JP2003207598A - Method of manufacturing calibrating volumetric radiation source by solidifying alumina powder by resin - Google Patents

Method of manufacturing calibrating volumetric radiation source by solidifying alumina powder by resin

Info

Publication number
JP2003207598A
JP2003207598A JP2002003732A JP2002003732A JP2003207598A JP 2003207598 A JP2003207598 A JP 2003207598A JP 2002003732 A JP2002003732 A JP 2002003732A JP 2002003732 A JP2002003732 A JP 2002003732A JP 2003207598 A JP2003207598 A JP 2003207598A
Authority
JP
Japan
Prior art keywords
alumina powder
resin
radiation source
volume
diluent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002003732A
Other languages
Japanese (ja)
Other versions
JP3809539B2 (en
Inventor
Ryozo Motoki
良蔵 本木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Research Institute filed Critical Japan Atomic Energy Research Institute
Priority to JP2002003732A priority Critical patent/JP3809539B2/en
Publication of JP2003207598A publication Critical patent/JP2003207598A/en
Application granted granted Critical
Publication of JP3809539B2 publication Critical patent/JP3809539B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To supply long-term soundness and safety in use in a calibrating volumetric radiation source since a conventional alumina powder-made calibrating volumetric radiation source used for measuring environmental radioactivity causes a crack in a plastic vessel, and causes pollution by scattering powder at damaged time. <P>SOLUTION: A problem solving means is provided by a method for preparing the calibrating volumetric radiation source by hardening alumina powder of adsorbing a radioactive isotope in the plastic vessel by a resin solution and a hardening agent. Actually, the method solidifies the alumina powder of adsorbing the radioactive isotope by the hardening agent by using an unsaturated polyester resin and a vinyl ester resin. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、原子力発電所など
の放射性物質を取り扱う産業に関連し、環境の放射能を
分析測定する分野に属する発明である。 【0002】 【従来の技術】放射能の測定では、測定器の性能確認や
校正に既知の放射能を有する標準線源が必要である。G
e半導体検出器のような高分解能スペクトロメータを用
いた、体積の大きい環境試料等の測定では、体積の大き
い校正用の体積線源が標準線源として用いられている。
一般に密封線源は使用時の安全を確保するため、密封を
保証するとともに、開封や破損のおそれがないこと、並
びに漏洩や浸透などにより、放射性同位元素の散逸のな
いことが要求される。校正用体積線源においても気密性
や水密性を持たせ、長期間の安全性や健全性を保証しな
ければならない。 【0003】環境試料である土壌などの低レベルの放射
能測定では、容器材質による自己吸収の影響を低減させ
るためプラスチックを試料容器に使用している。このた
め環境放射能の測定等に用いられる校正用体積線源の製
造では、測定値に誤差を与えないため、同一形状で同質
の容器を使用せざるを得ない。環境放射能測定用の土壌
試料に対応する国産の校正用体積線源は、土壌を模擬す
る多種の放射性同位元素を吸着させたアルミナ粉末をプ
ラスチック容器に入れ、気密蓋をした物である。このア
ルミナ粉末製の校正用体積線源はプラスチック容器が亀
裂を生じたり、破損した場合、飛散し汚染を生ずる問題
がある。本出願は放射性同位元素を吸着させたアルミナ
粉末を硬化性を有する樹脂溶液を用い、プラスチック容
器中で固化堅牢とし、長期的な健全性や使用上の安全性
を保証する製造方法を提示するものである。 【0004】 【発明の解決しようとする課題】環境放射能の測定等に
用いられる校正用の体積線源の容器には環境試料の容器
と自己吸収が同一のプラスチック容器を使用せざるをえ
ない。従来のアルミナ粉末製の校正用体積線源は、プラ
スチック容器が亀裂を生じたり、破損した場合、粉末が
飛散し、汚染を生ずる。この校正用体積線源は長期的な
健全性や使用上の安全性が要求される放射性物質を封入
した線源としては、問題を有する。 【0005】 【課題を解決するための手段】ビニルエステル樹脂や不
飽和ポリエステル樹脂はFRP煙道や耐蝕FRPダクト
等、並びに船体やプール材等に使用されている。この様
に両樹脂は堅牢であり、長期的な使用が可能である。ま
た、両樹脂は酸化剤により発熱し硬化するが、硬化剤に
よっては低温での硬化が可能である。そこで、放射性同
位元素を吸着させたアルミナ粉末を硬化性を有する両樹
脂溶液を用いて、プラスチック容器中で固化し、校正用
体積線源を製造する方法を開発した。具体的には不飽和
ポリエステル樹脂の1 種であるリゴラック2004WMB やビ
ニルエステル樹脂の一種であるリポキシR806B を用い
て、硬化剤によりアルミナ粉末とともに固化させる方法
である。この固化体はプラスチック容器が亀裂等により
破損しても汚染の発生を防止し、長期的な健全性や使用
上の安全性を確保できる。 【0006】 【発明の実施の態様】実施例 リゴラック2004WMB(比重1.23)の商品名で昭和高
分子株式会社から市販されている不飽和ポリエステル樹
脂やリポキシR806B(比重1.03)の商品名で昭和高
分子株式会社から市販されているビニルエステル樹脂
は、ナイパーNS(ベンゾイルパーオキサイド,日本油
脂株式会社)とN,N−ジメチルアニリン、パーメック
