JP2003207587A - Evacuation system of nuclear fusion reactor - Google Patents

Evacuation system of nuclear fusion reactor

Info

Publication number
JP2003207587A
JP2003207587A JP2002003856A JP2002003856A JP2003207587A JP 2003207587 A JP2003207587 A JP 2003207587A JP 2002003856 A JP2002003856 A JP 2002003856A JP 2002003856 A JP2002003856 A JP 2002003856A JP 2003207587 A JP2003207587 A JP 2003207587A
Authority
JP
Japan
Prior art keywords
fusion reactor
nuclear fusion
liquid metal
metal
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002003856A
Other languages
Japanese (ja)
Other versions
JP3701610B2 (en
Inventor
Seiji Hiroki
成治 廣木
Tetsuya Abe
哲也 阿部
Satoshi Nishio
敏 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Research Institute filed Critical Japan Atomic Energy Research Institute
Priority to JP2002003856A priority Critical patent/JP3701610B2/en
Publication of JP2003207587A publication Critical patent/JP2003207587A/en
Application granted granted Critical
Publication of JP3701610B2 publication Critical patent/JP3701610B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Plasma Technology (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a large capacity evacuation system of a large nuclear fusion reactor. <P>SOLUTION: A vacuum system of the nuclear fusion reactor is characterized in that liquid metal is formed by heating metal to its melting point or more in the nuclear fusion reactor, the metallic vapor is blown out at a speed of a subsonic speed to a supersonic speed from a thinly squeezed nozzle in the direction of electromagnetic force generated by the interaction between a plasma confining magnetic field and an electric current induced in the liquid metal, unidirectional momentum is imparted to a gas molecule straying into a metallic vapor jet, and the gas molecule is exhausted. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、大型核融合炉の大
容量真空排気システムに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a large capacity vacuum exhaust system for a large-scale fusion reactor.

【0002】[0002]

【従来の技術】従来の大型核融合炉の真空排気システム
は、クライオポンプを用いたものと、ターボ分子ポンプ
に代表される機械式ポンプを用いたものに大別される。
しかしながら、クライオポンプは溜め込み式であり、間
欠運転にならざるを得ない。又、気体を溜め込む吸着面
は10K以下の極低温に維持する必要があり、大容量の
冷凍設備や冷却媒体を移送する断熱構造の移送配管等が
必要となり、余分な冷凍エネルギーが必要となる。
2. Description of the Related Art Vacuum exhaust systems of conventional large-scale fusion reactors are roughly classified into those using a cryopump and those using a mechanical pump typified by a turbo molecular pump.
However, the cryopump is of a built-in type and must be operated intermittently. Further, the adsorption surface for accumulating the gas needs to be maintained at an extremely low temperature of 10 K or less, a large-capacity refrigeration facility, a transfer pipe having a heat insulating structure for transferring the cooling medium, and the like are required, and extra refrigeration energy is required.

【0003】一方、磁場中で運転を可能にしたセラミッ
クターボ分子ポンプ等の機械式ポンプは連続運転が可能
であるが、単機当たりの排気速度が小さく、核融合炉の
真空排気システムでは数十台以上のポンプを炉心近傍に
設置する必要があり、広い設置面積が必要となる問題が
あった。
On the other hand, a mechanical pump such as a ceramic turbo molecular pump that can be operated in a magnetic field can be continuously operated, but the pumping speed per unit is small, and several tens of pumps are used in the vacuum pumping system of a fusion reactor. It is necessary to install the above pumps near the core, and there is a problem that a large installation area is required.

【0004】[0004]

【発明が解決しようとする課題】本発明は、これらの問
題点を解決し、連続運転が可能で単機あたりの排気速度
が大きく、効率的、経済的かつ安全性に優れた大型核融
合炉の大容量真空排気システムを提供することを目的と
している。
SUMMARY OF THE INVENTION The present invention solves these problems, enables continuous operation, has a high pumping speed per unit, and is an efficient, economical and safe large-scale fusion reactor. It is intended to provide a large capacity evacuation system.

【0005】[0005]

【課題を解決するための手段】本発明は、上記の目的を
達成するべく、液体金属蒸気の噴流で気体を排気するも
のであり、核融合炉のプラズマ閉じ込め磁場と液体金属
に誘起される電流との相互作用で生じる電磁力の方向に
該蒸気噴流を生成し、排気することを特徴とする。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention exhausts a gas by a jet of liquid metal vapor, and a plasma confining magnetic field of a fusion reactor and a current induced in the liquid metal. The steam jet is generated and exhausted in the direction of the electromagnetic force generated by the interaction with.

【0006】[0006]

【発明の実施の態様】図1に示されるように、核融合炉
において、プラズマ2は、プラズマ閉じ込め磁場1の作
用により真空容器3の内側に設けられたブランケット4
内に発生する。このプラズマの発生の際に用いられた重
水(D)、トリチウム(T)及びリチウム(Li)、そ
の際に生じたHeガスが、真空排気システム6によりプ
ラズマ発生領域から除去される。このシステムにおいて
は、Li等の金属が加熱され、その金属蒸気が液体金属
ループ13内において噴射されることによりプラズマ発
生領域からの排気が行なわれる。排気処理に使用された
金属蒸気は、冷却され、凝縮されて液体状態にされた後
に加圧ポンプにより噴射ノズルに循環されて再使用され
る。
BEST MODE FOR CARRYING OUT THE INVENTION As shown in FIG. 1, in a fusion reactor, plasma 2 is blanket 4 provided inside vacuum vessel 3 by the action of plasma confining magnetic field 1.
Occurs within. Heavy water (D), tritium (T), and lithium (Li) used during the generation of this plasma, and He gas generated at that time are removed from the plasma generation region by the vacuum exhaust system 6. In this system, a metal such as Li is heated, and the metal vapor is injected in the liquid metal loop 13 to exhaust gas from the plasma generation region. The metal vapor used for the exhaust treatment is cooled, condensed and made into a liquid state, and then circulated to the injection nozzle by the pressure pump for reuse.

【0007】液体金属の噴射は、プラズマ閉じ込め磁場
と液体金属に誘起される電流との相互作用で生じる電磁
力の方向に、細く絞ったノズルからその金属蒸気を亜音
速から超音速の速度で噴出させることにより、行なわれ
る。即ち、図2に示されるように、第1段から第4段の噴
流ノズルへの液体金属供給パイプ中を流れる液体金属の
流れ方向に、プラズマ閉じ込め磁場16の強度の変動に
伴って生ずる電流の流れ17を誘起させ、その電流と閉
じ込め磁場とで誘起される電磁力18の方向に金属蒸気
を噴出させる。
Liquid metal is jetted by ejecting the metal vapor from a subsonic velocity to a supersonic velocity in a direction of an electromagnetic force generated by an interaction between a plasma confining magnetic field and an electric current induced in the liquid metal, from a nozzle narrowed down. It is carried out by That is, as shown in FIG. 2, in the flow direction of the liquid metal flowing in the liquid metal supply pipe from the first stage to the fourth stage jet nozzle, the current generated by the fluctuation of the intensity of the plasma confining magnetic field 16 is changed. A flow 17 is induced, and a metal vapor is ejected in the direction of an electromagnetic force 18 induced by the current and the confining magnetic field.

【0008】プラズマ発生領域からの排気の際には、循
環使用される液体金属が、それぞれ、第1段噴流ノズ
ル、第2段噴流ノズル、第3段噴流ノズル及び第4段噴流
ノズルより亜音速から超音速の速度で噴射されることに
より、真空排気システム6内が真空化され、そして吸気
側バルブ7及び吐出側バルブ14が開放されてプラズマ
領域内のガスが排気されると、プラズマ発生領域内が真
空状態に維持される。
When exhausted from the plasma generation region, the liquid metal circulated is subsonic from the first-stage jet nozzle, the second-stage jet nozzle, the third-stage jet nozzle, and the fourth-stage jet nozzle, respectively. When the inside of the vacuum exhaust system 6 is evacuated by injecting from the supersonic velocity, and the intake side valve 7 and the discharge side valve 14 are opened and the gas in the plasma region is exhausted, the plasma generation region The inside is maintained in a vacuum state.

【0009】本発明の真空排気システムが核融合炉のダ
イバータ(核融合反応で生成されるヘリウム不純物を排
気する機器)に組み込まれた場合には、図3に示される
ように、磁力線19の配位を工夫して超高温のプラズマ
2の粒子の一部がダイバータ5に流れ込むようにし、そ
れが中性粒子の排気ガスとなって真空排気システムで排
気され、その排気ガスの流れ20がダイバータの排気孔
を通してプラズマ領域から除去される。以下、本発明の
一実施例を説明する。
When the vacuum evacuation system of the present invention is incorporated in a diverter (equipment for exhausting helium impurities produced in a fusion reaction) of a nuclear fusion reactor, as shown in FIG. A part of the particles of the ultra-high temperature plasma 2 flows into the diverter 5 by devising the position, which becomes the exhaust gas of neutral particles and is exhausted by the vacuum exhaust system. It is removed from the plasma region through the exhaust holes. An embodiment of the present invention will be described below.

【0010】[0010]

【実施例】図4の上図は、各種金属の蒸気圧線図であ
り、図4の下図は主な金属の物性値である。ここでは、
リチウム(Li)を使用した場合について説明する。重
水素(D)とトリチウム(T)を燃料に用いたD−T核
融合炉でLiは、次の反応によりT増殖に用いられる。
EXAMPLE The upper diagram of FIG. 4 is a vapor pressure diagram of various metals, and the lower diagram of FIG. 4 shows physical property values of main metals. here,
The case where lithium (Li) is used will be described. In the DT fusion reactor using deuterium (D) and tritium (T) as fuel, Li is used for T breeding by the following reaction.

【0011】6 Li+1n→4He+3T+4.8MeV7 Li+1n→4He+3T+1n−2.5MeV 図2は核融合炉の真空ポートに設置した真空排気システ
ムの断面図である。点線で囲んだ部分が本発明による真
空排気システム6を示す。液体金属ループ13のLiを
1000Kに加熱、維持すると102Pa程度の蒸気圧が
得られ、これを液体金属ループ13内で循環させる。こ
の状態で第1段噴流ノズル8からLi蒸気を噴出させて
蒸気噴流の速度が約1000m/sの超音速となるようにし
た。また、ノズル出口の内径を最適化して、第2段噴流
ノズル10、第3段噴流ノズル11からの蒸気噴流速度
を、それぞれ、約700m/s、500m/sとした。
さらに、第4段噴流ノズル12からの蒸気噴流速度を約
200m/sの亜音速となるようにした。
6 Li + 1 n → 4 He + 3 T + 4.8 MeV 7 Li + 1 n → 4 He + 3 T + 1 n-2.5 MeV FIG. 2 is a sectional view of an evacuation system installed in the vacuum port of the fusion reactor. The part surrounded by the dotted line shows the vacuum evacuation system 6 according to the present invention. When Li of the liquid metal loop 13 is heated and maintained at 1000 K, a vapor pressure of about 10 2 Pa is obtained, which is circulated in the liquid metal loop 13. In this state, Li vapor was ejected from the first-stage jet nozzle 8 so that the vapor jet velocity became a supersonic velocity of about 1000 m / s. Further, the inner diameter of the nozzle outlet was optimized so that the steam jet velocities from the second-stage jet nozzle 10 and the third-stage jet nozzle 11 were about 700 m / s and 500 m / s, respectively.
Further, the steam jet velocity from the fourth-stage jet nozzle 12 is set to a subsonic velocity of about 200 m / s.

【0012】しかる後に吸気側バルブ7及びと吐出側バ
ルブ14とを開いてプラズマ2からDT及び4Heガス
を排気したところ、吸気口側の実効断面積が1m2で、
DTガスの流量30Pa・m3/sに対して50m3/s
の実効排気速度が得られた。この時、吸気側バルブ7位
置でのDTガスの圧力は0.6Paで、しかも吐出側バ
ルブ14において102Paまで昇圧され、トリチウム
処理系15へ移送された。この真空排気システムによ
り、核融合反応が連続的に維持された。
Thereafter, when the intake side valve 7 and the discharge side valve 14 were opened to exhaust DT and 4 He gas from the plasma 2, the effective sectional area on the intake side was 1 m 2 ,
50m 3 / s for 30Pa · m 3 / s of DT gas flow rate
The effective pumping speed of was obtained. At this time, the pressure of the DT gas at the position of the intake side valve 7 was 0.6 Pa, the pressure was increased to 10 2 Pa in the discharge side valve 14, and the pressure was transferred to the tritium processing system 15. With this evacuation system, the fusion reaction was continuously maintained.

【0013】なお、動作用液体金属は本発明の実施例の
Liに限定されるものではなく、亜音速から超音速の蒸
気噴流を連続かつ安定に形成可能であれば、いずれの液
体金属でも良いのはいうまでもない。
The liquid metal for operation is not limited to Li in the embodiment of the present invention, and any liquid metal may be used as long as it can continuously and stably form a subsonic to supersonic vapor jet. Needless to say.

【0014】[0014]

【発明の効果】本発明により、核融合反応の連続運転が
可能で単機当たりの排気速度が大きく、効果的、経済的
かつ安全性に優れた大型核融合炉の大容量真空排気シス
テムを提供することができる。
The present invention provides a large-capacity vacuum evacuation system for a large-scale fusion reactor, which enables continuous operation of the fusion reaction, has a high evacuation rate per unit, is effective, economical, and is excellent in safety. be able to.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の核融合炉の真空排気システムを示す
図である。
FIG. 1 is a diagram showing a vacuum exhaust system of a fusion reactor of the present invention.

【図2】 本発明の核融合炉における、液体金属の流れ
方向に電流を流し、その電流とプラズマ閉じ込め磁場と
で誘起される電磁力の方向に、金属蒸気を噴出させて気
体分子を排気する態様を示す図である。
FIG. 2 is a flow diagram of a fusion reactor of the present invention in which a current is passed in the direction of the flow of liquid metal, and a metal vapor is ejected in the direction of the electromagnetic force induced by the current and the plasma confining magnetic field to exhaust gas molecules. It is a figure which shows a mode.

【図3】 ダイバータにより核融合反応で生成されるヘ
リウム不純物を排気する態様を示す図である。
FIG. 3 is a diagram showing a mode in which helium impurities generated in a nuclear fusion reaction are exhausted by a diverter.

【図4】 各種金属の蒸気圧線図である。FIG. 4 is a vapor pressure diagram of various metals.

【符号の説明】[Explanation of symbols]

1:プラズマ閉じ込め磁場 2:プラズマ 3:真空容器 4:ブランケット 5:ダイバータ 6:真空排気システム 7:吸気側バルブ 8:第1段噴流バルブ 9:金属蒸気 10:第2段噴流バルブ 11:第3段噴流バルブ 12:第4段噴流バルブ 13:液体金属ループ 14:吐出側バルブ 15:トリチウム 16:閉じ込め磁場 17:電流の流れ 18:電磁力 19:磁力線 20:排気ガスの流れ 1: Plasma confinement magnetic field 2: Plasma 3: Vacuum container 4: Blanket 5: diverter 6: Vacuum exhaust system 7: Intake valve 8: 1st stage jet valve 9: Metal vapor 10: Second stage jet valve 11: 3rd stage jet valve 12: 4th stage jet valve 13: Liquid metal loop 14: Discharge side valve 15: Tritium 16: Confinement magnetic field 17: Current flow 18: Electromagnetic force 19: Magnetic field lines 20: Exhaust gas flow

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西尾 敏 茨城県那珂郡那珂町大字向山801番地の1 日本原子力研究所那珂研究所内   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Satoshi Nishio             1 801 Mukaiyama, Naka-cho, Naka-cho, Naka-gun, Ibaraki Prefecture               Japan Atomic Energy Research Institute Naka Research Center

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 核融合炉において、金属をその融点以上
に加熱して液体金属とし、その液体金属の流れ方向に電
流を流し、その電流とプラズマ閉じ込め磁場とで誘起さ
れる電磁力の方向に、細く絞ったノズルからその金属蒸
気を亜音速〜超音速の速度で噴出させ、該金属蒸気噴流
の中に紛れ込んだ気体分子に一方向の運動量を与えて、
その気体分子を排気することを特徴とする、核融合炉の
真空排気システム。
1. In a fusion reactor, a metal is heated to a temperature equal to or higher than its melting point to form a liquid metal, an electric current is caused to flow in the flowing direction of the liquid metal, and the electromagnetic force is induced in the electric current and the plasma confining magnetic field. , The metal vapor is ejected from a thinly squeezed nozzle at a subsonic to supersonic velocity to give a unidirectional momentum to gas molecules mixed in the metal vapor jet,
A vacuum exhaust system for a fusion reactor, which is characterized by exhausting the gas molecules.
【請求項2】 炉内機器の冷却材に液体金属を用いた核
融合炉において、該液体金属を金属蒸気噴流に用いるこ
とを特徴とする、請求項1に記載の核融合炉の真空排気
システム。
2. The vacuum exhaust system for a nuclear fusion reactor according to claim 1, wherein the liquid metal is used for a metal vapor jet in a nuclear fusion reactor that uses a liquid metal as a coolant for internal reactor equipment. .
【請求項3】 核融合炉の炉内機器のダイバータに組み
込まれたことを特徴とする、請求項1に記載の核融合炉
の真空排気システム。
3. The vacuum evacuation system for a nuclear fusion reactor according to claim 1, which is incorporated in a diverter of internal equipment of the nuclear fusion reactor.
【請求項4】 核融合炉の炉内機器のブランケットに組
み込まれたことを特徴とする、請求項1に記載の核融合
炉の真空排気システム。
4. The vacuum exhaust system for a nuclear fusion reactor according to claim 1, which is incorporated in a blanket of in-core equipment of the nuclear fusion reactor.
JP2002003856A 2002-01-10 2002-01-10 Fusion reactor vacuum exhaust system Expired - Fee Related JP3701610B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002003856A JP3701610B2 (en) 2002-01-10 2002-01-10 Fusion reactor vacuum exhaust system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002003856A JP3701610B2 (en) 2002-01-10 2002-01-10 Fusion reactor vacuum exhaust system

Publications (2)

Publication Number Publication Date
JP2003207587A true JP2003207587A (en) 2003-07-25
JP3701610B2 JP3701610B2 (en) 2005-10-05

Family

ID=27643340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002003856A Expired - Fee Related JP3701610B2 (en) 2002-01-10 2002-01-10 Fusion reactor vacuum exhaust system

Country Status (1)

Country Link
JP (1) JP3701610B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116189924A (en) * 2023-04-26 2023-05-30 中国科学院合肥物质科学研究院 Particle elimination structure and method for meeting kilosecond order plasma

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104409108B (en) * 2014-12-17 2017-01-18 中国科学院合肥物质科学研究院 Dual-layer-flow liquid first wall cladding applicable to magnetic confinement fusion reactor
CN109595879A (en) * 2018-10-16 2019-04-09 中国科学院合肥物质科学研究院 A kind of vacuum bakeout device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116189924A (en) * 2023-04-26 2023-05-30 中国科学院合肥物质科学研究院 Particle elimination structure and method for meeting kilosecond order plasma
CN116189924B (en) * 2023-04-26 2023-08-04 中国科学院合肥物质科学研究院 Particle elimination structure and method for meeting kilosecond order plasma

Also Published As

Publication number Publication date
JP3701610B2 (en) 2005-10-05

Similar Documents

Publication Publication Date Title
US20130180685A1 (en) Heat Exchange System for a Cavitation Chamber
Li et al. Plasma facing components for the Experimental Advanced Superconducting Tokamak and CFETR
WO2006137850A2 (en) Heat exchange system for use with a cavitation system
Li et al. The experimental advanced superconducting tokamak
Xu et al. Geometry and physics design of lower divertor upgrade in EAST
JP2003207587A (en) Evacuation system of nuclear fusion reactor
KR102124684B1 (en) Method and device for the continuous re-processing of exhaust gas of a fusion reactor
JP3845690B2 (en) Fusion reactor vacuum exhaust system
JP2001066389A (en) First wall/breeding blanket
JP2014222128A (en) Intake air cooling device and cooling method in air compressor
JPH06257864A (en) Heat generating device
Buryak et al. FREE-SURFACE MHD FLOWS AS A POTENTIAL TOOL FOR HIGH HEAT FLUX REMOVAL IN FUSION APPLICATIONS.
Masuzaki et al. Overview and future plan of helical divertor study in the Large Helical Device
JP2008261868A (en) Method of generating a lot of heat and helium by nuclear fusion using superhigh-density deuterated nanoparticle and its device
Fukada et al. Diffusion coefficient of tritium through molten salt flibe and rate of tritium leak from fusion reactor system
CN113023676A (en) Hydrogen purification device and purification method thereof
US20240136165A1 (en) Hybrid Gettering Diffusion Pump
CN103572195B (en) Gas recovery system and gas reduction device
RU173179U1 (en) DEVICE FOR PROTECTING THE WALLS OF THE VACUUM CAMERA OF THE TOKAMAK REACTOR DIVOR
Hemmerich Primary vacuum pumps for the fusion reactor fuel cycle
Grisham Lithium jet neutralizer to improve negative hydrogen neutral beam systems
WO2012121621A1 (en) Method for separating gas mixtures
WO2022261526A1 (en) Hybrid gettering diffusion pump
Doroshko et al. Improvement of ballistic launcher characteristics for solid macroparticles acceleration
CN206181526U (en) Laminar flow plasma generator cathodic protection cover

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050708

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050713

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090722

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090722

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100722

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100722

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110722

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees