JP2003209299A - Current amplification means using superconducting quantum interference element and current detector - Google Patents

Current amplification means using superconducting quantum interference element and current detector

Info

Publication number
JP2003209299A
JP2003209299A JP2002005002A JP2002005002A JP2003209299A JP 2003209299 A JP2003209299 A JP 2003209299A JP 2002005002 A JP2002005002 A JP 2002005002A JP 2002005002 A JP2002005002 A JP 2002005002A JP 2003209299 A JP2003209299 A JP 2003209299A
Authority
JP
Japan
Prior art keywords
quantum interference
current
superconducting quantum
interference device
squid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002005002A
Other languages
Japanese (ja)
Inventor
Toshimitsu Morooka
利光 師岡
Keiichi Tanaka
啓一 田中
Tatsuji Ishikawa
達次 石川
Kazuo Kayane
一夫 茅根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2002005002A priority Critical patent/JP2003209299A/en
Publication of JP2003209299A publication Critical patent/JP2003209299A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a current amplification means having a large gain and a high current resolution, and a current detector, regarding a superconducting quantum interference element amplifier which amplifies fine current signals. <P>SOLUTION: A multi-junction superconducting quantum interference element 1 formed by parallelly connecting DC type superconducting quantum interference elements is defined as a first circuit and is connected through a transmission resistor to a second circuit. The multi-junction superconducting quantum interference element 1 is constituted by parallelly connecting N pieces of DC-SQUIDs sharing a Josephson junction and a shunt resistor between the adjacent DC- SQUIDs. The current signal detected in the multi-junction superconducting quantum interference element 1 is changed to a large current and sent to the second circuit. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は微小な電流信号を
増幅する超伝導増幅器に関し,さらに高速,高感度で検
出する微小信号検出器に関する.
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting amplifier that amplifies a minute current signal, and more particularly to a minute signal detector that detects with high speed and high sensitivity.

【0002】[0002]

【従来技術】従来技術を用いて構成された超伝導量子干
渉素子による電流増幅手段を図11に示す.2つのジョセ
フソン接合とSQUIDインダクタンスからなる直流型超伝
導量子干渉素子(DC-SQUID)34を第1の回路とし,伝達
抵抗5を介して第2の回路11に接続する.DC-SQUID34は,
2つのジョセフソン接合2とSQUIDインダクタンス3によっ
て超伝導ループを形成する.入力コイル4と帰還-変調コ
イル7が超伝導ループ上に形成され,SQUIDインダクタン
スに磁気結合される.電流-電圧特性のヒステリシスを
抑制するため,シャント抵抗6がジョセフソン接合2と
並列に接続されている.また,ジョセフソン接合2とSQU
IDインダクタンス3の間で生じる共振を抑制するため,
ダンピング抵抗8がSQUIDインダクタンス3と並列に接続
されている.第1の回路であるDC-SQUID34は,入力コイ
ルから入力される微小な入力信号Iinを大きな電流信号I
aに増幅する機能をもつ.第2の回路では,その電流を読
みとる機能,もしくはさらなる演算処理を行う機能を有
する.超伝導リングに貫く磁束Φに対するSQUID 34の臨
界電流値の変化を図12に示す.SQUID34にバイアス電流I
bを印加した状態で,入力信号Iinが入力されると,式
(a)で表される電流Iaが第2の回路11に送られる.この
とき,回路11の入力インピーダンスは,伝達抵抗5の抵
抗値Ra,シャント抵抗6の抵抗値Rsに比べ,無視できる
大きさと仮定する.
2. Description of the Related Art FIG. 11 shows a current amplifying means using a superconducting quantum interference device constructed by using a conventional technique. The direct current type superconducting quantum interference device (DC-SQUID) 34 consisting of two Josephson junctions and SQUID inductance is used as the first circuit, and is connected to the second circuit 11 via the transfer resistance 5. DC-SQUID34 is
A superconducting loop is formed by two Josephson junctions 2 and SQUID inductance 3. The input coil 4 and the feedback-modulation coil 7 are formed on the superconducting loop and are magnetically coupled to the SQUID inductance. A shunt resistor 6 is connected in parallel with the Josephson junction 2 in order to suppress the hysteresis of the current-voltage characteristics. Also, Josephson junction 2 and SQU
To suppress the resonance that occurs between the ID inductance 3,
The damping resistor 8 is connected in parallel with the SQUID inductance 3. The first circuit, the DC-SQUID 34, converts the minute input signal Iin input from the input coil into the large current signal I
It has the function of amplifying to a. The second circuit has the function of reading the current or the function of performing further arithmetic processing. Figure 12 shows the change in the critical current value of SQUID 34 with respect to the magnetic flux Φ penetrating the superconducting ring. Bias current I to SQUID34
When input signal Iin is input with b applied, the equation
The current Ia represented by (a) is sent to the second circuit 11. At this time, the input impedance of the circuit 11 is assumed to be negligible as compared with the resistance value Ra of the transfer resistor 5 and the resistance value Rs of the shunt resistor 6.

【0003】[0003]

【数1】 [Equation 1]

【0004】[0004]

【数2】 [Equation 2]

【0005】[0005]

【数3】 [Equation 3]

【0006】[0006]

【数4】 [Equation 4]

【0007】ここで,GinはSQUID34の電流ゲインであ
り,入力コイル4とSQUIDインダクタンス3との相互イン
ダクタンスMinとSQUID34の磁束に対する臨界電流値の変
化量IΦで表される.βは式(d)で表されるパラメータで
ある.大きな電流を第2の回路に供給するには,電流ゲ
インGin,すなわちMin,IΦ大きくすることが重要とな
る.Minを大きくする方法として,図13に示すマルチタ
ーンの入力コイルをもつSQUIDを用いる方法がある.
Here, Gin is the current gain of the SQUID 34, and is represented by the mutual inductance Min between the input coil 4 and the SQUID inductance 3 and the variation I Φ of the critical current value with respect to the magnetic flux of the SQUID 34. β is the parameter expressed by equation (d). In order to supply a large current to the second circuit, it is important to increase the current gain Gin, that is, Min, . One way to increase Min is to use SQUID with multi-turn input coil shown in Fig. 13.

【0008】[0008]

【発明が解決しようとする課題】電流増幅手段,および
電流検出器にとって,ゲインの増大と電流分解能の向上
が課題となる.ゲインの増大は,IΦ,Minの拡大が必要
となる.第2の回路に供給できる電流値は,最大でもDC
-SQUIDの臨界電流の変化量ΔIcである.DC-SQUIDの臨界
電流の変化量は数十μAである.1ターンの入力コイルの
相互インダクタンスMinは100pH程度である.つまり,1タ
ーンのDC-SQUIDでは,Ginは数倍であり,βを考慮する
と,もっと大きなGinが必要である.また,マルチター
ン入力コイルを採用することによって,Minを大きくで
きる.しかし,SQUIDインダクタンスの構造が大きくな
り,磁束トラップの影響を受けやすくなる,さらには,
自己インダクタンスが大きくなり,高速信号計測には適
さない等の問題がある.磁束トラップは超伝導体が冷却
課程で、常伝導状態から超伝導状態に転移したとき、超
伝導体中に磁束量子が捕捉される現象である。冷却時に
超伝導体に印加される磁場が大きいほど、多くの磁束ト
ラップが生じ、また、超伝導体の面積が大きいほど捕捉
されやすい。そして、磁束トラップはジョセフソン接合
の臨界電流を小さくするなど超伝導デバイスの特性劣
化、不安定動作を引き起こす。
With respect to the current amplifying means and the current detector, it is necessary to increase the gain and improve the current resolution. Increasing the gain requires expanding I Φ and Min. The maximum current value that can be supplied to the second circuit is DC
-Change in critical current of SQUID ΔIc. The amount of change in the critical current of DC-SQUID is several tens of μA. The mutual inductance Min of the one-turn input coil is about 100 pH. In other words, in one-turn DC-SQUID, Gin is several times larger, and considering β, a larger Gin is required. Also, Min can be increased by adopting a multi-turn input coil. However, the structure of the SQUID inductance becomes large, which makes it more susceptible to the effects of magnetic flux traps.
There is a problem that the self-inductance becomes large and it is not suitable for high-speed signal measurement. A magnetic flux trap is a phenomenon in which magnetic flux quanta are trapped in a superconductor when the superconductor transitions from the normal state to the superconducting state during the cooling process. The larger the magnetic field applied to the superconductor during cooling, the more magnetic flux traps are generated, and the larger the area of the superconductor, the easier it is to be trapped. The magnetic flux trap causes deterioration of the characteristics of the superconducting device and unstable operation such as reducing the critical current of the Josephson junction.

【0009】又、超伝導量子干渉素子は超低雑音デバイ
スであり,一般的に,その性能は室温に配置される駆動
回路によって制限される.そこで,電流分解能の向上に
は,その性能を制限する室温電子回路の寄与分を減らす
必要がある.つまり,室温電子回路のノイズに対し,十
分大きな電圧信号に変換する必要がある.そのため,低
温領域において大きな電流-電圧変換係数が求められ
る.
Further, the superconducting quantum interference device is an ultra low noise device, and its performance is generally limited by the driving circuit arranged at room temperature. Therefore, in order to improve the current resolution, it is necessary to reduce the contribution of the room temperature electronic circuit that limits its performance. In other words, it is necessary to convert to a sufficiently large voltage signal for the noise of the room temperature electronic circuit. Therefore, a large current-voltage conversion coefficient is required in the low temperature region.

【0010】[0010]

【課題を解決するための手段】2つのジョセフソン接合
とSQUIDインダクタンスからなる直流型超伝導量子干渉
素子(DC-SQUID)を並列接続することにより形成される
多接合超伝導量子干渉素子を第1の回路とし,伝達抵抗
を介して第2の回路に接続する.多接合SQUID1は,隣り
合うDC-SQUID間でジョセフソン接合,およびシャント抵
抗を共有するようにN個のDC-SQUIDを並列接続すること
により構成される.各DC-SQUIDの入力コイル,および帰
還-変調コイルは直列接続される.バイアス電流Ibは,
中央に位置するDC-SQUID N/2から挿入される.第2の回
路は,その電流を読みとる機能,もしくはさらなる演算
処理を行う機能をもつ.また,バイアス電流の供給方法
として,両端に位置するDC-SQUID 1,DC-SQUIDNから均
等にIb_1,Ib_2として印加する.さらに,バイアス電流
の供給方法として,各DC-SQUIDのSQUIDインダクタンス
から均等に印加する.さらに,バイアス電流の供給方法
として,各DC-SQUIDのダンピング抵抗の中央から均等に
印加する.また,第2の回路として,磁束量子を情報担
体に用いる単一磁束量子理論(SFQ)に基づく論理ゲート
に応用する.多接合SQUID1を第1の回路とし,伝達抵抗
を介して第2の回路であるDC-SQUIDに接続することで電
流検出器を構成する.また,多接合SQUIDを第1の回路
とし,伝達抵抗を介して第2の回路であるDC-SQUIDを複
数個直列接続した直列超伝導量子干渉素子アレイに接続
することで電流検出器を構成する.
[Means for Solving the Problems] A multi-junction superconducting quantum interference device formed by connecting in parallel a direct current type superconducting quantum interference device (DC-SQUID) consisting of two Josephson junctions and a SQUID inductance Circuit and connect it to the second circuit via the transfer resistance. The multijunction SQUID1 is configured by connecting N DC-SQUIDs in parallel so that the Josephson junctions and shunt resistors are shared between adjacent DC-SQUIDs. The input coil of each DC-SQUID and the feedback-modulation coil are connected in series. The bias current Ib is
Inserted from DC-SQUID N / 2 located in the center. The second circuit has the function of reading the current or the function of further arithmetic processing. As a bias current supply method, DC-SQUID 1 and DC-SQUIDN located at both ends are applied as Ib_1 and Ib_2 evenly. Furthermore, as a method of supplying bias current, it is applied uniformly from the SQUID inductance of each DC-SQUID. Furthermore, as a method of supplying the bias current, it is applied evenly from the center of the damping resistance of each DC-SQUID. The second circuit is applied to the logic gate based on the single-flux-quantum theory (SFQ), which uses the flux quantum as an information carrier. A current detector is constructed by using the multijunction SQUID1 as the first circuit and connecting it to the second circuit, the DC-SQUID, via a transfer resistor. Moreover, the current detector is constructed by connecting the multi-junction SQUID as the first circuit and connecting the second circuit DC-SQUID to the series superconducting quantum interference device array in series through the transfer resistance. .

【0011】[0011]

【発明の実施形態】以下に本発明の実施例について図面
を参照して説明する。 (第1の実施形態)図1に本発明の第1実施例を示す超
伝導量子干渉素子(SQUID)を用いた電流増幅手段の構
成図を示す。2つのジョセフソン接合とSQUIDインダクタ
ンスからなる直流型超伝導量子干渉素子(DC-SQUID)を
複数個並列接続することにより形成される多接合超伝導
量子干渉素子(多接合SQUID)1を第1の回路とし,伝達
抵抗5を介して第2の回路11に接続する.多接合SQUID1は
図2に示すDC-SQUIDから構成される.DC-SQUIDは2つのジ
ョセフソン接合2とSQUIDインダクタンス3によって超伝
導ループを形成する.入力コイル4と帰還-変調コイル7
がSQUIDインダクタンス3上に形成され,超伝導ループ
に磁気結合される.電流-電圧特性のヒステリシスを抑
制するため,シャント抵抗6がジョセフソン接合2と並列
に接続される.また,ジョセフソン接合2とSQUIDインダ
クタンス3の間で生じる共振を抑制するため,ダンピン
グ抵抗8がSQUIDインダクタンス3と並列に接続される.
多接合SQUID1は,隣り合うDC-SQUID間でジョセフソン接
合2,およびシャント抵抗6を共有するようにN個のDC-SQ
UIDを並列接続することにより構成される.各DC-SQUID
の入力コイル,および帰還-変調コイルは直列接続され
る.バイアス電流Ibは,中央に位置するDC-SQUID N/2か
ら挿入される.第1の回路である多接合SQUID1は,入力
コイルから入力される微小な入力信号Iinを大きな電流
信号Iaに増幅する機能をもつ.第2の回路では,その電
流値を読みとる機能,もしくはさらなる演算処理を行う
機能を有する.ここで,入力電流Iinに対して,第2の
回路に送られるIaの比(伝達係数)について説明する.
各ジョセフソン接合の臨界電流値は,両端を除くジョセ
フソン接合の臨界電流値を,両端にある2つのジョセフ
ソン接合の2倍にする.各シャント抵抗は,両端を除く
シャント抵抗を,両端にある2つのシャントの2倍にす
る.また,各SQUIDインダクタンスは等しいものとす
る.各DC-SQUIDに同じ大きさのバイアス電流Ib_Nが加え
られる.そのとき,多接合SQUID1の入力電流Iinと臨界
電流値の関係を図3に示す.Min Iin/Φ0において,N倍
の周期で大きな臨界電流変化が得られる.帰還-変調コ
イルから電流を加えることにより,図3の急峻な点Aに動
作点を固定する.バイアス電流IbにはIc_maxを印加す
る.その状態で,入力信号Inが入力されたとき,第2の
回路11に送られる電流Iaは式(1)で表される.
Embodiments of the present invention will be described below with reference to the drawings. (First Embodiment) FIG. 1 is a block diagram of a current amplifying means using a superconducting quantum interference device (SQUID) showing a first embodiment of the present invention. The first is a multi-junction superconducting quantum interference device (multi-junction SQUID) 1 which is formed by connecting a plurality of DC superconducting quantum interference devices (DC-SQUID) in parallel, each consisting of two Josephson junctions and SQUID inductances. As a circuit, it is connected to the second circuit 11 via the transfer resistor 5. The multijunction SQUID1 is composed of the DC-SQUID shown in Fig. 2. DC-SQUID forms a superconducting loop by two Josephson junctions 2 and SQUID inductance 3. Input coil 4 and feedback-modulation coil 7
Is formed on the SQUID inductance 3 and magnetically coupled to the superconducting loop. A shunt resistor 6 is connected in parallel with the Josephson junction 2 in order to suppress the hysteresis of the current-voltage characteristics. Moreover, in order to suppress the resonance generated between the Josephson junction 2 and the SQUID inductance 3, the damping resistor 8 is connected in parallel with the SQUID inductance 3.
The multi-junction SQUID1 has N DC-SQs so that the adjacent DC-SQUIDs share the Josephson junction 2 and the shunt resistor 6.
It is constructed by connecting UIDs in parallel. Each DC-SQUID
The input coil and feedback-modulation coil of are connected in series. The bias current Ib is inserted from the DC-SQUID N / 2 located at the center. The first circuit, the multi-junction SQUID1, has the function of amplifying the minute input signal Iin input from the input coil into a large current signal Ia. The second circuit has the function of reading the current value or the function of performing further arithmetic processing. Here, the ratio (transmission coefficient) of Ia sent to the second circuit with respect to the input current Iin will be described.
As for the critical current value of each Josephson junction, the critical current value of the Josephson junction excluding both ends is set to be twice that of the two Josephson junctions at both ends. For each shunt resistance, the shunt resistance excluding both ends is doubled of the two shunts at both ends. Also, each SQUID inductance is assumed to be equal. A bias current Ib_N of the same magnitude is applied to each DC-SQUID. Figure 3 shows the relationship between the input current Iin and the critical current value of the multijunction SQUID1. At Min Iin / Φ0, a large change in critical current is obtained with N times the period. The operating point is fixed at the steep point A in Fig. 3 by adding a current from the feedback-modulation coil. Ic_max is applied to the bias current Ib. In that state, when the input signal In is input, the current Ia sent to the second circuit 11 is expressed by the equation (1).

【0012】[0012]

【数5】 [Equation 5]

【0013】[0013]

【数6】 [Equation 6]

【0014】[0014]

【数7】 [Equation 7]

【0015】[0015]

【数8】 [Equation 8]

【0016】ここでは,伝達抵抗5の抵抗値Ra,多接合
SQUIDの動作抵抗(= Rs/(2N+2))に比べ,第2の回路1
1の入力インピーダンスは無視できる大きさと仮定す
る.ここで,Rsはシャント抵抗6,1つ当たりの抵抗値
である.GinはSQUID1単体の電流ゲインであり,入力コ
イル4とSQUIDインダクタンス3との相互インダクタンスM
inと多接合SQUID1の磁束に対する臨界電流値の変化量I
Φで表される.βは式(4)で表されるパラメータであ
る.本実施例では,多接合SQUIDがもつ大きな臨界電流
変化を利用しており,入力電流に対して,非常に大きな
電流ゲインが得られる.その結果,後段である第2の回
路に大きな電流を伝達することができる.また,第2の
回路として,磁束量子を情報担体に用いる単一磁束量子
理論(SFQ)に基づく論理ゲートを用いた場合,SFQの高速
性のみならず,高感度・高分解能の演算処理を可能にす
る.本実施例をA/Dコンバータのプリアンプ等に応用可
能である.図4(a)は,多接合SQUIDの構成を示す平面図
である.また、図4(b)に、バイアス配線44が接続されて
いるN/2のDC-SQUIDにおける拡大図を示す。図1に示し
た等価回路では,各DC-SQUIDには1つのSQUIDインダク
タンスで構成される.実際のデバイスにおいては、図4
(a)、4(b)のように上と下の2つSQUIDインダクタンス3で
構成される.上下のSQUIDインダクタンスには,それぞ
れダンピング抵抗8が並列接続されている.ジョセフソ
ン接合2は、上のSQUIDインダクタンス上に形成され
る。そして、ジョセフソン接合の上部電極と下のSQUID
インダクタンスは、ジョセフソン接合?上部配線層の接
続部(コンタクトホール)41、SQUIDインダクタンス?
上部配線層の接続部(コンタクトホール)43を介し
て、上部配線層91で接続される。
Here, the resistance value Ra of the transmission resistance 5 and the multi-junction
Compared with the operating resistance of SQUID (= Rs / (2N + 2)), the second circuit 1
The input impedance of 1 is assumed to be negligible. Here, Rs is the resistance value per shunt resistor 6. Gin is the current gain of SQUID1 alone, and the mutual inductance M between input coil 4 and SQUID inductance 3
Change in critical current value with respect to magnetic flux of in and multijunction SQUID1 I
It is represented by Φ . β is the parameter expressed by Eq. (4). In this example, the large change in critical current of the multijunction SQUID is used, and a very large current gain can be obtained with respect to the input current. As a result, a large current can be transmitted to the second circuit, which is the latter stage. When a logic gate based on the Single Flux Quantum Theory (SFQ), which uses flux quanta as information carriers, is used as the second circuit, not only high-speed SFQ but also high-sensitivity and high-resolution arithmetic processing is possible. To This embodiment can be applied to a preamplifier of an A / D converter. Figure 4 (a) is a plan view showing the structure of the multi-junction SQUID. In addition, FIG. 4B shows an enlarged view of an N / 2 DC-SQUID to which the bias wiring 44 is connected. In the equivalent circuit shown in Fig. 1, each DC-SQUID is composed of one SQUID inductance. In a real device,
As shown in (a) and 4 (b), it is composed of two upper and lower SQUID inductances 3. A damping resistor 8 is connected in parallel to the upper and lower SQUID inductances. The Josephson junction 2 is formed on the SQUID inductance above. Then, the upper electrode of the Josephson junction and the lower SQUID
Inductance is Josephson junction? Connection part (contact hole) 41 of upper wiring layer, SQUID inductance?
The upper wiring layer 91 is connected through the connection portion (contact hole) 43 of the upper wiring layer.

【0017】入力コイル4と帰還-変調コイルがSQUIDイ
ンダクタンスの上層に配置され,磁気結合される.本構
成の多接合SQUIDでは,1ターンの入力コイルでも大きな
電流ゲインGinを得ることができる.マルチターンコイ
ルにする必要がないため,SQUID線幅の細いSQUIDインダ
クタンスで構成でき,特性劣化の原因となるSQUIDイン
ダクタンスへの磁束トラップを防ぐことができる.その
結果,安定して大きな電流ゲインをもって,第2の回路
に電流を送ることができる.さらに,マルチターンコイ
ルに比べ,入力コイルの自己インダクタンスを小さくで
き,高速信号計測に適している.本実施例では、電流-
電圧特性においてヒステリシスを生じるトンネル接合型
ジョセフソン接合(たとえば、Nb/Al-AlOx/Nbなど)で
構成した例を示した。トンネル接合型ジョセフソン接合
の他、YBCO超伝導薄膜による粒界接合型ジョセフソン接
合のような電流-電圧特性においてヒステリシスを生じ
ないジョセフソン接合を用いても、同様の効果をもつ電
流増幅手段が得られる。この場合、シャント抵抗が不要
となる。 (第2の実施形態)図5に本発明の第2実施例を示す超
伝導量子干渉素子を用いた電流増幅手段の構成図を示
す。2つのジョセフソン接合とSQUIDインダクタンスから
なるDC-SQUIDを並列接続することにより形成される多接
合SQUID1を第1の回路とし,伝達抵抗5を介して第2の回
路11に接続する.多接合SQUID1は図2に示すDC-SQUIDか
ら構成される.DC-SQUIDは2つのジョセフソン接合2とSQ
UIDインダクタンス3によって超伝導ループを形成する.
入力コイル4と帰還-変調コイル7がSQUIDインダクタンス
3上に形成され,超伝導ループに磁気結合される.電流
-電圧特性のヒステリシスを抑制するため,シャント抵
抗6がジョセフソン接合2と並列に接続される.また,ジ
ョセフソン接合2とSQUIDインダクタンス3の間で生じる
共振を抑制するため,ダンピング抵抗8がSQUIDインダク
タンス3と並列に接続される.多接合SQUID1は,隣り合
うDC-SQUID間でジョセフソン接合2,およびシャント抵
抗6を共有するようにN個のDC-SQUIDを並列接続すること
により構成される.各DC-SQUIDの入力コイル,および帰
還-変調コイルは直列接続される.バイアス電流は,両
端に位置するDC-SQUID 1,DC-SQUID Nから均等にIb_1,
Ib_2として印加される.多接合SQUID12は,隣り合うDC-
SQUIDのジョセフソン接合2,およびシャント抵抗6を共
有するようにN個のDC-SQUIDを並列接続し,構成され
る.各DC-SQUIDの入力コイル,および帰還-変調コイル
は直列接続される. (第3の実施形態)図6に本発明の第3実施例を示す超
伝導量子干渉素子を用いた電流増幅手段の構成図を示
す。2つのジョセフソン接合とSQUIDインダクタンスから
なるDC-SQUIDを並列接続することにより形成される多接
合SQUID1を第1の回路とし,伝達抵抗5を介して第2の回
路11に接続する.多接合SQUID1は図2に示すDC-SQUIDか
ら構成される.DC-SQUIDは2つのジョセフソン接合2とSQ
UIDインダクタンス3によって超伝導ループを形成する.
入力コイル4と帰還-変調コイル7がSQUIDインダクタンス
3上に形成され,超伝導ループに磁気結合される.電流
-電圧特性のヒステリシスを抑制するため,シャント抵
抗6がジョセフソン接合2と並列に接続される.また,ジ
ョセフソン接合2とSQUIDインダクタンス3の間で生じる
共振を抑制するため,ダンピング抵抗8がSQUIDインダク
タンス3と並列に接続される.多接合SQUID1は,隣り合
うDC-SQUID間でジョセフソン接合2,およびシャント抵
抗6を共有するようにN個のDC-SQUIDを並列接続すること
により構成される.各DC-SQUIDの入力コイル,および帰
還-変調コイルは直列接続される.バイアス電流は,各D
C-SQUIDのSQUIDインダクタンスから均等に印加される. (第4の実施形態)図7に本発明の第3実施例を示す超
伝導量子干渉素子を用いた電流増幅手段の構成図を示
す。2つのジョセフソン接合とSQUIDインダクタンスから
なるDC-SQUIDを並列接続することにより形成される多接
合SQUID1を第1の回路とし,伝達抵抗5を介して第2の回
路11に接続する.多接合SQUID1は図2に示すDC-SQUIDか
ら構成される.DC-SQUIDは2つのジョセフソン接合2とSQ
UIDインダクタンス3によって超伝導ループを形成する.
入力コイル4と帰還-変調コイル7がSQUIDインダクタンス
3上に形成され,超伝導ループに磁気結合される.電流
-電圧特性のヒステリシスを抑制するため,シャント抵
抗6がジョセフソン接合2と並列に接続される.また,ジ
ョセフソン接合2とSQUIDインダクタンス3の間で生じる
共振を抑制するため,ダンピング抵抗8がSQUIDインダク
タンス3と並列に接続される.多接合SQUID1は,隣り合
うDC-SQUID間でジョセフソン接合2,およびシャント抵
抗6を共有するようにN個のDC-SQUIDを並列接続すること
により構成される.各DC-SQUIDの入力コイル,および帰
還-変調コイルは直列接続される.バイアス電流は,各D
C-SQUIDのダンピング抵抗の中央から均等に,分割し印
加される.本実施例では,各DC-SQUIDに印加するバアイ
ス電流ラインを1本にまとめることができる.そのた
め,室温電子回路からバイアス電流の供給が容易とな
る. (第5の実施形態)図8に本発明の第5実施例を示す超
伝導量子干渉素子を用いた電流検出器の構成図を示す。
第1実施例に示した多接合SQUID1を第1の回路とし,伝
達抵抗5を介して第2の回路であるDC-SQUID31に接続さて
いる.さらに,多接合SQUID1,DC-SQUID31は室温駆動回
路34で駆動される.第1の回路DC-SQUID31は,多接合
SQUID1で検出,増幅された電流を電圧に変換する機能
を持つ.DC-SQUID31は,2つのジョセフソン接合12とSQU
IDインダクタンス13によって超伝導ループを形成する.
入力コイル14と帰還-変調コイル17が超伝導ループ上に
形成され,SQUIDインダクタンスに磁気結合される.さ
らに,SQUIDインダクタンスに,入力コイルと帰還-変調
コイルが磁気結合される.電流-電圧特性のヒステリシ
スを抑制するため,シャント抵抗16がジョセフソン接合
12と並列に接続されている.また,ジョセフソン接合12
とSQUIDインダクタンス13の間で生じる共振を抑制する
ため,ダンピング抵抗18がSQUIDインダクタンス13と並
列に接続されている.多接合SQUID1,およびDC-SQUID31
は室温駆動回路33を用いて駆動され,入力電流Iinを電
圧信号Voutとして出力する.本実施例では,室温駆動回
路には,磁束-臨界電流特性,磁束-電圧特性において周
期性をもつDC-SQUIDを線形化,測定レンジの拡大させる
機能を持つFlux locked loop回路を用いている.ここ
で,電流検出器の駆動方法について説明する.多接合SQ
UID1の入力電流Iinと臨界電流値の関係を図3に示す.帰
還-変調コイルから電流を加えることにより,図3の急峻
な点Aに動作点を固定する.そして,バイアス電流にはI
c_maxを印加する.その状態で,入力信号Inが入力され
たとき,DC-SQUID31に送られる電流Iaは式(1)で表され
る.ここでは,伝達抵抗5の抵抗値Ra,多接合SQUIDの
動作抵抗(= Rs/(2N+2))に比べ,第2の回路11の入
力インピーダンスは無視できる大きさと仮定した.ここ
で,Rsはシャント抵抗6,1つ当たりの抵抗値である.
一方,DC-SQUID31の磁束-電圧特性を図9に示す.帰還-
変調コイル17からオフセット電流Imを加え,磁束-電圧
の急峻な点Bにバイアスする.DC-SQUIDの電流-電圧感度
(ゲイン)Gaは,式(5)で表される.また,DC-SQUIDの
固有電圧ノイズをSV_s,駆動回路の入力換算電圧ノイズ
をVeとすると,入力コイルに流れる電流に換算したとき
の電流ノイズIn_aは式(7)で表される.多接合アレイ1
とDC-SQUID31のトータルゲインGtは式(8)で表され
る.
The input coil 4 and the feedback-modulation coil are arranged above the SQUID inductance and magnetically coupled. In the multijunction SQUID with this configuration, a large current gain Gin can be obtained even with a one-turn input coil. Since it is not necessary to use a multi-turn coil, it can be composed of SQUID inductances with a narrow SQUID line width, and it is possible to prevent magnetic flux traps in the SQUID inductance, which causes characteristic deterioration. As a result, the current can be stably sent to the second circuit with a large current gain. Furthermore, the self-inductance of the input coil can be made smaller than that of the multi-turn coil, which is suitable for high-speed signal measurement. In this embodiment, the current-
An example of a tunnel junction type Josephson junction (for example, Nb / Al-AlOx / Nb) that produces hysteresis in voltage characteristics is shown. In addition to the tunnel junction type Josephson junction, a Josephson junction that does not cause hysteresis in current-voltage characteristics, such as the grain boundary junction type Josephson junction using YBCO superconducting thin film, can be used as a current amplification means with the same effect. can get. In this case, the shunt resistor is unnecessary. (Second Embodiment) FIG. 5 is a block diagram of a current amplifying means using a superconducting quantum interference device showing a second embodiment of the present invention. A multi-junction SQUID1 formed by connecting two Josephson junctions and a DC-SQUID consisting of SQUID inductances in parallel is used as the first circuit, and is connected to the second circuit 11 via the transfer resistance 5. The multijunction SQUID1 is composed of the DC-SQUID shown in Fig. 2. DC-SQUID consists of two Josephson junctions 2 and SQ
A UID inductance 3 forms a superconducting loop.
An input coil 4 and a feedback-modulation coil 7 are formed on the SQUID inductance 3 and magnetically coupled to the superconducting loop. Electric current
-A shunt resistor 6 is connected in parallel with the Josephson junction 2 to suppress the hysteresis of the voltage characteristics. Moreover, in order to suppress the resonance generated between the Josephson junction 2 and the SQUID inductance 3, the damping resistor 8 is connected in parallel with the SQUID inductance 3. The multijunction SQUID1 is constructed by connecting N DC-SQUIDs in parallel so that the Josephson junction 2 and the shunt resistor 6 are shared between adjacent DC-SQUIDs. The input coil of each DC-SQUID and the feedback-modulation coil are connected in series. Bias current is evenly distributed from both ends of DC-SQUID 1 and DC-SQUID N to Ib_1,
It is applied as Ib_2. The multi-junction SQUID12 has DC-
It consists of N DC-SQUIDs connected in parallel so that the SQUID Josephson junction 2 and the shunt resistor 6 are shared. The input coil of each DC-SQUID and the feedback-modulation coil are connected in series. (Third Embodiment) FIG. 6 is a block diagram of a current amplifying means using a superconducting quantum interference device showing a third embodiment of the present invention. A multi-junction SQUID1 formed by connecting two Josephson junctions and a DC-SQUID consisting of SQUID inductances in parallel is used as the first circuit, and is connected to the second circuit 11 via the transfer resistance 5. The multijunction SQUID1 is composed of the DC-SQUID shown in Fig. 2. DC-SQUID consists of two Josephson junctions 2 and SQ
A UID inductance 3 forms a superconducting loop.
An input coil 4 and a feedback-modulation coil 7 are formed on the SQUID inductance 3 and magnetically coupled to the superconducting loop. Electric current
-A shunt resistor 6 is connected in parallel with the Josephson junction 2 to suppress the hysteresis of the voltage characteristics. Moreover, in order to suppress the resonance generated between the Josephson junction 2 and the SQUID inductance 3, the damping resistor 8 is connected in parallel with the SQUID inductance 3. The multijunction SQUID1 is constructed by connecting N DC-SQUIDs in parallel so that the Josephson junction 2 and the shunt resistor 6 are shared between adjacent DC-SQUIDs. The input coil of each DC-SQUID and the feedback-modulation coil are connected in series. Bias current is D
It is applied uniformly from the SQUID inductance of C-SQUID. (Fourth Embodiment) FIG. 7 is a block diagram of a current amplifying means using a superconducting quantum interference device showing a third embodiment of the present invention. A multi-junction SQUID1 formed by connecting two Josephson junctions and a DC-SQUID consisting of SQUID inductances in parallel is used as the first circuit, and is connected to the second circuit 11 via the transfer resistance 5. The multijunction SQUID1 is composed of the DC-SQUID shown in Fig. 2. DC-SQUID consists of two Josephson junctions 2 and SQ
A UID inductance 3 forms a superconducting loop.
An input coil 4 and a feedback-modulation coil 7 are formed on the SQUID inductance 3 and magnetically coupled to the superconducting loop. Electric current
-A shunt resistor 6 is connected in parallel with the Josephson junction 2 to suppress the hysteresis of the voltage characteristics. Moreover, in order to suppress the resonance generated between the Josephson junction 2 and the SQUID inductance 3, the damping resistor 8 is connected in parallel with the SQUID inductance 3. The multijunction SQUID1 is constructed by connecting N DC-SQUIDs in parallel so that the Josephson junction 2 and the shunt resistor 6 are shared between adjacent DC-SQUIDs. The input coil of each DC-SQUID and the feedback-modulation coil are connected in series. Bias current is D
It is applied evenly from the center of the damping resistance of the C-SQUID. In this embodiment, the Baice current lines applied to each DC-SQUID can be integrated into one line. Therefore, it becomes easy to supply the bias current from the room temperature electronic circuit. (Fifth Embodiment) FIG. 8 is a block diagram of a current detector using a superconducting quantum interference device according to a fifth embodiment of the present invention.
The multijunction SQUID1 shown in the first embodiment is used as the first circuit, and is connected to the second circuit, the DC-SQUID31, via the transfer resistor 5. Further, the multi-junction SQUID1 and DC-SQUID31 are driven by the room temperature drive circuit 34. The first circuit DC-SQUID31 is a multi-junction
It has the function of converting the current detected and amplified by SQUID1 into voltage. DC-SQUID31 consists of two Josephson junctions 12 and SQU
A superconducting loop is formed by the ID inductance 13.
An input coil 14 and a feedback-modulation coil 17 are formed on the superconducting loop and magnetically coupled to the SQUID inductance. Furthermore, the input coil and feedback-modulation coil are magnetically coupled to the SQUID inductance. The shunt resistor 16 has a Josephson junction to suppress the hysteresis of the current-voltage characteristics.
It is connected in parallel with 12. Also, Josephson junction 12
A damping resistor 18 is connected in parallel with the SQUID inductance 13 in order to suppress the resonance that occurs between the SQUID inductance 13. Multi-junction SQUID1 and DC-SQUID31
Is driven by the room temperature drive circuit 33 and outputs the input current Iin as a voltage signal Vout. In the present embodiment, a room temperature drive circuit uses a Flux locked loop circuit having a function of linearizing a DC-SQUID having periodicity in magnetic flux-critical current characteristics and magnetic flux-voltage characteristics and expanding a measurement range. Here, the driving method of the current detector is explained. Multi-junction SQ
Figure 3 shows the relationship between the input current Iin of UID1 and the critical current value. The operating point is fixed at the steep point A in Fig. 3 by adding a current from the feedback-modulation coil. The bias current is I
Apply c_max. In that state, when the input signal In is input, the current Ia sent to the DC-SQUID 31 is expressed by equation (1). Here, it is assumed that the input impedance of the second circuit 11 is negligible compared with the resistance value Ra of the transfer resistance 5 and the operating resistance (= Rs / (2N + 2)) of the multijunction SQUID. Here, Rs is the resistance value per shunt resistor 6.
On the other hand, Fig. 9 shows the magnetic flux-voltage characteristics of DC-SQUID31. Return-
An offset current Im is added from the modulation coil 17 and bias is applied to point B where the magnetic flux-voltage is steep. The current-voltage sensitivity (gain) Ga of DC-SQUID is expressed by Eq. (5). Also, assuming that the characteristic voltage noise of the DC-SQUID is SV_s and the input conversion voltage noise of the drive circuit is Ve, the current noise In_a when converted to the current flowing in the input coil is expressed by equation (7). Multi-junction array 1
And the total gain Gt of DC-SQUID31 is expressed by equation (8).

【0018】[0018]

【数9】 [Equation 9]

【0019】[0019]

【数10】 [Equation 10]

【0020】[0020]

【数11】 [Equation 11]

【0021】[0021]

【数12】 [Equation 12]

【0022】入力電流Iinによって,DC-SQUID31の出力
電圧Vsが変化する.室温駆動回路33では,増幅,積分等
の演算が行われる.入力電流Iinにより多接合SQUID結合
する磁束と帰還-変調コイルにより多接合SQUID結合する
磁束の和が常に一定に保たれるように,室温駆動回路33
から多接合SQUID1の帰還-変調コイルに帰還電流Ifが供
給される.その結果,室温駆動回路33は入力電流Iinに
比例した出力信号Voutを出力する.本実施例では,DC-S
QUID31は低雑音電流-電圧変換器として機能することか
ら,感度の向上が期待できる.多接合アレイの固有電流
ノイズをSI_sとすると,トータル電流分解能In_inは式
(9)となる.
The output voltage Vs of the DC-SQUID 31 changes according to the input current Iin. In the room temperature drive circuit 33, calculations such as amplification and integration are performed. The room temperature drive circuit 33 is designed so that the sum of the magnetic flux that is multijunction SQUID coupled by the input current Iin and the feedback-modulation coil that is multijunction SQUID coupled is always kept constant.
The feedback current If is supplied to the feedback-modulation coil of the multijunction SQUID1 from. As a result, the room temperature drive circuit 33 outputs the output signal Vout proportional to the input current Iin. In this embodiment, DC-S
Since QUID31 functions as a low noise current-voltage converter, improvement in sensitivity can be expected. If the characteristic current noise of the multi-junction array is SI_s, the total current resolution In_in is given by equation (9).

【0023】[0023]

【数13】 [Equation 13]

【0024】(第6の実施形態)図10に本発明の第6
実施例を示す超伝導量子干渉素子を用いた電流検出器の
構成図を示す。第1実施例に示した多接合SQUID1を第1
の回路とし,伝達抵抗5を介して第2の回路である直列接
続された超伝導量子干渉素子アレイ(直列SQUIDアレ
イ)に接続されている.直列SQUIDアレイ32は多接合SQU
ID1で検出,増幅された電流を電圧に変換する機能を持
つ.多接合SQUID1,およびDC-SQUID32は室温駆動回路33
と接続され,入力電流Iinを電圧信号Voutとして出力す
る.直列SQUIDアレイ32は,複数のDC-SQUIDで構成さ
れ,直列接続することにより得られる.各DC-SQUIDは,
2つのジョセフソン接合22とSQUIDインダクタンス23によ
って超伝導ループを形成する.入力コイル24と帰還-変
調コイル27が超伝導ループ上に形成され,SQUIDインダ
クタンスに磁気結合されている.電流-電圧特性のヒス
テリシスを抑制するため,シャント抵抗26がジョセフソ
ン接合22と並列に接続されている.また,ジョセフソン
接合22とSQUIDインダクタンス13の間で生じる共振を抑
制するため,ダンピング抵抗28がSQUIDインダクタンス2
3と並列に接続されている.各DC-SQUIDの入力コイル,
および帰還-変調コイルは直列接続されている.多接合S
QUID1,およびDC-SQUID31は室温駆動回路33を用いて駆
動され,入力電流Iinを電圧信号Voutとして出力する.
本実施例では,室温駆動回路には,磁束-臨界電流特
性,磁束-電圧特性において周期性をもつSQUIDを線形
化,測定レンジの拡大させる機能を持つFlux locked lo
op回路を用いている.電流検出器の駆動方法は第5実施
例と同様である.SQUIDアレイは,非常に大きな変調電
圧を提供する.その結果,大きなゲインGaが得られる.
式(9)からわかるとおり,大きなGaは室温電子回路の
ノイズの寄与分を低減する.本実施例では,非常に高い
電流分解能を提供できる.
(Sixth Embodiment) FIG. 10 shows a sixth embodiment of the present invention.
The block diagram of the electric current detector using the superconducting quantum interference element which shows an Example is shown. First, the multi-junction SQUID1 shown in the first embodiment is used.
The second circuit is connected to the series-connected superconducting quantum interference device array (series SQUID array) via the transfer resistance 5. Series SQUID array 32 is a multi-junction SQU
It has the function of converting the current detected and amplified by ID1 into voltage. Multi-junction SQUID1 and DC-SQUID32 are room temperature drive circuits 33
It is connected to and outputs the input current Iin as a voltage signal Vout. The serial SQUID array 32 is composed of multiple DC-SQUIDs and can be obtained by connecting them in series. Each DC-SQUID is
A superconducting loop is formed by the two Josephson junctions 22 and the SQUID inductance 23. An input coil 24 and a feedback-modulation coil 27 are formed on the superconducting loop and are magnetically coupled to the SQUID inductance. A shunt resistor 26 is connected in parallel with the Josephson junction 22 to suppress the hysteresis of the current-voltage characteristics. Moreover, in order to suppress the resonance generated between the Josephson junction 22 and the SQUID inductance 13, the damping resistor 28 is used to suppress the resonance.
It is connected in parallel with 3. Input coil of each DC-SQUID,
And the feedback-modulation coil is connected in series. Multi-junction S
QUID1 and DC-SQUID31 are driven by the room temperature drive circuit 33, and output the input current Iin as the voltage signal Vout.
In the present embodiment, the room temperature drive circuit has a function of linearizing a SQUID having periodicity in the magnetic flux-critical current characteristic and the magnetic flux-voltage characteristic and having a function of expanding the measurement range.
It uses op circuit. The driving method of the current detector is the same as in the fifth embodiment. SQUID arrays provide very large modulation voltages. As a result, a large gain Ga is obtained.
As can be seen from equation (9), a large Ga reduces the noise contribution of the room temperature electronic circuit. In this embodiment, very high current resolution can be provided.

【0025】[0025]

【発明の効果】直流型超伝導量子干渉素子(DC-SQUID)を
並列接続することにより形成された多接合超伝導量子干
渉素子(多接合SQUID)を電流増幅器として用いること
により,多接合SQUIDがもつ大きな臨界電流変化を利用
しており,入力電流に対して,非常に大きな電流ゲイン
が得られる.その結果,後段である第2の回路に大きな
電流を伝達することができる.また,第2の回路とし
て,磁束量子を情報担体に用いる単一磁束量子理論(SF
Q)に基づく論理ゲートを用いた場合,SFQの高速成のみ
ならず,高感度・高分解能の演算処理を可能にする.本
実施例をA/Dコンバーターのプリンアンプ等に応用可能
である.さらに,多接合SQUIDでは,1ターンの入力コイ
ルでも大きな電流ゲインを得ることができる.そのた
め,線幅の細いSQUIDインダクタンスで構成でき,特性
劣化の原因となるSQUIDインダクタンスへの磁束トラッ
プを防ぐことができる.その結果,安定して大きな電流
ゲインをもって,第2の回路に電流を送ることができ
る.入力コイルの自己インダクタンスを小さく出来るた
め,高速信号検出に適している.多接合SQUID1を第1の
回路とし,伝達抵抗を介して第2の回路であるDC-SQUID
に接続することで電流検出器を構成することにより,DC
-SQUID31は低雑音電流-電圧変換器として機能すること
から,感度の向上が期待できる.また,多接合SQUIDを
第1の回路とし,伝達抵抗を介して第2の回路であるDC-
SQUIDを複数個直列接続した超伝導量子干渉素子アレイ
(直列SQUIDアレイ)に接続することで電流検出器を構
成することにより,後段の直列SQUIDアレイで,非常に
大きな変調電圧を与えるため,大きなゲインGaが得られ
る.その結果,非常に高い電流分解能を提供できる.
EFFECTS OF THE INVENTION By using a multijunction superconducting quantum interference device (multijunction SQUID) formed by connecting DC superconducting quantum interference devices (DC-SQUIDs) in parallel as a current amplifier, By utilizing the large change in critical current, a very large current gain can be obtained for the input current. As a result, a large current can be transmitted to the second circuit, which is the latter stage. In addition, as the second circuit, the single flux quantum theory (SF
When a logic gate based on Q) is used, not only high-speed SFQ formation but also high-sensitivity and high-resolution arithmetic processing is possible. This embodiment can be applied to a purine amplifier of an A / D converter. Furthermore, in the multijunction SQUID, a large current gain can be obtained even with a one-turn input coil. Therefore, the SQUID inductance can be configured with a narrow line width, and the magnetic flux trap in the SQUID inductance, which causes characteristic deterioration, can be prevented. As a result, the current can be stably sent to the second circuit with a large current gain. It is suitable for high-speed signal detection because the self-inductance of the input coil can be reduced. The multi-junction SQUID1 is the first circuit, and the second circuit is the DC-SQUID via the transfer resistance.
By configuring a current detector by connecting to
-Since SQUID31 functions as a low noise current-voltage converter, improved sensitivity can be expected. In addition, the multi-junction SQUID is the first circuit, and the second circuit DC-
By constructing a current detector by connecting a plurality of SQUIDs connected in series to a superconducting quantum interference device array (series SQUID array), a very large modulation voltage is applied to the subsequent series SQUID array, and a large gain is obtained. Ga is obtained. As a result, very high current resolution can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1実施例を示す超伝導量子干渉素子を用いた
電流増幅手段の構成図.
FIG. 1 is a configuration diagram of current amplification means using a superconducting quantum interference device according to a first embodiment.

【図2】多接合超伝導量子干渉素子を構成するDC-SQUID
の等価回路図.
[Fig. 2] DC-SQUID constituting a multi-junction superconducting quantum interference device
Equivalent circuit diagram of.

【図3】多接合超伝導量子干渉素子の入力電流Iinに対
する臨界電流変化.
FIG. 3 shows the change in the critical current with respect to the input current Iin of the multijunction superconducting quantum interference device.

【図4】(a)は多接合超伝導量子干渉素子の構成を示
す平面図,(b)はその一部の拡大図である.
4A is a plan view showing the structure of a multijunction superconducting quantum interference device, and FIG. 4B is an enlarged view of a part thereof.

【図5】第2実施例を示す超伝導量子干渉素子を用いた
電流増幅手段.
FIG. 5 is a current amplification means using a superconducting quantum interference device according to the second embodiment.

【図6】第3実施例を示す超伝導量子干渉素子を用いた
電流増幅手段.
FIG. 6 is a current amplification means using a superconducting quantum interference device showing a third embodiment.

【図7】第4実施例を示す超伝導量子干渉素子を用いた
電流増幅手段.
FIG. 7 is a current amplification means using a superconducting quantum interference device showing a fourth embodiment.

【図8】第5実施例を示す超伝導量子干渉素子を用いた
電流検出器の構成図.
FIG. 8 is a configuration diagram of a current detector using a superconducting quantum interference device showing a fifth embodiment.

【図9】DC-SQUIDの磁束-電圧特性.FIG. 9: Magnetic flux-voltage characteristics of DC-SQUID.

【図10】第5実施例を示す直列超伝導量子干渉素子ア
レイを用いた電流検出器の構成図
FIG. 10 is a configuration diagram of a current detector using a series superconducting quantum interference device array according to a fifth embodiment.

【図11】従来例を示す超伝導量子干渉素子を用いた電
流増幅手段.
FIG. 11 is a current amplification means using a superconducting quantum interference device showing a conventional example.

【図12】DC-SQUIDの入力電流Iinに対する臨界電流変
化.
FIG. 12 shows the change in critical current with respect to the input current Iin of DC-SQUID.

【図13】マルチループコイルを持つDC-SQUIDの構成を
示す平面図.
FIG. 13 is a plan view showing the configuration of a DC-SQUID having a multi-loop coil.

【符号の説明】[Explanation of symbols]

1・・・多接合超伝導量子干渉素子 2,12,22・・・ジョセフソン接合 3,13,23・・・SQUIDインダクタンス 4,14,24・・・入力コイル 5・・・伝達抵抗 6,16,26・・・シャント抵抗 7,17,27・・・帰還-変調コイル 8,18,28・・・ダンピング抵抗 9,91・・・上部配線層 11・・・第2の回路 31,34・・・DC-SQUID 32・・・直列超伝導量子干渉素子アレイ(直列SQUID
アレイ) 33・・・室温駆動回路 41・・・ジョセフソン接合-上部配線層の接続部(コ
ンタクトホール) 42・・・SQUIDインダクタンス-抵抗層の接続部(コン
タクトホール) 43・・・SQUIDインダクタンス-上部配線層の接続部
(コンタクトホール) 44・・・バイアス配線
1 ... Multi-junction superconducting quantum interference device 2, 12, 22 ... Josephson junction 3, 13, 23 ... SQUID inductance 4, 14, 24 ... Input coil 5 ... Transfer resistance 6, 16, 26 ... Shunt resistors 7, 17, 27 ... Feedback-modulation coils 8, 18, 28 ... Damping resistors 9, 91 ... Upper wiring layer 11 ... Second circuits 31, 34・ ・ ・ DC-SQUID 32 ・ ・ ・ Series superconducting quantum interference device array (series SQUID
Array) 33 ... Room temperature driving circuit 41 ... Josephson junction-connection part of upper wiring layer (contact hole) 42 ... SQUID inductance-connection part of resistance layer (contact hole) 43 ... SQUID inductance- Connection part of upper wiring layer (contact hole) 44 ... Bias wiring

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田中 啓一 千葉県千葉市美浜区中瀬1丁目8番地 株 式会社エスアイアイ・アールディセンター 内 (72)発明者 石川 達次 千葉県千葉市美浜区中瀬1丁目8番地 セ イコーインスツルメンツ株式会社内 (72)発明者 茅根 一夫 千葉県千葉市美浜区中瀬1丁目8番地 セ イコーインスツルメンツ株式会社内 Fターム(参考) 2G017 AA05 AD34 2G025 AA00 AB05 AC04 4M113 AA04 AA14 AA25 AC08 AC33 AD21 CA31    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Keiichi Tanaka             1-8 Nakase, Nakase, Mihama-ku, Chiba City, Chiba Prefecture             Ceremony Company SII RDI Center             Within (72) Inventor Tatsuji Ishikawa             1-8 Nakase, Nakase, Mihama-ku, Chiba City, Chiba Prefecture             Ico Instruments Co., Ltd. (72) Inventor Kazuo Kane             1-8 Nakase, Nakase, Mihama-ku, Chiba City, Chiba Prefecture             Ico Instruments Co., Ltd. F-term (reference) 2G017 AA05 AD34                 2G025 AA00 AB05 AC04                 4M113 AA04 AA14 AA25 AC08 AC33                       AD21 CA31

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 複数の直流型超伝導量子干渉素子を並列
接続した多接合超伝導量子干渉素子を電流増幅器として
用い,伝達抵抗を介して第2の回路に電流を伝達する超
伝導量子干渉素子を用いた電流増幅手段であり,前記直
流型超伝導量子干渉素子が,2つのジョセフソン接合とS
QUIDインダクタンスによって超伝導ループを形成し,該
超伝導ループに磁気結合された信号入力用入力コイル
と,帰還-変調コイルと,電流-電圧特性のヒステリシス
を抑制するためジョセフソン接合と並列接続されたシャ
ント抵抗と,ジョセフソン接合とSQUIDインダクタンス
の間で生じる共振を抑制するため,SQUIDインダクタン
スと並列接続されたダンピング抵抗とを備えており,前
記多接合超伝導量子干渉素子が,隣り合う前記直流型超
伝導量子干渉素子間でジョセフソン接合,およびシャン
ト抵抗を共有するように並列接続することにより構成さ
れ,さらに各直流型超伝導量子干渉素子の前記入力コイ
ル,および前記帰還-変調コイルが直列接続され,多接
合超伝導量子干渉素子のバイアス電流は,中央に位置す
るDC-SQUIDから挿入される超伝導量子干渉素子を用いた
電流増幅手段.
1. A superconducting quantum interference device which uses a multi-junction superconducting quantum interference device in which a plurality of direct current type superconducting quantum interference devices are connected in parallel as a current amplifier and which transfers a current to a second circuit via a transfer resistor. Is a current amplification means using the DC-type superconducting quantum interference device having two Josephson junctions and an S
A superconducting loop is formed by the QUID inductance, and an input coil for signal input magnetically coupled to the superconducting loop, a feedback-modulation coil, and a Josephson junction are connected in parallel to suppress hysteresis of current-voltage characteristics. The multi-junction superconducting quantum interference device is provided with a shunt resistor and a damping resistor connected in parallel with the SQUID inductance in order to suppress resonance generated between the Josephson junction and the SQUID inductance. The superconducting quantum interference device is constructed by connecting in parallel so as to share the Josephson junction and shunt resistance, and the input coil and feedback-modulation coil of each DC type superconducting quantum interference device are connected in series. The bias current of the multijunction superconducting quantum interference device is the superconductivity inserted from the DC-SQUID located in the center. Current amplification means using quantum interference device.
【請求項2】 複数の直流型超伝導量子干渉素子を並列
接続した多接合超伝導量子干渉素子を電流増幅器として
用い,伝達抵抗を介して第2の回路に電流を伝達する超
伝導量子干渉素子を用いた電流増幅手段であり,前記直
流型超伝導量子干渉素子が,2つのジョセフソン接合とS
QUIDインダクタンスによって超伝導ループが形成され,
超伝導ループに磁気結合された信号入力用入力コイル
と,帰還-変調コイルと,電流-電圧特性のヒステリシス
を抑制するためジョセフソン接合と並列接続されたシャ
ント抵抗と,ジョセフソン接合とSQUIDインダクタンス
の間で生じる共振を抑制するため,SQUIDインダクタン
スと並列接続されたダンピング抵抗とを備えており,前
記多接合超伝導量子干渉素子が,隣り合う前記直流型超
伝導量子干渉素子間でジョセフソン接合,およびシャン
ト抵抗を共有するように並列接続することにより構成さ
れ,さらに各直流型超伝導量子干渉素子の前記入力コイ
ル,および前記帰還-変調コイルが直列接続され,多接
合超伝導量子干渉素子のバイアス電流は,両端に位置す
る2つの直流型超伝導量子干渉素子から均等に挿入され
る超伝導量子干渉素子を用いた電流増幅手段.
2. A superconducting quantum interference device which uses a multijunction superconducting quantum interference device in which a plurality of direct current type superconducting quantum interference devices are connected in parallel as a current amplifier and which transfers a current to a second circuit via a transfer resistor. Is a current amplification means using the DC-type superconducting quantum interference device having two Josephson junctions and an S
The QUID inductance forms a superconducting loop,
The input coil for signal input magnetically coupled to the superconducting loop, the feedback-modulation coil, the shunt resistance connected in parallel with the Josephson junction to suppress the hysteresis of the current-voltage characteristics, the Josephson junction and the SQUID inductance. The multi-junction superconducting quantum interference device is provided with a SQUID inductance and a damping resistor connected in parallel in order to suppress resonance that occurs between the direct current superconducting quantum interference devices. And a shunt resistor connected in parallel so as to share the input coil of each DC type superconducting quantum interference device and the feedback-modulation coil in series, and a bias of the multijunction superconducting quantum interference device. For the current, use the superconducting quantum interference devices that are evenly inserted from the two DC superconducting quantum interference devices located at both ends. Current amplification means.
【請求項3】 複数の直流型超伝導量子干渉素子を並列
接続した多接合超伝導量子干渉素子を電流増幅器として
用い,伝達抵抗を介して第2の回路に電流を伝達する超
伝導量子干渉素子を用いた電流増幅手段であり,前記直
流型超伝導量子干渉素子が,2つのジョセフソン接合とS
QUIDインダクタンスによって超伝導ループが形成され,
超伝導ループに磁気結合された信号入力用入力コイル
と,帰還-変調コイルと,電流-電圧特性のヒステリシス
を抑制するためジョセフソン接合と並列接続されたシャ
ント抵抗と,ジョセフソン接合とSQUIDインダクタンス
の間で生じる共振を抑制するため,SQUIDインダクタン
スと並列接続されたダンピング抵抗とを備えており,前
記多接合超伝導量子干渉素子が,隣り合う前記直流型超
伝導量子干渉素子間でジョセフソン接合,およびシャン
ト抵抗を共有するように並列接続することにより構成さ
れ,さらに各直流型超伝導量子干渉素子の前記入力コイ
ル,および前記帰還-変調コイルが直列接続され,多接
合超伝導量子干渉素子のバイアス電流は,各直流型超伝
導量子干渉素子のSQUIDインダクタンスから均等に挿入
される超伝導量子干渉素子を用いた電流増幅手段.
3. A superconducting quantum interference device which uses a multijunction superconducting quantum interference device in which a plurality of direct current type superconducting quantum interference devices are connected in parallel as a current amplifier, and which transfers a current to a second circuit via a transfer resistor. Is a current amplification means using the DC-type superconducting quantum interference device having two Josephson junctions and an S
The QUID inductance forms a superconducting loop,
The input coil for signal input magnetically coupled to the superconducting loop, the feedback-modulation coil, the shunt resistance connected in parallel with the Josephson junction to suppress the hysteresis of the current-voltage characteristics, the Josephson junction and the SQUID inductance. The multi-junction superconducting quantum interference device is provided with a SQUID inductance and a damping resistor connected in parallel in order to suppress resonance that occurs between the direct current superconducting quantum interference devices. And a shunt resistor connected in parallel so as to share the input coil of each DC type superconducting quantum interference device and the feedback-modulation coil in series, and a bias of the multijunction superconducting quantum interference device. For the current, use a superconducting quantum interference device that is evenly inserted from the SQUID inductance of each DC superconducting quantum interference device. Current amplifying means is.
【請求項4】 複数の直流型超伝導量子干渉素子を並列
接続した多接合超伝導量子干渉素子を電流増幅器として
用い,伝達抵抗を介して第2の回路に電流を伝達する超
伝導量子干渉素子を用いた電流増幅手段であり,前記直
流型超伝導量子干渉素子が,2つのジョセフソン接合とS
QUIDインダクタンスによって超伝導ループが形成され,
超伝導ループに磁気結合された信号入力用入力コイル
と,帰還-変調コイルと,電流-電圧特性のヒステリシス
を抑制するためジョセフソン接合と並列接続されたシャ
ント抵抗と,ジョセフソン接合とSQUIDインダクタンス
の間で生じる共振を抑制するため,SQUIDインダクタン
スと並列接続されたダンピング抵抗とを備えており,前
記多接合超伝導量子干渉素子が,隣り合う前記直流型超
伝導量子干渉素子間でジョセフソン接合,およびシャン
ト抵抗を共有するように並列接続することにより構成さ
れ,さらに各直流型超伝導量子干渉素子の前記入力コイ
ル,および前記帰還-変調コイルが直列接続され,多接
合超伝導量子干渉素子のバイアス電流は,各直流型超伝
導量子干渉素子の前記ダンピング抵抗の中央から均等に
挿入される超伝導量子干渉素子を用いた電流増幅手段.
4. A superconducting quantum interference device which uses a multi-junction superconducting quantum interference device in which a plurality of direct current type superconducting quantum interference devices are connected in parallel as a current amplifier and which transfers current to a second circuit via a transfer resistor. Is a current amplification means using the DC-type superconducting quantum interference device having two Josephson junctions and an S
The QUID inductance forms a superconducting loop,
The input coil for signal input magnetically coupled to the superconducting loop, the feedback-modulation coil, the shunt resistance connected in parallel with the Josephson junction to suppress the hysteresis of the current-voltage characteristics, the Josephson junction and the SQUID inductance. The multi-junction superconducting quantum interference device is provided with a SQUID inductance and a damping resistor connected in parallel in order to suppress resonance that occurs between the direct current superconducting quantum interference devices. And a shunt resistor connected in parallel so as to share the input coil of each DC type superconducting quantum interference device and the feedback-modulation coil in series, and a bias of the multijunction superconducting quantum interference device. The current is a superconducting quantum interference element that is evenly inserted from the center of the damping resistor of each DC superconducting quantum interference device. Current amplification means using a child.
【請求項5】 前記第2の回路として磁束量子を情報担
体に用いる単一磁束量子理論(SFQ)に基づく論理ゲート
を接続し,前記多接合超伝導量子干渉素子を演算処理の
電流増幅用プリアンプとして機能させることを特徴とす
る請求項1から4のいずれかに記載超伝導量子干渉素子
を用いた電流増幅手段.
5. A preamplifier for current amplification for arithmetic processing of the multijunction superconducting quantum interference device, wherein a logic gate based on a single flux quantum theory (SFQ) using a flux quantum as an information carrier is connected as the second circuit. 5. A current amplification means using a superconducting quantum interference device according to any one of claims 1 to 4, characterized by:
【請求項6】 請求項1から4のいずれかに記載の超伝
導量子干渉素子を用いた電流増幅手段の前記第2の回路
として,2つのジョセフソン接合とSQUIDインダクタンス
によって超伝導ループが形成され,超伝導ループに磁気
結合された前記伝達抵抗に接続する入力コイルと,電流
-電圧特性のヒステリシスを抑制するため,ジョセフソ
ン接合と並列接続されたシャント抵抗と,ジョセフソン
接合とSQUIDインダクタンスの間で生じる共振を抑制す
るため,SQUIDインダクタンスと並列接続されたダンピ
ング抵抗を備える直流型量子干渉素子と,室温駆動回路
からなる電流読み出し手段を備えることを特徴とする超
伝導量子干渉素子を用いた電流検出器.
6. A superconducting loop is formed by two Josephson junctions and a SQUID inductance as the second circuit of the current amplifying means using the superconducting quantum interference device according to claim 1. , An input coil connected to the transfer resistance magnetically coupled to the superconducting loop, and a current
-A shunt resistor connected in parallel with the Josephson junction in order to suppress the hysteresis of the voltage characteristics, and a DC resistance with a damping resistor connected in parallel with the SQUID inductance in order to suppress the resonance that occurs between the Josephson junction and the SQUID inductance. Detector using a superconducting quantum interference device, characterized by comprising a current read-out means consisting of a quantum quantum interference device and a room temperature drive circuit.
【請求項7】 請求項1から4のいずれかに記載の超伝
導量子干渉素子を用いた電流増幅手段の前記第2の回路
として,前記伝達抵抗に接続する入力コイルを備え,直
列接続された複数の直流型超伝導量子干渉素子からなる
直列接続超伝導量子干渉素子アレイと,室温駆動回路か
らなる電流読み出し手段を備えることを特徴とする超伝
導量子干渉素子を用いた電流検出器.
7. An input coil connected to the transfer resistance is provided as the second circuit of the current amplifying means using the superconducting quantum interference device according to claim 1, and is connected in series. A current detector using a superconducting quantum interference device, comprising a series-connected superconducting quantum interference device array composed of a plurality of DC superconducting quantum interference devices, and a current reading means composed of a room temperature driving circuit.
JP2002005002A 2002-01-11 2002-01-11 Current amplification means using superconducting quantum interference element and current detector Pending JP2003209299A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002005002A JP2003209299A (en) 2002-01-11 2002-01-11 Current amplification means using superconducting quantum interference element and current detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002005002A JP2003209299A (en) 2002-01-11 2002-01-11 Current amplification means using superconducting quantum interference element and current detector

Publications (1)

Publication Number Publication Date
JP2003209299A true JP2003209299A (en) 2003-07-25

Family

ID=27644168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002005002A Pending JP2003209299A (en) 2002-01-11 2002-01-11 Current amplification means using superconducting quantum interference element and current detector

Country Status (1)

Country Link
JP (1) JP2003209299A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110709934A (en) * 2017-06-05 2020-01-17 加利福尼亚大学董事会 Magnetic flux control in superconducting devices
CN116415675A (en) * 2023-06-09 2023-07-11 中国科学技术大学 System and method for modulating superconducting quantum bit transition frequency

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110709934A (en) * 2017-06-05 2020-01-17 加利福尼亚大学董事会 Magnetic flux control in superconducting devices
JP2020522892A (en) * 2017-06-05 2020-07-30 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Magnetic flux control in superconducting devices
CN116415675A (en) * 2023-06-09 2023-07-11 中国科学技术大学 System and method for modulating superconducting quantum bit transition frequency
CN116415675B (en) * 2023-06-09 2023-09-22 中国科学技术大学 System and method for modulating superconducting quantum bit transition frequency

Similar Documents

Publication Publication Date Title
EP2476005B1 (en) Squid with a coil inductively coupled to the squid via a mutual inductance
Welty et al. Two-stage integrated SQUID amplifier with series array output
JP2700649B2 (en) Superconducting analog / digital converter
US7816940B1 (en) Ultra fast differential transimpedance digital amplifier for superconducting circuits
US4983971A (en) Josephson analog to digital converter for low-level signals
JP2838596B2 (en) Superconducting toggle flip-flop circuit and counter circuit
US7453263B2 (en) Reference current optimizing apparatus for controlling magnetic flux-voltage conversion characteristic of double relaxation oscillation squid
JPH0395475A (en) Method of suppressing current distribution noise in superconduction quantum interference device
Granata et al. Integrated LTc-SQUID magnetometers for multichannel systems
Drung et al. Novel SQUID current sensors with high linearity at high frequencies
Lee et al. Serial array high T/sub c/SQUID magnetometer
Semenov Digital SQUIDs: New definitions and results
Liu et al. An insight into voltage-biased superconducting quantum interference devices
Reich et al. Digital SQUID sensor based on SFQ technique
JP2003209299A (en) Current amplification means using superconducting quantum interference element and current detector
Granata et al. Improved superconducting quantum interference device magnetometer for low cross talk operation
Granata et al. Miniaturized superconducting quantum interference magnetometers for high sensitivity applications
Foglietti et al. Performance of a flux locked series SQUID array
JP4116978B2 (en) Superconducting latch driver circuit
Radparvar et al. High sensitivity digital SQUID magnetometers
Hirayama et al. Design of series SQUID array suppressing Josephson oscillation interference between element-SQUIDs
JP2869776B2 (en) SQUID magnetometer
Matsuda et al. Fabrication of magnetometers with multiple-SQUID arrays
Granata et al. Low critical temperature superconducting quantum interference device with integrated additional positive feedback
Thomasson et al. 1 MHz bandwidth true NMR SQUID amplifier

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040304

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040526