N(メチルエチルケトンペーオキサイド,日本油脂株式
会社)などの硬化剤を均一混合することで硬化する。そ
こでこの樹脂溶液と硬化剤を用い、放射性同位元素を吸
着させた粒径45〜150μmのアルミナ粉末をプラス
チック容器中で固化した。下記実施例に示す固化は、ガ
ラス棒で押した場合にガラス棒が埋設しない、また固化
体が変形しない状態を示す。 【0007】アルミナ粉末の固化に粘性の高い樹脂溶液
の原液を直接用いると、アルミナ粉末の体積以上に固化
体の体積が増し、校正用体積線源には適しない。アルミ
ナ粉末の体積と同一体積で固化するため、両樹脂溶液は
エチルアルコールにより希釈して用いた。また、樹脂溶
液とアルミナ粉末との混合や混合体の脱泡には株式会社
キーエンス製の遠心式の混合攪拌機HM-500を用いた。校
正用体積線源はγ線スペクトロメータの計数効率の補正
などに使用される。この用途に用いる校正用体積線源を
樹脂により製造した場合、比重が増し、放射性同位元素
から放出されるγ線の自己吸収が問題となる。そこで放
射性同位元素の 170Tmを用い、自己吸収率が高い低エ
ネルギーガンマー線の場合について、補正の必要性を確
認した。 【0008】実施例1−1 リゴラック2004WMB 希釈液
のパーメックNによる硬化 リゴラック2004WMB をエチルアルコールにより希釈比を
変えて希釈し、これにパーメックNの0.2mlを均一
混合した場合の実施例を表1に示す。 【0009】 【表1】【0010】この実施例ではエチルアルコールによる希
釈比を2:1 以上に増すと、硬化しなかった。ここ
で、No.1の希釈比2:1の溶液は、約3時間後に容器
内の樹脂の下部からゲル化し、全体積の約50%の硬化
まで23時間を必要とし、90%の硬化まで47時間を
要した。希釈比と硬化状態から、ゲル化開始が3時間以
上と液体として使用可能な時間(可使時間)が長い希釈
比2:1が実用的である。 【0011】実施例1−2 2:1の希釈液の硬化に必
要なパーメックNの量 このリゴラック2004WMB 20gとエチルアルコール10
mlの希釈液にパーメックNの添加量を変えた実験を行
い、硬化に必要なパーメックNの量を求めた。この実施
例の結果を表2に示す。 【0012】 【表2】 【0013】ここで各2:1希釈液は徐々に容器内の樹
脂の下方よりゲル化し、パーメックNの濃度に応じて早
期にゲル化した。この過程では発熱が無く、気泡の発生
は観察されなかった。アルミナ粉末の固化の実用化に
は、多数の均質な線源の製造が要求される。これにはパ
ーメックNを含む希釈したリゴラック2004WMB を小分
し、更にアルミナ粉末との混合操作が終了するまで、液
体の状態を持続させる必要が有る。この操作に必要な可
使時間を2時間以上とすると、No.2かNo.3の条件が適
する。 【0014】実施例1−3 リゴラック2004WMB の2:
1希釈液とパーメックNによるアルミナ粉末100gの
固化 アルミナ粉末100gに対しパーメックN 3.5ml
を含む2:1希釈液の全量を67mlとし、アルミナ粉
末の固化を行った。2:1希釈液へのアルミナ粉末の混
合は一度で加入できないため、2 回に分けて行った。こ
の混合による混合体は空気を含む泥状となるので、脱泡
した。次に遠心分離機により沈降させ、数mlの上澄液
を生成させた。その後、約20時間静置してから乾燥機
により、60℃で4時間加熱し、未固化部を固化させ
た。ここで発生するスチレンガスは真空ポンプで排気し
た。この乾燥前後の重量差は約5gである。 【0015】以上の工程で製造した固化体は気泡の発生
も無く、固い物であった。また、この固化体の高さはア
ルミナ粉末のみと同一の約41mmであり、体積的にも
等しい物である。図1に確立した製造工程を示す。尚、
2:1リゴラック2004WMB 希釈液とナイパーNS及び
N,N−ジメチルアニリンによるアルミナ粉末の固化は
可使時間が0.5時間程度であり、実用性はない。 【0016】実施例2−1 リポキシR806B 希釈液のナ
イパーNSとN,N−ジメチルアニリンによる硬化 リポキシR806B 20gをエチルアルコールにより希釈
し、ナイパーNS約0.25gとN,N−ジメチルアニ
リン0.1mlにより硬化させた実施例を表3に示す。 【0017】 【表3】【0018】ここで各希釈液は1時間以内にゲル化、ま
たは硬化した。また、全試料とも、30℃以上の発熱は
無く、気泡の発生は観察されなかった。このナイパーN
SとN,N−ジメチルアニリンによる硬化は適用範囲が
広い。アルミナ粉末の固化には樹脂濃度が高い方が堅牢
となるのでNo.1の希釈比2:1の条件が最適である。 【0019】実施例2−2 リポキシR806B 希釈液とナ
イパーNSとN,N−ジメチルアニリンによるアルミナ
粉末の固化 アルミナ粉末100gの固化に必要な2:1リポキシR8
06B 希釈液の全量を67mlとし、これにナイパーNS
0.6gとN,N−ジメチルアニリン0.1mlとを添
加し、実施例1−3と同様の工程で固化した。ここで遠
心分離による沈降後の混合試料は約25℃となり、約
1.5時間後に固化し、可使時間は延長した。また、上
澄液も同時に自己硬化した。リゴラック2004WMB 希釈液
の場合、上澄液を加熱し硬化させる必要があったが、
2:1リポキシR806B 希釈液では、自己硬化が可能であ
る。図2に確立した製造工程を示す。 【0020】この工程で製造した固化体は固く容易に破
壊できないものである。また、アルミナ粉末部の固化体
の高さはアルミナ粉末のみと同一の約41mmであり、
体積的にも等しいものである。2:1リポキシR806B 希
釈液とナイパーNSとN,N−ジメチルアニリンによる
固化は可使時間が1.5時間程度と短時間であるが、少
数の校正用体積線源の製造には実用可能である。尚、
2:1リポキシR806B 希釈液とパーメックNによるアル
ミナ粉末の固化はリゴラック2004WMB 希釈液と同様に加
熱固化の工程が必要があり、この場合、内部に気泡が発
生するので実用性はない。 【0021】実施例3 アルミナ固化校正用体積線源の
自己吸収 アルミナ粉末の固化による校正用体積線源の製造では、
粉末間の空気部に樹脂を充填し固化する。この場合、粉
末のみの校正用体積線源より、比重が増すので、放射線
の自己吸収が問題となる。そこでリゴラック2004WMB
(比重1.23)とリポキシR806B(比重1.03)の
2:1希釈液を用い、固化体の自己吸収を測定した。こ
の自己吸収の確認では、84.32keVの低いγ線エ
ネルギーを有する170Tmを用いた。 (1)170Tmを吸着させたアルミナ粉末の調製 アルミナ粉末450gとpH5程度に調製した170Tm
溶液400mlとを羽根車式攪拌機により約1時間強制
攪拌した後、上澄液を除き、赤外線ランプとヒータによ
り乾燥させて調製した。 (2)自己吸収測定試料の調製と測定 リゴラック2004WMB とリポキシR806B の2:1希釈液6
7ml、ナイパーNS0.5g〜0.6g、N,N−ジ
メチルアニリン0.1mlにより、170Tmを吸着させ
たアルミナ粉末100gを同一条件で固化し、基準とな
170Tmを吸着させたアルミナ粉末100gと比較測
定した。この実施例の結果を表4に示す。 【0022】 【表4】 【0023】両アルミナ固化体の84.32keV γ
線の自己吸収率は0.15〜0.16であり、実際に校
正用体積線源として使用する場合は、用いる放射性同位
元素が放出するγ線エネルギーに対応し、補正が必要で
ある。 【0024】 【発明の効果】本発明はプラスチック容器を用いている
ため、放射能汚染の可能性が高いアルミナ粉末のみの校
正用体積線源に代わり、樹脂と硬化剤によりアルミナ粉
末を固化し、固化体の校正用体積線源の製造方法を提示
するものである。この方法は、不飽和ポリエステル樹脂
のリゴラック2004WMB やビニルエステル樹脂のリポキシ
R806B の希釈液と、これの硬化剤であるパーメックNや
ナイパーNSとN,N−ジメチルアミンの組合せを用
い、多種の放射性同位元素を吸着させたアルミナ粉末を
線源容器内で攪拌混合し、固化させる方法である。本方
法により製造した校正用体積線源は市販のアルミナ粉末
のみの校正用体積線源より硬く、堅ろうであり、プラス
チックの外容器が破損した場合でも、アルミナ粉末が漏
れることはなく、放射能汚染は生じない。このように本
発明による校正用体積線源は長期的な健全性や使用上の
安全性に優れている物である。尚、リゴラック2004WMB
とリポキシR806B はスチロール樹脂の溶解性を有するの
でこの材質を容器に用いてはならない。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an industry dealing with radioactive materials, such as a nuclear power plant, and belongs to the field of analyzing and measuring radioactivity in the environment. 2. Description of the Related Art In the measurement of radioactivity, a standard source having a known radioactivity is required for confirming and calibrating the performance of a measuring instrument. G
In the measurement of a large-volume environmental sample or the like using a high-resolution spectrometer such as an e-semiconductor detector, a large-volume calibration volume source is used as a standard source.
Generally, in order to ensure safety during use, a sealed source is required to guarantee sealing, not to be opened or damaged, and to be free of radioisotope due to leakage or penetration. The volume source for calibration must be airtight and watertight to ensure long-term safety and soundness. In the measurement of low-level radioactivity of an environmental sample such as soil, plastic is used for a sample container to reduce the effect of self-absorption due to the material of the container. For this reason, in the production of a calibration volume radiation source used for measurement of environmental radioactivity, etc., no error is given to the measured value, so that a container of the same shape and the same quality must be used. A domestically produced volume source for calibration corresponding to a soil sample for environmental radioactivity measurement is obtained by placing alumina powder adsorbed with various radioisotopes simulating soil in a plastic container and sealing it with an airtight lid. The volume powder source for calibration made of alumina powder has a problem that when a plastic container is cracked or damaged, it is scattered and causes contamination. The present application proposes a manufacturing method that uses a resin solution having curability to solidify and solidify alumina powder adsorbing a radioactive isotope in a plastic container and guarantees long-term soundness and safety in use. It is. [0004] A plastic container having the same self-absorption as the environmental sample container must be used for the container of the calibration volume radiation source used for the measurement of environmental radioactivity and the like. . In a conventional alumina powder volume source for calibration, when a plastic container is cracked or damaged, the powder is scattered and contamination occurs. This calibration volume source has a problem as a source in which a radioactive substance that requires long-term soundness and safety in use is sealed. [0005] Vinyl ester resins and unsaturated polyester resins are used in FRP flues, corrosion-resistant FRP ducts, etc., as well as in hulls and pools. Thus, both resins are robust and can be used for a long time. Both resins generate heat and are cured by the oxidizing agent, but can be cured at a low temperature depending on the curing agent. Therefore, a method was developed to solidify alumina powder adsorbed with radioisotopes in a plastic container using both curable resin solutions to produce a volume source for calibration. Specifically, it is a method of solidifying together with alumina powder with a curing agent using Rigolac 2004WMB, a kind of unsaturated polyester resin, or Lipoxy R806B, a kind of vinyl ester resin. This solidified body prevents the occurrence of contamination even if the plastic container is broken due to cracks or the like, and can secure long-term soundness and safety in use. DESCRIPTION OF THE PREFERRED EMBODIMENTS Examples Rigorac 2004 WMB (specific gravity 1.23) is a trade name of unsaturated polyester resin and Lipoxy R806B (specific gravity 1.03) which are commercially available from Showa Kogyo Co., Ltd. Vinyl ester resins commercially available from Showa Polymer Co., Ltd. include Nyper NS (benzoyl peroxide, Nippon Oil & Fat Co., Ltd.), N, N-dimethylaniline, and Permec N (methyl ethyl ketone peroxide, Nippon Oil & Fat Co., Ltd.). It is cured by uniformly mixing the curing agent. Therefore, using this resin solution and a curing agent, alumina powder having a particle size of 45 to 150 μm to which a radioactive isotope was adsorbed was solidified in a plastic container. The solidification shown in the following examples shows a state in which the glass rod is not embedded and the solidified body is not deformed when pressed with a glass rod. When a stock solution of a highly viscous resin solution is directly used for solidifying alumina powder, the volume of the solidified body becomes larger than the volume of alumina powder, which is not suitable for a calibration volume source. Both resin solutions were diluted with ethyl alcohol for solidification in the same volume as the alumina powder. In addition, a centrifugal mixing and stirring machine HM-500 manufactured by Keyence Corporation was used for mixing the resin solution with the alumina powder and defoaming the mixture. The calibration volume source is used for correcting the counting efficiency of a γ-ray spectrometer. When the calibration volume source used for this purpose is manufactured from a resin, the specific gravity increases, and self-absorption of γ-rays emitted from the radioisotope becomes a problem. Therefore, the necessity of correction was confirmed for a low energy gamma ray having a high self-absorption rate using 170 Tm of a radioisotope. Example 1-1 Curing of Rigolac 2004WMB Diluent with Permec N The Rigolac 2004WMB was diluted with ethyl alcohol at a different dilution ratio, and 0.2 ml of Permec N was uniformly mixed with the diluted solution. Shown in [Table 1] In this example, when the dilution ratio with ethyl alcohol was increased to 2: 1 or more, no curing was performed. Here, the No. 1 solution having a dilution ratio of 2: 1 gels from the lower part of the resin in the container after about 3 hours, and requires about 23 hours to cure to about 50% of the total volume, and to cure to 90%. It took 47 hours. From the dilution ratio and the cured state, it is practical to use a dilution ratio of 2: 1 in which the onset of gelation is 3 hours or more and the time available for use as a liquid (pot life) is long. Example 1-2 Amount of Permec N Required for Curing 2: 1 Diluent 20 g of Rigolac 2004WMB and 10 g of ethyl alcohol
An experiment was performed in which the amount of Permec N added to the diluted solution of ml was changed, and the amount of Permec N required for curing was determined. Table 2 shows the results of this example. [Table 2] Here, each of the 2: 1 diluents gradually gelled from below the resin in the container, and gelled early according to the concentration of Permec N. In this process, no heat was generated, and no generation of bubbles was observed. The practical application of solidification of alumina powder requires the production of a large number of homogeneous sources. For this, it is necessary to aliquot the diluted Rigolac 2004WMB containing Permec N and to maintain the liquid state until the mixing operation with the alumina powder is completed. If the pot life required for this operation is 2 hours or more, the conditions of No. 2 or No. 3 are suitable. Example 1-3 Rigorac 2004WMB 2:
3.5 g of Permec N per 100 g of solidified alumina powder of 100 g of alumina powder with 1 diluent and Permec N
The alumina powder was solidified by making the total amount of the 2: 1 diluent containing the mixture 67 ml. The mixing of the alumina powder with the 2: 1 diluent was not performed at one time, and was therefore performed twice. The mixture by this mixing became mud-like containing air, and thus was defoamed. Then, the mixture was sedimented by a centrifugal separator to produce a few ml of supernatant. Then, after leaving still for about 20 hours, it heated at 60 degreeC with a dryer for 4 hours, and the unsolidified part was solidified. The styrene gas generated here was exhausted by a vacuum pump. The difference in weight before and after the drying is about 5 g. [0015] The solidified product produced in the above-mentioned process was hard without generating bubbles. The height of the solidified body is about 41 mm, which is the same as that of the alumina powder alone, and is equal in volume. FIG. 1 shows the established manufacturing process. still,
Solidification of alumina powder with 2: 1 Rigolac 2004WMB diluent and Niper NS and N, N-dimethylaniline has a pot life of about 0.5 hours and is not practical. Example 2-1 Hardening of Lipoxy R806B Diluent with Niper NS and N, N-Dimethylaniline 20 g of Lipoxy R806B was diluted with ethyl alcohol, and about 0.25 g of Niper NS and 0.1 ml of N, N-dimethylaniline were diluted. Table 3 shows examples cured by the method described above. [Table 3] Here, each diluting liquid gelled or hardened within one hour. In all samples, no heat was generated at 30 ° C. or higher, and no bubbles were observed. This Nipper N
Curing with S and N, N-dimethylaniline has a wide range of applications. Since the higher the resin concentration becomes, the more solidified the alumina powder becomes, the condition of the No. 1 dilution ratio of 2: 1 is optimal. Example 2-2 Solidification of Alumina Powder with Lipoxy R806B Diluent, Niper NS and N, N-Dimethylaniline 2: 1 Lipoxy R8 necessary for solidification of 100 g of alumina powder
06B Make the total volume of the diluent 67 ml and add Nyper NS
0.6 g and 0.1 ml of N, N-dimethylaniline were added, and the mixture was solidified in the same manner as in Example 1-3. Here, the mixed sample after sedimentation by centrifugation became about 25 ° C., solidified after about 1.5 hours, and the pot life was extended. The supernatant liquid also self-cured at the same time. In the case of Rigolac 2004WMB diluent, it was necessary to heat and cure the supernatant,
With the 2: 1 Lipoxy R806B diluent, self-curing is possible. FIG. 2 shows the established manufacturing process. The solidified body produced in this step is hard and cannot be easily broken. Also, the height of the solidified body of the alumina powder portion is about 41 mm, which is the same as the alumina powder alone,
They are also equal in volume. Solidification with a 2: 1 lipoxy R806B diluent, Niper NS and N, N-dimethylaniline has a short pot life of about 1.5 hours, but is practical for the production of a small number of calibration volume sources. is there. still,
Solidification of the alumina powder with the 2: 1 Lipoxy R806B diluent and Permec N requires a heat-solidification step as in the case of the Rigolac 2004WMB diluent, and in this case, there is no practicality because bubbles are generated inside. Example 3 Self-Absorption of Alumina Solidification Calibration Volume Source In the production of a calibration volume source by solidifying alumina powder,
The resin is filled into the air space between the powders and solidified. In this case, since the specific gravity is higher than that of the calibration volume radiation source using only powder, self-absorption of radiation becomes a problem. So Rigolac 2004WMB
Using a 2: 1 diluent of (specific gravity 1.23) and Lipoxy R806B (specific gravity 1.03), the self-absorption of the solidified product was measured. In confirming the self absorption, 170 Tm having a low γ-ray energy of 84.32 keV was used. (1) Preparation of alumina powder adsorbing 170 Tm 450 g of alumina powder and 170 Tm adjusted to about pH 5
The solution was prepared by forcibly stirring 400 ml of the solution with an impeller stirrer for about 1 hour, removing the supernatant, and drying with an infrared lamp and a heater. (2) Preparation and measurement of self-absorption measurement sample 2: 1 diluent of Rigolac 2004WMB and Lipoxy R806B 6
7 g, 0.5 g to 0.6 g of Niper NS, and 0.1 ml of N, N-dimethylaniline solidify 100 g of alumina powder adsorbing 170 Tm under the same conditions, and 100 g of alumina powder adsorbing 170 Tm as a reference. Was measured. Table 4 shows the results of this example. [Table 4] 84.32 keV γ of both solidified alumina
The self-absorption rate of the radiation is 0.15 to 0.16, and when actually used as a calibration volume radiation source, it needs to be corrected in accordance with the γ-ray energy emitted by the radioisotope used. According to the present invention, since a plastic container is used, the alumina powder is solidified with a resin and a curing agent instead of a calibration volume source using only the alumina powder, which has a high possibility of radioactive contamination. It is intended to provide a method for manufacturing a solid-state calibration volume radiation source. This method is based on Rigolac 2004WMB of unsaturated polyester resin and lipoxy resin of vinyl ester resin.
Using a diluent of R806B and a combination of a curing agent such as Permec N or Nyper NS and N, N-dimethylamine, alumina powder having various radioisotopes adsorbed therein is stirred and mixed in a radiation source container. It is a method of solidifying. The calibration volume source manufactured by this method is harder and stiffer than a commercially available volume source for calibration using only alumina powder, and even if the outer container of plastic is damaged, the alumina powder does not leak and radioactive contamination does not occur. Does not occur. As described above, the calibration volume source according to the present invention is excellent in long-term soundness and safety in use. In addition, Rigo rack 2004WMB
Do not use lipoxy R806B in containers because it has the solubility of styrene resin.

【図面の簡単な説明】 【図1】 2:1リゴラックWMB 希釈液とパーメリック
Nによるアルミナ粉末の固化工程を表す図である。 【図2】 2:1リポキシR806B 希釈液及びナイパーN
SとN,N−ジメチルアニリンによるアルミナ粉末の固
化工程を表す図である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing a solidification process of alumina powder using a 2: 1 Rigolac WMB diluent and permelic N. FIG. 2: 2: 1 Lipoxy R806B diluent and Niper N
It is a figure showing the solidification process of the alumina powder with S and N, N-dimethylaniline.

Claims (1)

【特許請求の範囲】 【請求項1】 放射性同位元素を吸着させたアルミナ粉
末をプラスチック容器中で樹脂溶液と硬化剤により硬化
させ、校正用体積線源を調製する方法。
Claims: 1. A method for preparing a calibration volume radiation source by curing an alumina powder to which a radioisotope is adsorbed with a resin solution and a curing agent in a plastic container.
JP2002003732A 2002-01-10 2002-01-10 Method for producing a volume source for calibration by solidifying alumina powder with resin Expired - Fee Related JP3809539B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002003732A JP3809539B2 (en) 2002-01-10 2002-01-10 Method for producing a volume source for calibration by solidifying alumina powder with resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002003732A JP3809539B2 (en) 2002-01-10 2002-01-10 Method for producing a volume source for calibration by solidifying alumina powder with resin

Publications (2)

Publication Number Publication Date
JP2003207598A true JP2003207598A (en) 2003-07-25
JP3809539B2 JP3809539B2 (en) 2006-08-16

Family

ID=27643251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002003732A Expired - Fee Related JP3809539B2 (en) 2002-01-10 2002-01-10 Method for producing a volume source for calibration by solidifying alumina powder with resin

Country Status (1)

Country Link
JP (1) JP3809539B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2880579A1 (en) * 2005-01-12 2006-07-14 Vulliod Jean De Wood e.g. cratewood, material marking method for silvicultural industry, involves introducing marking substance, with symbolic aspect for performing antiparasite treatment, in air in material`s enclosure for being diffused on material
JP2007101439A (en) * 2005-10-06 2007-04-19 National Institutes Of Natural Sciences Solid radiation source body
JP5337288B1 (en) * 2012-09-25 2013-11-06 有限会社品川通信計装サービス Radioactivity measuring instrument measurement accuracy ensuring confirmation acquisition method for food radioactivity measurement and radioactivity measuring instrument measurement accuracy ensuring confirmation acquisition device for food
CN112967830A (en) * 2021-02-01 2021-06-15 原子高科股份有限公司 Beta plane source preparation method and beta plane source

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2880579A1 (en) * 2005-01-12 2006-07-14 Vulliod Jean De Wood e.g. cratewood, material marking method for silvicultural industry, involves introducing marking substance, with symbolic aspect for performing antiparasite treatment, in air in material`s enclosure for being diffused on material
JP2007101439A (en) * 2005-10-06 2007-04-19 National Institutes Of Natural Sciences Solid radiation source body
JP5337288B1 (en) * 2012-09-25 2013-11-06 有限会社品川通信計装サービス Radioactivity measuring instrument measurement accuracy ensuring confirmation acquisition method for food radioactivity measurement and radioactivity measuring instrument measurement accuracy ensuring confirmation acquisition device for food
JP2014066535A (en) * 2012-09-25 2014-04-17 Sinagawa Tsushin Keisou Service Ltd Measurement accuracy-securing confirmation method for radioactivity measurement instrument used when radioactivity of food is measured, and measurement accuracy-securing confirmation device for radioactivity measurement instrument used when radioactivity of food is measured
CN112967830A (en) * 2021-02-01 2021-06-15 原子高科股份有限公司 Beta plane source preparation method and beta plane source
CN112967830B (en) * 2021-02-01 2024-01-16 原子高科股份有限公司 Beta plane source preparation method and beta plane source

Also Published As

Publication number Publication date
JP3809539B2 (en) 2006-08-16

Similar Documents

Publication Publication Date Title
US7825372B2 (en) Simulated dose calibrator source standard for positron emission tomography radionuclides
Bandyopadhyay A study of the volumetric setting shrinkage of some dental materials
CN1047393C (en) Low expansion polymeric compositions
US3238139A (en) Method of making a tritiated selfluminescent body
US9362012B2 (en) Packaging of radioactive waste by cementing
JP2003207598A (en) Method of manufacturing calibrating volumetric radiation source by solidifying alumina powder by resin
TW201923010A (en) Shield adhesive having neutron shielding properties
JP3879908B2 (en) Method for manufacturing a resin calibration volume source
JP2003050295A (en) Composition for neutron shielding material, shielding material and vessel
US4430258A (en) Method of producing liquid equivalent solid gamma ray calibration standards
CN101846748A (en) Melting based method for measuring iodine isotope evolution quantity
JP2006275645A (en) Radiation shielding material
US20200185118A1 (en) Method of manufacturing a radiation source
RU205628U1 (en) GAMMA RADIATION SOURCE FOR QUALITY CONTROL OF ACTIVITY MEASUREMENTS BY GAMMA SPECTROMETERS
JP6895320B2 (en) Method for measuring the penetration depth of β-ray nuclide radioactive cesium
RU137153U1 (en) VOLUME SOURCE OF GAMMA RADIATION
CN109085639A (en) It is a kind of133The preparation and detection efficient bearing calibration of Xe simulation gas source
CN108470594A (en) A method of it is added dropwise and prepares simulation pollucite source core
CN108276646B (en) Proportioning type composite shielding material with neutron and gamma comprehensive shielding effect and preparation method thereof
JP2004150876A (en) Analytical method for radium in soil
Wang et al. Scintillator Ink with Low‐Temperature Thermoplastic for Micro X‐Ray Imaging
Bower A physical anthropomorphic phantom of a one year old child with real-time dosimetry
EP4306208A1 (en) Process for making active carriers
Bhandal et al. Energy absorption coefficients for 662 and 1115 keV gamma rays in some fatty acids
Singh et al. Energy absorption coefficients for 662 keV γ-rays in some compounds

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20051110

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060110

A711 Notification of change in applicant

Effective date: 20060223

Free format text: JAPANESE INTERMEDIATE CODE: A712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20060407

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20060502

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20090602

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20100602

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110602

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees