プレートの各ウ
ェルの蛍光強度をCytoFluor2350蛍光光度
計(Millipore、Bedford、MA、US
A)で測定した。空のウェルに対応するブランク値を自
動的に差し引いた。
Cell Motility Assay 24-well plates were plated at 500 μl / well of substrate solution (0.01-5 μg / ml, LN6, LN6 as described above).
Phosphate buffered saline of ΔG4-5 and mat-LN5 (Dulbecco's PBS (−); 8 g / l N
aCl, 0.2 g / l KCl, 1.15 g / l Na
2 HPO 4 , 0.2 g / l KH 2 PO 4 )) and then blocked with 1 ml / well of bovine serum albumin. 500 μl cell suspension (DME / F12 + 1% F
Each well was seeded with 7,000 cells / well in BS) and incubated at 37 ° C. for 1 hour to allow cells to adhere to the substrate. Cell migration, as previously reported (H
irosaki, T .; et al. , 2000, above),
Time-lapse video equipment (Sony, Tokyo, Japan) was used to monitor for 10 hours at 37 ° C. The cell migration rate was quantified by following the migration of nuclei of each cell, and the migration distance was measured with a video micrometer (VM-30, Olympus, Tokyo, Japan). As a result of measuring the migration rate of BRL cells on the plate coated with laminin using a video microscope, mat-LN5 induced the highest cell migration, but LN6 did not induce cell migration (FIG. 6C). LN6ΔG4-5 induced cell migration depending on the dose in the culture medium, but to a lesser extent than mat-LN5. This is because LN6ΔG4-5 is mat-
Despite having a G4-5 deficient α3 subunit like LN5, we show that cell migration by LN6ΔG4-5 is significantly lower than that of mat-LN5. Comparing cell motility, LN6ΔG4-5 showed L
It was about twice as high as N6. Example 3 Laminin-6 Deletion Mutant and Integrin
Interaction with LN5 and two LN6 bodies (LN6 and LN6ΔG4-
The integrin requirement of 5) was examined using a function-shielding anti-integrin antibody. For inhibition assays,
Cell suspensions prepared in the cell adhesion assay were preincubated with function blocking anti-integrin antibody or heparin for 20 minutes at room temperature. 100 μl of cell suspension was added to each well of the plate and then incubated at 37 ° C. for 1 hour. Non-adherent cells were removed by gentle agitation and adherent cells were fixed with 2.5% (v / v) glutaraldehyde. Then 0.0005% Hoechst 33342-0.001% Triton X-100
Was used for staining for 1.5 hours at room temperature. The fluorescence intensity of each well of the plate was measured by CytoFluor 2350 Fluorometer (Millipore, Bedford, MA, US).
It was measured in A). Blank values corresponding to empty wells were automatically subtracted.

【0122】以前に報告したように(Mizushim
a,H.et al.,CellGrowth Dif
fer.,8:979−987,1997)、mat−
LN5の細胞接着活性は抗インテグリンα3抗体によっ
て有意にブロックされ、抗インテグリンβ1抗体によっ
てほぼ完全にブロックされた。抗インテグリンα6抗体
による細胞接着活性の効果は小さかったが、抗インテグ
リンα3抗体の存在において細胞接着を有効にブロック
した(図7A)。これとほとんど同じ結果がLN6(図
7B)及びLN6ΔG4−5(図7C)について観察さ
れた。HT1080細胞は細胞表面にインテグリンβ4
サブユニット発現しない(Carter,W.G.et
al.,Cell,65:599−610,199
1)。したがって、この結果は、インテグリンα3β1
及びα6β1がHT1080細胞におけるラミニンに対
するそれぞれ第一及び第二(又は補助的な)受容体であ
ることを意味する。これらの結果は、LN5がα3鎖の
C末端球状領域を介してこれらのインテグリンに結合す
るという事実と一致する(Hirosaki,T.et
al.,2000、上述; Mizushima,
H.et al.,1997、上述)。LN6のα3鎖
のうちG4及びG5ドメインの存否はLN6のインテグ
リン結合特異性に実質的に何ら影響を与えていないとい
える。
As previously reported (Mizushim
a, H.A. et al. , CellGrowth Dif
fer. , 8: 979-987, 1997), mat-
The cell adhesion activity of LN5 was significantly blocked by the anti-integrin α3 antibody and almost completely blocked by the anti-integrin β1 antibody. Although the effect of anti-integrin α6 antibody on cell adhesion activity was small, it effectively blocked cell adhesion in the presence of anti-integrin α3 antibody (FIG. 7A). Almost the same result was observed for LN6 (FIG. 7B) and LN6ΔG4-5 (FIG. 7C). HT1080 cells have integrin β4 on the cell surface
No subunit expression (Carter, WG et al.
al. , Cell, 65: 599-610, 199.
1). Therefore, this result shows that the integrin α3β1
And α6β1 are the first and second (or accessory) receptors for laminin in HT1080 cells, respectively. These results are consistent with the fact that LN5 binds to these integrins via the C-terminal globular region of the α3 chain (Hirosaki, T. et.
al. , 2000, supra; Mizushima,
H. et al. , 1997, supra). It can be said that the presence or absence of the G4 and G5 domains in the α3 chain of LN6 has substantially no effect on the integrin binding specificity of LN6.

【0123】[0123]

【配列表】 SEQUENCE LISTING <110> Japan Science and Technology Corporation <120> Composition comprising Laminin-6 for regulating cellular adhesion activity and/or cell migration activity <130> 012796 <160> 10 <210> 1 <211> 5433 <212> DNA <213> Human <220> <221> CDS <222> (1)...(5139) <300> <301> Ryan,M.C., Tizard,R., VanDevanter,D.R. and Carter,W.G. <302> Cloning of the LamA3 gene encoding the alpha 3 chain of the adhesive ligand epiligrin. Expression in wound repair <303> JOURNAL J. Biol. Chem. <304> 269 <305> 36 <306> 22779-22787 <307> 1994 <400> 1 atg gga tgg ctg tgg atc ttt ggg gca gcc ctg ggg cag tgt ctg 45 Met Gly Trp Leu Trp Ile Phe Gly Ala Ala Leu Gly Gln Cys Leu 1 5 10 15 ggc tac agt tca cag cag caa agg gtg cca ttt ctt cag cct ccc 90 Gly Tyr Ser Ser Gln Gln Gln Arg Val Pro Phe Leu Gln Pro Pro 20 25 30 ggt caa agt caa ctg caa gcg agt tat gtg gag ttt aga ccc agc 135 Gly Gln Ser Gln Leu Gln Ala Ser Tyr Val Glu Phe Arg Pro Ser 35 40 45 cag ggt tgt agc cct gga tac tat cgg gat cat aaa ggc ttg tat 180 Gln Gly Cys Ser Pro Gly Tyr Tyr Arg Asp His Lys Gly Leu Tyr 50 55 60 acc gga cgg tgt gtt ccc tgc aat tgc aac gga cat tca aat caa 225 Thr Gly Arg Cys Val Pro Cys Asn Cys Asn Gly His Ser Asn Gln 65 70 75 tgc cag gat ggc tca ggc ata tgt gtt aac tgt cag cac aac acc 270 Cys Gln Asp Gly Ser Gly Ile Cys Val Asn Cys Gln His Asn Thr 80 85 90 gcg gga gag cac tgt gaa cgc tgc cag gag ggc tac tat ggc aac 315 Ala Gly Glu His Cys Glu Arg Cys Gln Glu Gly Tyr Tyr Gly Asn 95 100 105 gcc gtc cac gga tcc tgc agg gcc tgc cca tgt cct cac act aac 360 Ala Val His Gly Ser Cys Arg Ala Cys Pro Cys Pro His Thr Asn 110 115 120 agc ttt gcc act ggc tgt gtg gtg aat ggg gga gac gtg cgg tgc 405 Ser Phe Ala Thr Gly Cys Val Val Asn Gly Gly Asp Val Arg Cys 125 130 135 tcc tgc aaa gct ggg tac aca gga aca cag tgt gaa agg tgt gca 450 Ser Cys Lys Ala Gly Tyr Thr Gly Thr Gln Cys Glu Arg Cys Ala 140 145 150 ccg gga tat ttc ggg aat ccc cag aaa ttc gga ggt agc tgc caa 495 Pro Gly Tyr Phe Gly Asn Pro Gln Lys Phe Gly Gly Ser Cys Gln 155 160 165 cca tgc agt tgt aac agc aat ggc cag ctg ggc agc tgt cat ccc 540 Pro Cys Ser Cys Asn Ser Asn Gly Gln Leu Gly Ser Cys His Pro 170 175 180 ctg act gga gac tgc ata aac caa gaa ccc aaa gat agc agc cct 585 Leu Thr Gly Asp Cys Ile Asn Gln Glu Pro Lys Asp Ser Ser Pro 185 190 195 gca gaa gaa tgt gat gat tgc gac agc tgt gtg atg acc ctc ctg 630 Ala Glu Glu Cys Asp Asp Cys Asp Ser Cys Val Met Thr Leu Leu 200 205 210 aac gac ctg gcc acc atg ggc gag cag ctc cgc ctg gtc aag tct 675 Asn Asp Leu Ala Thr Met Gly Glu Gln Leu Arg Leu Val Lys Ser 215 220 225 cag ctg cag ggc ctg agt gcc agc gca ggg ctt ctg gag cag atg 720 Gln Leu Gln Gly Leu Ser Ala Ser Ala Gly Leu Leu Glu Gln Met 230 235 240 agg cac atg gag acc cag gcc aag gac ctg agg aat cag ttg ctc 765 Arg His Met Glu Thr Gln Ala Lys Asp Leu Arg Asn Gln Leu Leu 245 250 255 aac tac cgt tct gcc att tca aat cat gga tca aaa ata gaa ggc 810 Asn Tyr Arg Ser Ala Ile Ser Asn His Gly Ser Lys Ile Glu Gly 260 265 270 ctg gaa aga gaa ctg act gat ttg aat caa gaa ttt gag act ttg 855 Leu Glu Arg Glu Leu Thr Asp Leu Asn Gln Glu Phe Glu Thr Leu 275 280 285 caa gaa aag gct caa gta aat tcc aga aaa gca caa aca tta aac 900 Gln Glu Lys Ala Gln Val Asn Ser Arg Lys Ala Gln Thr Leu Asn 290 295 300 aac aat gtt aat cgg gca aca caa agc gca aaa gaa ctg gat gtg 945 Asn Asn Val Asn Arg Ala Thr Gln Ser Ala Lys Glu Leu Asp Val 305 310 315 aag att aaa aat gtc atc cgg aat gtg cac att ctt tta aag cag 990 Lys Ile Lys Asn Val Ile Arg Asn Val His Ile Leu Leu Lys Gln 320 325 330 atc tct ggg aca gat gga gag gga aac aac gtg cct tca ggt gac 1035 Ile Ser Gly Thr Asp Gly Glu Gly Asn Asn Val Pro Ser Gly Asp 335 340 345 ttt tcc aga gag tgg gct gaa gcc cag cgc atg atg agg gaa ctg 1080 Phe Ser Arg Glu Trp Ala Glu Ala Gln Arg Met Met Arg Glu Leu 350 355 360 cgg aac agg aac ttt gga aag cac ctc aga gaa gca gaa gct gat 1125 Arg Asn Arg Asn Phe Gly Lys His Leu Arg Glu Ala Glu Ala Asp 365 370 375 aaa agg gag tcg cag ctc ttg ctg aac cgg ata agg acc tgg cag 1170 Lys Arg Glu Ser Gln Leu Leu Leu Asn Arg Ile Arg Thr Trp Gln 380 385 390 aaa acc cac cag ggg gag aac aat ggg ctt gct aac agt atc cgg 1215 Lys Thr His Gln Gly Glu Asn Asn Gly Leu Ala Asn Ser Ile Arg 395 400 405 gat tct tta aat gaa tac gaa gcc aaa ctc agt gac ctt cgt gct 1260 Asp Ser Leu Asn Glu Tyr Glu Ala Lys Leu Ser Asp Leu Arg Ala 410 415 420 cgg ctg cag gag gca gct gcc caa gcc aag cag gca aat ggc ttg 1305 Arg Leu Gln Glu Ala Ala Ala Gln Ala Lys Gln Ala Asn Gly Leu 425 430 435 aac caa gaa aac gag aga gct ttg gga gcc att cag aga caa gtg 1350 Asn Gln Glu Asn Glu Arg Ala Leu Gly Ala Ile Gln Arg Gln Val 440 445 450 aaa gaa ata aat tcc ctg cag agt gat ttc acc aag tat cta acc 1395 Lys Glu Ile Asn Ser Leu Gln Ser Asp Phe Thr Lys Tyr Leu Thr 455 460 465 act gca gac tca tct ttg ttg caa acc aac att gcg ctg cag ctg 1440 Thr Ala Asp Ser Ser Leu Leu Gln Thr Asn Ile Ala Leu Gln Leu 470 475 480 atg gag aaa agc cag aag gaa tat gaa aaa tta gct gcc agt tta 1485 Met Glu Lys Ser Gln Lys Glu Tyr Glu Lys Leu Ala Ala Ser Leu 485 490 495 aat gaa gca aga caa gaa cta agt gac aaa gta aga gaa ctt tcc 1530 Asn Glu Ala Arg Gln Glu Leu Ser Asp Lys Val Arg Glu Leu Ser 500 505 510 aga tct gct ggc aaa aca tcc ctt gtg gag gag gca gaa aag cac 1575 Arg Ser Ala Gly Lys Thr Ser Leu Val Glu Glu Ala Glu Lys His 515 520 525 gcg cgg tcc tta caa gag ctg gca aag cag ctg gaa gag atc aag 1620 Ala Arg Ser Leu Gln Glu Leu Ala Lys Gln Leu Glu Glu Ile Lys 530 535 540 aga aac gcc agc ggg gat gag ctg gtg cgc tgt gct gtg gat gcc 1665 Arg Asn Ala Ser Gly Asp Glu Leu Val Arg Cys Ala Val Asp Ala 545 550 555 gcc acc gcc tac gag aac atc ctc aat gcc atc aaa gcg gcc gag 1710 Ala Thr Ala Tyr Glu Asn Ile Leu Asn Ala Ile Lys Ala Ala Glu 560 565 570 gac gca gcc aac agg gct gcc agt gca tct gaa tct gcc ctc cag 1755 Asp Ala Ala Asn Arg Ala Ala Ser Ala Ser Glu Ser Ala Leu Gln 575 580 585 aca gtg ata aag gaa gat ctg cca aga aaa gct aaa acc ctg agt 1800 Thr Val Ile Lys Glu Asp Leu Pro Arg Lys Ala Lys Thr Leu Ser 590 595 600 tcc aac agt gat aaa ctg tta aat gaa gcc aag atg aca caa aag 1845 Ser Asn Ser Asp Lys Leu Leu Asn Glu Ala Lys Met Thr Gln Lys 605 610 615 aag cta aag caa gaa gtc agt cca gct ctc aac aac cta cag caa 1890 Lys Leu Lys Gln Glu Val Ser Pro Ala Leu Asn Asn Leu Gln Gln 620 625 630 acc ctg aat att gtg aca gtt cag aaa gaa gtg ata gac acc aat 1935 Thr Leu Asn Ile Val Thr Val Gln Lys Glu Val Ile Asp Thr Asn 635 640 645 ctc aca act ctc cga gat ggt ctt cat ggg ata cag aga ggt gat 1980 Leu Thr Thr Leu Arg Asp Gly Leu His Gly Ile Gln Arg Gly Asp 650 655 660 att gat gct atg atc agt agt gca aag agc atg gtc aga aag gcc 2025 Ile Asp Ala Met Ile Ser Ser Ala Lys Ser Met Val Arg Lys Ala 665 670 675 aac gac atc aca gat gag gtt ctg gat ggg ctc aac ccc atc cag 2070 Asn Asp Ile Thr Asp Glu Val Leu Asp Gly Leu Asn Pro Ile Gln 680 685 690 aca gat gtg gaa aga att aag gac acc tat ggg agg aca cag aac 2115 Thr Asp Val Glu Arg Ile Lys Asp Thr Tyr Gly Arg Thr Gln Asn 695 700 705 gaa gac ttc aaa aag gct ctg act gat gca gat aac tcg gtg aat 2160 Glu Asp Phe Lys Lys Ala Leu Thr Asp Ala Asp Asn Ser Val Asn 710 715 720 aag tta acc aac aaa cta cct gat ctt tgg cgc aag att gaa agt 2205 Lys Leu Thr Asn Lys Leu Pro Asp Leu Trp Arg Lys Ile Glu Ser 725 730 735 atc aac caa cag ctg ttg ccc ttg gga aac atc tct gac aac atg 2250 Ile Asn Gln Gln Leu Leu Pro Leu Gly Asn Ile Ser Asp Asn Met 740 745 750 gac aga ata cga gaa cta att cag cag gcc aga gat gct gcc agt 2295 Asp Arg Ile Arg Glu Leu Ile Gln Gln Ala Arg Asp Ala Ala Ser 755 760 765 aag gtt gct gtc ccc atg agg ttc aat ggt aaa tct gga gtc gaa 2340 Lys Val Ala Val Pro Met Arg Phe Asn Gly Lys Ser Gly Val Glu 770 775 780 gtc cga ctg cca aat gac ctg gaa gat ttg aaa gga tat aca tct 2385 Val Arg Leu Pro Asn Asp Leu Glu Asp Leu Lys Gly Tyr Thr Ser 785 790 795 ctg tcc ttg ttt ctc caa agg ccc aac tca aga gaa aat ggg ggt 2430 Leu Ser Leu Phe Leu Gln Arg Pro Asn Ser Arg Glu Asn Gly Gly 800 805 810 act gag aat atg ttt gtg atg tac ctt gga aat aaa gat gcc tcc 2475 Thr Glu Asn Met Phe Val Met Tyr Leu Gly Asn Lys Asp Ala Ser 815 820 825 cgg gac tac atc ggc atg gca gtt gtg gat ggc cag ctc acc tgt 2520 Arg Asp Tyr Ile Gly Met Ala Val Val Asp Gly Gln Leu Thr Cys 830 835 840 gtc tac aac ctg ggg gac cgt gag gct gaa ctc caa gtg gac cag 2565 Val Tyr Asn Leu Gly Asp Arg Glu Ala Glu Leu Gln Val Asp Gln 845 850 855 atc ttg acc aag agt gag act aag gag gca gtt atg gat cgg gtg 2610 Ile Leu Thr Lys Ser Glu Thr Lys Glu Ala Val Met Asp Arg Val 860 865 870 aaa ttt cag aga att tat cag ttt gca agg ctt aat tac acc aaa 2655 Lys Phe Gln Arg Ile Tyr Gln Phe Ala Arg Leu Asn Tyr Thr Lys 875 880 885 gga gcc aca tcc agt aaa cca gaa aca ccc gga gtc tat gac atg 2700 Gly Ala Thr Ser Ser Lys Pro Glu Thr Pro Gly Val Tyr Asp Met 890 895 900 gat ggt aga aat agc aat aca ctc ctt aat ttg gat cct gaa aat 2745 Asp Gly Arg Asn Ser Asn Thr Leu Leu Asn Leu Asp Pro Glu Asn 905 910 915 gtt gta ttt tat gtt gga ggt tac cca cct gat ttt aaa ctt ccc 2790 Val Val Phe Tyr Val Gly Gly Tyr Pro Pro Asp Phe Lys Leu Pro 920 925 930 agt cga cta agt ttc cct cca tac aaa ggt tgt att gaa tta gat 2835 Ser Arg Leu Ser Phe Pro Pro Tyr Lys Gly Cys Ile Glu Leu Asp 935 940 945 gac ctc aat gaa aat gtt ctg agc ttg tac aac ttc aaa aaa aca 2880 Asp Leu Asn Glu Asn Val Leu Ser Leu Tyr Asn Phe Lys Lys Thr 950 955 960 ttc aat ctc aac aca act gaa gtg gag cct tgt aga agg agg aag 2925 Phe Asn Leu Asn Thr Thr Glu Val Glu Pro Cys Arg Arg Arg Lys 965 970 975 gaa gag tca gac aaa aat tat ttt gaa ggt acg ggc tat gct cga 2970 Glu Glu Ser Asp Lys Asn Tyr Phe Glu Gly Thr Gly Tyr Ala Arg 980 985 990 gtt cca act caa cca cat gct ccc atc cca acc ttt gga cag aca 3015 Val Pro Thr Gln Pro His Ala Pro Ile Pro Thr Phe Gly Gln Thr 995 1000 1005 att cag acc acc gtg gat aga ggc ttg ctg ttc ttt gca gaa aac 3060 Ile Gln Thr Thr Val Asp Arg Gly Leu Leu Phe Phe Ala Glu Asn 1010 1015 1020 ggg gat cgc ttc ata tct cta aat ata gaa gat ggc aag ctc atg 3105 Gly Asp Arg Phe Ile Ser Leu Asn Ile Glu Asp Gly Lys Leu Met 1025 1030 1035 gtg aga tac aaa ctg aat tca gag cta cca aaa gag aga gga gtt 3150 Val Arg Tyr Lys Leu Asn Ser Glu Leu Pro Lys Glu Arg Gly Val 1040 1045 1050 gga gac gcc ata aac aac ggc aga gac cat tcg att cag atc aaa 3195 Gly Asp Ala Ile Asn Asn Gly Arg Asp His Ser Ile Gln Ile Lys 1055 1060 1065 att gga aaa ctc caa aag cgt atg tgg ata aat gtg gac gtt caa 3240 Ile Gly Lys Leu Gln Lys Arg Met Trp Ile Asn Val Asp Val Gln 1070 1075 1080 aac act ata att gat ggt gaa gta ttt gat ttc agc aca tat tat 3285 Asn Thr Ile Ile Asp Gly Glu Val Phe Asp Phe Ser Thr Tyr Tyr 1085 1090 1095 ctg gga gga att cca att gca atc agg gaa aga ttt aac att tct 3330 Leu Gly Gly Ile Pro Ile Ala Ile Arg Glu Arg Phe Asn Ile Ser 1100 1105 1110 acg cct gct ttc cga ggc tgc atg aaa aat ttg aag aaa acc agt 3375 Thr Pro Ala Phe Arg Gly Cys Met Lys Asn Leu Lys Lys Thr Ser 1115 1120 1125 ggt gtc gtt aga ttg aat gat act gtg gga gta acc aaa aag tgc 3420 Gly Val Val Arg Leu Asn Asp Thr Val Gly Val Thr Lys Lys Cys 1130 1135 1140 tcg gaa gac tgg aag ctt gtg cga tct gcc tca ttc tcc aga gga 3465 Ser Glu Asp Trp Lys Leu Val Arg Ser Ala Ser Phe Ser Arg Gly 1145 1150 1155 gga caa ttg agt ttc act gat ttg ggc tta cca cct act gac cac 3510 Gly Gln Leu Ser Phe Thr Asp Leu Gly Leu Pro Pro Thr Asp His 1160 1165 1170 ctc cag gcc tca ttt gga ttt cag acc ttt caa ccc agt ggc ata 3555 Leu Gln Ala Ser Phe Gly Phe Gln Thr Phe Gln Pro Ser Gly Ile 1175 1180 1185 tta tta gat cat cag aca tgg aca agg aac ctg cag gtc act ctg 3600 Leu Leu Asp His Gln Thr Trp Thr Arg Asn Leu Gln Val Thr Leu 1190 1195 1200 gaa gat ggt tac att gaa ttg agc acc agc gat agc ggc ggc cca 3645 Glu Asp Gly Tyr Ile Glu Leu Ser Thr Ser Asp Ser Gly Gly Pro 1205 1210 1215 att ttt aaa tct cca cag acg tat atg gat ggt tta ctg cat tat 3690 Ile Phe Lys Ser Pro Gln Thr Tyr Met Asp Gly Leu Leu His Tyr 1220 1225 1230 gta tct gta ata agc gac aac tct gga cta cgg ctt ctc atc gat 3735 Val Ser Val Ile Ser Asp Asn Ser Gly Leu Arg Leu Leu Ile Asp 1235 1240 1245 gac cag ctt ctg aga aat agc aaa agg cta aaa cac att tca agt 3780 Asp Gln Leu Leu Arg Asn Ser Lys Arg Leu Lys His Ile Ser Ser 1250 1255 1260 tcc cgg cag tct ctg cgt ctg ggc ggg agc aat ttt gag ggt tgt 3825 Ser Arg Gln Ser Leu Arg Leu Gly Gly Ser Asn Phe Glu Gly Cys 1265 1270 1275 att agc aat gtt ttt gtc cag agg tta tca ctg agt cct gaa gtc 3870 Ile Ser Asn Val Phe Val Gln Arg Leu Ser Leu Ser Pro Glu Val 1280 1285 1290 cta gat ttg acc agt aac tct ctc aag aga gat gtg tcc ctg gga 3915 Leu Asp Leu Thr Ser Asn Ser Leu Lys Arg Asp Val Ser Leu Gly 1295 1300 1305 ggc tgc agt tta aac aaa cca cct ttt cta atg ttg ctt aaa ggt 3960 Gly Cys Ser Leu Asn Lys Pro Pro Phe Leu Met Leu Leu Lys Gly 1310 1315 1320 tct acc agg ttt aac aag acc aag act ttt cgt atc aac cag ctg 4005 Ser Thr Arg Phe Asn Lys Thr Lys Thr Phe Arg Ile Asn Gln Leu 1325 1330 1335 ttg cag gac aca cca gtg gcc tcc cca agg agc gtg aag gtg tgg 4050 Leu Gln Asp Thr Pro Val Ala Ser Pro Arg Ser Val Lys Val Trp 1340 1345 1350 caa gat gct tgc tca cca ctt ccc aag acc cag gcc aat cat gga 4095 Gln Asp Ala Cys Ser Pro Leu Pro Lys Thr Gln Ala Asn His Gly 1355 1360 1365 gcc ctc cag ttt ggg gac att ccc acc agc cac ttg cta ttc aag 4140 Ala Leu Gln Phe Gly Asp Ile Pro Thr Ser His Leu Leu Phe Lys 1370 1375 1380 ctt cct cag gag ctg ctg aaa ccc agg tca cag ttt gct gtg gac 4185 Leu Pro Gln Glu Leu Leu Lys Pro Arg Ser Gln Phe Ala Val Asp 1385 1390 1395 atg cag aca aca tcc tcc aga gga ctg gtg ttt cac acg ggc act 4230 Met Gln Thr Thr Ser Ser Arg Gly Leu Val Phe His Thr Gly Thr 1400 1405 1410 aag aac tcc ttt atg gct ctt tat ctt tca aaa gga cgt ctg gtc 4275 Lys Asn Ser Phe Met Ala Leu Tyr Leu Ser Lys Gly Arg Leu Val 1415 1420 1425 ttt gca ctg ggg aca gat ggg aaa aaa ttg agg atc aaa agc aag 4320 Phe Ala Leu Gly Thr Asp Gly Lys Lys Leu Arg Ile Lys Ser Lys 1430 1435 1440 gag aaa tgc aat gat ggg aaa tgg cac acg gtg gtg ttt ggc cat 4365 Glu Lys Cys Asn Asp Gly Lys Trp His Thr Val Val Phe Gly His 1445 1450 1455 gat ggg gaa aag ggg cgc ttg gtt gtg gat gga ctg agg gcc cgg 4410 Asp Gly Glu Lys Gly Arg Leu Val Val Asp Gly Leu Arg Ala Arg 1460 1465 1470 gag gga agt ttg cct gga aac tcc acc atc agc atc aga gcg cca 4455 Glu Gly Ser Leu Pro Gly Asn Ser Thr Ile Ser Ile Arg Ala Pro 1475 1480 1485 gtt tac ctg gga tca cct cca tca ggg aaa cca aag agc ctc ccc 4500 Val Tyr Leu Gly Ser Pro Pro Ser Gly Lys Pro Lys Ser Leu Pro 1490 1495 1500 aca aac agc ttt gtg gga tgc ctg aag aac ttt cag ctg gat tca 4545 Thr Asn Ser Phe Val Gly Cys Leu Lys Asn Phe Gln Leu Asp Ser 1505 1510 1515 aaa ccc ttg tat acc cct tct tca agc ttc ggg gtg tct tcc tgc 4590 Lys Pro Leu Tyr Thr Pro Ser Ser Ser Phe Gly Val Ser Ser Cys 1520 1525 1530 ttg ggt ggt cct ttg gag aaa ggc att tat ttc tct gaa gaa gga 4635 Leu Gly Gly Pro Leu Glu Lys Gly Ile Tyr Phe Ser Glu Glu Gly 1535 1540 1545 ggt cat gtc gtc ttg gct cac tct gta ttg ttg ggg cca gaa ttt 4680 Gly His Val Val Leu Ala His Ser Val Leu Leu Gly Pro Glu Phe 1550 1555 1560 aag ctt gtt ttc agc atc cgc cca aga agt ctc act ggg atc cta 4725 Lys Leu Val Phe Ser Ile Arg Pro Arg Ser Leu Thr Gly Ile Leu 1565 1570 1575 ata cac atc gga agt cag ccc ggg aag cac tta tgt gtt tac ctg 4770 Ile His Ile Gly Ser Gln Pro Gly Lys His Leu Cys Val Tyr Leu 1580 1585 1590 gag gca gga aag gtc acg gcc tct atg gac agt ggg gca ggt ggg 4815 Glu Ala Gly Lys Val Thr Ala Ser Met Asp Ser Gly Ala Gly Gly 1595 1600 1605 acc tca acg tcg gtc aca cca aag cag tct ctg tgt gat gga cag 4860 Thr Ser Thr Ser Val Thr Pro Lys Gln Ser Leu Cys Asp Gly Gln 1610 1615 1620 tgg cac tcg gtg gca gtc acc ata aaa caa cac atc ctg cac ctg 4905 Trp His Ser Val Ala Val Thr Ile Lys Gln His Ile Leu His Leu 1625 1630 1635 gaa ctg gac aca gac agt agc tac aca gct gga cag atc ccc ttc 4950 Glu Leu Asp Thr Asp Ser Ser Tyr Thr Ala Gly Gln Ile Pro Phe 1640 1645 1650 cca cct gcc agc act caa gag cca cta cac ctt gga ggt gct cca 4995 Pro Pro Ala Ser Thr Gln Glu Pro Leu His Leu Gly Gly Ala Pro 1655 1660 1665 gcc aat ttg acg aca ctg agg atc cct gtg tgg aaa tca ttc ttt 5040 Ala Asn Leu Thr Thr Leu Arg Ile Pro Val Trp Lys Ser Phe Phe 1670 1675 1680 ggc tgt ctg agg aat att cat gtc aat cac atc cct gtc cct gtc 5085 Gly Cys Leu Arg Asn Ile His Val Asn His Ile Pro Val Pro Val 1685 1690 1695 act gaa gcc ttg gaa gtc cag ggg cct gtc agt ctg aat ggt tgt 5130 Thr Glu Ala Leu Glu Val Gln Gly Pro Val Ser Leu Asn Gly Cys 1700 1705 1710 cct gac cag 5139 Pro Asp Gln 1713 taacccaagc ctatttcaca gcaaggaaat tcaccttcaa aagcactgat 5189 tacccaatgc acctccctcc ccagctcgag atcattcttc aattaggaca 5239 caaaccagac aggtttaata gcgaatctaa ttttgaattc tgaccatgga 5289 tacccatcac tttggcattc agtgctacat gtgtatttta tataaaaatc 5339 ccatttcttg aagataaaaa aattgttatt caaattgtta tgcacagaat 5389 gtttttggta atattaattt ccactaaaaa attaaatgtc tttt 5433 <210> 2 <211> 1713 <212> PRT <213> Human <400> 2 Met Gly Trp Leu Trp Ile Phe Gly Ala Ala Leu Gly Gln Cys Leu 1 5 10 15 Gly Tyr Ser Ser Gln Gln Gln Arg Val Pro Phe Leu Gln Pro Pro 20 25 30 Gly Gln Ser Gln Leu Gln Ala Ser Tyr Val Glu Phe Arg Pro Ser 35 40 45 Gln Gly Cys Ser Pro Gly Tyr Tyr Arg Asp His Lys Gly Leu Tyr 50 55 60 Thr Gly Arg Cys Val Pro Cys Asn Cys Asn Gly His Ser Asn Gln 65 70 75 Cys Gln Asp Gly Ser Gly Ile Cys Val Asn Cys Gln His Asn Thr 80 85 90 Ala Gly Glu His Cys Glu Arg Cys Gln Glu Gly Tyr Tyr Gly Asn 95 100 105 Ala Val His Gly Ser Cys Arg Ala Cys Pro Cys Pro His Thr Asn 110 115 120 Ser Phe Ala Thr Gly Cys Val Val Asn Gly Gly Asp Val Arg Cys 125 130 135 Ser Cys Lys Ala Gly Tyr Thr Gly Thr Gln Cys Glu Arg Cys Ala 140 145 150 Pro Gly Tyr Phe Gly Asn Pro Gln Lys Phe Gly Gly Ser Cys Gln 155 160 165 Pro Cys Ser Cys Asn Ser Asn Gly Gln Leu Gly Ser Cys His Pro 170 175 180 Leu Thr Gly Asp Cys Ile Asn Gln Glu Pro Lys Asp Ser Ser Pro 185 190 195 Ala Glu Glu Cys Asp Asp Cys Asp Ser Cys Val Met Thr Leu Leu 200 205 210 Asn Asp Leu Ala Thr Met Gly Glu Gln Leu Arg Leu Val Lys Ser 215 220 225 Gln Leu Gln Gly Leu Ser Ala Ser Ala Gly Leu Leu Glu Gln Met 230 235 240 Arg His Met Glu Thr Gln Ala Lys Asp Leu Arg Asn Gln Leu Leu 245 250 255 Asn Tyr Arg Ser Ala Ile Ser Asn His Gly Ser Lys Ile Glu Gly 260 265 270 Leu Glu Arg Glu Leu Thr Asp Leu Asn Gln Glu Phe Glu Thr Leu 275 280 285 Gln Glu Lys Ala Gln Val Asn Ser Arg Lys Ala Gln Thr Leu Asn 290 295 300 Asn Asn Val Asn Arg Ala Thr Gln Ser Ala Lys Glu Leu Asp Val 305 310 315 Lys Ile Lys Asn Val Ile Arg Asn Val His Ile Leu Leu Lys Gln 320 325 330 Ile Ser Gly Thr Asp Gly Glu Gly Asn Asn Val Pro Ser Gly Asp 335 340 345 Phe Ser Arg Glu Trp Ala Glu Ala Gln Arg Met Met Arg Glu Leu 350 355 360 Arg Asn Arg Asn Phe Gly Lys His Leu Arg Glu Ala Glu Ala Asp 365 370 375 Lys Arg Glu Ser Gln Leu Leu Leu Asn Arg Ile Arg Thr Trp Gln 380 385 390 Lys Thr His Gln Gly Glu Asn Asn Gly Leu Ala Asn Ser Ile Arg 395 400 405 Asp Ser Leu Asn Glu Tyr Glu Ala Lys Leu Ser Asp Leu Arg Ala 410 415 420 Arg Leu Gln Glu Ala Ala Ala Gln Ala Lys Gln Ala Asn Gly Leu 425 430 435 Asn Gln Glu Asn Glu Arg Ala Leu Gly Ala Ile Gln Arg Gln Val 440 445 450 Lys Glu Ile Asn Ser Leu Gln Ser Asp Phe Thr Lys Tyr Leu Thr 455 460 465 Thr Ala Asp Ser Ser Leu Leu Gln Thr Asn Ile Ala Leu Gln Leu 470 475 480 Met Glu Lys Ser Gln Lys Glu Tyr Glu Lys Leu Ala Ala Ser Leu 485 490 495 Asn Glu Ala Arg Gln Glu Leu Ser Asp Lys Val Arg Glu Leu Ser 500 505 510 Arg Ser Ala Gly Lys Thr Ser Leu Val Glu Glu Ala Glu Lys His 515 520 525 Ala Arg Ser Leu Gln Glu Leu Ala Lys Gln Leu Glu Glu Ile Lys 530 535 540 Arg Asn Ala Ser Gly Asp Glu Leu Val Arg Cys Ala Val Asp Ala 545 550 555 Ala Thr Ala Tyr Glu Asn Ile Leu Asn Ala Ile Lys Ala Ala Glu 560 565 570 Asp Ala Ala Asn Arg Ala Ala Ser Ala Ser Glu Ser Ala Leu Gln 575 580 585 Thr Val Ile Lys Glu Asp Leu Pro Arg Lys Ala Lys Thr Leu Ser 590 595 600 Ser Asn Ser Asp Lys Leu Leu Asn Glu Ala Lys Met Thr Gln Lys 605 610 615 Lys Leu Lys Gln Glu Val Ser Pro Ala Leu Asn Asn Leu Gln Gln 620 625 630 Thr Leu Asn Ile Val Thr Val Gln Lys Glu Val Ile Asp Thr Asn 635 640 645 Leu Thr Thr Leu Arg Asp Gly Leu His Gly Ile Gln Arg Gly Asp 650 655 660 Ile Asp Ala Met Ile Ser Ser Ala Lys Ser Met Val Arg Lys Ala 665 670 675 Asn Asp Ile Thr Asp Glu Val Leu Asp Gly Leu Asn Pro Ile Gln 680 685 690 Thr Asp Val Glu Arg Ile Lys Asp Thr Tyr Gly Arg Thr Gln Asn 695 700 705 Glu Asp Phe Lys Lys Ala Leu Thr Asp Ala Asp Asn Ser Val Asn 710 715 720 Lys Leu Thr Asn Lys Leu Pro Asp Leu Trp Arg Lys Ile Glu Ser 725 730 735 Ile Asn Gln Gln Leu Leu Pro Leu Gly Asn Ile Ser Asp Asn Met 740 745 750 Asp Arg Ile Arg Glu Leu Ile Gln Gln Ala Arg Asp Ala Ala Ser 755 760 765 Lys Val Ala Val Pro Met Arg Phe Asn Gly Lys Ser Gly Val Glu 770 775 780 Val Arg Leu Pro Asn Asp Leu Glu Asp Leu Lys Gly Tyr Thr Ser 785 790 795 Leu Ser Leu Phe Leu Gln Arg Pro Asn Ser Arg Glu Asn Gly Gly 800 805 810 Thr Glu Asn Met Phe Val Met Tyr Leu Gly Asn Lys Asp Ala Ser 815 820 825 Arg Asp Tyr Ile Gly Met Ala Val Val Asp Gly Gln Leu Thr Cys 830 835 840 Val Tyr Asn Leu Gly Asp Arg Glu Ala Glu Leu Gln Val Asp Gln 845 850 855 Ile Leu Thr Lys Ser Glu Thr Lys Glu Ala Val Met Asp Arg Val 860 865 870 Lys Phe Gln Arg Ile Tyr Gln Phe Ala Arg Leu Asn Tyr Thr Lys 875 880 885 Gly Ala Thr Ser Ser Lys Pro Glu Thr Pro Gly Val Tyr Asp Met 890 895 900 Asp Gly Arg Asn Ser Asn Thr Leu Leu Asn Leu Asp Pro Glu Asn 905 910 915 Val Val Phe Tyr Val Gly Gly Tyr Pro Pro Asp Phe Lys Leu Pro 920 925 930 Ser Arg Leu Ser Phe Pro Pro Tyr Lys Gly Cys Ile Glu Leu Asp 935 940 945 Asp Leu Asn Glu Asn Val Leu Ser Leu Tyr Asn Phe Lys Lys Thr 950 955 960 Phe Asn Leu Asn Thr Thr Glu Val Glu Pro Cys Arg Arg Arg Lys 965 970 975 Glu Glu Ser Asp Lys Asn Tyr Phe Glu Gly Thr Gly Tyr Ala Arg 980 985 990 Val Pro Thr Gln Pro His Ala Pro Ile Pro Thr Phe Gly Gln Thr 995 1000 1005 Ile Gln Thr Thr Val Asp Arg Gly Leu Leu Phe Phe Ala Glu Asn 1010 1015 1020 Gly Asp Arg Phe Ile Ser Leu Asn Ile Glu Asp Gly Lys Leu Met 1025 1030 1035 Val Arg Tyr Lys Leu Asn Ser Glu Leu Pro Lys Glu Arg Gly Val 1040 1045 1050 Gly Asp Ala Ile Asn Asn Gly Arg Asp His Ser Ile Gln Ile Lys 1055 1060 1065 Ile Gly Lys Leu Gln Lys Arg Met Trp Ile Asn Val Asp Val Gln 1070 1075 1080 Asn Thr Ile Ile Asp Gly Glu Val Phe Asp Phe Ser Thr Tyr Tyr 1085 1090 1095 Leu Gly Gly Ile Pro Ile Ala Ile Arg Glu Arg Phe Asn Ile Ser 1100 1105 1110 Thr Pro Ala Phe Arg Gly Cys Met Lys Asn Leu Lys Lys Thr Ser 1115 1120 1125 Gly Val Val Arg Leu Asn Asp Thr Val Gly Val Thr Lys Lys Cys 1130 1135 1140 Ser Glu Asp Trp Lys Leu Val Arg Ser Ala Ser Phe Ser Arg Gly 1145 1150 1155 Gly Gln Leu Ser Phe Thr Asp Leu Gly Leu Pro Pro Thr Asp His 1160 1165 1170 Leu Gln Ala Ser Phe Gly Phe Gln Thr Phe Gln Pro Ser Gly Ile 1175 1180 1185 Leu Leu Asp His Gln Thr Trp Thr Arg Asn Leu Gln Val Thr Leu 1190 1195 1200 Glu Asp Gly Tyr Ile Glu Leu Ser Thr Ser Asp Ser Gly Gly Pro 1205 1210 1215 Ile Phe Lys Ser Pro Gln Thr Tyr Met Asp Gly Leu Leu His Tyr 1220 1225 1230 Val Ser Val Ile Ser Asp Asn Ser Gly Leu Arg Leu Leu Ile Asp 1235 1240 1245 Asp Gln Leu Leu Arg Asn Ser Lys Arg Leu Lys His Ile Ser Ser 1250 1255 1260 Ser Arg Gln Ser Leu Arg Leu Gly Gly Ser Asn Phe Glu Gly Cys 1265 1270 1275 Ile Ser Asn Val Phe Val Gln Arg Leu Ser Leu Ser Pro Glu Val 1280 1285 1290 Leu Asp Leu Thr Ser Asn Ser Leu Lys Arg Asp Val Ser Leu Gly 1295 1300 1305 Gly Cys Ser Leu Asn Lys Pro Pro Phe Leu Met Leu Leu Lys Gly 1310 1315 1320 Ser Thr Arg Phe Asn Lys Thr Lys Thr Phe Arg Ile Asn Gln Leu 1325 1330 1335 Leu Gln Asp Thr Pro Val Ala Ser Pro Arg Ser Val Lys Val Trp 1340 1345 1350 Gln Asp Ala Cys Ser Pro Leu Pro Lys Thr Gln Ala Asn His Gly 1355 1360 1365 Ala Leu Gln Phe Gly Asp Ile Pro Thr Ser His Leu Leu Phe Lys 1370 1375 1380 Leu Pro Gln Glu Leu Leu Lys Pro Arg Ser Gln Phe Ala Val Asp 1385 1390 1395 Met Gln Thr Thr Ser Ser Arg Gly Leu Val Phe His Thr Gly Thr 1400 1405 1410 Lys Asn Ser Phe Met Ala Leu Tyr Leu Ser Lys Gly Arg Leu Val 1415 1420 1425 Phe Ala Leu Gly Thr Asp Gly Lys Lys Leu Arg Ile Lys Ser Lys 1430 1435 1440 Glu Lys Cys Asn Asp Gly Lys Trp His Thr Val Val Phe Gly His 1445 1450 1455 Asp Gly Glu Lys Gly Arg Leu Val Val Asp Gly Leu Arg Ala Arg 1460 1465 1470 Glu Gly Ser Leu Pro Gly Asn Ser Thr Ile Ser Ile Arg Ala Pro 1475 1480 1485 Val Tyr Leu Gly Ser Pro Pro Ser Gly Lys Pro Lys Ser Leu Pro 1490 1495 1500 Thr Asn Ser Phe Val Gly Cys Leu Lys Asn Phe Gln Leu Asp Ser 1505 1510 1515 Lys Pro Leu Tyr Thr Pro Ser Ser Ser Phe Gly Val Ser Ser Cys 1520 1525 1530 Leu Gly Gly Pro Leu Glu Lys Gly Ile Tyr Phe Ser Glu Glu Gly 1535 1540 1545 Gly His Val Val Leu Ala His Ser Val Leu Leu Gly Pro Glu Phe 1550 1555 1560 Lys Leu Val Phe Ser Ile Arg Pro Arg Ser Leu Thr Gly Ile Leu 1565 1570 1575 Ile His Ile Gly Ser Gln Pro Gly Lys His Leu Cys Val Tyr Leu 1580 1585 1590 Glu Ala Gly Lys Val Thr Ala Ser Met Asp Ser Gly Ala Gly Gly 1595 1600 1605 Thr Ser Thr Ser Val Thr Pro Lys Gln Ser Leu Cys Asp Gly Gln 1610 1615 1620 Trp His Ser Val Ala Val Thr Ile Lys Gln His Ile Leu His Leu 1625 1630 1635 Glu Leu Asp Thr Asp Ser Ser Tyr Thr Ala Gly Gln Ile Pro Phe 1640 1645 1650 Pro Pro Ala Ser Thr Gln Glu Pro Leu His Leu Gly Gly Ala Pro 1655 1660 1665 Ala Asn Leu Thr Thr Leu Arg Ile Pro Val Trp Lys Ser Phe Phe 1670 1675 1680 Gly Cys Leu Arg Asn Ile His Val Asn His Ile Pro Val Pro Val 1685 1690 1695 Thr Glu Ala Leu Glu Val Gln Gly Pro Val Ser Leu Asn Gly Cys 1700 1705 1710 Pro Asp Gln 1713 <210> 3 <211> 5831 <212> DNA <213> Human <220> <221> CDS <222> (336)...(5361) <300> <301> Pikkarainen,T., Eddy,R., Fuushima,Y., Byers,M., Shows,T., Pihlajaniemi,T., Saraste,M. and Tryggvason,K. <302> Human laminin B1 chain. A multidomain protein with gene (LAMB1) locus in the q22 region of chromosome 7 <303> JOURNAL J. Biol. Chem. <304> 262 <305> 22 <306> 10454-10462 <307> 1987 <400> gggacctgga agcgccccag ccccgcagcg atcgcagatt cggctttcaa acaaaagagg 60 cgccccgggg ggtgggaccg ggacctcacc cggtcctcgc agagttgcgg ccgcccgccc 120 cttcagcccc ggctctccgt atgcgcatga gcagaggcgc ctccctctgt tcctcccaag 180 gctaaacttt ctaattccct tctttgggct cgggggctcc cggagcaggg cgagagctcg 240 cgtcgccgga aaggaagacg ggaagaaagg gcaggcggct cggcgggcgt cttctccact 300 cctctgccgc gtccccgtgg ctgcagggag ccggcatggg gcttctccag ttgctagctt 360 tcagtttctt agccctgtgc agagcccgag tgcgcgctca ggaacccgag ttcagctacg 420 gctgcgcaga aggcagctgc tatcccgcca cgggcgacct tctcatcggc cgagcacaga 480 agctttcggt gacctcgacg tgcgggctgc acaagcccga accctactgt atcgtcagcc 540 acttgcagga ggacaaaaaa tgcttcatat gcaattccca agatccttat catgagaccc 600 tgaatcctga cagccatctc attgaaaatg tggtcactac atttgctcca aaccgcctta 660 agatttggtg gcaatctgaa aatggtgtgg aaaatgtaac tatccaactg gatttggaag 720 cagaattcca ttttactcat ctcataatga ctttcaagac attccgtcca gctgctatgc 780 tgatagaacg atcgtccgac tttgggaaaa cctggggtgt gtatagatac ttcgcctatg 840 actgtgaggc ctcgtttcca ggcatttcaa ctggccccat gaaaaaagtc gatgacataa 900 tttgtgattc tcgatattct gacattgaac cctcaactga aggagaggtg atatttcgtg 960 ctttagatcc tgctttcaaa atagaagatc cttatagccc aaggatacag aatttattaa 1020 aaattaccaa cttgagaatc aagtttgtga aactgcatac tttgggagat aaccttctgg 1080 attccaggat ggaaatcaga gaaaagtatt attatgcagt ttatgatatg gtggttcgag 1140 gaaattgctt ctgctatggt catgccagcg aatgtgcccc tgtggatgga ttcaatgaag 1200 aagtggaagg aatggttcac ggacactgca tgtgcaggca taacaccaag ggcttaaact 1260 gtgaactctg catggatttc taccatgatt taccttggag acctgctgaa ggccgaaaca 1320 gcaacgcctg taaaaaatgt aactgcaatg aacattccat ctcttgtcac tttgacatgg 1380 ctgtttacct ggccacgggg aacgtcagcg gaggcgtgtg tgatgactgt cagcacaaca 1444 ccatggggcg caactgtgag cagtgcaagc cgttttacta ccagcaccca gagagggaca 1500 tccgagatcc taatttctgt gaacgatgta cgtgtgaccc agctggctct caaaatgagg 1560 gaatttgtga cagctatact gatttttcta ctggtctcat tgctggccag tgtcggtgta 1620 aattaaatgt ggaaggagaa cattgtgatg tttgcaaaga aggcttctat gatttaagca 1680 gtgaagatcc atttggttgt aaatcttgtg cttgcaatcc tctgggaaca attcctggag 1740 ggaatccttg tgattccgag acaggtcact gctactgcaa gcgtctggtg acaggacagc 1800 attgtgacca gtgcctgcca gagcactggg gcttaagcaa tgatttggat ggatgtcgac 1860 catgtgactg tgaccttggg ggagccttaa acaacagttg ctttgcggag tcaggccagt 1920 gctcatgccg gcctcacatg attggacgtc agtgcaacga agtggaacct ggttactact 1980 ttgccaccct ggatcactac ctctatgaag cggaggaagc caacttgggg cctggggtta 2040 gcatagtgga gcggcaatat atccaggacc ggattccctc ctggactgga gccggcttcg 2100 tccgagtgcc tgaaggggct tatttggagt ttttcattga caacatacca tattccatgg 2160 agtacgacat cctaattcgc tacgagccac agctacccga ccactgggaa aaagctgtca 2220 tcacagtgca gcgacctgga aggattccaa ccagcagccg atgtggtaat accatccccg 2280 atgatgacaa ccaggtggtg tcattatcac caggctcaag atatgtcgtc cttcctcggc 2340 cggtgtgctt tgagaaggga acaaactaca cggtgaggtt ggagctgcct cagtacacct 2400 cctctgatag cgacgtggag agcccctaca cgctgatcga ttctcttgtt ctcatgccat 2460 actgtaaatc actggacatc ttcaccgtgg gaggttcagg agatggggtg gtcaccaaca 2520 gtgcctggga aacctttcag agataccgat gtctagagaa cagcagaagc gttgtgaaaa 2580 caccgatgac agatgtttgc agaaacatca tctttagcat ttctgccctg ttacaccaga 2640 caggcctggc ttgtgaatgc gaccctcagg gttcgttaag ttccgtgtgt gatcccaacg 2700 gaggccagtg ccagtgccgg cccaacgtgg ttggaagaac ctgcaacaga tgtgcacctg 2760 gaacttttgg ctttggcccc agtggatgca aaccttgtga gtgccatctg caaggatctg 2820 tcaatgcctt ctgcaatccc gtcactggcc agtgccactg tttccaggga gtgtatgctc 2880 ggcagtgtga tcggtgctta cctgggcact ggggctttcc aagttgccag ccctgccagt 2940 gcaatggcca cgccgatgac tgcgacccag tgactgggga gtgcttgaac tgccaggact 3000 acaccatggg tcataactgt gaaaggtgct tggctggtta ctatggcgac cccatcattg 3060 ggtcaggtga tcactgccgc ccttgccctt gcccagatgg tcccgacagt ggacgccagt 3120 ttgccaggag ctgctaccaa gatcctgtta ctttacagct tgcctgtgtt tgtgatcctg 3180 gatacattgg ttccagatgt gacgactgtg cctcaggata ctttggcaat ccatcagaag 3240 ttggggggtc gtgtcagcct tgccagtgtc acaacaacat tgacacgaca gacccagaag 3300 cctgtgacaa ggagactggg aggtgtctca agtgcctgta ccacacggaa ggggaacact 3360 gtcagttctg ccggtttgga tactatggtg atgccctccg gcaggactgt cgaaagtgtg 3420 tctgtaatta cctgggcacc gtgcaagagc actgtaacgg ctctgactgc cagtgcgaca 3480 aagccactgg tcagtgcttg tgtcttccta atgtgatcgg gcagaactgt gaccgctgtg 3540 cgcccaatac ctggcagctg gccagtggca ctggctgtga cccatgcaac tgcaatgctg 3600 ctcattcctt cgggccatct tgcaatgagt tcacggggca gtgccagtgc atgcctgggt 3660 ttggaggccg cacctgcagc gagtgccagg aactcttctg gggagacccc gacgtggagt 3720 gccgagcctg tgactgtgac cccaggggca ttgagacgcc acagtgtgac cagtccacgg 3780 gccagtgtgt ctgcgttgag ggtgttgagg gtccacgctg tgacaagtgc acgcgagggt 3840 actcgggggt cttccctgac tgcacaccct gccaccagtg ctttgctctc tgggatgtga 3900 tcattgccga gctgaccaac aggacacaca gattcctgga gaaagccaag gccttgaaga 3960 tcagtggtgt gatcgggcct taccgtgaga ctgtggactc ggtggagagg aaagtcagcg 4020 agataaaaga catcctggcg cagagccccg cagcagagcc actgaaaaac attgggaatc 4080 tctttgagga agcagagaaa ctgattaaag atgttacaga aatgatggct caagtagaag 4140 tgaaattatc tgacacaact tcccaaagca acagcacagc caaagaactg gattctctac 4200 agacagaagc cgaaagccta gacaacactg tgaaagaact tgctgaacaa ctggaattta 4260 tcaaaaactc agatattcgg ggtgccttgg atagcattac caagtatttc cagatgtctc 4320 ttgaggcaga ggagagggtg aatgcctcca ccacagaacc caacagcact gtggagcagt 4380 cagccctcat gagagacaga gtagaagacg tgatgatgga gcgagaatcc cagttcaagg 4440 aaaaacaaga ggagcaggct cgcctccttg atgaactggc aggcaagcta caaagcctag 4500 acctttcagc cgctgccgaa atgacctgtg gaacaccccc aggggcctcc tgttccgaga 4560 ctgaatgtgg cgggccaaac tgcagaactg acgaaggaga gaggaagtgt ggggggcctg 4620 gctgtggtgg tctggttact gttgcacaca acgcctggca gaaagccatg gacttggacc 4680 aagatgtcct gagtgccctg gctgaagtgg aacagctctc caagatggtc tctgaagcaa 4740 aactgagggc agatgaggca aaacaaagtg ctgaagacat tctgttgaag acaaatgcta 4800 ccaaagaaaa aatggacaag agcaatgagg agctgagaaa tctaatcaag caaatcagaa 4860 actttttgac ccaggatagt gctgatttgg acagcattga agcagttgct aatgaagtat 4920 tgaaaatgga gatgcctagc accccacagc agttacagaa cttgacagaa gatatacgtg 4980 aacgagttga aagcctttct caagtagagg ttattcttca gcatagtgct gctgacattg 5040 ccagagctga gatgttgtta gaagaagcta aaagagcaag caaaagtgca acagatgtta 5100 aagtcactgc agatatggta aaggaagctc tggaagaagc agaaaaggcc caggtcgcag 5160 cagagaaggc aattaaacaa gcagatgaag acattcaagg aacccagaac ctgttaactt 5220 cgattgagtc tgaaacagca gcttctgagg aaaccttgtt caacgcgtcc cagcgcatca 5280 gcgagttaga gaggaatgtg gaagaactta agcggaaagc tgcccaaaac tccggggagg 5340 cagaatatat tgaaaaagta gtatatactg tgaagcaaag tgcagaagat gttaagaaga 5400 ctttagatgg tgaacttgat gaaaagtata aaaaagtaga aaatttaatt gccaaaaaaa 5460 ctgaagagtc agctgatgcc agaaggaaag ccgaaatgct acaaaatgaa gcaaaaactc 5520 ttttagctca agcaaatagc aagctgcaac tgctcaaaga tttagaaaga aaatatgaag 5580 acaatcaaag atacttagaa gataaagctc aagaattagc aagactggaa ggagaagtcc 5640 gttcactcct aaaggatata agccagaaag ttgctgtgta tagcacatgc ttgtaacaga 5700 ggagaataaa aaatggctga ggtgaacaag gtaaaacaac tacattttaa aaactgactt 5760 aatgctcttc aaaataaaac atcacctatt taatgttttt aatcacattt tgtatgagtt 5820 aaataaagcc c 5831 <210> 4 <211> 1786 <212> PRT <213> Human <400> Met Gly Leu Leu Gln Leu Leu Ala Phe Ser Phe Leu Ala Leu Cys 1 5 10 15 Arg Ala Arg Val Arg Ala Gln Glu Pro Glu Phe Ser Tyr Gly Cys 20 25 30 Ala Glu Gly Ser Cys Tyr Pro Ala Thr Gly Asp Leu Leu Ile Gly 35 40 45 Arg Ala Gln Lys Leu Ser Val Thr Ser Thr Cys Gly Leu His Lys 50 55 60 Pro Glu Pro Tyr Cys Ile Val Ser His Leu Gln Glu Asp Lys Lys 65 70 75 Cys Phe Ile Cys Asn Ser Gln Asp Pro Tyr His Glu Thr Leu Asn 80 85 90 Pro Asp Ser His Leu Ile Glu Asn Val Val Thr Thr Phe Ala Pro 95 100 105 Asn Arg Leu Lys Ile Trp Trp Gln Ser Glu Asn Gly Val Glu Asn 110 115 120 Val Thr Ile Gln Leu Asp Leu Glu Ala Glu Phe His Phe Thr His 125 130 135 Leu Ile Met Thr Phe Lys Thr Phe Arg Pro Ala Ala Met Leu Ile 140 145 150 Glu Arg Ser Ser Asp Phe Gly Lys Thr Trp Gly Val Tyr Arg Tyr 155 160 165 Phe Ala Tyr Asp Cys Glu Ala Ser Phe Pro Gly Ile Ser Thr Gly 170 175 180 Pro Met Lys Lys Val Asp Asp Ile Ile Cys Asp Ser Arg Tyr Ser 185 190 195 Asp Ile Glu Pro Ser Thr Glu Gly Glu Val Ile Phe Arg Ala Leu 200 205 210 Asp Pro Ala Phe Lys Ile Glu Asp Pro Tyr Ser Pro Arg Ile Gln 215 220 225 Asn Leu Leu Lys Ile Thr Asn Leu Arg Ile Lys Phe Val Lys Leu 230 235 240 His Thr Leu Gly Asp Asn Leu Leu Asp Ser Arg Met Glu Ile Arg 245 250 255 Glu Lys Tyr Tyr Tyr Ala Val Tyr Asp Met Val Val Arg Gly Asn 260 265 270 Cys Phe Cys Tyr Gly His Ala Ser Glu Cys Ala Pro Val Asp Gly 275 280 285 Phe Asn Glu Glu Val Glu Gly Met Val His Gly His Cys Met Cys 290 295 300 Arg His Asn Thr Lys Gly Leu Asn Cys Glu Leu Cys Met Asp Phe 305 310 315 Tyr His Asp Leu Pro Trp Arg Pro Ala Glu Gly Arg Asn Ser Asn 320 325 330 Ala Cys Lys Lys Cys Asn Cys Asn Glu His Ser Ile Ser Cys His 335 340 345 Phe Asp Met Ala Val Tyr Leu Ala Thr Gly Asn Val Ser Gly Gly 350 355 360 Val Cys Asp Asp Cys Gln His Asn Thr Met Gly Arg Asn Cys Glu 365 370 375 Gln Cys Lys Pro Phe Tyr Tyr Gln His Pro Glu Arg Asp Ile Arg 380 385 390 Asp Pro Asn Phe Cys Glu Arg Cys Thr Cys Asp Pro Ala Gly Ser 395 400 405 Gln Asn Glu Gly Ile Cys Asp Ser Tyr Thr Asp Phe Ser Thr Gly 410 415 420 Leu Ile Ala Gly Gln Cys Arg Cys Lys Leu Asn Val Glu Gly Glu 425 430 435 His Cys Asp Val Cys Lys Glu Gly Phe Tyr Asp Leu Ser Ser Glu 440 445 450 Asp Pro Phe Gly Cys Lys Ser Cys Ala Cys Asn Pro Leu Gly Thr 455 460 465 Ile Pro Gly Gly Asn Pro Cys Asp Ser Glu Thr Gly His Cys Tyr 470 475 480 Cys Lys Arg Leu Val Thr Gly Gln His Cys Asp Gln Cys Leu Pro 485 490 495 Glu His Trp Gly Leu Ser Asn Asp Leu Asp Gly Cys Arg Pro Cys 500 505 510 Asp Cys Asp Leu Gly Gly Ala Leu Asn Asn Ser Cys Phe Ala Glu 515 520 525 Ser Gly Gln Cys Ser Cys Arg Pro His Met Ile Gly Arg Gln Cys 530 535 540 Asn Glu Val Glu Pro Gly Tyr Tyr Phe Ala Thr Leu Asp His Tyr 545 550 555 Leu Tyr Glu Ala Glu Glu Ala Asn Leu Gly Pro Gly Val Ser Ile 560 565 570 Val Glu Arg Gln Tyr Ile Gln Asp Arg Ile Pro Ser Trp Thr Gly 575 580 585 Ala Gly Phe Val Arg Val Pro Glu Gly Ala Tyr Leu Glu Phe Phe 590 595 600 Ile Asp Asn Ile Pro Tyr Ser Met Glu Tyr Asp Ile Leu Ile Arg 605 610 615 Tyr Glu Pro Gln Leu Pro Asp His Trp Glu Lys Ala Val Ile Thr 620 625 630 Val Gln Arg Pro Gly Arg Ile Pro Thr Ser Ser Arg Cys Gly Asn 635 640 645 Thr Ile Pro Asp Asp Asp Asn Gln Val Val Ser Leu Ser Pro Gly 650 655 660 Ser Arg Tyr Val Val Leu Pro Arg Pro Val Cys Phe Glu Lys Gly 665 670 675 Thr Asn Tyr Thr Val Arg Leu Glu Leu Pro Gln Tyr Thr Ser Ser 680 685 690 Asp Ser Asp Val Glu Ser Pro Tyr Thr Leu Ile Asp Ser Leu Val 695 700 705 Leu Met Pro Tyr Cys Lys Ser Leu Asp Ile Phe Thr Val Gly Gly 710 715 720 Ser Gly Asp Gly Val Val Thr Asn Ser Ala Trp Glu Thr Phe Gln 725 730 735 Arg Tyr Arg Cys Leu Glu Asn Ser Arg Ser Val Val Lys Thr Pro 740 745 750 Met Thr Asp Val Cys Arg Asn Ile Ile Phe Ser Ile Ser Ala Leu 755 760 765 Leu His Gln Thr Gly Leu Ala Cys Glu Cys Asp Pro Gln Gly Ser 770 775 780 Leu Ser Ser Val Cys Asp Pro Asn Gly Gly Gln Cys Gln Cys Arg 785 790 795 Pro Asn Val Val Gly Arg Thr Cys Asn Arg Cys Ala Pro Gly Thr 800 805 810 Phe Gly Phe Gly Pro Ser Gly Cys Lys Pro Cys Glu Cys His Leu 815 820 825 Gln Gly Ser Val Asn Ala Phe Cys Asn Pro Val Thr Gly Gln Cys 830 835 840 His Cys Phe Gln Gly Val Tyr Ala Arg Gln Cys Asp Arg Cys Leu 845 850 855 Pro Gly His Trp Gly Phe Pro Ser Cys Gln Pro Cys Gln Cys Asn 860 865 870 Gly His Ala Asp Asp Cys Asp Pro Val Thr Gly Glu Cys Leu Asn 875 880 885 Cys Gln Asp Tyr Thr Met Gly His Asn Cys Glu Arg Cys Leu Ala 890 895 900 Gly Tyr Tyr Gly Asp Pro Ile Ile Gly Ser Gly Asp His Cys Arg 905 910 915 Pro Cys Pro Cys Pro Asp Gly Pro Asp Ser Gly Arg Gln Phe Ala 920 925 930 Arg Ser Cys Tyr Gln Asp Pro Val Thr Leu Gln Leu Ala Cys Val 935 940 945 Cys Asp Pro Gly Tyr Ile Gly Ser Arg Cys Asp Asp Cys Ala Ser 950 955 960 Gly Tyr Phe Gly Asn Pro Ser Glu Val Gly Gly Ser Cys Gln Pro 965 970 975 Cys Gln Cys His Asn Asn Ile Asp Thr Thr Asp Pro Glu Ala Cys 980 985 990 Asp Lys Glu Thr Gly Arg Cys Leu Lys Cys Leu Tyr His Thr Glu 995 1000 1005 Gly Glu His Cys Gln Phe Cys Arg Phe Gly Tyr Tyr Gly Asp Ala 1010 1015 1020 Leu Arg Gln Asp Cys Arg Lys Cys Val Cys Asn Tyr Leu Gly Thr 1025 1030 1035 Val Gln Glu His Cys Asn Gly Ser Asp Cys Gln Cys Asp Lys Ala 1040 1045 1050 Thr Gly Gln Cys Leu Cys Leu Pro Asn Val Ile Gly Gln Asn Cys 1055 1060 1065 Asp Arg Cys Ala Pro Asn Thr Trp Gln Leu Ala Ser Gly Thr Gly 1070 1075 1080 Cys Asp Pro Cys Asn Cys Asn Ala Ala His Ser Phe Gly Pro Ser 1085 1090 1095 Cys Asn Glu Phe Thr Gly Gln Cys Gln Cys Met Pro Gly Phe Gly 1100 1105 1110 Gly Arg Thr Cys Ser Glu Cys Gln Glu Leu Phe Trp Gly Asp Pro 1115 1120 1125 Asp Val Glu Cys Arg Ala Cys Asp Cys Asp Pro Arg Gly Ile Glu 1130 1135 1140 Thr Pro Gln Cys Asp Gln Ser Thr Gly Gln Cys Val Cys Val Glu 1145 1150 1155 Gly Val Glu Gly Pro Arg Cys Asp Lys Cys Thr Arg Gly Tyr Ser 1160 1165 1170 Gly Val Phe Pro Asp Cys Thr Pro Cys His Gln Cys Phe Ala Leu 1175 1180 1185 Trp Asp Val Ile Ile Ala Glu Leu Thr Asn Arg Thr His Arg Phe 1190 1195 1200 Leu Glu Lys Ala Lys Ala Leu Lys Ile Ser Gly Val Ile Gly Pro 1205 1210 1215 Tyr Arg Glu Thr Val Asp Ser Val Glu Arg Lys Val Ser Glu Ile 1220 1225 1230 Lys Asp Ile Leu Ala Gln Ser Pro Ala Ala Glu Pro Leu Lys Asn 1235 1240 1245 Ile Gly Asn Leu Phe Glu Glu Ala Glu Lys Leu Ile Lys Asp Val 1250 1255 1260 Thr Glu Met Met Ala Gln Val Glu Val Lys Leu Ser Asp Thr Thr 1265 1270 1275 Ser Gln Ser Asn Ser Thr Ala Lys Glu Leu Asp Ser Leu Gln Thr 1280 1285 1290 Glu Ala Glu Ser Leu Asp Asn Thr Val Lys Glu Leu Ala Glu Gln 1295 1300 1305 Leu Glu Phe Ile Lys Asn Ser Asp Ile Arg Gly Ala Leu Asp Ser 1310 1315 1320 Ile Thr Lys Tyr Phe Gln Met Ser Leu Glu Ala Glu Glu Arg Val 1325 1330 1335 Asn Ala Ser Thr Thr Glu Pro Asn Ser Thr Val Glu Gln Ser Ala 1340 1345 1350 Leu Met Arg Asp Arg Val Glu Asp Val Met Met Glu Arg Glu Ser 1355 1360 1365 Gln Phe Lys Glu Lys Gln Glu Glu Gln Ala Arg Leu Leu Asp Glu 1370 1375 1380 Leu Ala Gly Lys Leu Gln Ser Leu Asp Leu Ser Ala Ala Ala Glu 1385 1390 1395 Met Thr Cys Gly Thr Pro Pro Gly Ala Ser Cys Ser Glu Thr Glu 1400 1405 1410 Cys Gly Gly Pro Asn Cys Arg Thr Asp Glu Gly Glu Arg Lys Cys 1415 1420 1425 Gly Gly Pro Gly Cys Gly Gly Leu Val Thr Val Ala His Asn Ala 1430 1435 1440 Trp Gln Lys Ala Met Asp Leu Asp Gln Asp Val Leu Ser Ala Leu 1445 1450 1455 Ala Glu Val Glu Gln Leu Ser Lys Met Val Ser Glu Ala Lys Leu 1460 1465 1470 Arg Ala Asp Glu Ala Lys Gln Ser Ala Glu Asp Ile Leu Leu Lys 1475 1480 1485 Thr Asn Ala Thr Lys Glu Lys Met Asp Lys Ser Asn Glu Glu Leu 1490 1495 1500 Arg Asn Leu Ile Lys Gln Ile Arg Asn Phe Leu Thr Gln Asp Ser 1505 1510 1515 Ala Asp Leu Asp Ser Ile Glu Ala Val Ala Asn Glu Val Leu Lys 1520 1525 1530 Met Glu Met Pro Ser Thr Pro Gln Gln Leu Gln Asn Leu Thr Glu 1535 1540 1545 Asp Ile Arg Glu Arg Val Glu Ser Leu Ser Gln Val Glu Val Ile 1550 1555 1560 Leu Gln His Ser Ala Ala Asp Ile Ala Arg Ala Glu Met Leu Leu 1565 1570 1575 Glu Glu Ala Lys Arg Ala Ser Lys Ser Ala Thr Asp Val Lys Val 1580 1585 1590 Thr Ala Asp Met Val Lys Glu Ala Leu Glu Glu Ala Glu Lys Ala 1595 1600 1605 Gln Val Ala Ala Glu Lys Ala Ile Lys Gln Ala Asp Glu Asp Ile 1610 1615 1620 Gln Gly Thr Gln Asn Leu Leu Thr Ser Ile Glu Ser Glu Thr Ala 1625 1630 1635 Ala Ser Glu Glu Thr Leu Phe Asn Ala Ser Gln Arg Ile Ser Glu 1640 1645 1650 Leu Glu Arg Asn Val Glu Glu Leu Lys Arg Lys Ala Ala Gln Asn 1655 1660 1665 Ser Gly Glu Ala Glu Tyr Ile Glu Lys Val Val Tyr Thr Val Lys 1670 1675 1680 Gln Ser Ala Glu Asp Val Lys Lys Thr Leu Asp Gly Glu Leu Asp 1685 1690 1695 Glu Lys Tyr Lys Lys Val Glu Asn Leu Ile Ala Lys Lys Thr Glu 1700 1705 1710 Glu Ser Ala Asp Ala Arg Arg Lys Ala Glu Met Leu Gln Asn Glu 1715 1720 1725 Ala Lys Thr Leu Leu Ala Gln Ala Asn Ser Lys Leu Gln Leu Leu 1730 1735 1740 Lys Asp Leu Glu Arg Lys Tyr Glu Asp Asn Gln Arg Tyr Leu Glu 1745 1750 1755 Asp Lys Ala Gln Glu Leu Ala Arg Leu Glu Gly Glu Val Arg Ser 1760 1765 1770 Leu Leu Lys Asp Ile Ser Gln Lys Val Ala Val Tyr Ser Thr Cys 1775 1780 1785 Leu 1786 <210> 5 <211> 7923 <212> DNA <213> Human <220> <221> CDS <222> (300)...(5126) <300> <301> Pikkarainen,T., Kallunki,T. and Tryggvason,K. <302> Human laminin B2 chain. Comparison of the complete amino acid sequence with the B1 chain reveals variability in sequence homology between different structural domains <303> JOURNAL J. Biol. Chem. <304> 263 <305> 14 <306> 6751-6758 <307> 1988 <400> 5 gcgcactcgg gcacgcgctc ggaagtcggg ggtcggcgcg gagtgcaggc tgctcccggg 60 gtaggtgagg gaagcgcgga ggcggggcgc gggggcagtg gtcggcgagc agcgcggtcc 120 tcgctagggg cgcccacccg tcagtctctc cggcgcgagc cgccgccacc gcccgcgccg 180 gagtcaggcc cctgggcccc caggctcaag cagcgaagcg gcctccgggg gacgccgcta 240 ggcgagagga acgcgccggt gcccttgcct tcgccgtgac ccagcgtgcg ggcggcggga 300 tgagagggag ccatcgggcc gcgccggccc tgcggccccg ggggcggctc tggcccgtgc 360 tggccgtgct ggcggcggcc gccgcggcgg gctgtgccca ggcagccatg gacgagtgca 420 cggacgaggg cgggcggccg cagcgctgca tgcccgagtt cgtcaacgcc gctttcaacg 480 tgactgtggt ggccaccaac acgtgtggga ctccgcccga ggaatactgt gtgcagaccg 540 gggtgaccgg ggtcaccaag tcctgtcacc tgtgcgacgc cgggcagccc cacctgcagc 600 acggggcagc cttcctgacc gactacaaca accaggccga caccacctgg tggcaaagcc 660 agaccatgct ggccggggtg cagtacccca gctccatcaa cctcacgctg cacctgggaa 720 aagcttttga catcacctat gtgcgtctca agttccacac cagccgcccg gagagctttg 780 ccatttacaa gcgcacacgg gaagacgggc cctggattcc ttaccagtac tacagtggtt 840 cctgcgagaa cacctactcc aaggcaaacc gcggcttcat caggacagga ggggacgagc 900 agcaggcctt gtgtactgat gaattcagtg acatttctcc cctcactggg ggcaacgtgg 960 ccttttctac cctggaagga aggcccagcg cctataactt tgacaatagc cctgtgctgc 1020 aggaatgggt aactgccact gacatcagag taactcttaa tcgcctgaac acttttggag 1080 atgaagtgtt taacgatccc aaagttctca agtcctatta ttatgccatc tctgattttg 1140 ctgtaggtgg cagatgtaaa tgtaatggac acgcaagcga gtgtatgaag aacgaatttg 1200 ataagctggt gtgtaattgc aaacataaca catatggagt agactgtgaa aagtgtcttc 1260 ctttcttcaa tgaccggccg tggaggaggg caactgcgga aagtgccagt gaatgcctgc 1320 cctgtgattg caatggtcga tcccaggaat gctacttcga ccctgaactc tatcgttcca 1380 ctggccatgg gggccactgt accaactgcc aggataacac agatggcgcc cactgtgaga 1440 ggtgccgaga gaacttcttc cgccttggca acaatgaagc ctgctcttca tgccactgta 1500 gtcctgtggg ctctctaagc acacagtgtg atagttacgg cagatgcagc tgtaagccag 1560 gagtgatggg ggacaaatgt gaccgttgcc agcctggatt ccattctctc actgaagcag 1620 gatgcaggcc atgctcttgt gatccctctg gcagcataga tgaatgtaat gttgaaacag 1680 gaagatgtgt ttgcaaagac aatgtcgaag gcttcaattg tgaaagatgc aaacctggat 1740 tttttaatct ggaatcatct aatcctcggg gttgcacacc ctgcttctgc tttgggcatt 1800 cttctgtctg tacaaacgct gttggctaca gtgtttattc tatctcctct acctttcaga 1860 ttgatgagga tgggtggcgt gcggaacaga gagatggctc tgaagcatct ctcgagtggt 1920 cctctgagag gcaagatatc gccgtgatct cagacagcta ctttcctcgg tacttcattg 1980 ctcctgcaaa gttcttgggc aagcaggtgt tgagttatgg tcagaacctc tccttctcct 2040 ttcgagtgga caggcgagat actcgcctct ctgccgaaga ccttgtgctt gagggagctg 2100 gcttaagagt atctgtaccc ttgatcgctc agggcaattc ctatccaagt gagaccactg 2160 tgaagtatgt cttcaggctc catgaagcaa cagattaccc ttggaggcct gctcttaccc 2220 cttttgaatt tcagaagctc ctaaacaact tgacctctat caagatacgt gggacataca 2280 gtgagagaag tgctggatat ttggatgatg tcaccctggc aagtgctcgt cctgggcctg 2340 gagtccctgc aacttgggtg gagtcctgca cctgtcctgt gggatatgga gggcagtttt 2400 gtgagatgtg cctctcaggt tacagaagag aaactcctaa tcttggacca tacagtccat 2460 gtgtgctttg cgcctgcaat ggacacagcg agacctgtga tcctgagaca ggtgtttgta 2520 actgcagaga caatacggct ggcccgcact gtgagaagtg cagtgatggg tactatggag 2580 attcaactgc aggcacctcc tccgattgcc aaccctgtcc gtgtcctgga ggttcaagtt 2640 gtgctgttgt tcccaagaca aaggaggtgg tgtgcaccaa ctgtcctact ggcaccactg 2700 gtaagagatg tgagctctgt gatgatggct actttggaga ccccctgggt agaaacggcc 2760 ctgtgagact ttgccgcctg tgccagtgca gtgacaacat cgatcccaac gcagttggaa 2820 attgcaatcg cttgacggga gaatgcctga agtgcatcta taacactgct ggcttctatt 2880 gtgaccggtg caaagacgga ttttttggaa atcccctggc tcccaatcca gcagacaaat 2940 gcaaagcctg caattgcaat ccgtatggga ccatgaagca gcagagcagc tgtaaccccg 3000 tgacggggca gtgtgaatgt ttgcctcacg tgactggcca ggactgtggt gcttgtgacc 3060 ctggattcta caatctgcag agtgggcaag gctgtgagag gtgtgactgc catgccttgg 3120 gctccaccaa tgggcagtgt gacatccgca ccggccagtg tgagtgccag cccggcatca 3180 ctggtcagca ctgtgagcgc tgtgaggtca accactttgg gtttggacct gaaggctgca 3240 aaccctgtga ctgtcatcct gagggatctc tttcacttca gtgcaaagat gatggtcgct 3300 gtgaatgcag agaaggcttt gtgggaaatc gctgtgacca gtgtgaagaa aactatttct 3360 acaatcggtc ttggcctggc tgccaggaat gtccagcttg ttaccggctg gtaaaggata 3420 aggttgctga tcatagagtg aagctccagg aattagagag tctcatagca aaccttggaa 3480 ctggggatga gatggtgaca gatcaagcct tcgaggatag actaaaggaa gcagagaggg 3540 aagttatgga cctccttcgt gaggcccagg atgtcaaaga tgttgaccag aatttgatgg 3600 atcgcctaca gagagtgaat aacactctgt ccagccaaat tagccgttta cagaatatcc 3660 ggaataccat tgaagagact ggaaacttgg ctgaacaagc gcgtgcccat gtagagaaca 3720 cagagcggtt gattgaaatc gcatccagag aacttgagaa agcaaaagtc gctgctgcca 3780 atgtgtcagt cactcagcca gaatctacag gggacccaaa caacatgact cttttggcag 3840 aagaggctcg aaagcttgct gaacgtcata aacaggaagc tgatgacatt gttcgagtgg 3900 caaagacagc caatgatacg tcaactgagg catacaacct gcttctgagg acactggcag 3960 gagaaaatca aacagcattt gagattgaag agcttaatag gaagtatgaa caagcgaaga 4020 acatctcaca ggatctggaa aaacaagctg cccgagtaca tgaggaggcc aaaagggccg 4080 gtgacaaagc tgtggagatc tatgccagcg tggctcagct gagccctttg gactctgaga 4140 cactggagaa tgaagcaaat aacataaaga tggaagctga gaatctggaa caactgattg 4200 accagaaatt aaaagattat gaggacctca gagaagatat gagagggaag gaacttgaag 4260 tcaagaacct tctggagaaa ggcaagactg aacagcagac cgcagaccaa ctcctagccc 4320 gagctgatgc tgccaaggcc ctcgctgaag aagctgcaaa gaagggacgg gataccttac 4380 aagaagctaa tgacattctc aacaacctga aagattttga taggcgcgtg aacgataaca 4440 agacggccgc agaggaggca ctaaggaaga ttcctgccat caaccagacc atcactgaag 4500 ccaatgaaaa gaccagagaa gcccagcagg ccctgggcag tgctgcggcg gatgccacag 4560 aggccaagaa caaggcccat gaggcggaga ggatcgcaag cgctgtccaa aagaatgcca 4620 ccagcaccaa ggcagaagct gaaagaactt ttgcagaagt tacagatctg gataatgagg 4680 tgaacaatat gttgaagcaa ctgcaggaag cagaaaaaga gctaaagaga aaacaagatg 4740 acgctgacca ggacatgatg atggcaggga tggcttcaca ggctgctcaa gaagccgaga 4800 tcaatgccag aaaagccaaa aactctgtta ctagcctcct cagcattatt aatgacctct 4860 tggagcagct ggggcagctg gatacagtgg acctgaataa gctaaacgag attgaaggca 4920 ccctaaacaa agccaaagat gaaatgaagg tcagcgatct tgataggaaa gtgtctgacc 4980 tggagaatga agccaagaag caggaggctg ccatcatgga ctataaccga gatatcgagg 5040 agatcatgaa ggacattcgc aatctggagg acatcaggaa gaccttacca tctggctgct 5100 tcaacacccc gtccattgaa aagccctagt gtctttaggg ctggaaggca gcatccctct 5160 gacagggggg cagttgtgag gccacagagt gccttgacac aaagattaca tttttcagac 5220 ccccactcct ctgctgctgt ccatcactgt ccttttgaac caggaaaagt cacagagttt 5280 aaagagaagc aaattaaaca tcctgaatcg ggaacaaagg gttttatcta ataaagtgtc 5340 tcttccatca cgttgctacc ttacccacac ttccctctga tttgcgtgag gacgtggcat 5400 cctacttacg tacgtggcat aacacatcgt gtgagcccat gtatgctggg gtagagcaag 5460 tagccctccc ctgtctcatc gatccagcag aacctcctca gtctcagtac tcttgtttct 5520 ataaggaaaa gttttgctac taacagtagc attgtgatgg ccagtatatc cagtccatgg 5580 ataaagaaaa tgcatctgca tctcctgccc ctcttccttc taagcaaaag gaaataaaca 5640 tcctgtgcca aaggtattgg tcatttagaa tgtcggtagc catccatcag tgcttttagc 5700 tattatgagt gtaggacact gagccatccg tgggtcagga tgcaattatt tataaaagtc 5760 cccaggtgaa catggctgaa gatttttcta gtatattaat aattgactag gaagatgaac 5820 tttttttcag atctttgggc agctgataat ttaaatctgg atgggcagct tgcactcacc 5880 aatagaccaa aagacatctt ttgatattct tataaatgga acttacacag aagaaatagg 5940 gatatgataa ccactaaagt tttgttttca aaatcaaact aattcttaca gcttttttat 6000 tagttagtct tggaactagt gttaagtatc tggcagagaa cagttaatcc ctaaggtctt 6060 gacaaaacag aagaaaaaca agcctcctcg tcctagtctt ttctagcaaa gggataaaac 6120 ttagatggca gcttgtactg tcagaatccc gtgtatccat ttgttcttct gttggagaga 6180 tgagacattt gacccttagc tccagttttc ttctgatgtt tccatcttcc agaatccctc 6240 aaaaaacatt gtttgccaaa tcctggtggc aaatacttgc actcagtatt tcacacagct 6300 gccaacgcta tcgagttcct gcactttgtg atttaaatcc actctaaacc ttccctctaa 6360 gtgtagaggg aagaccctta cgtggagttt cctagtgggc ttctcaactt ttgatcctca 6420 gctctgtggt tttaagacca cagtgtgaca gttccctgcc acacaccccc ttcctcctac 6480 caacccacct ttgagattca tatatagcct ttaacactat gcaactttgt actttgcgta 6540 gcaggggctg gggtgggggg aaagaaacct attatcatgg acacactggt gctattaatt 6600 atttcaaatt tatatttttg tgtgaatgtt ttgtgttttg tttatccatg ctatagaaca 6660 aggaatttat gtagatatac ttagtcctat ttctagaatg acactctgtt cactttgctc 6720 aatttttcct cttcactggc acaagtatct gaatacctcc ttccctccct tctagagttc 6780 tttggattgt actccaaaga attgtgcctt gtgtttgcag catctccatt ctctaaatta 6840 atataattgc tttcctccac acccagccac gtaaagaggt aacttgggtc ctcttccatt 6900 gcagtcctga tgatcctaac ctgcagcacg gtggttttac aatgttccag agcaggaacg 6960 ccaggttgac aagctatggt aggattagga aagtttgctg aagaggatct ttgacgccac 7020 agtgggacta gccaggaatg agggagaaat gccctttttg gcaattgttg gagctggata 7080 ggtaagtttt ataagggagt acattttgac tgagcactta gggcatcagg aacagtgcta 7140 cttactggtg ggtagactgg gagaggtggt gtaacttagt tcttgatgat cccacttcct 7200 gtttccatct gcttgggata taccagagtt taccacaagt gttttgacga tatactcctg 7260 agctttcact ctgctggctt ctcccaggcc tcttctacta tggcaggaga tgtggtgtgc 7320 tgttgcaaag ttttcacgtc atcgtttcct ggctagttca tttcattaag tggctacatc 7380 ctaacatatg cattggtcaa ggttgcagca agaggactga agattgactg ccaagctagt 7440 ttgggtgaag ttcactccag caagtctcag gccacaatgg ggtggtttgg tttggtttcc 7500 ttttaacttt ctttttgtta tttgcttttc tcctccacct gtgtggtata ttttttaagc 7560 agaattttat tttttaaaat aaaaggttct ttacaagatg ataccttaat tacactcccg 7620 caacacagcc attattttat tgtctagctc cagttatctg tattttatgt aatgtaattg 7680 acaggatggc tgctgcagaa tgctggttga cacagggatt attatactgc tatttttccc 7740 tgaattcttt tccttggaat tccaactgtg gaccttttat atgtgccttc actttagctg 7800 tttgccttac tctacagcct tgctctccgg ggtggttaat aaaatgcaac acttggcatt 7860 tttatgttat aagaaaaaca gtattttatt tataataaaa tctgaatatt ttgtaaccct 7920 tta 7923 <210> 6 <211> 1609 <212> PRT <213> Human <400> Met Arg Gly Ser His Arg Ala Ala Pro Ala Leu Arg Pro Arg Gly 1 5 10 15 Arg Leu Trp Pro Val Leu Ala Val Leu Ala Ala Ala Ala Ala Ala 20 25 30 Gly Cys Ala Gln Ala Ala Met Asp Glu Cys Thr Asp Glu Gly Gly 35 40 45 Arg Pro Gln Arg Cys Met Pro Glu Phe Val Asn Ala Ala Phe Asn 50 55 60 Val Thr Val Val Ala Thr Asn Thr Cys Gly Thr Pro Pro Glu Glu 65 70 75 Tyr Cys Val Gln Thr Gly Val Thr Gly Val Thr Lys Ser Cys His 80 85 90 Leu Cys Asp Ala Gly Gln Pro His Leu Gln His Gly Ala Ala Phe 95 100 105 Leu Thr Asp Tyr Asn Asn Gln Ala Asp Thr Thr Trp Trp Gln Ser 110 115 120 Gln Thr Met Leu Ala Gly Val Gln Tyr Pro Ser Ser Ile Asn Leu 125 130 135 Thr Leu His Leu Gly Lys Ala Phe Asp Ile Thr Tyr Val Arg Leu 140 145 150 Lys Phe His Thr Ser Arg Pro Glu Ser Phe Ala Ile Tyr Lys Arg 155 160 165 Thr Arg Glu Asp Gly Pro Trp Ile Pro Tyr Gln Tyr Tyr Ser Gly 170 175 180 Ser Cys Glu Asn Thr Tyr Ser Lys Ala Asn Arg Gly Phe Ile Arg 185 190 195 Thr Gly Gly Asp Glu Gln Gln Ala Leu Cys Thr Asp Glu Phe Ser 200 205 210 Asp Ile Ser Pro Leu Thr Gly Gly Asn Val Ala Phe Ser Thr Leu 215 220 225 Glu Gly Arg Pro Ser Ala Tyr Asn Phe Asp Asn Ser Pro Val Leu 230 235 240 Gln Glu Trp Val Thr Ala Thr Asp Ile Arg Val Thr Leu Asn Arg 245 250 255 Leu Asn Thr Phe Gly Asp Glu Val Phe Asn Asp Pro Lys Val Leu 260 265 270 Lys Ser Tyr Tyr Tyr Ala Ile Ser Asp Phe Ala Val Gly Gly Arg 275 280 285 Cys Lys Cys Asn Gly His Ala Ser Glu Cys Met Lys Asn Glu Phe 290 295 300 Asp Lys Leu Val Cys Asn Cys Lys His Asn Thr Tyr Gly Val Asp 305 310 315 Cys Glu Lys Cys Leu Pro Phe Phe Asn Asp Arg Pro Trp Arg Arg 320 325 330 Ala Thr Ala Glu Ser Ala Ser Glu Cys Leu Pro Cys Asp Cys Asn 335 340 345 Gly Arg Ser Gln Glu Cys Tyr Phe Asp Pro Glu Leu Tyr Arg Ser 350 355 360 Thr Gly His Gly Gly His Cys Thr Asn Cys Gln Asp Asn Thr Asp 365 370 375 Gly Ala His Cys Glu Arg Cys Arg Glu Asn Phe Phe Arg Leu Gly 380 385 390 Asn Asn Glu Ala Cys Ser Ser Cys His Cys Ser Pro Val Gly Ser 395 400 405 Leu Ser Thr Gln Cys Asp Ser Tyr Gly Arg Cys Ser Cys Lys Pro 410 415 420 Gly Val Met Gly Asp Lys Cys Asp Arg Cys Gln Pro Gly Phe His 425 430 435 Ser Leu Thr Glu Ala Gly Cys Arg Pro Cys Ser Cys Asp Pro Ser 440 445 450 Gly Ser Ile Asp Glu Cys Asn Val Glu Thr Gly Arg Cys Val Cys 455 460 465 Lys Asp Asn Val Glu Gly Phe Asn Cys Glu Arg Cys Lys Pro Gly 470 475 480 Phe Phe Asn Leu Glu Ser Ser Asn Pro Arg Gly Cys Thr Pro Cys 485 490 495 Phe Cys Phe Gly His Ser Ser Val Cys Thr Asn Ala Val Gly Tyr 500 505 510 Ser Val Tyr Ser Ile Ser Ser Thr Phe Gln Ile Asp Glu Asp Gly 515 520 525 Trp Arg Ala Glu Gln Arg Asp Gly Ser Glu Ala Ser Leu Glu Trp 530 535 540 Ser Ser Glu Arg Gln Asp Ile Ala Val Ile Ser Asp Ser Tyr Phe 545 550 555 Pro Arg Tyr Phe Ile Ala Pro Ala Lys Phe Leu Gly Lys Gln Val 560 565 570 Leu Ser Tyr Gly Gln Asn Leu Ser Phe Ser Phe Arg Val Asp Arg 575 580 585 Arg Asp Thr Arg Leu Ser Ala Glu Asp Leu Val Leu Glu Gly Ala 590 595 600 Gly Leu Arg Val Ser Val Pro Leu Ile Ala Gln Gly Asn Ser Tyr 605 610 615 Pro Ser Glu Thr Thr Val Lys Tyr Val Phe Arg Leu His Glu Ala 620 625 630 Thr Asp Tyr Pro Trp Arg Pro Ala Leu Thr Pro Phe Glu Phe Gln 635 640 645 Lys Leu Leu Asn Asn Leu Thr Ser Ile Lys Ile Arg Gly Thr Tyr 650 655 660 Ser Glu Arg Ser Ala Gly Tyr Leu Asp Asp Val Thr Leu Ala Ser 665 670 675 Ala Arg Pro Gly Pro Gly Val Pro Ala Thr Trp Val Glu Ser Cys 680 685 690 Thr Cys Pro Val Gly Tyr Gly Gly Gln Phe Cys Glu Met Cys Leu 695 700 705 Ser Gly Tyr Arg Arg Glu Thr Pro Asn Leu Gly Pro Tyr Ser Pro 710 715 720 Cys Val Leu Cys Ala Cys Asn Gly His Ser Glu Thr Cys Asp Pro 725 730 735 Glu Thr Gly Val Cys Asn Cys Arg Asp Asn Thr Ala Gly Pro His 740 745 750 Cys Glu Lys Cys Ser Asp Gly Tyr Tyr Gly Asp Ser Thr Ala Gly 755 760 765 Thr Ser Ser Asp Cys Gln Pro Cys Pro Cys Pro Gly Gly Ser Ser 770 775 780 Cys Ala Val Val Pro Lys Thr Lys Glu Val Val Cys Thr Asn Cys 785 790 795 Pro Thr Gly Thr Thr Gly Lys Arg Cys Glu Leu Cys Asp Asp Gly 800 805 810 Tyr Phe Gly Asp Pro Leu Gly Arg Asn Gly Pro Val Arg Leu Cys 815 820 825 Arg Leu Cys Gln Cys Ser Asp Asn Ile Asp Pro Asn Ala Val Gly 830 835 840 Asn Cys Asn Arg Leu Thr Gly Glu Cys Leu Lys Cys Ile Tyr Asn 845 850 855 Thr Ala Gly Phe Tyr Cys Asp Arg Cys Lys Asp Gly Phe Phe Gly 860 865 870 Asn Pro Leu Ala Pro Asn Pro Ala Asp Lys Cys Lys Ala Cys Asn 875 880 885 Cys Asn Pro Tyr Gly Thr Met Lys Gln Gln Ser Ser Cys Asn Pro 890 895 900 Val Thr Gly Gln Cys Glu Cys Leu Pro His Val Thr Gly Gln Asp 905 910 915 Cys Gly Ala Cys Asp Pro Gly Phe Tyr Asn Leu Gln Ser Gly Gln 920 925 930 Gly Cys Glu Arg Cys Asp Cys His Ala Leu Gly Ser Thr Asn Gly 935 940 945 Gln Cys Asp Ile Arg Thr Gly Gln Cys Glu Cys Gln Pro Gly Ile 950 955 960 Thr Gly Gln His Cys Glu Arg Cys Glu Val Asn His Phe Gly Phe 965 970 975 Gly Pro Glu Gly Cys Lys Pro Cys Asp Cys His Pro Glu Gly Ser 980 985 990 Leu Ser Leu Gln Cys Lys Asp Asp Gly Arg Cys Glu Cys Arg Glu 995 1000 1005 Gly Phe Val Gly Asn Arg Cys Asp Gln Cys Glu Glu Asn Tyr Phe 1010 1015 1020 Tyr Asn Arg Ser Trp Pro Gly Cys Gln Glu Cys Pro Ala Cys Tyr 1025 1030 1035 Arg Leu Val Lys Asp Lys Val Ala Asp His Arg Val Lys Leu Gln 1040 1045 1050 Glu Leu Glu Ser Leu Ile Ala Asn Leu Gly Thr Gly Asp Glu Met 1055 1060 1065 Val Thr Asp Gln Ala Phe Glu Asp Arg Leu Lys Glu Ala Glu Arg 1070 1075 1080 Glu Val Met Asp Leu Leu Arg Glu Ala Gln Asp Val Lys Asp Val 1085 1090 1095 Asp Gln Asn Leu Met Asp Arg Leu Gln Arg Val Asn Asn Thr Leu 1100 1105 1110 Ser Ser Gln Ile Ser Arg Leu Gln Asn Ile Arg Asn Thr Ile Glu 1115 1120 1125 Glu Thr Gly Asn Leu Ala Glu Gln Ala Arg Ala His Val Glu Asn 1130 1135 1140 Thr Glu Arg Leu Ile Glu Ile Ala Ser Arg Glu Leu Glu Lys Ala 1145 1150 1155 Lys Val Ala Ala Ala Asn Val Ser Val Thr Gln Pro Glu Ser Thr 1160 1165 1170 Gly Asp Pro Asn Asn Met Thr Leu Leu Ala Glu Glu Ala Arg Lys 1175 1180 1185 Leu Ala Glu Arg His Lys Gln Glu Ala Asp Asp Ile Val Arg Val 1190 1195 1200 Ala Lys Thr Ala Asn Asp Thr Ser Thr Glu Ala Tyr Asn Leu Leu 1205 1210 1215 Leu Arg Thr Leu Ala Gly Glu Asn Gln Thr Ala Phe Glu Ile Glu 1220 1225 1230 Glu Leu Asn Arg Lys Tyr Glu Gln Ala Lys Asn Ile Ser Gln Asp 1235 1240 1245 Leu Glu Lys Gln Ala Ala Arg Val His Glu Glu Ala Lys Arg Ala 1250 1255 1260 Gly Asp Lys Ala Val Glu Ile Tyr Ala Ser Val Ala Gln Leu Ser 1265 1270 1275 Pro Leu Asp Ser Glu Thr Leu Glu Asn Glu Ala Asn Asn Ile Lys 1280 1285 1290 Met Glu Ala Glu Asn Leu Glu Gln Leu Ile Asp Gln Lys Leu Lys 1295 1300 1305 Asp Tyr Glu Asp Leu Arg Glu Asp Met Arg Gly Lys Glu Leu Glu 1310 1315 1320 Val Lys Asn Leu Leu Glu Lys Gly Lys Thr Glu Gln Gln Thr Ala 1325 1330 1335 Asp Gln Leu Leu Ala Arg Ala Asp Ala Ala Lys Ala Leu Ala Glu 1340 1345 1350 Glu Ala Ala Lys Lys Gly Arg Asp Thr Leu Gln Glu Ala Asn Asp 1355 1360 1365 Ile Leu Asn Asn Leu Lys Asp Phe Asp Arg Arg Val Asn Asp Asn 1370 1375 1380 Lys Thr Ala Ala Glu Glu Ala Leu Arg Lys Ile Pro Ala Ile Asn 1385 1390 1395 Gln Thr Ile Thr Glu Ala Asn Glu Lys Thr Arg Glu Ala Gln Gln 1400 1405 1410 Ala Leu Gly Ser Ala Ala Ala Asp Ala Thr Glu Ala Lys Asn Lys 1415 1420 1425 Ala His Glu Ala Glu Arg Ile Ala Ser Ala Val Gln Lys Asn Ala 1430 1435 1440 Thr Ser Thr Lys Ala Glu Ala Glu Arg Thr Phe Ala Glu Val Thr 1445 1450 1455 Asp Leu Asp Asn Glu Val Asn Asn Met Leu Lys Gln Leu Gln Glu 1460 1465 1470 Ala Glu Lys Glu Leu Lys Arg Lys Gln Asp Asp Ala Asp Gln Asp 1475 1480 1485 Met Met Met Ala Gly Met Ala Ser Gln Ala Ala Gln Glu Ala Glu 1490 1495 1500 Ile Asn Ala Arg Lys Ala Lys Asn Ser Val Thr Ser Leu Leu Ser 1505 1510 1515 Ile Ile Asn Asp Leu Leu Glu Gln Leu Gly Gln Leu Asp Thr Val 1520 1525 1530 Asp Leu Asn Lys Leu Asn Glu Ile Glu Gly Thr Leu Asn Lys Ala 1535 1540 1545 Lys Asp Glu Met Lys Val Ser Asp Leu Asp Arg Lys Val Ser Asp 1550 1555 1560 Leu Glu Asn Glu Ala Lys Lys Gln Glu Ala Ala Ile Met Asp Tyr 1565 1570 1575 Asn Arg Asp Ile Glu Glu Ile Met Lys Asp Ile Arg Asn Leu Glu 1580 1585 1590 Asp Ile Arg Lys Thr Leu Pro Ser Gly Cys Phe Asn Thr Pro Ser 1595 1600 1605 Ile Glu Lys Pro 1609 <210> 7 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer for PCR amplification <400> 7 CAGGATCCAG TGGTGTCGTT AGA 23 <210> 8 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer for PCR amplification <400> 8 GGTCTAGATC ATCCATGATT GGCCTG 26 <210> 9 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer for PCR amplification <400> 9 CAGGATCCGT TCTGAGCTTG TAC 23 <210> 10 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer for PCR amplification <400> 10 CCTCTAGATC AGGAGAATGA GGCAGA 26[Sequence list] SEQUENCE LISTING <110> Japan Science and Technology Corporation <120> Composition comprising Laminin-6 for regulating cellular adhesion activity and / or cell migration activity <130> 012796 <160> 10 <210> 1 <211> 5433 <212> DNA <213> Human <220> <221> CDS <222> (1) ... (5139) <300> <301> Ryan, M.C., Tizard, R., VanDevanter, D.R. And Carter, W.G. <302> Cloning of the LamA3 gene encoding the alpha 3 chain of the       adhesive ligand epiligrin. Expression in wound repair <303> JOURNAL J. Biol. Chem. <304> 269 <305> 36 <306> 22779-22787 <307> 1994 <400> 1 atg gga tgg ctg tgg atc ttt ggg gca gcc ctg ggg cag tgt ctg 45 Met Gly Trp Leu Trp Ile Phe Gly Ala Ala Leu Gly Gln Cys Leu   1 5 10 15 ggc tac agt tca cag cag caa agg gtg cca ttt ctt cag cct ccc 90 Gly Tyr Ser Ser Gln Gln Gln Arg Val Pro Phe Leu Gln Pro Pro                  20 25 30 ggt caa agt caa ctg caa gcg agt tat gtg gag ttt aga ccc agc 135 Gly Gln Ser Gln Leu Gln Ala Ser Tyr Val Glu Phe Arg Pro Ser                  35 40 45 cag ggt tgt agc cct gga tac tat cgg gat cat aaa ggc ttg tat 180 Gln Gly Cys Ser Pro Gly Tyr Tyr Arg Asp His Lys Gly Leu Tyr                  50 55 60 acc gga cgg tgt gtt ccc tgc aat tgc aac gga cat tca aat caa 225 Thr Gly Arg Cys Val Pro Cys Asn Cys Asn Gly His Ser Asn Gln                  65 70 75 tgc cag gat ggc tca ggc ata tgt gtt aac tgt cag cac aac acc 270 Cys Gln Asp Gly Ser Gly Ile Cys Val Asn Cys Gln His Asn Thr                  80 85 90 gcg gga gag cac tgt gaa cgc tgc cag gag ggc tac tat ggc aac 315 Ala Gly Glu His Cys Glu Arg Cys Gln Glu Gly Tyr Tyr Gly Asn                  95 100 105 gcc gtc cac gga tcc tgc agg gcc tgc cca tgt cct cac act aac 360 Ala Val His Gly Ser Cys Arg Ala Cys Pro Cys Pro His Thr Asn                 110 115 120 agc ttt gcc act ggc tgt gtg gtg aat ggg gga gac gtg cgg tgc 405 Ser Phe Ala Thr Gly Cys Val Val Asn Gly Gly Asp Val Arg Cys                 125 130 135 tcc tgc aaa gct ggg tac aca gga aca cag tgt gaa agg tgt gca 450 Ser Cys Lys Ala Gly Tyr Thr Gly Thr Gln Cys Glu Arg Cys Ala                 140 145 150 ccg gga tat ttc ggg aat ccc cag aaa ttc gga ggt agc tgc caa 495 Pro Gly Tyr Phe Gly Asn Pro Gln Lys Phe Gly Gly Ser Cys Gln                 155 160 165 cca tgc agt tgt aac agc aat ggc cag ctg ggc agc tgt cat ccc 540 Pro Cys Ser Cys Asn Ser Asn Gly Gln Leu Gly Ser Cys His Pro                 170 175 180 ctg act gga gac tgc ata aac caa gaa ccc aaa gat agc agc cct 585 Leu Thr Gly Asp Cys Ile Asn Gln Glu Pro Lys Asp Ser Ser Pro                 185 190 195 gca gaa gaa tgt gat gat tgc gac agc tgt gtg atg acc ctc ctg 630 Ala Glu Glu Cys Asp Asp Cys Asp Ser Cys Val Met Thr Leu Leu                 200 205 210 aac gac ctg gcc acc atg ggc gag cag ctc cgc ctg gtc aag tct 675 Asn Asp Leu Ala Thr Met Gly Glu Gln Leu Arg Leu Val Lys Ser                 215 220 225 cag ctg cag ggc ctg agt gcc agc gca ggg ctt ctg gag cag atg 720 Gln Leu Gln Gly Leu Ser Ala Ser Ala Gly Leu Leu Glu Gln Met                 230 235 240 agg cac atg gag acc cag gcc aag gac ctg agg aat cag ttg ctc 765 Arg His Met Glu Thr Gln Ala Lys Asp Leu Arg Asn Gln Leu Leu                 245 250 255 aac tac cgt tct gcc att tca aat cat gga tca aaa ata gaa ggc 810 Asn Tyr Arg Ser Ala Ile Ser Asn His Gly Ser Lys Ile Glu Gly                 260 265 270 ctg gaa aga gaa ctg act gat ttg aat caa gaa ttt gag act ttg 855 Leu Glu Arg Glu Leu Thr Asp Leu Asn Gln Glu Phe Glu Thr Leu                 275 280 285 caa gaa aag gct caa gta aat tcc aga aaa gca caa aca tta aac 900 Gln Glu Lys Ala Gln Val Asn Ser Arg Lys Ala Gln Thr Leu Asn                 290 295 300 aac aat gtt aat cgg gca aca caa agc gca aaa gaa ctg gat gtg 945 Asn Asn Val Asn Arg Ala Thr Gln Ser Ala Lys Glu Leu Asp Val                 305 310 315 aag att aaa aat gtc atc cgg aat gtg cac att ctt tta aag cag 990 Lys Ile Lys Asn Val Ile Arg Asn Val His Ile Leu Leu Lys Gln                 320 325 330 atc tct ggg aca gat gga gag gga aac aac gtg cct tca ggt gac 1035 Ile Ser Gly Thr Asp Gly Glu Gly Asn Asn Val Pro Ser Gly Asp                 335 340 345 ttt tcc aga gag tgg gct gaa gcc cag cgc atg atg agg gaa ctg 1080 Phe Ser Arg Glu Trp Ala Glu Ala Gln Arg Met Met Arg Glu Leu                 350 355 360 cgg aac agg aac ttt gga aag cac ctc aga gaa gca gaa gct gat 1125 Arg Asn Arg Asn Phe Gly Lys His Leu Arg Glu Ala Glu Ala Asp                 365 370 375 aaa agg gag tcg cag ctc ttg ctg aac cgg ata agg acc tgg cag 1170 Lys Arg Glu Ser Gln Leu Leu Leu Asn Arg Ile Arg Thr Trp Gln                 380 385 390 aaa acc cac cag ggg gag aac aat ggg ctt gct aac agt atc cgg 1215 Lys Thr His Gln Gly Glu Asn Asn Gly Leu Ala Asn Ser Ile Arg                 395 400 405 gat tct tta aat gaa tac gaa gcc aaa ctc agt gac ctt cgt gct 1260 Asp Ser Leu Asn Glu Tyr Glu Ala Lys Leu Ser Asp Leu Arg Ala                 410 415 420 cgg ctg cag gag gca gct gcc caa gcc aag cag gca aat ggc ttg 1305 Arg Leu Gln Glu Ala Ala Ala Gln Ala Lys Gln Ala Asn Gly Leu                 425 430 435 aac caa gaa aac gag aga gct ttg gga gcc att cag aga caa gtg 1350 Asn Gln Glu Asn Glu Arg Ala Leu Gly Ala Ile Gln Arg Gln Val                 440 445 450 aaa gaa ata aat tcc ctg cag agt gat ttc acc aag tat cta acc 1395 Lys Glu Ile Asn Ser Leu Gln Ser Asp Phe Thr Lys Tyr Leu Thr                 455 460 465 act gca gac tca tct ttg ttg caa acc aac att gcg ctg cag ctg 1440 Thr Ala Asp Ser Ser Leu Leu Gln Thr Asn Ile Ala Leu Gln Leu                 470 475 480 atg gag aaa agc cag aag gaa tat gaa aaa tta gct gcc agt tta 1485 Met Glu Lys Ser Gln Lys Glu Tyr Glu Lys Leu Ala Ala Ser Leu                 485 490 495 aat gaa gca aga caa gaa cta agt gac aaa gta aga gaa ctt tcc 1530 Asn Glu Ala Arg Gln Glu Leu Ser Asp Lys Val Arg Glu Leu Ser                 500 505 510 aga tct gct ggc aaa aca tcc ctt gtg gag gag gca gaa aag cac 1575 Arg Ser Ala Gly Lys Thr Ser Leu Val Glu Glu Ala Glu Lys His                 515 520 525 gcg cgg tcc tta caa gag ctg gca aag cag ctg gaa gag atc aag 1620 Ala Arg Ser Leu Gln Glu Leu Ala Lys Gln Leu Glu Glu Ile Lys                 530 535 540 aga aac gcc agc ggg gat gag ctg gtg cgc tgt gct gtg gat gcc 1665 Arg Asn Ala Ser Gly Asp Glu Leu Val Arg Cys Ala Val Asp Ala                 545 550 555 gcc acc gcc tac gag aac atc ctc aat gcc atc aaa gcg gcc gag 1710 Ala Thr Ala Tyr Glu Asn Ile Leu Asn Ala Ile Lys Ala Ala Glu                 560 565 570 gac gca gcc aac agg gct gcc agt gca tct gaa tct gcc ctc cag 1755 Asp Ala Ala Asn Arg Ala Ala Ser Ala Ser Glu Ser Ala Leu Gln                 575 580 585 aca gtg ata aag gaa gat ctg cca aga aaa gct aaa acc ctg agt 1800 Thr Val Ile Lys Glu Asp Leu Pro Arg Lys Ala Lys Thr Leu Ser                 590 595 600 tcc aac agt gat aaa ctg tta aat gaa gcc aag atg aca caa aag 1845 Ser Asn Ser Asp Lys Leu Leu Asn Glu Ala Lys Met Thr Gln Lys                 605 610 615 aag cta aag caa gaa gtc agt cca gct ctc aac aac cta cag caa 1890 Lys Leu Lys Gln Glu Val Ser Pro Ala Leu Asn Asn Leu Gln Gln                 620 625 630 acc ctg aat att gtg aca gtt cag aaa gaa gtg ata gac acc aat 1935 Thr Leu Asn Ile Val Thr Val Gln Lys Glu Val Ile Asp Thr Asn                 635 640 645 ctc aca act ctc cga gat ggt ctt cat ggg ata cag aga ggt gat 1980 Leu Thr Thr Leu Arg Asp Gly Leu His Gly Ile Gln Arg Gly Asp                 650 655 660 att gat gct atg atc agt agt gca aag agc atg gtc aga aag gcc 2025 Ile Asp Ala Met Ile Ser Ser Ala Lys Ser Met Val Arg Lys Ala                 665 670 675 aac gac atc aca gat gag gtt ctg gat ggg ctc aac ccc atc cag 2070 Asn Asp Ile Thr Asp Glu Val Leu Asp Gly Leu Asn Pro Ile Gln                 680 685 690 aca gat gtg gaa aga att aag gac acc tat ggg agg aca cag aac 2115 Thr Asp Val Glu Arg Ile Lys Asp Thr Tyr Gly Arg Thr Gln Asn                 695 700 705 gaa gac ttc aaa aag gct ctg act gat gca gat aac tcg gtg aat 2160 Glu Asp Phe Lys Lys Ala Leu Thr Asp Ala Asp Asn Ser Val Asn                 710 715 720 aag tta acc aac aaa cta cct gat ctt tgg cgc aag att gaa agt 2205 Lys Leu Thr Asn Lys Leu Pro Asp Leu Trp Arg Lys Ile Glu Ser                 725 730 735 atc aac caa cag ctg ttg ccc ttg gga aac atc tct gac aac atg 2250 Ile Asn Gln Gln Leu Leu Pro Leu Gly Asn Ile Ser Asp Asn Met                 740 745 750 gac aga ata cga gaa cta att cag cag gcc aga gat gct gcc agt 2295 Asp Arg Ile Arg Glu Leu Ile Gln Gln Ala Arg Asp Ala Ala Ser                 755 760 765 aag gtt gct gtc ccc atg agg ttc aat ggt aaa tct gga gtc gaa 2340 Lys Val Ala Val Pro Met Arg Phe Asn Gly Lys Ser Gly Val Glu                 770 775 780 gtc cga ctg cca aat gac ctg gaa gat ttg aaa gga tat aca tct 2385 Val Arg Leu Pro Asn Asp Leu Glu Asp Leu Lys Gly Tyr Thr Ser                 785 790 795 ctg tcc ttg ttt ctc caa agg ccc aac tca aga gaa aat ggg ggt 2430 Leu Ser Leu Phe Leu Gln Arg Pro Asn Ser Arg Glu Asn Gly Gly                 800 805 810 act gag aat atg ttt gtg atg tac ctt gga aat aaa gat gcc tcc 2475 Thr Glu Asn Met Phe Val Met Tyr Leu Gly Asn Lys Asp Ala Ser                 815 820 825 cgg gac tac atc ggc atg gca gtt gtg gat ggc cag ctc acc tgt 2520 Arg Asp Tyr Ile Gly Met Ala Val Val Asp Gly Gln Leu Thr Cys                 830 835 840 gtc tac aac ctg ggg gac cgt gag gct gaa ctc caa gtg gac cag 2565 Val Tyr Asn Leu Gly Asp Arg Glu Ala Glu Leu Gln Val Asp Gln                 845 850 855 atc ttg acc aag agt gag act aag gag gca gtt atg gat cgg gtg 2610 Ile Leu Thr Lys Ser Glu Thr Lys Glu Ala Val Met Asp Arg Val                 860 865 870 aaa ttt cag aga att tat cag ttt gca agg ctt aat tac acc aaa 2655 Lys Phe Gln Arg Ile Tyr Gln Phe Ala Arg Leu Asn Tyr Thr Lys                 875 880 885 gga gcc aca tcc agt aaa cca gaa aca ccc gga gtc tat gac atg 2700 Gly Ala Thr Ser Ser Lys Pro Glu Thr Pro Gly Val Tyr Asp Met                 890 895 900 gat ggt aga aat agc aat aca ctc ctt aat ttg gat cct gaa aat 2745 Asp Gly Arg Asn Ser Asn Thr Leu Leu Asn Leu Asp Pro Glu Asn                 905 910 915 gtt gta ttt tat gtt gga ggt tac cca cct gat ttt aaa ctt ccc 2790 Val Val Phe Tyr Val Gly Gly Tyr Pro Pro Asp Phe Lys Leu Pro                 920 925 930 agt cga cta agt ttc cct cca tac aaa ggt tgt att gaa tta gat 2835 Ser Arg Leu Ser Phe Pro Pro Tyr Lys Gly Cys Ile Glu Leu Asp                 935 940 945 gac ctc aat gaa aat gtt ctg agc ttg tac aac ttc aaa aaa aca 2880 Asp Leu Asn Glu Asn Val Leu Ser Leu Tyr Asn Phe Lys Lys Thr                 950 955 960 ttc aat ctc aac aca act gaa gtg gag cct tgt aga agg agg aag 2925 Phe Asn Leu Asn Thr Thr Glu Val Glu Pro Cys Arg Arg Arg Lys                 965 970 975 gaa gag tca gac aaa aat tat ttt gaa ggt acg ggc tat gct cga 2970 Glu Glu Ser Asp Lys Asn Tyr Phe Glu Gly Thr Gly Tyr Ala Arg                 980 985 990 gtt cca act caa cca cat gct ccc atc cca acc ttt gga cag aca 3015 Val Pro Thr Gln Pro His Ala Pro Ile Pro Thr Phe Gly Gln Thr                 995 1000 1005 att cag acc acc gtg gat aga ggc ttg ctg ttc ttt gca gaa aac 3060 Ile Gln Thr Thr Val Asp Arg Gly Leu Leu Phe Phe Ala Glu Asn                1010 1015 1020 ggg gat cgc ttc ata tct cta aat ata gaa gat ggc aag ctc atg 3105 Gly Asp Arg Phe Ile Ser Leu Asn Ile Glu Asp Gly Lys Leu Met                1025 1030 1035 gtg aga tac aaa ctg aat tca gag cta cca aaa gag aga gga gtt 3150 Val Arg Tyr Lys Leu Asn Ser Glu Leu Pro Lys Glu Arg Gly Val                1040 1045 1050 gga gac gcc ata aac aac ggc aga gac cat tcg att cag atc aaa 3195 Gly Asp Ala Ile Asn Asn Gly Arg Asp His Ser Ile Gln Ile Lys                1055 1060 1065 att gga aaa ctc caa aag cgt atg tgg ata aat gtg gac gtt caa 3240 Ile Gly Lys Leu Gln Lys Arg Met Trp Ile Asn Val Asp Val Gln                1070 1075 1080 aac act ata att gat ggt gaa gta ttt gat ttc agc aca tat tat 3285 Asn Thr Ile Ile Asp Gly Glu Val Phe Asp Phe Ser Thr Tyr Tyr                1085 1090 1095 ctg gga gga att cca att gca atc agg gaa aga ttt aac att tct 3330 Leu Gly Gly Ile Pro Ile Ala Ile Arg Glu Arg Phe Asn Ile Ser                1100 1105 1110 acg cct gct ttc cga ggc tgc atg aaa aat ttg aag aaa acc agt 3375 Thr Pro Ala Phe Arg Gly Cys Met Lys Asn Leu Lys Lys Thr Ser                1115 1120 1125 ggt gtc gtt aga ttg aat gat act gtg gga gta acc aaa aag tgc 3420 Gly Val Val Arg Leu Asn Asp Thr Val Gly Val Thr Lys Lys Cys                1130 1135 1140 tcg gaa gac tgg aag ctt gtg cga tct gcc tca ttc tcc aga gga 3465 Ser Glu Asp Trp Lys Leu Val Arg Ser Ala Ser Phe Ser Arg Gly                1145 1150 1155 gga caa ttg agt ttc act gat ttg ggc tta cca cct act gac cac 3510 Gly Gln Leu Ser Phe Thr Asp Leu Gly Leu Pro Pro Thr Asp His                1160 1165 1170 ctc cag gcc tca ttt gga ttt cag acc ttt caa ccc agt ggc ata 3555 Leu Gln Ala Ser Phe Gly Phe Gln Thr Phe Gln Pro Ser Gly Ile                1175 1180 1185 tta tta gat cat cag aca tgg aca agg aac ctg cag gtc act ctg 3600 Leu Leu Asp His Gln Thr Trp Thr Arg Asn Leu Gln Val Thr Leu                1190 1195 1200 gaa gat ggt tac att gaa ttg agc acc agc gat agc ggc ggc cca 3645 Glu Asp Gly Tyr Ile Glu Leu Ser Thr Ser Asp Ser Gly Gly Pro                1205 1210 1215 att ttt aaa tct cca cag acg tat atg gat ggt tta ctg cat tat 3690 Ile Phe Lys Ser Pro Gln Thr Tyr Met Asp Gly Leu Leu His Tyr                1220 1225 1230 gta tct gta ata agc gac aac tct gga cta cgg ctt ctc atc gat 3735 Val Ser Val Ile Ser Asp Asn Ser Gly Leu Arg Leu Leu Ile Asp                1235 1240 1245 gac cag ctt ctg aga aat agc aaa agg cta aaa cac att tca agt 3780 Asp Gln Leu Leu Arg Asn Ser Lys Arg Leu Lys His Ile Ser Ser                1250 1255 1260 tcc cgg cag tct ctg cgt ctg ggc ggg agc aat ttt gag ggt tgt 3825 Ser Arg Gln Ser Leu Arg Leu Gly Gly Ser Asn Phe Glu Gly Cys                1265 1270 1275 att agc aat gtt ttt gtc cag agg tta tca ctg agt cct gaa gtc 3870 Ile Ser Asn Val Phe Val Gln Arg Leu Ser Leu Ser Pro Glu Val                1280 1285 1290 cta gat ttg acc agt aac tct ctc aag aga gat gtg tcc ctg gga 3915 Leu Asp Leu Thr Ser Asn Ser Leu Lys Arg Asp Val Ser Leu Gly                1295 1300 1305 ggc tgc agt tta aac aaa cca cct ttt cta atg ttg ctt aaa ggt 3960 Gly Cys Ser Leu Asn Lys Pro Pro Phe Leu Met Leu Leu Lys Gly                1310 1315 1320 tct acc agg ttt aac aag acc aag act ttt cgt atc aac cag ctg 4005 Ser Thr Arg Phe Asn Lys Thr Lys Thr Phe Arg Ile Asn Gln Leu                1325 1330 1335 ttg cag gac aca cca gtg gcc tcc cca agg agc gtg aag gtg tgg 4050 Leu Gln Asp Thr Pro Val Ala Ser Pro Arg Ser Val Lys Val Trp                1340 1345 1350 caa gat gct tgc tca cca ctt ccc aag acc cag gcc aat cat gga 4095 Gln Asp Ala Cys Ser Pro Leu Pro Lys Thr Gln Ala Asn His Gly                1355 1360 1365 gcc ctc cag ttt ggg gac att ccc acc agc cac ttg cta ttc aag 4140 Ala Leu Gln Phe Gly Asp Ile Pro Thr Ser His Leu Leu Phe Lys                1370 1375 1380 ctt cct cag gag ctg ctg aaa ccc agg tca cag ttt gct gtg gac 4185 Leu Pro Gln Glu Leu Leu Lys Pro Arg Ser Gln Phe Ala Val Asp                1385 1390 1395 atg cag aca aca tcc tcc aga gga ctg gtg ttt cac acg ggc act 4230 Met Gln Thr Thr Ser Ser Arg Gly Leu Val Phe His Thr Gly Thr                1400 1405 1410 aag aac tcc ttt atg gct ctt tat ctt tca aaa gga cgt ctg gtc 4275 Lys Asn Ser Phe Met Ala Leu Tyr Leu Ser Lys Gly Arg Leu Val                1415 1420 1425 ttt gca ctg ggg aca gat ggg aaa aaa ttg agg atc aaa agc aag 4320 Phe Ala Leu Gly Thr Asp Gly Lys Lys Leu Arg Ile Lys Ser Lys                1430 1435 1440 gag aaa tgc aat gat ggg aaa tgg cac acg gtg gtg ttt ggc cat 4365 Glu Lys Cys Asn Asp Gly Lys Trp His Thr Val Val Phe Gly His                1445 1450 1455 gat ggg gaa aag ggg cgc ttg gtt gtg gat gga ctg agg gcc cgg 4410 Asp Gly Glu Lys Gly Arg Leu Val Val Asp Gly Leu Arg Ala Arg                1460 1465 1470 gag gga agt ttg cct gga aac tcc acc atc agc atc aga gcg cca 4455 Glu Gly Ser Leu Pro Gly Asn Ser Thr Ile Ser Ile Arg Ala Pro                1475 1480 1485 gtt tac ctg gga tca cct cca tca ggg aaa cca aag agc ctc ccc 4500 Val Tyr Leu Gly Ser Pro Pro Ser Gly Lys Pro Lys Ser Leu Pro                1490 1495 1500 aca aac agc ttt gtg gga tgc ctg aag aac ttt cag ctg gat tca 4545 Thr Asn Ser Phe Val Gly Cys Leu Lys Asn Phe Gln Leu Asp Ser                1505 1510 1515 aaa ccc ttg tat acc cct tct tca agc ttc ggg gtg tct tcc tgc 4590 Lys Pro Leu Tyr Thr Pro Ser Ser Ser Phe Gly Val Ser Ser Cys                1520 1525 1530 ttg ggt ggt cct ttg gag aaa ggc att tat ttc tct gaa gaa gga 4635 Leu Gly Gly Pro Leu Glu Lys Gly Ile Tyr Phe Ser Glu Glu Gly                1535 1540 1545 ggt cat gtc gtc ttg gct cac tct gta ttg ttg ggg cca gaa ttt 4680 Gly His Val Val Leu Ala His Ser Val Leu Leu Gly Pro Glu Phe                1550 1555 1560 aag ctt gtt ttc agc atc cgc cca aga agt ctc act ggg atc cta 4725 Lys Leu Val Phe Ser Ile Arg Pro Arg Ser Leu Thr Gly Ile Leu                1565 1570 1575 ata cac atc gga agt cag ccc ggg aag cac tta tgt gtt tac ctg 4770 Ile His Ile Gly Ser Gln Pro Gly Lys His Leu Cys Val Tyr Leu                1580 1585 1590 gag gca gga aag gtc acg gcc tct atg gac agt ggg gca ggt ggg 4815 Glu Ala Gly Lys Val Thr Ala Ser Met Asp Ser Gly Ala Gly Gly                1595 1600 1605 acc tca acg tcg gtc aca cca aag cag tct ctg tgt gat gga cag 4860 Thr Ser Thr Ser Val Thr Pro Lys Gln Ser Leu Cys Asp Gly Gln                1610 1615 1620 tgg cac tcg gtg gca gtc acc ata aaa caa cac atc ctg cac ctg 4905 Trp His Ser Val Ala Val Thr Ile Lys Gln His Ile Leu His Leu                1625 1630 1635 gaa ctg gac aca gac agt agc tac aca gct gga cag atc ccc ttc 4950 Glu Leu Asp Thr Asp Ser Ser Tyr Thr Ala Gly Gln Ile Pro Phe                1640 1645 1650 cca cct gcc agc act caa gag cca cta cac ctt gga ggt gct cca 4995 Pro Pro Ala Ser Thr Gln Glu Pro Leu His Leu Gly Gly Ala Pro                1655 1660 1665 gcc aat ttg acg aca ctg agg atc cct gtg tgg aaa tca ttc ttt 5040 Ala Asn Leu Thr Thr Leu Arg Ile Pro Val Trp Lys Ser Phe Phe                1670 1675 1680 ggc tgt ctg agg aat att cat gtc aat cac atc cct gtc cct gtc 5085 Gly Cys Leu Arg Asn Ile His Val Asn His Ile Pro Val Pro Val                1685 1690 1695 act gaa gcc ttg gaa gtc cag ggg cct gtc agt ctg aat ggt tgt 5130 Thr Glu Ala Leu Glu Val Gln Gly Pro Val Ser Leu Asn Gly Cys                1700 1705 1710 cct gac cag 5139 Pro Asp Gln        1713 taacccaagc ctatttcaca gcaaggaaat tcaccttcaa aagcactgat 5189 tacccaatgc acctccctcc ccagctcgag atcattcttc aattaggaca 5239 caaaccagac aggtttaata gcgaatctaa ttttgaattc tgaccatgga 5289 tacccatcac tttggcattc agtgctacat gtgtatttta tataaaaatc 5339 ccatttcttg aagataaaaa aattgttatt caaattgtta tgcacagaat 5389 gtttttggta atattaattt ccactaaaaa attaaatgtc tttt 5433 <210> 2 <211> 1713 <212> PRT <213> Human <400> 2 Met Gly Trp Leu Trp Ile Phe Gly Ala Ala Leu Gly Gln Cys Leu   1 5 10 15 Gly Tyr Ser Ser Gln Gln Gln Arg Val Pro Phe Leu Gln Pro Pro                  20 25 30 Gly Gln Ser Gln Leu Gln Ala Ser Tyr Val Glu Phe Arg Pro Ser                  35 40 45 Gln Gly Cys Ser Pro Gly Tyr Tyr Arg Asp His Lys Gly Leu Tyr                  50 55 60 Thr Gly Arg Cys Val Pro Cys Asn Cys Asn Gly His Ser Asn Gln                  65 70 75 Cys Gln Asp Gly Ser Gly Ile Cys Val Asn Cys Gln His Asn Thr                  80 85 90 Ala Gly Glu His Cys Glu Arg Cys Gln Glu Gly Tyr Tyr Gly Asn                  95 100 105 Ala Val His Gly Ser Cys Arg Ala Cys Pro Cys Pro His Thr Asn                 110 115 120 Ser Phe Ala Thr Gly Cys Val Val Asn Gly Gly Asp Val Arg Cys                 125 130 135 Ser Cys Lys Ala Gly Tyr Thr Gly Thr Gln Cys Glu Arg Cys Ala                 140 145 150 Pro Gly Tyr Phe Gly Asn Pro Gln Lys Phe Gly Gly Ser Cys Gln                 155 160 165 Pro Cys Ser Cys Asn Ser Asn Gly Gln Leu Gly Ser Cys His Pro                 170 175 180 Leu Thr Gly Asp Cys Ile Asn Gln Glu Pro Lys Asp Ser Ser Pro                 185 190 195 Ala Glu Glu Cys Asp Asp Cys Asp Ser Cys Val Met Thr Leu Leu                 200 205 210 Asn Asp Leu Ala Thr Met Gly Glu Gln Leu Arg Leu Val Lys Ser                 215 220 225 Gln Leu Gln Gly Leu Ser Ala Ser Ala Gly Leu Leu Glu Gln Met                 230 235 240 Arg His Met Glu Thr Gln Ala Lys Asp Leu Arg Asn Gln Leu Leu                 245 250 255 Asn Tyr Arg Ser Ala Ile Ser Asn His Gly Ser Lys Ile Glu Gly                 260 265 270 Leu Glu Arg Glu Leu Thr Asp Leu Asn Gln Glu Phe Glu Thr Leu                 275 280 285 Gln Glu Lys Ala Gln Val Asn Ser Arg Lys Ala Gln Thr Leu Asn                 290 295 300 Asn Asn Val Asn Arg Ala Thr Gln Ser Ala Lys Glu Leu Asp Val                 305 310 315 Lys Ile Lys Asn Val Ile Arg Asn Val His Ile Leu Leu Lys Gln                 320 325 330 Ile Ser Gly Thr Asp Gly Glu Gly Asn Asn Val Pro Ser Gly Asp                 335 340 345 Phe Ser Arg Glu Trp Ala Glu Ala Gln Arg Met Met Arg Glu Leu                 350 355 360 Arg Asn Arg Asn Phe Gly Lys His Leu Arg Glu Ala Glu Ala Asp                 365 370 375 Lys Arg Glu Ser Gln Leu Leu Leu Asn Arg Ile Arg Thr Trp Gln                 380 385 390 Lys Thr His Gln Gly Glu Asn Asn Gly Leu Ala Asn Ser Ile Arg                 395 400 405 Asp Ser Leu Asn Glu Tyr Glu Ala Lys Leu Ser Asp Leu Arg Ala                 410 415 420 Arg Leu Gln Glu Ala Ala Ala Gln Ala Lys Gln Ala Asn Gly Leu                 425 430 435 Asn Gln Glu Asn Glu Arg Ala Leu Gly Ala Ile Gln Arg Gln Val                 440 445 450 Lys Glu Ile Asn Ser Leu Gln Ser Asp Phe Thr Lys Tyr Leu Thr                 455 460 465 Thr Ala Asp Ser Ser Leu Leu Gln Thr Asn Ile Ala Leu Gln Leu                 470 475 480 Met Glu Lys Ser Gln Lys Glu Tyr Glu Lys Leu Ala Ala Ser Leu                 485 490 495 Asn Glu Ala Arg Gln Glu Leu Ser Asp Lys Val Arg Glu Leu Ser                 500 505 510 Arg Ser Ala Gly Lys Thr Ser Leu Val Glu Glu Ala Glu Lys His                 515 520 525 Ala Arg Ser Leu Gln Glu Leu Ala Lys Gln Leu Glu Glu Ile Lys                 530 535 540 Arg Asn Ala Ser Gly Asp Glu Leu Val Arg Cys Ala Val Asp Ala                 545 550 555 Ala Thr Ala Tyr Glu Asn Ile Leu Asn Ala Ile Lys Ala Ala Glu                 560 565 570 Asp Ala Ala Asn Arg Ala Ala Ser Ala Ser Glu Ser Ala Leu Gln                 575 580 585 Thr Val Ile Lys Glu Asp Leu Pro Arg Lys Ala Lys Thr Leu Ser                 590 595 600 Ser Asn Ser Asp Lys Leu Leu Asn Glu Ala Lys Met Thr Gln Lys                 605 610 615 Lys Leu Lys Gln Glu Val Ser Pro Ala Leu Asn Asn Leu Gln Gln                 620 625 630 Thr Leu Asn Ile Val Thr Val Gln Lys Glu Val Ile Asp Thr Asn                 635 640 645 Leu Thr Thr Leu Arg Asp Gly Leu His Gly Ile Gln Arg Gly Asp                 650 655 660 Ile Asp Ala Met Ile Ser Ser Ala Lys Ser Met Val Arg Lys Ala                 665 670 675 Asn Asp Ile Thr Asp Glu Val Leu Asp Gly Leu Asn Pro Ile Gln                 680 685 690 Thr Asp Val Glu Arg Ile Lys Asp Thr Tyr Gly Arg Thr Gln Asn                 695 700 705 Glu Asp Phe Lys Lys Ala Leu Thr Asp Ala Asp Asn Ser Val Asn                 710 715 720 Lys Leu Thr Asn Lys Leu Pro Asp Leu Trp Arg Lys Ile Glu Ser                 725 730 735 Ile Asn Gln Gln Leu Leu Pro Leu Gly Asn Ile Ser Asp Asn Met                 740 745 750 Asp Arg Ile Arg Glu Leu Ile Gln Gln Ala Arg Asp Ala Ala Ser                 755 760 765 Lys Val Ala Val Pro Met Arg Phe Asn Gly Lys Ser Gly Val Glu                 770 775 780 Val Arg Leu Pro Asn Asp Leu Glu Asp Leu Lys Gly Tyr Thr Ser                 785 790 795 Leu Ser Leu Phe Leu Gln Arg Pro Asn Ser Arg Glu Asn Gly Gly                 800 805 810 Thr Glu Asn Met Phe Val Met Tyr Leu Gly Asn Lys Asp Ala Ser                 815 820 825 Arg Asp Tyr Ile Gly Met Ala Val Val Asp Gly Gln Leu Thr Cys                 830 835 840 Val Tyr Asn Leu Gly Asp Arg Glu Ala Glu Leu Gln Val Asp Gln                 845 850 855 Ile Leu Thr Lys Ser Glu Thr Lys Glu Ala Val Met Asp Arg Val                 860 865 870 Lys Phe Gln Arg Ile Tyr Gln Phe Ala Arg Leu Asn Tyr Thr Lys                 875 880 885 Gly Ala Thr Ser Ser Lys Pro Glu Thr Pro Gly Val Tyr Asp Met                 890 895 900 Asp Gly Arg Asn Ser Asn Thr Leu Leu Asn Leu Asp Pro Glu Asn                 905 910 915 Val Val Phe Tyr Val Gly Gly Tyr Pro Pro Asp Phe Lys Leu Pro                 920 925 930 Ser Arg Leu Ser Phe Pro Pro Tyr Lys Gly Cys Ile Glu Leu Asp                 935 940 945 Asp Leu Asn Glu Asn Val Leu Ser Leu Tyr Asn Phe Lys Lys Thr                 950 955 960 Phe Asn Leu Asn Thr Thr Glu Val Glu Pro Cys Arg Arg Arg Lys                 965 970 975 Glu Glu Ser Asp Lys Asn Tyr Phe Glu Gly Thr Gly Tyr Ala Arg                 980 985 990 Val Pro Thr Gln Pro His Ala Pro Ile Pro Thr Phe Gly Gln Thr                 995 1000 1005 Ile Gln Thr Thr Val Asp Arg Gly Leu Leu Phe Phe Ala Glu Asn                1010 1015 1020 Gly Asp Arg Phe Ile Ser Leu Asn Ile Glu Asp Gly Lys Leu Met                1025 1030 1035 Val Arg Tyr Lys Leu Asn Ser Glu Leu Pro Lys Glu Arg Gly Val                1040 1045 1050 Gly Asp Ala Ile Asn Asn Gly Arg Asp His Ser Ile Gln Ile Lys                1055 1060 1065 Ile Gly Lys Leu Gln Lys Arg Met Trp Ile Asn Val Asp Val Gln                1070 1075 1080 Asn Thr Ile Ile Asp Gly Glu Val Phe Asp Phe Ser Thr Tyr Tyr                1085 1090 1095 Leu Gly Gly Ile Pro Ile Ala Ile Arg Glu Arg Phe Asn Ile Ser                1100 1105 1110 Thr Pro Ala Phe Arg Gly Cys Met Lys Asn Leu Lys Lys Thr Ser                1115 1120 1125 Gly Val Val Arg Leu Asn Asp Thr Val Gly Val Thr Lys Lys Cys                1130 1135 1140 Ser Glu Asp Trp Lys Leu Val Arg Ser Ala Ser Phe Ser Arg Gly                1145 1150 1155 Gly Gln Leu Ser Phe Thr Asp Leu Gly Leu Pro Pro Thr Asp His                1160 1165 1170 Leu Gln Ala Ser Phe Gly Phe Gln Thr Phe Gln Pro Ser Gly Ile                1175 1180 1185 Leu Leu Asp His Gln Thr Trp Thr Arg Asn Leu Gln Val Thr Leu                1190 1195 1200 Glu Asp Gly Tyr Ile Glu Leu Ser Thr Ser Asp Ser Gly Gly Pro                1205 1210 1215 Ile Phe Lys Ser Pro Gln Thr Tyr Met Asp Gly Leu Leu His Tyr                1220 1225 1230 Val Ser Val Ile Ser Asp Asn Ser Gly Leu Arg Leu Leu Ile Asp                1235 1240 1245 Asp Gln Leu Leu Arg Asn Ser Lys Arg Leu Lys His Ile Ser Ser                1250 1255 1260 Ser Arg Gln Ser Leu Arg Leu Gly Gly Ser Asn Phe Glu Gly Cys                1265 1270 1275 Ile Ser Asn Val Phe Val Gln Arg Leu Ser Leu Ser Pro Glu Val                1280 1285 1290 Leu Asp Leu Thr Ser Asn Ser Leu Lys Arg Asp Val Ser Leu Gly                1295 1300 1305 Gly Cys Ser Leu Asn Lys Pro Pro Phe Leu Met Leu Leu Lys Gly                1310 1315 1320 Ser Thr Arg Phe Asn Lys Thr Lys Thr Phe Arg Ile Asn Gln Leu                1325 1330 1335 Leu Gln Asp Thr Pro Val Ala Ser Pro Arg Ser Val Lys Val Trp                1340 1345 1350 Gln Asp Ala Cys Ser Pro Leu Pro Lys Thr Gln Ala Asn His Gly                1355 1360 1365 Ala Leu Gln Phe Gly Asp Ile Pro Thr Ser His Leu Leu Phe Lys                1370 1375 1380 Leu Pro Gln Glu Leu Leu Lys Pro Arg Ser Gln Phe Ala Val Asp                1385 1390 1395 Met Gln Thr Thr Ser Ser Arg Gly Leu Val Phe His Thr Gly Thr                1400 1405 1410 Lys Asn Ser Phe Met Ala Leu Tyr Leu Ser Lys Gly Arg Leu Val                1415 1420 1425 Phe Ala Leu Gly Thr Asp Gly Lys Lys Leu Arg Ile Lys Ser Lys                1430 1435 1440 Glu Lys Cys Asn Asp Gly Lys Trp His Thr Val Val Phe Gly His                1445 1450 1455 Asp Gly Glu Lys Gly Arg Leu Val Val Asp Gly Leu Arg Ala Arg                1460 1465 1470 Glu Gly Ser Leu Pro Gly Asn Ser Thr Ile Ser Ile Arg Ala Pro                1475 1480 1485 Val Tyr Leu Gly Ser Pro Pro Ser Gly Lys Pro Lys Ser Leu Pro                1490 1495 1500 Thr Asn Ser Phe Val Gly Cys Leu Lys Asn Phe Gln Leu Asp Ser                1505 1510 1515 Lys Pro Leu Tyr Thr Pro Ser Ser Ser Phe Gly Val Ser Ser Cys                1520 1525 1530 Leu Gly Gly Pro Leu Glu Lys Gly Ile Tyr Phe Ser Glu Glu Gly                1535 1540 1545 Gly His Val Val Leu Ala His Ser Val Leu Leu Gly Pro Glu Phe                1550 1555 1560 Lys Leu Val Phe Ser Ile Arg Pro Arg Ser Leu Thr Gly Ile Leu                1565 1570 1575 Ile His Ile Gly Ser Gln Pro Gly Lys His Leu Cys Val Tyr Leu                1580 1585 1590 Glu Ala Gly Lys Val Thr Ala Ser Met Asp Ser Gly Ala Gly Gly                1595 1600 1605 Thr Ser Thr Ser Val Thr Pro Lys Gln Ser Leu Cys Asp Gly Gln                1610 1615 1620 Trp His Ser Val Ala Val Thr Ile Lys Gln His Ile Leu His Leu                1625 1630 1635 Glu Leu Asp Thr Asp Ser Ser Tyr Thr Ala Gly Gln Ile Pro Phe                1640 1645 1650 Pro Pro Ala Ser Thr Gln Glu Pro Leu His Leu Gly Gly Ala Pro                1655 1660 1665 Ala Asn Leu Thr Thr Leu Arg Ile Pro Val Trp Lys Ser Phe Phe                1670 1675 1680 Gly Cys Leu Arg Asn Ile His Val Asn His Ile Pro Val Pro Val                1685 1690 1695 Thr Glu Ala Leu Glu Val Gln Gly Pro Val Ser Leu Asn Gly Cys                1700 1705 1710 Pro Asp Gln        1713 <210> 3 <211> 5831 <212> DNA <213> Human <220> <221> CDS <222> (336) ... (5361) <300> <301> Pikkarainen, T., Eddy, R., Fuushima, Y., Byers, M., Shows, T.,       Pihlajaniemi, T., Saraste, M. And Tryggvason, K. <302> Human laminin B1 chain.A multidomain protein with gene (LAMB1)       locus in the q22 region of chromosome 7 <303> JOURNAL J. Biol. Chem. <304> 262 <305> 22 <306> 10454-10462 <307> 1987 <400> gggacctgga agcgccccag ccccgcagcg atcgcagatt cggctttcaa acaaaagagg 60 cgccccgggg ggtgggaccg ggacctcacc cggtcctcgc agagttgcgg ccgcccgccc 120 cttcagcccc ggctctccgt atgcgcatga gcagaggcgc ctccctctgt tcctcccaag 180 gctaaacttt ctaattccct tctttgggct cgggggctcc cggagcaggg cgagagctcg 240 cgtcgccgga aaggaagacg ggaagaaagg gcaggcggct cggcgggcgt cttctccact 300 cctctgccgc gtccccgtgg ctgcagggag ccggcatggg gcttctccag ttgctagctt 360 tcagtttctt agccctgtgc agagcccgag tgcgcgctca ggaacccgag ttcagctacg 420 gctgcgcaga aggcagctgc tatcccgcca cgggcgacct tctcatcggc cgagcacaga 480 agctttcggt gacctcgacg tgcgggctgc acaagcccga accctactgt atcgtcagcc 540 acttgcagga ggacaaaaaa tgcttcatat gcaattccca agatccttat catgagaccc 600 tgaatcctga cagccatctc attgaaaatg tggtcactac atttgctcca aaccgcctta 660 agatttggtg gcaatctgaa aatggtgtgg aaaatgtaac tatccaactg gatttggaag 720 cagaattcca ttttactcat ctcataatga ctttcaagac attccgtcca gctgctatgc 780 tgatagaacg atcgtccgac tttgggaaaa cctggggtgt gtatagatac ttcgcctatg 840 actgtgaggc ctcgtttcca ggcatttcaa ctggccccat gaaaaaagtc gatgacataa 900 tttgtgattc tcgatattct gacattgaac cctcaactga aggagaggtg atatttcgtg 960 ctttagatcc tgctttcaaa atagaagatc cttatagccc aaggatacag aatttattaa 1020 aaattaccaa cttgagaatc aagtttgtga aactgcatac tttgggagat aaccttctgg 1080 attccaggat ggaaatcaga gaaaagtatt attatgcagt ttatgatatg gtggttcgag 1140 gaaattgctt ctgctatggt catgccagcg aatgtgcccc tgtggatgga ttcaatgaag 1200 aagtggaagg aatggttcac ggacactgca tgtgcaggca taacaccaag ggcttaaact 1260 gtgaactctg catggatttc taccatgatt taccttggag acctgctgaa ggccgaaaca 1320 gcaacgcctg taaaaaatgt aactgcaatg aacattccat ctcttgtcac tttgacatgg 1380 ctgtttacct ggccacgggg aacgtcagcg gaggcgtgtg tgatgactgt cagcacaaca 1444 ccatggggcg caactgtgag cagtgcaagc cgttttacta ccagcaccca gagagggaca 1500 tccgagatcc taatttctgt gaacgatgta cgtgtgaccc agctggctct caaaatgagg 1560 gaatttgtga cagctatact gatttttcta ctggtctcat tgctggccag tgtcggtgta 1620 aattaaatgt ggaaggagaa cattgtgatg tttgcaaaga aggcttctat gatttaagca 1680 gtgaagatcc atttggttgt aaatcttgtg cttgcaatcc tctgggaaca attcctggag 1740 ggaatccttg tgattccgag acaggtcact gctactgcaa gcgtctggtg acaggacagc 1800 attgtgacca gtgcctgcca gagcactggg gcttaagcaa tgatttggat ggatgtcgac 1860 catgtgactg tgaccttggg ggagccttaa acaacagttg ctttgcggag tcaggccagt 1920 gctcatgccg gcctcacatg attggacgtc agtgcaacga agtggaacct ggttactact 1980 ttgccaccct ggatcactac ctctatgaag cggaggaagc caacttgggg cctggggtta 2040 gcatagtgga gcggcaatat atccaggacc ggattccctc ctggactgga gccggcttcg 2100 tccgagtgcc tgaaggggct tatttggagt ttttcattga caacatacca tattccatgg 2160 agtacgacat cctaattcgc tacgagccac agctacccga ccactgggaa aaagctgtca 2220 tcacagtgca gcgacctgga aggattccaa ccagcagccg atgtggtaat accatccccg 2280 atgatgacaa ccaggtggtg tcattatcac caggctcaag atatgtcgtc cttcctcggc 2340 cggtgtgctt tgagaaggga acaaactaca cggtgaggtt ggagctgcct cagtacacct 2400 cctctgatag cgacgtggag agcccctaca cgctgatcga ttctcttgtt ctcatgccat 2460 actgtaaatc actggacatc ttcaccgtgg gaggttcagg agatggggtg gtcaccaaca 2520 gtgcctggga aacctttcag agataccgat gtctagagaa cagcagaagc gttgtgaaaa 2580 caccgatgac agatgtttgc agaaacatca tctttagcat ttctgccctg ttacaccaga 2640 caggcctggc ttgtgaatgc gaccctcagg gttcgttaag ttccgtgtgt gatcccaacg 2700 gaggccagtg ccagtgccgg cccaacgtgg ttggaagaac ctgcaacaga tgtgcacctg 2760 gaacttttgg ctttggcccc agtggatgca aaccttgtga gtgccatctg caaggatctg 2820 tcaatgcctt ctgcaatccc gtcactggcc agtgccactg tttccaggga gtgtatgctc 2880 ggcagtgtga tcggtgctta cctgggcact ggggctttcc aagttgccag ccctgccagt 2940 gcaatggcca cgccgatgac tgcgacccag tgactgggga gtgcttgaac tgccaggact 3000 acaccatggg tcataactgt gaaaggtgct tggctggtta ctatggcgac cccatcattg 3060 ggtcaggtga tcactgccgc ccttgccctt gcccagatgg tcccgacagt ggacgccagt 3120 ttgccaggag ctgctaccaa gatcctgtta ctttacagct tgcctgtgtt tgtgatcctg 3180 gatacattgg ttccagatgt gacgactgtg cctcaggata ctttggcaat ccatcagaag 3240 ttggggggtc gtgtcagcct tgccagtgtc acaacaacat tgacacgaca gacccagaag 3300 cctgtgacaa ggagactggg aggtgtctca agtgcctgta ccacacggaa ggggaacact 3360 gtcagttctg ccggtttgga tactatggtg atgccctccg gcaggactgt cgaaagtgtg 3420 tctgtaatta cctgggcacc gtgcaagagc actgtaacgg ctctgactgc cagtgcgaca 3480 aagccactgg tcagtgcttg tgtcttccta atgtgatcgg gcagaactgt gaccgctgtg 3540 cgcccaatac ctggcagctg gccagtggca ctggctgtga cccatgcaac tgcaatgctg 3600 ctcattcctt cgggccatct tgcaatgagt tcacggggca gtgccagtgc atgcctgggt 3660 ttggaggccg cacctgcagc gagtgccagg aactcttctg gggagacccc gacgtggagt 3720 gccgagcctg tgactgtgac cccaggggca ttgagacgcc acagtgtgac cagtccacgg 3780 gccagtgtgt ctgcgttgag ggtgttgagg gtccacgctg tgacaagtgc acgcgagggt 3840 actcgggggt cttccctgac tgcacaccct gccaccagtg ctttgctctc tgggatgtga 3900 tcattgccga gctgaccaac aggacacaca gattcctgga gaaagccaag gccttgaaga 3960 tcagtggtgt gatcgggcct taccgtgaga ctgtggactc ggtggagagg aaagtcagcg 4020 agataaaaga catcctggcg cagagccccg cagcagagcc actgaaaaac attgggaatc 4080 tctttgagga agcagagaaa ctgattaaag atgttacaga aatgatggct caagtagaag 4140 tgaaattatc tgacacaact tcccaaagca acagcacagc caaagaactg gattctctac 4200 agacagaagc cgaaagccta gacaacactg tgaaagaact tgctgaacaa ctggaattta 4260 tcaaaaactc agatattcgg ggtgccttgg atagcattac caagtatttc cagatgtctc 4320 ttgaggcaga ggagagggtg aatgcctcca ccacagaacc caacagcact gtggagcagt 4380 cagccctcat gagagacaga gtagaagacg tgatgatgga gcgagaatcc cagttcaagg 4440 aaaaacaaga ggagcaggct cgcctccttg atgaactggc aggcaagcta caaagcctag 4500 acctttcagc cgctgccgaa atgacctgtg gaacaccccc aggggcctcc tgttccgaga 4560 ctgaatgtgg cgggccaaac tgcagaactg acgaaggaga gaggaagtgt ggggggcctg 4620 gctgtggtgg tctggttact gttgcacaca acgcctggca gaaagccatg gacttggacc 4680 aagatgtcct gagtgccctg gctgaagtgg aacagctctc caagatggtc tctgaagcaa 4740 aactgagggc agatgaggca aaacaaagtg ctgaagacat tctgttgaag acaaatgcta 4800 ccaaagaaaa aatggacaag agcaatgagg agctgagaaa tctaatcaag caaatcagaa 4860 actttttgac ccaggatagt gctgatttgg acagcattga agcagttgct aatgaagtat 4920 tgaaaatgga gatgcctagc accccacagc agttacagaa cttgacagaa gatatacgtg 4980 aacgagttga aagcctttct caagtagagg ttattcttca gcatagtgct gctgacattg 5040 ccagagctga gatgttgtta gaagaagcta aaagagcaag caaaagtgca acagatgtta 5100 aagtcactgc agatatggta aaggaagctc tggaagaagc agaaaaggcc caggtcgcag 5160 cagagaaggc aattaaacaa gcagatgaag acattcaagg aacccagaac ctgttaactt 5220 cgattgagtc tgaaacagca gcttctgagg aaaccttgtt caacgcgtcc cagcgcatca 5280 gcgagttaga gaggaatgtg gaagaactta agcggaaagc tgcccaaaac tccggggagg 5340 cagaatatat tgaaaaagta gtatatactg tgaagcaaag tgcagaagat gttaagaaga 5400 ctttagatgg tgaacttgat gaaaagtata aaaaagtaga aaatttaatt gccaaaaaaa 5460 ctgaagagtc agctgatgcc agaaggaaag ccgaaatgct acaaaatgaa gcaaaaactc 5520 ttttagctca agcaaatagc aagctgcaac tgctcaaaga tttagaaaga aaatatgaag 5580 acaatcaaag atacttagaa gataaagctc aagaattagc aagactggaa ggagaagtcc 5640 gttcactcct aaaggatata agccagaaag ttgctgtgta tagcacatgc ttgtaacaga 5700 ggagaataaa aaatggctga ggtgaacaag gtaaaacaac tacattttaa aaactgactt 5760 aatgctcttc aaaataaaac atcacctatt taatgttttt aatcacattt tgtatgagtt 5820 aaataaagcc c 5831 <210> 4 <211> 1786 <212> PRT <213> Human <400> Met Gly Leu Leu Gln Leu Leu Ala Phe Ser Phe Leu Ala Leu Cys   1 5 10 15 Arg Ala Arg Val Arg Ala Gln Glu Pro Glu Phe Ser Tyr Gly Cys                  20 25 30 Ala Glu Gly Ser Cys Tyr Pro Ala Thr Gly Asp Leu Leu Ile Gly                  35 40 45 Arg Ala Gln Lys Leu Ser Val Thr Ser Thr Cys Gly Leu His Lys                  50 55 60 Pro Glu Pro Tyr Cys Ile Val Ser His Leu Gln Glu Asp Lys Lys                  65 70 75 Cys Phe Ile Cys Asn Ser Gln Asp Pro Tyr His Glu Thr Leu Asn                  80 85 90 Pro Asp Ser His Leu Ile Glu Asn Val Val Thr Thr Phe Ala Pro                  95 100 105 Asn Arg Leu Lys Ile Trp Trp Gln Ser Glu Asn Gly Val Glu Asn                 110 115 120 Val Thr Ile Gln Leu Asp Leu Glu Ala Glu Phe His Phe Thr His                 125 130 135 Leu Ile Met Thr Phe Lys Thr Phe Arg Pro Ala Ala Met Leu Ile                 140 145 150 Glu Arg Ser Ser Asp Phe Gly Lys Thr Trp Gly Val Tyr Arg Tyr                 155 160 165 Phe Ala Tyr Asp Cys Glu Ala Ser Phe Pro Gly Ile Ser Thr Gly                 170 175 180 Pro Met Lys Lys Val Asp Asp Ile Ile Cys Asp Ser Arg Tyr Ser                 185 190 195 Asp Ile Glu Pro Ser Thr Glu Gly Glu Val Ile Phe Arg Ala Leu                 200 205 210 Asp Pro Ala Phe Lys Ile Glu Asp Pro Tyr Ser Pro Arg Ile Gln                 215 220 225 Asn Leu Leu Lys Ile Thr Asn Leu Arg Ile Lys Phe Val Lys Leu                 230 235 240 His Thr Leu Gly Asp Asn Leu Leu Asp Ser Arg Met Glu Ile Arg                 245 250 255 Glu Lys Tyr Tyr Tyr Ala Val Tyr Asp Met Val Val Arg Gly Asn                 260 265 270 Cys Phe Cys Tyr Gly His Ala Ser Glu Cys Ala Pro Val Asp Gly                 275 280 285 Phe Asn Glu Glu Val Glu Gly Met Val His Gly His Cys Met Cys                 290 295 300 Arg His Asn Thr Lys Gly Leu Asn Cys Glu Leu Cys Met Asp Phe                 305 310 315 Tyr His Asp Leu Pro Trp Arg Pro Ala Glu Gly Arg Asn Ser Asn                 320 325 330 Ala Cys Lys Lys Cys Asn Cys Asn Glu His Ser Ile Ser Cys His                 335 340 345 Phe Asp Met Ala Val Tyr Leu Ala Thr Gly Asn Val Ser Gly Gly                 350 355 360 Val Cys Asp Asp Cys Gln His Asn Thr Met Gly Arg Asn Cys Glu                 365 370 375 Gln Cys Lys Pro Phe Tyr Tyr Gln His Pro Glu Arg Asp Ile Arg                 380 385 390 Asp Pro Asn Phe Cys Glu Arg Cys Thr Cys Asp Pro Ala Gly Ser                 395 400 405 Gln Asn Glu Gly Ile Cys Asp Ser Tyr Thr Asp Phe Ser Thr Gly                 410 415 420 Leu Ile Ala Gly Gln Cys Arg Cys Lys Leu Asn Val Glu Gly Glu                 425 430 435 His Cys Asp Val Cys Lys Glu Gly Phe Tyr Asp Leu Ser Ser Glu                 440 445 450 Asp Pro Phe Gly Cys Lys Ser Cys Ala Cys Asn Pro Leu Gly Thr                 455 460 465 Ile Pro Gly Gly Asn Pro Cys Asp Ser Glu Thr Gly His Cys Tyr                 470 475 480 Cys Lys Arg Leu Val Thr Gly Gln His Cys Asp Gln Cys Leu Pro                 485 490 495 Glu His Trp Gly Leu Ser Asn Asp Leu Asp Gly Cys Arg Pro Cys                 500 505 510 Asp Cys Asp Leu Gly Gly Ala Leu Asn Asn Ser Cys Phe Ala Glu                 515 520 525 Ser Gly Gln Cys Ser Cys Arg Pro His Met Ile Gly Arg Gln Cys                 530 535 540 Asn Glu Val Glu Pro Gly Tyr Tyr Phe Ala Thr Leu Asp His Tyr                 545 550 555 Leu Tyr Glu Ala Glu Glu Ala Asn Leu Gly Pro Gly Val Ser Ile                 560 565 570 Val Glu Arg Gln Tyr Ile Gln Asp Arg Ile Pro Ser Trp Thr Gly                 575 580 585 Ala Gly Phe Val Arg Val Pro Glu Gly Ala Tyr Leu Glu Phe Phe                 590 595 600 Ile Asp Asn Ile Pro Tyr Ser Met Glu Tyr Asp Ile Leu Ile Arg                 605 610 615 Tyr Glu Pro Gln Leu Pro Asp His Trp Glu Lys Ala Val Ile Thr                 620 625 630 Val Gln Arg Pro Gly Arg Ile Pro Thr Ser Ser Arg Cys Gly Asn                 635 640 645 Thr Ile Pro Asp Asp Asp Asn Gln Val Val Ser Leu Ser Pro Gly                 650 655 660 Ser Arg Tyr Val Val Leu Pro Arg Pro Val Cys Phe Glu Lys Gly                 665 670 675 Thr Asn Tyr Thr Val Arg Leu Glu Leu Pro Gln Tyr Thr Ser Ser                 680 685 690 Asp Ser Asp Val Glu Ser Pro Tyr Thr Leu Ile Asp Ser Leu Val                 695 700 705 Leu Met Pro Tyr Cys Lys Ser Leu Asp Ile Phe Thr Val Gly Gly                 710 715 720 Ser Gly Asp Gly Val Val Thr Asn Ser Ala Trp Glu Thr Phe Gln                 725 730 735 Arg Tyr Arg Cys Leu Glu Asn Ser Arg Ser Val Val Lys Thr Pro                 740 745 750 Met Thr Asp Val Cys Arg Asn Ile Ile Phe Ser Ile Ser Ala Leu                 755 760 765 Leu His Gln Thr Gly Leu Ala Cys Glu Cys Asp Pro Gln Gly Ser                 770 775 780 Leu Ser Ser Val Cys Asp Pro Asn Gly Gly Gln Cys Gln Cys Arg                 785 790 795 Pro Asn Val Val Gly Arg Thr Cys Asn Arg Cys Ala Pro Gly Thr                 800 805 810 Phe Gly Phe Gly Pro Ser Gly Cys Lys Pro Cys Glu Cys His Leu                 815 820 825 Gln Gly Ser Val Asn Ala Phe Cys Asn Pro Val Thr Gly Gln Cys                 830 835 840 His Cys Phe Gln Gly Val Tyr Ala Arg Gln Cys Asp Arg Cys Leu                 845 850 855 Pro Gly His Trp Gly Phe Pro Ser Cys Gln Pro Cys Gln Cys Asn                 860 865 870 Gly His Ala Asp Asp Cys Asp Pro Val Thr Gly Glu Cys Leu Asn                 875 880 885 Cys Gln Asp Tyr Thr Met Gly His Asn Cys Glu Arg Cys Leu Ala                 890 895 900 Gly Tyr Tyr Gly Asp Pro Ile Ile Gly Ser Gly Asp His Cys Arg                 905 910 915 Pro Cys Pro Cys Pro Asp Gly Pro Asp Ser Gly Arg Gln Phe Ala                 920 925 930 Arg Ser Cys Tyr Gln Asp Pro Val Thr Leu Gln Leu Ala Cys Val                 935 940 945 Cys Asp Pro Gly Tyr Ile Gly Ser Arg Cys Asp Asp Cys Ala Ser                 950 955 960 Gly Tyr Phe Gly Asn Pro Ser Glu Val Gly Gly Ser Cys Gln Pro                 965 970 975 Cys Gln Cys His Asn Asn Ile Asp Thr Thr Asp Pro Glu Ala Cys                 980 985 990 Asp Lys Glu Thr Gly Arg Cys Leu Lys Cys Leu Tyr His Thr Glu                 995 1000 1005 Gly Glu His Cys Gln Phe Cys Arg Phe Gly Tyr Tyr Gly Asp Ala                1010 1015 1020 Leu Arg Gln Asp Cys Arg Lys Cys Val Cys Asn Tyr Leu Gly Thr                1025 1030 1035 Val Gln Glu His Cys Asn Gly Ser Asp Cys Gln Cys Asp Lys Ala                1040 1045 1050 Thr Gly Gln Cys Leu Cys Leu Pro Asn Val Ile Gly Gln Asn Cys                1055 1060 1065 Asp Arg Cys Ala Pro Asn Thr Trp Gln Leu Ala Ser Gly Thr Gly                1070 1075 1080 Cys Asp Pro Cys Asn Cys Asn Ala Ala His Ser Phe Gly Pro Ser                1085 1090 1095 Cys Asn Glu Phe Thr Gly Gln Cys Gln Cys Met Pro Gly Phe Gly                1100 1105 1110 Gly Arg Thr Cys Ser Glu Cys Gln Glu Leu Phe Trp Gly Asp Pro                1115 1120 1125 Asp Val Glu Cys Arg Ala Cys Asp Cys Asp Pro Arg Gly Ile Glu                1130 1135 1140 Thr Pro Gln Cys Asp Gln Ser Thr Gly Gln Cys Val Cys Val Glu                1145 1150 1155 Gly Val Glu Gly Pro Arg Cys Asp Lys Cys Thr Arg Gly Tyr Ser                1160 1165 1170 Gly Val Phe Pro Asp Cys Thr Pro Cys His Gln Cys Phe Ala Leu                1175 1180 1185 Trp Asp Val Ile Ile Ala Glu Leu Thr Asn Arg Thr His Arg Phe                1190 1195 1200 Leu Glu Lys Ala Lys Ala Leu Lys Ile Ser Gly Val Ile Gly Pro                1205 1210 1215 Tyr Arg Glu Thr Val Asp Ser Val Glu Arg Lys Val Ser Glu Ile                1220 1225 1230 Lys Asp Ile Leu Ala Gln Ser Pro Ala Ala Glu Pro Leu Lys Asn                1235 1240 1245 Ile Gly Asn Leu Phe Glu Glu Ala Glu Lys Leu Ile Lys Asp Val                1250 1255 1260 Thr Glu Met Met Ala Gln Val Glu Val Lys Leu Ser Asp Thr Thr                1265 1270 1275 Ser Gln Ser Asn Ser Thr Ala Lys Glu Leu Asp Ser Leu Gln Thr                1280 1285 1290 Glu Ala Glu Ser Leu Asp Asn Thr Val Lys Glu Leu Ala Glu Gln                1295 1300 1305 Leu Glu Phe Ile Lys Asn Ser Asp Ile Arg Gly Ala Leu Asp Ser                1310 1315 1320 Ile Thr Lys Tyr Phe Gln Met Ser Leu Glu Ala Glu Glu Arg Val                1325 1330 1335 Asn Ala Ser Thr Thr Glu Pro Asn Ser Thr Val Glu Gln Ser Ala                1340 1345 1350 Leu Met Arg Asp Arg Val Glu Asp Val Met Met Glu Arg Glu Ser                1355 1360 1365 Gln Phe Lys Glu Lys Gln Glu Glu Gln Ala Arg Leu Leu Asp Glu                1370 1375 1380 Leu Ala Gly Lys Leu Gln Ser Leu Asp Leu Ser Ala Ala Ala Glu                1385 1390 1395 Met Thr Cys Gly Thr Pro Pro Gly Ala Ser Cys Ser Glu Thr Glu                1400 1405 1410 Cys Gly Gly Pro Asn Cys Arg Thr Asp Glu Gly Glu Arg Lys Cys                1415 1420 1425 Gly Gly Pro Gly Cys Gly Gly Leu Val Thr Val Ala His Asn Ala                1430 1435 1440 Trp Gln Lys Ala Met Asp Leu Asp Gln Asp Val Leu Ser Ala Leu                1445 1450 1455 Ala Glu Val Glu Gln Leu Ser Lys Met Val Ser Glu Ala Lys Leu                1460 1465 1470 Arg Ala Asp Glu Ala Lys Gln Ser Ala Glu Asp Ile Leu Leu Lys                1475 1480 1485 Thr Asn Ala Thr Lys Glu Lys Met Asp Lys Ser Asn Glu Glu Leu                1490 1495 1500 Arg Asn Leu Ile Lys Gln Ile Arg Asn Phe Leu Thr Gln Asp Ser                1505 1510 1515 Ala Asp Leu Asp Ser Ile Glu Ala Val Ala Asn Glu Val Leu Lys                1520 1525 1530 Met Glu Met Pro Ser Thr Pro Gln Gln Leu Gln Asn Leu Thr Glu                1535 1540 1545 Asp Ile Arg Glu Arg Val Glu Ser Leu Ser Gln Val Glu Val Ile                1550 1555 1560 Leu Gln His Ser Ala Ala Asp Ile Ala Arg Ala Glu Met Leu Leu                1565 1570 1575 Glu Glu Ala Lys Arg Ala Ser Lys Ser Ala Thr Asp Val Lys Val                1580 1585 1590 Thr Ala Asp Met Val Lys Glu Ala Leu Glu Glu Ala Glu Lys Ala                1595 1600 1605 Gln Val Ala Ala Glu Lys Ala Ile Lys Gln Ala Asp Glu Asp Ile                1610 1615 1620 Gln Gly Thr Gln Asn Leu Leu Thr Ser Ile Glu Ser Glu Thr Ala                1625 1630 1635 Ala Ser Glu Glu Thr Leu Phe Asn Ala Ser Gln Arg Ile Ser Glu                1640 1645 1650 Leu Glu Arg Asn Val Glu Glu Leu Lys Arg Lys Ala Ala Gln Asn                1655 1660 1665 Ser Gly Glu Ala Glu Tyr Ile Glu Lys Val Val Tyr Thr Val Lys                1670 1675 1680 Gln Ser Ala Glu Asp Val Lys Lys Thr Leu Asp Gly Glu Leu Asp                1685 1690 1695 Glu Lys Tyr Lys Lys Val Glu Asn Leu Ile Ala Lys Lys Thr Glu                1700 1705 1710 Glu Ser Ala Asp Ala Arg Arg Lys Ala Glu Met Leu Gln Asn Glu                1715 1720 1725 Ala Lys Thr Leu Leu Ala Gln Ala Asn Ser Lys Leu Gln Leu Leu                1730 1735 1740 Lys Asp Leu Glu Arg Lys Tyr Glu Asp Asn Gln Arg Tyr Leu Glu                1745 1750 1755 Asp Lys Ala Gln Glu Leu Ala Arg Leu Glu Gly Glu Val Arg Ser                1760 1765 1770 Leu Leu Lys Asp Ile Ser Gln Lys Val Ala Val Tyr Ser Thr Cys                1775 1780 1785 Leu 1786 <210> 5 <211> 7923 <212> DNA <213> Human <220> <221> CDS <222> (300) ... (5126) <300> <301> Pikkarainen, T., Kallunki, T. And Tryggvason, K. <302> Human laminin B2 chain. Comparison of the complete amino acid       sequence with the B1 chain reveals variability in sequence       homology between different structural domains <303> JOURNAL J. Biol. Chem. <304> 263 <305> 14 <306> 6751-6758 <307> 1988 <400> 5 gcgcactcgg gcacgcgctc ggaagtcggg ggtcggcgcg gagtgcaggc tgctcccggg 60 gtaggtgagg gaagcgcgga ggcggggcgc gggggcagtg gtcggcgagc agcgcggtcc 120 tcgctagggg cgcccacccg tcagtctctc cggcgcgagc cgccgccacc gcccgcgccg 180 gagtcaggcc cctgggcccc caggctcaag cagcgaagcg gcctccgggg gacgccgcta 240 ggcgagagga acgcgccggt gcccttgcct tcgccgtgac ccagcgtgcg ggcggcggga 300 tgagagggag ccatcgggcc gcgccggccc tgcggccccg ggggcggctc tggcccgtgc 360 tggccgtgct ggcggcggcc gccgcggcgg gctgtgccca ggcagccatg gacgagtgca 420 cggacgaggg cgggcggccg cagcgctgca tgcccgagtt cgtcaacgcc gctttcaacg 480 tgactgtggt ggccaccaac acgtgtggga ctccgcccga ggaatactgt gtgcagaccg 540 gggtgaccgg ggtcaccaag tcctgtcacc tgtgcgacgc cgggcagccc cacctgcagc 600 acggggcagc cttcctgacc gactacaaca accaggccga caccacctgg tggcaaagcc 660 agaccatgct ggccggggtg cagtacccca gctccatcaa cctcacgctg cacctgggaa 720 aagcttttga catcacctat gtgcgtctca agttccacac cagccgcccg gagagctttg 780 ccatttacaa gcgcacacgg gaagacgggc cctggattcc ttaccagtac tacagtggtt 840 cctgcgagaa cacctactcc aaggcaaacc gcggcttcat caggacagga ggggacgagc 900 agcaggcctt gtgtactgat gaattcagtg acatttctcc cctcactggg ggcaacgtgg 960 ccttttctac cctggaagga aggcccagcg cctataactt tgacaatagc cctgtgctgc 1020 aggaatgggt aactgccact gacatcagag taactcttaa tcgcctgaac acttttggag 1080 atgaagtgtt taacgatccc aaagttctca agtcctatta ttatgccatc tctgattttg 1140 ctgtaggtgg cagatgtaaa tgtaatggac acgcaagcga gtgtatgaag aacgaatttg 1200 ataagctggt gtgtaattgc aaacataaca catatggagt agactgtgaa aagtgtcttc 1260 ctttcttcaa tgaccggccg tggaggaggg caactgcgga aagtgccagt gaatgcctgc 1320 cctgtgattg caatggtcga tcccaggaat gctacttcga ccctgaactc tatcgttcca 1380 ctggccatgg gggccactgt accaactgcc aggataacac agatggcgcc cactgtgaga 1440 ggtgccgaga gaacttcttc cgccttggca acaatgaagc ctgctcttca tgccactgta 1500 gtcctgtggg ctctctaagc acacagtgtg atagttacgg cagatgcagc tgtaagccag 1560 gagtgatggg ggacaaatgt gaccgttgcc agcctggatt ccattctctc actgaagcag 1620 gatgcaggcc atgctcttgt gatccctctg gcagcataga tgaatgtaat gttgaaacag 1680 gaagatgtgt ttgcaaagac aatgtcgaag gcttcaattg tgaaagatgc aaacctggat 1740 tttttaatct ggaatcatct aatcctcggg gttgcacacc ctgcttctgc tttgggcatt 1800 cttctgtctg tacaaacgct gttggctaca gtgtttattc tatctcctct acctttcaga 1860 ttgatgagga tgggtggcgt gcggaacaga gagatggctc tgaagcatct ctcgagtggt 1920 cctctgagag gcaagatatc gccgtgatct cagacagcta ctttcctcgg tacttcattg 1980 ctcctgcaaa gttcttgggc aagcaggtgt tgagttatgg tcagaacctc tccttctcct 2040 ttcgagtgga caggcgagat actcgcctct ctgccgaaga ccttgtgctt gagggagctg 2100 gcttaagagt atctgtaccc ttgatcgctc agggcaattc ctatccaagt gagaccactg 2160 tgaagtatgt cttcaggctc catgaagcaa cagattaccc ttggaggcct gctcttaccc 2220 cttttgaatt tcagaagctc ctaaacaact tgacctctat caagatacgt gggacataca 2280 gtgagagaag tgctggatat ttggatgatg tcaccctggc aagtgctcgt cctgggcctg 2340 gagtccctgc aacttgggtg gagtcctgca cctgtcctgt gggatatgga gggcagtttt 2400 gtgagatgtg cctctcaggt tacagaagag aaactcctaa tcttggacca tacagtccat 2460 gtgtgctttg cgcctgcaat ggacacagcg agacctgtga tcctgagaca ggtgtttgta 2520 actgcagaga caatacggct ggcccgcact gtgagaagtg cagtgatggg tactatggag 2580 attcaactgc aggcacctcc tccgattgcc aaccctgtcc gtgtcctgga ggttcaagtt 2640 gtgctgttgt tcccaagaca aaggaggtgg tgtgcaccaa ctgtcctact ggcaccactg 2700 gtaagagatg tgagctctgt gatgatggct actttggaga ccccctgggt agaaacggcc 2760 ctgtgagact ttgccgcctg tgccagtgca gtgacaacat cgatcccaac gcagttggaa 2820 attgcaatcg cttgacggga gaatgcctga agtgcatcta taacactgct ggcttctatt 2880 gtgaccggtg caaagacgga ttttttggaa atcccctggc tcccaatcca gcagacaaat 2940 gcaaagcctg caattgcaat ccgtatggga ccatgaagca gcagagcagc tgtaaccccg 3000 tgacggggca gtgtgaatgt ttgcctcacg tgactggcca ggactgtggt gcttgtgacc 3060 ctggattcta caatctgcag agtgggcaag gctgtgagag gtgtgactgc catgccttgg 3120 gctccaccaa tgggcagtgt gacatccgca ccggccagtg tgagtgccag cccggcatca 3180 ctggtcagca ctgtgagcgc tgtgaggtca accactttgg gtttggacct gaaggctgca 3240 aaccctgtga ctgtcatcct gagggatctc tttcacttca gtgcaaagat gatggtcgct 3300 gtgaatgcag agaaggcttt gtgggaaatc gctgtgacca gtgtgaagaa aactatttct 3360 acaatcggtc ttggcctggc tgccaggaat gtccagcttg ttaccggctg gtaaaggata 3420 aggttgctga tcatagagtg aagctccagg aattagagag tctcatagca aaccttggaa 3480 ctggggatga gatggtgaca gatcaagcct tcgaggatag actaaaggaa gcagagaggg 3540 aagttatgga cctccttcgt gaggcccagg atgtcaaaga tgttgaccag aatttgatgg 3600 atcgcctaca gagagtgaat aacactctgt ccagccaaat tagccgttta cagaatatcc 3660 ggaataccat tgaagagact ggaaacttgg ctgaacaagc gcgtgcccat gtagagaaca 3720 cagagcggtt gattgaaatc gcatccagag aacttgagaa agcaaaagtc gctgctgcca 3780 atgtgtcagt cactcagcca gaatctacag gggacccaaa caacatgact cttttggcag 3840 aagaggctcg aaagcttgct gaacgtcata aacaggaagc tgatgacatt gttcgagtgg 3900 caaagacagc caatgatacg tcaactgagg catacaacct gcttctgagg acactggcag 3960 gagaaaatca aacagcattt gagattgaag agcttaatag gaagtatgaa caagcgaaga 4020 acatctcaca ggatctggaa aaacaagctg cccgagtaca tgaggaggcc aaaagggccg 4080 gtgacaaagc tgtggagatc tatgccagcg tggctcagct gagccctttg gactctgaga 4140 cactggagaa tgaagcaaat aacataaaga tggaagctga gaatctggaa caactgattg 4200 accagaaatt aaaagattat gaggacctca gagaagatat gagagggaag gaacttgaag 4260 tcaagaacct tctggagaaa ggcaagactg aacagcagac cgcagaccaa ctcctagccc 4320 gagctgatgc tgccaaggcc ctcgctgaag aagctgcaaa gaagggacgg gataccttac 4380 aagaagctaa tgacattctc aacaacctga aagattttga taggcgcgtg aacgataaca 4440 agacggccgc agaggaggca ctaaggaaga ttcctgccat caaccagacc atcactgaag 4500 ccaatgaaaa gaccagagaa gcccagcagg ccctgggcag tgctgcggcg gatgccacag 4560 aggccaagaa caaggcccat gaggcggaga ggatcgcaag cgctgtccaa aagaatgcca 4620 ccagcaccaa ggcagaagct gaaagaactt ttgcagaagt tacagatctg gataatgagg 4680 tgaacaatat gttgaagcaa ctgcaggaag cagaaaaaga gctaaagaga aaacaagatg 4740 acgctgacca ggacatgatg atggcaggga tggcttcaca ggctgctcaa gaagccgaga 4800 tcaatgccag aaaagccaaa aactctgtta ctagcctcct cagcattatt aatgacctct 4860 tggagcagct ggggcagctg gatacagtgg acctgaataa gctaaacgag attgaaggca 4920 ccctaaacaa agccaaagat gaaatgaagg tcagcgatct tgataggaaa gtgtctgacc 4980 tggagaatga agccaagaag caggaggctg ccatcatgga ctataaccga gatatcgagg 5040 agatcatgaa ggacattcgc aatctggagg acatcaggaa gaccttacca tctggctgct 5100 tcaacacccc gtccattgaa aagccctagt gtctttaggg ctggaaggca gcatccctct 5160 gacagggggg cagttgtgag gccacagagt gccttgacac aaagattaca tttttcagac 5220 ccccactcct ctgctgctgt ccatcactgt ccttttgaac caggaaaagt cacagagttt 5280 aaagagaagc aaattaaaca tcctgaatcg ggaacaaagg gttttatcta ataaagtgtc 5340 tcttccatca cgttgctacc ttacccacac ttccctctga tttgcgtgag gacgtggcat 5400 cctacttacg tacgtggcat aacacatcgt gtgagcccat gtatgctggg gtagagcaag 5460 tagccctccc ctgtctcatc gatccagcag aacctcctca gtctcagtac tcttgtttct 5520 ataaggaaaa gttttgctac taacagtagc attgtgatgg ccagtatatc cagtccatgg 5580 ataaagaaaa tgcatctgca tctcctgccc ctcttccttc taagcaaaag gaaataaaca 5640 tcctgtgcca aaggtattgg tcatttagaa tgtcggtagc catccatcag tgcttttagc 5700 tattatgagt gtaggacact gagccatccg tgggtcagga tgcaattatt tataaaagtc 5760 cccaggtgaa catggctgaa gatttttcta gtatattaat aattgactag gaagatgaac 5820 tttttttcag atctttgggc agctgataat ttaaatctgg atgggcagct tgcactcacc 5880 aatagaccaa aagacatctt ttgatattct tataaatgga acttacacag aagaaatagg 5940 gatatgataa ccactaaagt tttgttttca aaatcaaact aattcttaca gcttttttat 6000 tagttagtct tggaactagt gttaagtatc tggcagagaa cagttaatcc ctaaggtctt 6060 gacaaaacag aagaaaaaca agcctcctcg tcctagtctt ttctagcaaa gggataaaac 6120 ttagatggca gcttgtactg tcagaatccc gtgtatccat ttgttcttct gttggagaga 6180 tgagacattt gacccttagc tccagttttc ttctgatgtt tccatcttcc agaatccctc 6240 aaaaaacatt gtttgccaaa tcctggtggc aaatacttgc actcagtatt tcacacagct 6300 gccaacgcta tcgagttcct gcactttgtg atttaaatcc actctaaacc ttccctctaa 6360 gtgtagaggg aagaccctta cgtggagttt cctagtgggc ttctcaactt ttgatcctca 6420 gctctgtggt tttaagacca cagtgtgaca gttccctgcc acacaccccc ttcctcctac 6480 caacccacct ttgagattca tatatagcct ttaacactat gcaactttgt actttgcgta 6540 gcaggggctg gggtgggggg aaagaaacct attatcatgg acacactggt gctattaatt 6600 atttcaaatt tatatttttg tgtgaatgtt ttgtgttttg tttatccatg ctatagaaca 6660 aggaatttat gtagatatac ttagtcctat ttctagaatg acactctgtt cactttgctc 6720 aatttttcct cttcactggc acaagtatct gaatacctcc ttccctccct tctagagttc 6780 tttggattgt actccaaaga attgtgcctt gtgtttgcag catctccatt ctctaaatta 6840 atataattgc tttcctccac acccagccac gtaaagaggt aacttgggtc ctcttccatt 6900 gcagtcctga tgatcctaac ctgcagcacg gtggttttac aatgttccag agcaggaacg 6960 ccaggttgac aagctatggt aggattagga aagtttgctg aagaggatct ttgacgccac 7020 agtgggacta gccaggaatg agggagaaat gccctttttg gcaattgttg gagctggata 7080 ggtaagtttt ataagggagt acattttgac tgagcactta gggcatcagg aacagtgcta 7140 cttactggtg ggtagactgg gagaggtggt gtaacttagt tcttgatgat cccacttcct 7200 gtttccatct gcttgggata taccagagtt taccacaagt gttttgacga tatactcctg 7260 agctttcact ctgctggctt ctcccaggcc tcttctacta tggcaggaga tgtggtgtgc 7320 tgttgcaaag ttttcacgtc atcgtttcct ggctagttca tttcattaag tggctacatc 7380 ctaacatatg cattggtcaa ggttgcagca agaggactga agattgactg ccaagctagt 7440 ttgggtgaag ttcactccag caagtctcag gccacaatgg ggtggtttgg tttggtttcc 7500 ttttaacttt ctttttgtta tttgcttttc tcctccacct gtgtggtata ttttttaagc 7560 agaattttat tttttaaaat aaaaggttct ttacaagatg ataccttaat tacactcccg 7620 caacacagcc attattttat tgtctagctc cagttatctg tattttatgt aatgtaattg 7680 acaggatggc tgctgcagaa tgctggttga cacagggatt attatactgc tatttttccc 7740 tgaattcttt tccttggaat tccaactgtg gaccttttat atgtgccttc actttagctg 7800 tttgccttac tctacagcct tgctctccgg ggtggttaat aaaatgcaac acttggcatt 7860 tttatgttat aagaaaaaca gtattttatt tataataaaa tctgaatatt ttgtaaccct 7920 tta 7923 <210> 6 <211> 1609 <212> PRT <213> Human <400> Met Arg Gly Ser His Arg Ala Ala Pro Ala Leu Arg Pro Arg Gly   1 5 10 15 Arg Leu Trp Pro Val Leu Ala Val Leu Ala Ala Ala Ala Ala Ala                  20 25 30 Gly Cys Ala Gln Ala Ala Met Asp Glu Cys Thr Asp Glu Gly Gly                  35 40 45 Arg Pro Gln Arg Cys Met Pro Glu Phe Val Asn Ala Ala Phe Asn                  50 55 60 Val Thr Val Val Ala Thr Asn Thr Cys Gly Thr Pro Pro Glu Glu                  65 70 75 Tyr Cys Val Gln Thr Gly Val Thr Gly Val Thr Lys Ser Cys His                  80 85 90 Leu Cys Asp Ala Gly Gln Pro His Leu Gln His Gly Ala Ala Phe                  95 100 105 Leu Thr Asp Tyr Asn Asn Gln Ala Asp Thr Thr Trp Trp Gln Ser                 110 115 120 Gln Thr Met Leu Ala Gly Val Gln Tyr Pro Ser Ser Ile Asn Leu                 125 130 135 Thr Leu His Leu Gly Lys Ala Phe Asp Ile Thr Tyr Val Arg Leu                 140 145 150 Lys Phe His Thr Ser Arg Pro Glu Ser Phe Ala Ile Tyr Lys Arg                 155 160 165 Thr Arg Glu Asp Gly Pro Trp Ile Pro Tyr Gln Tyr Tyr Ser Gly                 170 175 180 Ser Cys Glu Asn Thr Tyr Ser Lys Ala Asn Arg Gly Phe Ile Arg                 185 190 195 Thr Gly Gly Asp Glu Gln Gln Ala Leu Cys Thr Asp Glu Phe Ser                 200 205 210 Asp Ile Ser Pro Leu Thr Gly Gly Asn Val Ala Phe Ser Thr Leu                 215 220 225 Glu Gly Arg Pro Ser Ala Tyr Asn Phe Asp Asn Ser Pro Val Leu                 230 235 240 Gln Glu Trp Val Thr Ala Thr Asp Ile Arg Val Thr Leu Asn Arg                 245 250 255 Leu Asn Thr Phe Gly Asp Glu Val Phe Asn Asp Pro Lys Val Leu                 260 265 270 Lys Ser Tyr Tyr Tyr Ala Ile Ser Asp Phe Ala Val Gly Gly Arg                 275 280 285 Cys Lys Cys Asn Gly His Ala Ser Glu Cys Met Lys Asn Glu Phe                 290 295 300 Asp Lys Leu Val Cys Asn Cys Lys His Asn Thr Tyr Gly Val Asp                 305 310 315 Cys Glu Lys Cys Leu Pro Phe Phe Asn Asp Arg Pro Trp Arg Arg                 320 325 330 Ala Thr Ala Glu Ser Ala Ser Glu Cys Leu Pro Cys Asp Cys Asn                 335 340 345 Gly Arg Ser Gln Glu Cys Tyr Phe Asp Pro Glu Leu Tyr Arg Ser                 350 355 360 Thr Gly His Gly Gly His Cys Thr Asn Cys Gln Asp Asn Thr Asp                 365 370 375 Gly Ala His Cys Glu Arg Cys Arg Glu Asn Phe Phe Arg Leu Gly                 380 385 390 Asn Asn Glu Ala Cys Ser Ser Cys His Cys Ser Pro Val Gly Ser                 395 400 405 Leu Ser Thr Gln Cys Asp Ser Tyr Gly Arg Cys Ser Cys Lys Pro                 410 415 420 Gly Val Met Gly Asp Lys Cys Asp Arg Cys Gln Pro Gly Phe His                 425 430 435 Ser Leu Thr Glu Ala Gly Cys Arg Pro Cys Ser Cys Asp Pro Ser                 440 445 450 Gly Ser Ile Asp Glu Cys Asn Val Glu Thr Gly Arg Cys Val Cys                 455 460 465 Lys Asp Asn Val Glu Gly Phe Asn Cys Glu Arg Cys Lys Pro Gly                 470 475 480 Phe Phe Asn Leu Glu Ser Ser Asn Pro Arg Gly Cys Thr Pro Cys                 485 490 495 Phe Cys Phe Gly His Ser Ser Val Cys Thr Asn Ala Val Gly Tyr                 500 505 510 Ser Val Tyr Ser Ile Ser Ser Thr Phe Gln Ile Asp Glu Asp Gly                 515 520 525 Trp Arg Ala Glu Gln Arg Asp Gly Ser Glu Ala Ser Leu Glu Trp                 530 535 540 Ser Ser Glu Arg Gln Asp Ile Ala Val Ile Ser Asp Ser Tyr Phe                 545 550 555 Pro Arg Tyr Phe Ile Ala Pro Ala Lys Phe Leu Gly Lys Gln Val                 560 565 570 Leu Ser Tyr Gly Gln Asn Leu Ser Phe Ser Phe Arg Val Asp Arg                 575 580 585 Arg Asp Thr Arg Leu Ser Ala Glu Asp Leu Val Leu Glu Gly Ala                 590 595 600 Gly Leu Arg Val Ser Val Pro Leu Ile Ala Gln Gly Asn Ser Tyr                 605 610 615 Pro Ser Glu Thr Thr Val Lys Tyr Val Phe Arg Leu His Glu Ala                 620 625 630 Thr Asp Tyr Pro Trp Arg Pro Ala Leu Thr Pro Phe Glu Phe Gln                 635 640 645 Lys Leu Leu Asn Asn Leu Thr Ser Ile Lys Ile Arg Gly Thr Tyr                 650 655 660 Ser Glu Arg Ser Ala Gly Tyr Leu Asp Asp Val Thr Leu Ala Ser                 665 670 675 Ala Arg Pro Gly Pro Gly Val Pro Ala Thr Trp Val Glu Ser Cys                 680 685 690 Thr Cys Pro Val Gly Tyr Gly Gly Gln Phe Cys Glu Met Cys Leu                 695 700 705 Ser Gly Tyr Arg Arg Glu Thr Pro Asn Leu Gly Pro Tyr Ser Pro                 710 715 720 Cys Val Leu Cys Ala Cys Asn Gly His Ser Glu Thr Cys Asp Pro                 725 730 735 Glu Thr Gly Val Cys Asn Cys Arg Asp Asn Thr Ala Gly Pro His                 740 745 750 Cys Glu Lys Cys Ser Asp Gly Tyr Tyr Gly Asp Ser Thr Ala Gly                 755 760 765 Thr Ser Ser Asp Cys Gln Pro Cys Pro Cys Pro Gly Gly Ser Ser                 770 775 780 Cys Ala Val Val Pro Lys Thr Lys Glu Val Val Cys Thr Asn Cys                 785 790 795 Pro Thr Gly Thr Thr Gly Lys Arg Cys Glu Leu Cys Asp Asp Gly                 800 805 810 Tyr Phe Gly Asp Pro Leu Gly Arg Asn Gly Pro Val Arg Leu Cys                 815 820 825 Arg Leu Cys Gln Cys Ser Asp Asn Ile Asp Pro Asn Ala Val Gly                 830 835 840 Asn Cys Asn Arg Leu Thr Gly Glu Cys Leu Lys Cys Ile Tyr Asn                 845 850 855 Thr Ala Gly Phe Tyr Cys Asp Arg Cys Lys Asp Gly Phe Phe Gly                 860 865 870 Asn Pro Leu Ala Pro Asn Pro Ala Asp Lys Cys Lys Ala Cys Asn                 875 880 885 Cys Asn Pro Tyr Gly Thr Met Lys Gln Gln Ser Ser Cys Asn Pro                 890 895 900 Val Thr Gly Gln Cys Glu Cys Leu Pro His Val Thr Gly Gln Asp                 905 910 915 Cys Gly Ala Cys Asp Pro Gly Phe Tyr Asn Leu Gln Ser Gly Gln                 920 925 930 Gly Cys Glu Arg Cys Asp Cys His Ala Leu Gly Ser Thr Asn Gly                 935 940 945 Gln Cys Asp Ile Arg Thr Gly Gln Cys Glu Cys Gln Pro Gly Ile                 950 955 960 Thr Gly Gln His Cys Glu Arg Cys Glu Val Asn His Phe Gly Phe                 965 970 975 Gly Pro Glu Gly Cys Lys Pro Cys Asp Cys His Pro Glu Gly Ser                 980 985 990 Leu Ser Leu Gln Cys Lys Asp Asp Gly Arg Cys Glu Cys Arg Glu                 995 1000 1005 Gly Phe Val Gly Asn Arg Cys Asp Gln Cys Glu Glu Asn Tyr Phe                1010 1015 1020 Tyr Asn Arg Ser Trp Pro Gly Cys Gln Glu Cys Pro Ala Cys Tyr                1025 1030 1035 Arg Leu Val Lys Asp Lys Val Ala Asp His Arg Val Lys Leu Gln                1040 1045 1050 Glu Leu Glu Ser Leu Ile Ala Asn Leu Gly Thr Gly Asp Glu Met                1055 1060 1065 Val Thr Asp Gln Ala Phe Glu Asp Arg Leu Lys Glu Ala Glu Arg                1070 1075 1080 Glu Val Met Asp Leu Leu Arg Glu Ala Gln Asp Val Lys Asp Val                1085 1090 1095 Asp Gln Asn Leu Met Asp Arg Leu Gln Arg Val Asn Asn Thr Leu                1100 1105 1110 Ser Ser Gln Ile Ser Arg Leu Gln Asn Ile Arg Asn Thr Ile Glu                1115 1120 1125 Glu Thr Gly Asn Leu Ala Glu Gln Ala Arg Ala His Val Glu Asn                1130 1135 1140 Thr Glu Arg Leu Ile Glu Ile Ala Ser Arg Glu Leu Glu Lys Ala                1145 1150 1155 Lys Val Ala Ala Ala Asn Val Ser Val Thr Gln Pro Glu Ser Thr                1160 1165 1170 Gly Asp Pro Asn Asn Met Thr Leu Leu Ala Glu Glu Ala Arg Lys                1175 1180 1185 Leu Ala Glu Arg His Lys Gln Glu Ala Asp Asp Ile Val Arg Val                1190 1195 1200 Ala Lys Thr Ala Asn Asp Thr Ser Thr Glu Ala Tyr Asn Leu Leu                1205 1210 1215 Leu Arg Thr Leu Ala Gly Glu Asn Gln Thr Ala Phe Glu Ile Glu                1220 1225 1230 Glu Leu Asn Arg Lys Tyr Glu Gln Ala Lys Asn Ile Ser Gln Asp                1235 1240 1245 Leu Glu Lys Gln Ala Ala Arg Val His Glu Glu Ala Lys Arg Ala                1250 1255 1260 Gly Asp Lys Ala Val Glu Ile Tyr Ala Ser Val Ala Gln Leu Ser                1265 1270 1275 Pro Leu Asp Ser Glu Thr Leu Glu Asn Glu Ala Asn Asn Ile Lys                1280 1285 1290 Met Glu Ala Glu Asn Leu Glu Gln Leu Ile Asp Gln Lys Leu Lys                1295 1300 1305 Asp Tyr Glu Asp Leu Arg Glu Asp Met Arg Gly Lys Glu Leu Glu                1310 1315 1320 Val Lys Asn Leu Leu Glu Lys Gly Lys Thr Glu Gln Gln Thr Ala                1325 1330 1335 Asp Gln Leu Leu Ala Arg Ala Asp Ala Ala Lys Ala Leu Ala Glu                1340 1345 1350 Glu Ala Ala Lys Lys Gly Arg Asp Thr Leu Gln Glu Ala Asn Asp                1355 1360 1365 Ile Leu Asn Asn Leu Lys Asp Phe Asp Arg Arg Val Asn Asp Asn                1370 1375 1380 Lys Thr Ala Ala Glu Glu Ala Leu Arg Lys Ile Pro Ala Ile Asn                1385 1390 1395 Gln Thr Ile Thr Glu Ala Asn Glu Lys Thr Arg Glu Ala Gln Gln                1400 1405 1410 Ala Leu Gly Ser Ala Ala Ala Asp Ala Thr Glu Ala Lys Asn Lys                1415 1420 1425 Ala His Glu Ala Glu Arg Ile Ala Ser Ala Val Gln Lys Asn Ala                1430 1435 1440 Thr Ser Thr Lys Ala Glu Ala Glu Arg Thr Phe Ala Glu Val Thr                1445 1450 1455 Asp Leu Asp Asn Glu Val Asn Asn Met Leu Lys Gln Leu Gln Glu                1460 1465 1470 Ala Glu Lys Glu Leu Lys Arg Lys Gln Asp Asp Ala Asp Gln Asp                1475 1480 1485 Met Met Met Ala Gly Met Ala Ser Gln Ala Ala Gln Glu Ala Glu                1490 1495 1500 Ile Asn Ala Arg Lys Ala Lys Asn Ser Val Thr Ser Leu Leu Ser                1505 1510 1515 Ile Ile Asn Asp Leu Leu Glu Gln Leu Gly Gln Leu Asp Thr Val                1520 1525 1530 Asp Leu Asn Lys Leu Asn Glu Ile Glu Gly Thr Leu Asn Lys Ala                1535 1540 1545 Lys Asp Glu Met Lys Val Ser Asp Leu Asp Arg Lys Val Ser Asp                1550 1555 1560 Leu Glu Asn Glu Ala Lys Lys Gln Glu Ala Ala Ile Met Asp Tyr                1565 1570 1575 Asn Arg Asp Ile Glu Glu Ile Met Lys Asp Ile Arg Asn Leu Glu                1580 1585 1590 Asp Ile Arg Lys Thr Leu Pro Ser Gly Cys Phe Asn Thr Pro Ser                1595 1600 1605 Ile Glu Lys Pro            1609 <210> 7 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer for PCR amplification <400> 7 CAGGATCCAG TGGTGTCGTT AGA 23 <210> 8 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer for PCR amplification <400> 8 GGTCTAGATC ATCCATGATT GGCCTG 26 <210> 9 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer for PCR amplification <400> 9 CAGGATCCGT TCTGAGCTTG TAC 23 <210> 10 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer for PCR amplification <400> 10 CCTCTAGATC AGGAGAATGA GGCAGA 26

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、二次元SDS−PAGEによるHT1
080/WT細胞から分泌されたラミニンα3鎖及びγ
2サブユニットの解析を示す。HT1080/WT細胞
の無血清馴化培地を濃縮し、二次元SDS−PAGE
(非還元および還元SDS−PAGE)によって解析し
た後、ラミニンα3鎖に対するモノクローナル抗体(L
Sα3c4;パネルA)又はγ2鎖に対するモノクロー
ナル抗体(D4B5;パネルB)を用いてイムノブロッ
ティングした。矢先は一次元(横軸)及び二次元(縦
軸)におけるタンパク質スポットの推定分子サイズ(k
Da)を示す。マーカータンパク質の分子サイズ(kD
a)は左側に示す。
FIG. 1 shows HT1 by two-dimensional SDS-PAGE.
Laminin α3 chain and γ secreted from 080 / WT cells
Analysis of two subunits is shown. Serum-free conditioned medium of HT1080 / WT cells was concentrated and subjected to 2D SDS-PAGE.
After analysis by (non-reducing and reducing SDS-PAGE), a monoclonal antibody against laminin α3 chain (L
Immunoblotting was performed using Sα3c4; panel A) or a monoclonal antibody against the γ2 chain (D4B5; panel B). Arrowheads indicate the estimated molecular size (k) of the protein spot in one dimension (horizontal axis) and two dimensions (vertical axis).
Da) is shown. Molecular size of marker protein (kD
a) is shown on the left.

【図2】図2は、精製したmat−LN5、LN6及び
LN6ΔG4−5のSDS−PAGE及びイムノブロッ
ティング解析を示す。パネルA:5%ゲル上でのmat
−LN5(レーン1)、LN6(レーン2)及びマウス
LN1(レーン3)の非還元SDS−PAGEと銀染
色。パネルB:6%ゲル上でのmat−LN5(レーン
1)、LN6(レーン2)及びLN6ΔG4−5(レー
ン3)の還元SDS−PAGEと銀染色。パネルC:m
at−LN5(レーン1)、LN6(レーン2)及びL
N6ΔG4−5(レーン3)の還元SDS−PAGE後
の、(左から右に)ラミニンα3、β1、γ1、β3及
びγ2鎖に特異的なモノクローナル抗体によるイムノブ
ロティング。縦軸は分子サイズ(kDa)である。
FIG. 2 shows SDS-PAGE and immunoblotting analysis of purified mat-LN5, LN6 and LN6ΔG4-5. Panel A: mat on 5% gel
-LN5 (lane 1), LN6 (lane 2) and mouse LN1 (lane 3) non-reducing SDS-PAGE and silver staining. Panel B: reduced SDS-PAGE and silver staining of mat-LN5 (lane 1), LN6 (lane 2) and LN6ΔG4-5 (lane 3) on a 6% gel. Panel C: m
at-LN5 (lane 1), LN6 (lane 2) and L
Immunoblotting with monoclonal antibodies specific for laminin α3, β1, γ1, β3 and γ2 chains (from left to right) after reducing SDS-PAGE of N6ΔG4-5 (lane 3). The vertical axis represents the molecular size (kDa).

【図3】図3は、HT1080/WT細胞及びBRL細
胞についてのLN6、LN6ΔG4−5、LN6ΔG3
−5、mat−LN5及び他の3種のタンパク質の細胞
接着活性の結果を示す。96ウェルプレートを所定濃度
の各基質でコートし、HT1080/WT細胞(パネル
A)及びBRL細胞(パネルB)を無血清培地で37℃
で1時間インキュベートした。インキュベーション後、
基質に接着した細胞の相対数を蛍光強度を測定すること
によって決定した。各点は3重測定に対する平均±SD
を示す。他の実験条件は「材料及び方法」に記載され
る。LN6(白丸)、LN6ΔG4−5(黒丸)、LN
6ΔG3−5(白菱形)、mat−LN5(黒三角)、
マウスLN1(白三角)、LN10/11(黒四角)、
フィブロネクチン(白四角)。
FIG. 3 is LN6, LN6ΔG4-5, LN6ΔG3 for HT1080 / WT cells and BRL cells.
5 shows the results of cell adhesion activity of -5, mat-LN5 and other three proteins. A 96-well plate is coated with each substrate at a predetermined concentration, and HT1080 / WT cells (panel A) and BRL cells (panel B) are serum-free at 37 ° C.
And incubated for 1 hour. After incubation,
The relative number of cells attached to the substrate was determined by measuring the fluorescence intensity. Each point is mean ± SD for triplicate measurements
Indicates. Other experimental conditions are described in "Materials and Methods". LN6 (white circle), LN6ΔG4-5 (black circle), LN
6ΔG3-5 (white diamond), mat-LN5 (black triangle),
Mouse LN1 (white triangle), LN10 / 11 (black square),
Fibronectin (white square).

【図4】図4は、mat−LN5、LN6、LN6ΔG
4−5及びLN10/11上のHT1080細胞の形態
を示す。プラスチックプレートを0.5μg/mlのm
at−LN5(a及びe)、1μg/mlのLN6(b
及びf)、0.5μg/mlのLN6ΔG4−5(c及
びg)、又は10μg/mlのLN10/11(d及び
h)でコートした。HT1080細胞を各基質上に撒
き、20分間(a−d)又は60分間(f−h)インキ
ュベートした。
FIG. 4 shows mat-LN5, LN6, LN6ΔG.
4 shows the morphology of HT1080 cells on 4-5 and LN10 / 11. Plastic plate with 0.5 μg / ml m
at-LN5 (a and e), 1 μg / ml LN6 (b
And f), 0.5 μg / ml LN6ΔG4-5 (c and g), or 10 μg / ml LN10 / 11 (d and h). HT1080 cells were plated on each substrate and incubated for 20 minutes (ad) or 60 minutes (fh).

【図5】図5は、可溶性及び不溶性mat−LN5、L
N6及びLN6ΔG4−5によるBRL細胞の分散の結
果を示す。BRL細胞(7×103細胞/ウェル)を2
4ウェルプレート上で、添加なし(a)、50ng/m
lのmat−LN5(b)、LN6(c)、又はLN6
ΔG4−5(d)を添加した1%FBS存在下の培養液
中でインキュベートした。インキュベート2日後に位相
差顕微鏡下で撮影した。
FIG. 5 shows soluble and insoluble mat-LN5, L
The result of the dispersion | distribution of BRL cell by N6 and LN6 (DELTA) G4-5 is shown. 2 BRL cells (7 × 10 3 cells / well)
No addition (a), 50 ng / m on 4-well plate
l mat-LN5 (b), LN6 (c), or LN6
Incubation was performed in the culture medium in the presence of 1% FBS supplemented with ΔG4-5 (d). Two days after incubation, the photographs were taken under a phase contrast microscope.

【図6】図6は、可溶性及び不溶性mat−LN5、L
N6及びLN6ΔG4−5によるBRL細胞の分散又は
移動の結果を示す。パネルA:各種ラミニンを添加した
場合の細胞分散活性。mat−LN5(白四角)、LN
6(白丸)、及びLN6ΔG4−5(黒三角)を培養液
中に所定の最終濃度で添加し、インキュベート2日後、
分散した細胞の割合を材料及び方法で記載したように測
定した。パネルB:各種ラミニンを固定した場合の細胞
分散活性。24ウェルプレートの各ウェルは、mat−
LN5(白四角)、LN6(白丸)、又はLN6ΔG4
−5(黒三角)を所定濃度でコートした。BRL細胞を
2日間インキュベートした後、分散した細胞の割合を測
定した。パネルC:各種ラミニンを固定した場合の細胞
移動。プラスチックプレートの各ウェルを所定濃度のm
at−LN5(打点)、LN6(網目)、又はLN6Δ
G4−5(黒)でコートした。BRL細胞をコートして
いないウェル(透明)、及びラミニンコートウェル上で
1%FBS含有培地でインキュベートした。BRL細胞
の移動はビデオ顕微鏡で10時間モニターし、移動距離
を定量した。各バーは任意の10個の細胞についての平
均移動速度±SDを示す。
FIG. 6 shows soluble and insoluble mat-LN5, L
The result of the dispersion or migration of BRL cells by N6 and LN6ΔG4-5 is shown. Panel A: Cell dispersion activity when various laminins were added. mat-LN5 (white square), LN
6 (open circle) and LN6ΔG4-5 (black triangle) were added to the culture medium at a predetermined final concentration, and after 2 days of incubation,
The percentage of dispersed cells was measured as described in Materials and Methods. Panel B: Cell dispersal activity when various laminins were fixed. Each well of the 24-well plate has a mat-
LN5 (white square), LN6 (white circle), or LN6ΔG4
-5 (black triangle) was coated at a predetermined density. After incubating BRL cells for 2 days, the percentage of dispersed cells was measured. Panel C: Cell migration when various laminins are fixed. Each well of the plastic plate is
at-LN5 (dotting), LN6 (mesh), or LN6Δ
Coated with G4-5 (black). BRL cells were incubated with uncoated wells (clear) and laminin coated wells in medium containing 1% FBS. The migration of BRL cells was monitored by a video microscope for 10 hours to quantify the migration distance. Each bar represents the average migration rate ± SD for any 10 cells.

【図7】図7は、様々なインテグリンサブユニットに対
する機能遮蔽抗体によるmat−LN5(A)、LN6
(B)及びLN6ΔG4−5(C)基質へのHT108
0細胞の接着における効果について検討した結果を示
す。HT1080細胞を抗α2抗体(P1E6)、抗α
3抗体(P1B5)、抗α5抗体(P1D6)、抗α6
抗体(G0H3)、抗β1抗体(P4C10)、又は抗
α3及び抗α6抗体の混合物と一緒に、懸濁状態で37
℃で30分間プレインキュベートし、0.5μg/ml
のmat−LN5、1μg/mlのLN6又は1μg/
mlのLN6ΔG4−5でプレコートした96ウェルプ
レートに撒き、抗体存在下で30分間インキュベートし
た。対照のマウスIgGの存在下での細胞接着を100
%とした。各点は3重測定に対する平均±SDを示す。
他の実験条件は、図3に記載したものと同様である。
FIG. 7 shows mat-LN5 (A), LN6 with function-blocking antibodies against various integrin subunits.
HT108 on (B) and LN6ΔG4-5 (C) substrates
The result of having examined the effect in 0 cell adhesion is shown. HT1080 cells were treated with anti-α2 antibody (P1E6), anti-α
3 antibody (P1B5), anti-α5 antibody (P1D6), anti-α6
37 in suspension with antibody (G0H3), anti-β1 antibody (P4C10), or a mixture of anti-α3 and anti-α6 antibodies
Pre-incubate for 30 minutes at 0 ° C, 0.5 μg / ml
Mat-LN5, 1 μg / ml LN6 or 1 μg / ml
The cells were seeded on a 96-well plate precoated with ml of LN6ΔG4-5 and incubated in the presence of the antibody for 30 minutes. 100 cell adhesion in the presence of control mouse IgG
%. Each point represents the mean ± SD for triplicate measurements.
The other experimental conditions are the same as those described in FIG.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) A61P 37/06 A61P 43/00 105 43/00 105 A61K 37/02 ZNA C12N 5/06 C12N 5/00 E // C12N 15/09 15/00 A Fターム(参考) 4B024 AA01 BA80 CA04 DA03 EA04 GA11 4B065 AA93X AA93Y AB01 AC14 BA02 BB19 BC01 CA24 CA44 4C084 AA02 BA01 BA02 BA08 BA22 BA23 CA62 ZA01 ZA33 ZA89 ZA94 ZB02 ZB21 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) A61P 37/06 A61P 43/00 105 43/00 105 A61K 37/02 ZNA C12N 5/06 C12N 5/00 E // C12N 15/09 15/00 AF term (reference) 4B024 AA01 BA80 CA04 DA03 EA04 GA11 4B065 AA93X AA93Y AB01 AC14 BA02 BB19 BC01 CA24 CA44 4C084 AA02 BA01 BA02 BA08 BA22 BA23 CA62 ZA01 ZA33 ZA89 B21 Za94 ZB02

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】ラミニン−6を含む、細胞接着活性及び/
又は細胞運動活性調節用組成物。
1. Cell adhesion activity and / or laminin-6-containing activity
Alternatively, a composition for regulating cell motility activity.
【請求項2】ラミニン−6が、配列番号2のアミノ酸配
列を有するα3鎖、配列番号4のアミノ酸配列を有する
β1鎖及び配列番号6のアミノ酸配列を有するγ1鎖の
各サブユニットからなるタンパク質であるか、あるい
は、これらの配列において、1またはそれ以上のアミノ
酸残基が欠失、付加または置換しているアミノ酸配列を
有し、そして、弱い細胞接着活性を有し、及び/又は実
質的に細胞運動活性を有しないタンパク質である、請求
項1に記載の組成物。
2. Laminin-6 is a protein comprising each subunit of α3 chain having the amino acid sequence of SEQ ID NO: 2, β1 chain having the amino acid sequence of SEQ ID NO: 4, and γ1 chain having the amino acid sequence of SEQ ID NO: 6. Or alternatively has an amino acid sequence in which one or more amino acid residues are deleted, added or substituted in these sequences, and has weak cell adhesion activity, and / or substantially The composition according to claim 1, which is a protein having no cell motility activity.
【請求項3】ラミニン−6が、配列番号2のアミノ酸配
列を有するα3鎖、配列番号4のアミノ酸配列を有する
β1鎖及び配列番号6のアミノ酸配列を有するγ1鎖
と、各アミノ酸配列において50%以上の相同性を有す
る各サブユニットからなるタンパク質である、請求項2
に記載の組成物。
3. Laminin-6 comprises an α3 chain having the amino acid sequence of SEQ ID NO: 2, a β1 chain having the amino acid sequence of SEQ ID NO: 4, and a γ1 chain having the amino acid sequence of SEQ ID NO: 6, and 50% in each amino acid sequence. A protein comprising each subunit having the above homology,
The composition according to.
【請求項4】ラミニン−6が、配列番号2のアミノ酸配
列を有するα3鎖、配列番号4のアミノ酸配列を有する
β1鎖及び配列番号6のアミノ酸配列を有するγ1鎖か
らなる、請求項2または3に記載の組成物。
4. Laminin-6 comprises an α3 chain having the amino acid sequence of SEQ ID NO: 2, a β1 chain having the amino acid sequence of SEQ ID NO: 4, and a γ1 chain having the amino acid sequence of SEQ ID NO: 6. The composition according to.
【請求項5】ラミニン−6が、配列番号2のアミノ酸配
列においてアミノ酸残基1325−1713の全部また
は一部が削除されたα3鎖、配列番号4のアミノ酸配列
を有するβ1鎖及び配列番号6のアミノ酸配列を有する
γ1鎖からなるタンパク質であるか、あるいは、これら
の配列において、1またはそれ以上のアミノ酸残基が欠
失、付加または置換しているアミノ酸配列を有し、そし
て、細胞接着活性を有し、及び/又は弱い細胞運動活性
を有するタンパク質である、請求項1に記載の組成物。
5. Laminin-6 comprises an α3 chain in which all or part of amino acid residues 1325-1713 are deleted in the amino acid sequence of SEQ ID NO: 2, a β1 chain having the amino acid sequence of SEQ ID NO: 4 and a sequence of SEQ ID NO: 6. It is a protein consisting of a γ1 chain having an amino acid sequence, or has an amino acid sequence in which one or more amino acid residues are deleted, added or substituted in these sequences, and has cell adhesion activity. The composition according to claim 1, which is a protein having and / or having a weak cell motility activity.
【請求項6】ラミニン−6が、配列番号2のアミノ酸配
列においてアミノ酸残基1325−1713の全部また
は一部が削除されたα3鎖、配列番号4のアミノ酸配列
を有するβ1鎖及び配列番号6のアミノ酸配列を有する
γ1鎖と、各アミノ酸配列において50%以上の相同性
を有する各サブユニットからなるタンパク質である、請
求項5に記載の組成物。
6. Laminin-6 comprises an α3 chain in which all or part of amino acid residues 1325-1713 are deleted in the amino acid sequence of SEQ ID NO: 2, a β1 chain having the amino acid sequence of SEQ ID NO: 4 and a sequence of SEQ ID NO: 6. The composition according to claim 5, which is a protein consisting of a γ1 chain having an amino acid sequence and each subunit having 50% or more homology in each amino acid sequence.
【請求項7】ラミニン−6が、配列番号2のアミノ酸配
列においてアミノ酸残基1149−1713の全部また
は一部が削除されたα3鎖、配列番号4のアミノ酸配列
を有するβ1鎖及び配列番号6のアミノ酸配列を有する
γ1鎖からなるタンパク質であるか、あるいは、これら
の配列において、1またはそれ以上のアミノ酸残基が欠
失、付加または置換しているアミノ酸配列を有し、そし
て、実質的に細胞接着活性を有しないタンパク質であ
る、請求項1に記載の組成物。
7. Laminin-6 comprises an α3 chain in which all or part of amino acid residues 1149-1713 in the amino acid sequence of SEQ ID NO: 2 is deleted, a β1 chain having the amino acid sequence of SEQ ID NO: 4 and a SEQ ID NO: 6. A protein consisting of a γ1 chain having an amino acid sequence, or having an amino acid sequence in which one or more amino acid residues are deleted, added or substituted in these sequences, and is substantially a cell The composition according to claim 1, which is a protein having no adhesive activity.
【請求項8】細胞分散活性を有する、請求項5または6
のいずれか1項に記載の組成物。
8. The method according to claim 5, which has a cell-dispersing activity.
The composition according to any one of 1.
【請求項9】ラミニン−5をさらに含む、請求項1ない
し8のいずれか1項に記載の組成物。
9. The composition of any one of claims 1-8, further comprising laminin-5.
【請求項10】上皮組織、神経組織、筋肉の機能を維持
または処置するための、請求項1ないし9のいずれか1
項に記載の組成物。
10. The method according to any one of claims 1 to 9 for maintaining or treating the functions of epithelial tissue, nerve tissue and muscle.
The composition according to the item.
【請求項11】皮膚移植、網膜剥離、表皮剥離性水痘症
の治療または予防のための、請求項10に記載の組成
物。
11. The composition according to claim 10, which is used for treatment or prevention of skin transplantation, retinal detachment, and epidermolytic varicella.
【請求項12】移植用細胞の培養用の添加物、又は接着
器材として使用される、請求項1ないし9のいずれか1
項に記載の組成物。
12. The method according to claim 1, which is used as an additive for culturing cells for transplantation or as an adhesive device.
The composition according to the item.
【請求項13】請求項1ないし12のいずれか1項に記
載の組成物を使用して、細胞接着活性及び/又は細胞運
動活性を調節する方法。
13. A method for regulating cell adhesion activity and / or cell motility activity using the composition according to any one of claims 1 to 12.
【請求項14】請求項5−6、8−9のいずれか1項に
記載の組成物を使用して、細胞接着活性を高める、請求
項13に記載の方法。
14. The method according to claim 13, wherein the composition according to any one of claims 5-6 and 8-9 is used to enhance cell adhesion activity.
【請求項15】前記組成物を培養用容器に固定するか、
あるいは培養液中に添加することを含む、請求項14に
記載の方法。
15. The composition is fixed to a culture container, or
Alternatively, the method according to claim 14, which comprises adding to the culture medium.
【請求項16】細胞接着活性及び/又は細胞運動活性調
節用キットであって、請求項1ないし12のいずれか1
項に記載の組成物を含む、前記キット。
16. A kit for regulating cell adhesion activity and / or cell motility activity, which comprises any one of claims 1 to 12.
A kit comprising the composition of claim 1.
JP2002009227A 2002-01-17 2002-01-17 Composition for modulating cell adhesion activity and/or cell motility activity containing laminin-6 Pending JP2003212791A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002009227A JP2003212791A (en) 2002-01-17 2002-01-17 Composition for modulating cell adhesion activity and/or cell motility activity containing laminin-6

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002009227A JP2003212791A (en) 2002-01-17 2002-01-17 Composition for modulating cell adhesion activity and/or cell motility activity containing laminin-6

Publications (1)

Publication Number Publication Date
JP2003212791A true JP2003212791A (en) 2003-07-30

Family

ID=27647284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002009227A Pending JP2003212791A (en) 2002-01-17 2002-01-17 Composition for modulating cell adhesion activity and/or cell motility activity containing laminin-6

Country Status (1)

Country Link
JP (1) JP2003212791A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113559246A (en) * 2014-10-31 2021-10-29 京都府公立大学法人 Novel corneal treatment using laminin

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113559246A (en) * 2014-10-31 2021-10-29 京都府公立大学法人 Novel corneal treatment using laminin

Similar Documents

Publication Publication Date Title
KR20080082608A (en) Vegf analogs and methods of use
EA010741B1 (en) Use of zcyto cytokine polypeptide of human, mouse and antibodies to said polypeptides for treatment of different diseases
JP2003501028A (en) Adipocyte complement-related protein homolog zacrp7
JP6227601B2 (en) Therapeutic drug and test method for diseases caused by neutrophil activation
Deutzmann et al. Molecular, biochemical and functional analysis of a novel and developmentally important fibrillar collagen (Hcol-I) in hydra
WO2000058479A1 (en) Beta secretase genes and polypeptides
Tsurudome et al. Function of fusion regulatory proteins (FRPs) in immune cells and virus-infected cells
JP2011231113A (en) Novel anti-angiogenic agent and its use, in particular in cancer treatment
CA2172392C (en) Methods of inhibiting phagocytosis
US6630313B2 (en) Phosphatidyl serine receptors and uses thereof
US20020048577A1 (en) Methods and devices to modulate the wound response
JP2001506847A (en) Junctional adhesion molecule (JAM), tight junction transmembrane protein
US20030044899A1 (en) Isolated laminin 10
CN101501065A (en) VEGF analogs and methods of use
AU663216B2 (en) Bone-related cadherin-like protein and process for its production
Plager et al. A novel human homolog of eosinophil major basic protein
JP2003212791A (en) Composition for modulating cell adhesion activity and/or cell motility activity containing laminin-6
EP2843048B1 (en) NOVEL INTEGRIN alpha9beta1 LIGAND AND USES THEREOF
WO1999055863A1 (en) NOVEL POLYPEPTIDE, cDNA ENCODING THE SAME AND UTILIZATION THEREOF
JP2000515726A (en) Polynucleotide derived from adult PBMC encoding secreted protein
JPH10201491A (en) Protein r5 binding protein phosphatase 1
JP5346145B2 (en) Nerve regeneration composition
EP2140000A1 (en) Method of enhancing migration of neural precursor cells
JP2003093064A (en) MODIFIED SUBSTANCE OF LAMININ alpha3 CHAIN
Rabinowich Integrins as signal transducing receptors on NK cells

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040806

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040806

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070910

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071009

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070910