JP2003207536A - Pulse generation circuit for calibration of partial discharge measuring circuit and operation confirmation method - Google Patents

Pulse generation circuit for calibration of partial discharge measuring circuit and operation confirmation method

Info

Publication number
JP2003207536A
JP2003207536A JP2002040790A JP2002040790A JP2003207536A JP 2003207536 A JP2003207536 A JP 2003207536A JP 2002040790 A JP2002040790 A JP 2002040790A JP 2002040790 A JP2002040790 A JP 2002040790A JP 2003207536 A JP2003207536 A JP 2003207536A
Authority
JP
Japan
Prior art keywords
voltage
capacitor
partial discharge
calibration
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002040790A
Other languages
Japanese (ja)
Other versions
JP4061617B2 (en
Inventor
Noriyoshi Kikuchi
徳嘉 菊池
Tadahiro Hozumi
直裕 穂積
Masayuki Nagao
雅行 長尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kikusui Electronics Corp
Original Assignee
Kikusui Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kikusui Electronics Corp filed Critical Kikusui Electronics Corp
Priority to JP2002040790A priority Critical patent/JP4061617B2/en
Publication of JP2003207536A publication Critical patent/JP2003207536A/en
Application granted granted Critical
Publication of JP4061617B2 publication Critical patent/JP4061617B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pulse signal generation circuit capable of facilitating specification of a partial discharge start voltage and a generated charge quantity by generating a pulse equivalent to a discharge pulse by using a test voltage of a high voltage generation device and by superimposing the equivalent pulse with a test voltage signal, concerning a dispersion problem of measurement in a partial discharge test caused by difficulty of specification of a calibration charge quantity and a discharge start voltage value, and an operation confirmation method of a measuring circuit using the circuit. <P>SOLUTION: A capacitor 1 and a capacitor 2 connected in series are provided, and a switch 5 is connected in parallel to both ends of the capacitor 2, and a voltage between both ends of the capacitor 2 is used as a comparison voltage of a comparator 4. At the moment the comparison voltage becomes higher than a reference voltage, both ends of the capacitor 2 are short circuited to acquire a pulse signal, and the pulse signal is superimposed with the test voltage of the high voltage generation device through the capacitor 1. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は部分放電試験装置に
関し、特に、部分放電測定回路の校正用パルス発生回路
及び部分放電測定回路の動作確認方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a partial discharge test apparatus, and more particularly to a calibration pulse generation circuit for a partial discharge measurement circuit and a method for confirming the operation of the partial discharge measurement circuit.

【0002】[0002]

【従来の技術】部分放電量の測定回路(以下「測定回
路」という。)の校正は、「JEC−0401(電気学
会 電気規格調査会標準規格)」中の4.1及び4.2
に規定されているとおり、高電圧を印加して供試物の部
分放電量を実測する前即ち始業点検時に、電源、供試物
及び測定回路など、すべての構成要素が接続された状態
で測定回路の校正を行わなければならない上、供試物と
測定回路が変わるごとに校正し直さなければならない。
そして測定回路の校正方法は、校正用電荷発生回路を用
いて供試物の電極間に既知の電荷qoを注入し、この電
荷量と測定回路の指示値との換算係数を求めて行う(以
下この方法を「電荷注入法」という。)。この場合、前
記規格4.2「放電パルスの大きさの校正」の項に図示
される図4(a)においてパルス電圧発生器(PG)の
出力Uoを、コンデンサCoを通して供試物Caの電極
間に注入すると、校正電荷qoは であるため、Ca≫Coとなるように各々の値を選べ
ば、供試物に注入される校正電荷qoは、 になる。
2. Description of the Related Art Calibration of a partial discharge amount measuring circuit (hereinafter referred to as "measuring circuit") is performed in 4.1 and 4.2 in "JEC-0401 (The Institute of Electrical Engineers of Japan, Electrical Standards Research Committee)".
Before measuring the partial discharge of a sample by applying a high voltage, that is, at the start-up inspection, measure with all the components such as the power supply, sample and measurement circuit connected as specified in The circuit must be calibrated and must be recalibrated each time the sample and measurement circuit change.
Then, the calibration method of the measurement circuit is performed by injecting a known charge qo between the electrodes of the sample using the calibration charge generation circuit, and obtaining the conversion coefficient between this charge amount and the indicated value of the measurement circuit (hereinafter This method is called "charge injection method".) In this case, the output Uo of the pulse voltage generator (PG) in FIG. 4 (a) illustrated in the section 4.2 “Calibration of magnitude of discharge pulse” in the standard is passed through the capacitor Co to the electrode of the sample Ca. When injected in between, the calibration charge qo Therefore, if each value is selected so that Ca >> Co, the calibration charge qo injected into the sample will be become.

【0003】また、前記規格の7.には部分放電の測定
感度に大きな影響を及ぼすものとして雑音レベルの存在
について指摘されており、「IEC60664−1(低
電圧システム内装置の絶縁協調)の付属書C中のC.4
校正」にはテストリードや治具などが発生する部分放電
量や雑音レベルの確認方法について記載されている。そ
して、何れの規格においても雑音レベルの大きさが測定
しようとする放電パルスの50%以下である必要がある
旨記載されているため、始業点検時には、測定回路の校
正の他、供試物に所定の高電圧を印加した状態で雑音レ
ベルの確認を含めた測定回路の動作確認を行うことが望
まれる。
In addition, the standard of 7. It is pointed out that the existence of noise level has a great influence on the measurement sensitivity of partial discharge, and C.4 in Annex C of "IEC60664-1 (Insulation coordination of devices in low voltage system)" is pointed out.
“Calibration” describes how to confirm the partial discharge amount and noise level generated by test leads and jigs. In addition, since it is stated in any of the standards that the noise level must be 50% or less of the discharge pulse to be measured, at the time of start-up inspection, in addition to the calibration of the measurement circuit, It is desirable to confirm the operation of the measurement circuit including the confirmation of the noise level while applying a predetermined high voltage.

【0004】電荷注入法では通常、信号発生器の出力を
微分するなどして擬似的な放電パルス信号波形を得、こ
れにより測定回路の校正を行うか、又はパルス発生器の
出力信号によって測定回路の校正を行っている。しか
し、一般的なパルス発生器や信号発生器では高電圧を発
生することが至難であるため、これらを用いて雑音レベ
ルの確認を行うことは不可能である。そこで、雑音レベ
ルの確認や部分放電現象の発生する電圧即ち部分放電開
始電圧や発生電荷量の特定は、部分放電測定装置或は耐
電圧試験装置などのような交流の高電圧発生装置を用い
て直接供試物に高電圧を印加して、これらの値を実測す
ることで行っているが、元来部分放電現象はランダムに
発生する上、測定環境などによっても放電現象の出現状
況や放電レベルが一様でないため、部分放電開始電圧や
発生電荷量を特定することは容易でない。
In the charge injection method, usually, the output of the signal generator is differentiated to obtain a pseudo discharge pulse signal waveform, and the measurement circuit is calibrated by this, or the output signal of the pulse generator is used to calibrate the measurement circuit. Is being calibrated. However, since it is very difficult to generate a high voltage with a general pulse generator or signal generator, it is impossible to confirm the noise level using these. Therefore, the confirmation of the noise level and the specification of the voltage at which the partial discharge phenomenon occurs, that is, the partial discharge inception voltage and the generated charge amount are performed by using an AC high voltage generator such as a partial discharge measuring device or a withstand voltage test device. This is done by directly applying a high voltage to the test sample and measuring these values.However, the partial discharge phenomenon occurs randomly at random, and the appearance of the discharge phenomenon and the discharge level depend on the measurement environment. Is not uniform, it is not easy to specify the partial discharge inception voltage and the generated charge amount.

【0005】この対処策として、予め部分放電開始電圧
及び発生電荷量が実測されている試料を用いるという方
法(以下「標準サンプル法」という。)が一般的に行わ
れる。この標準サンプル法は、具体的には供試物に見立
てた試料を製作するか又は供試物の中から任意に選択す
るなどして試料を用意し、これに所定の部分放電試験を
行い、該試料の部分放電開始電圧及び発生電荷量を測定
し、この実測値を放電電荷量の標準値と見做した上、該
標準試料によって測定回路の動作確認を行うものであ
る。
As a countermeasure against this, a method of using a sample whose partial discharge starting voltage and generated charge amount are measured in advance (hereinafter referred to as "standard sample method") is generally used. This standard sample method is specifically prepared by preparing a sample that looks like a sample or arbitrarily selecting from the sample, and performing a predetermined partial discharge test on it. The partial discharge inception voltage and the generated charge amount of the sample are measured, and the measured value is regarded as the standard value of the discharge charge amount, and the operation of the measurement circuit is confirmed by the standard sample.

【0006】しかし、該標準試料は、所望の静電容量の
ものを自在に選択することができないばかりか度重なる
高電圧印加履歴によって著しく劣化し、該標準試料に対
する経時変化の影響や湿気付着の影響を防止するのも困
難であるため、標準サンプル法によっても測定にバラツ
キが生じ易く、各構成要素の接続経路間における断線事
故の発生確認も信頼性が乏しいものにならざるを得な
い。
However, the standard sample cannot be freely selected to have a desired electrostatic capacity, and is significantly deteriorated by repeated high voltage application history, so that the standard sample is affected by aging and moisture adhesion. Since it is also difficult to prevent the influence, the standard sample method tends to cause variations in the measurement, and the confirmation of the occurrence of the disconnection accident between the connection paths of the respective components must be unreliable.

【0007】[0007]

【発明が解決しようとする課題】本発明は、前記課題を
解決するためになされたものであって、その目的は、放
電現象と等価のパルスを部分放電試験電圧へ重畳させる
パルス信号発生回路を提供すると共に、これを用いた測
定回路の動作確認方法を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and an object thereof is to provide a pulse signal generation circuit for superimposing a pulse equivalent to a discharge phenomenon on a partial discharge test voltage. It is to provide a method of confirming the operation of a measurement circuit using the same.

【0008】[0008]

【課題を解決するための手段】即ち上記課題を解決する
ため、請求項1に記載の発明は、比較器4と、直列接続
したコンデンサ1及びコンデンサ2とを具え、コンデン
サ2の両端に比較器4によってオン/オフが制御される
スイッチ5を並列接続し、コンデンサ2の両端電圧を前
記比較器の比較電圧とし、比較電圧が基準電圧よりも高
くなると、スイッチ5は、コンデンサ2の両端を短絡し
てパルス信号を得ることを特徴とする。
In order to solve the above problems, the invention according to claim 1 comprises a comparator 4, a capacitor 1 and a capacitor 2 connected in series, and a comparator is provided at both ends of the capacitor 2. A switch 5 whose ON / OFF is controlled by 4 is connected in parallel, and the voltage across the capacitor 2 is used as the comparison voltage of the comparator. When the comparison voltage becomes higher than the reference voltage, the switch 5 short-circuits both ends of the capacitor 2. And pulse signal is obtained.

【0009】また、請求項2の発明は、請求項1に記戴
の校正用パルス発生回路を用いた部分放電測定回路の動
作確認方法であって、部分放電測定回路を校正するステ
ップと、雑音レベルを確認するステップからなることを
特徴とする。
A second aspect of the present invention is a method of confirming the operation of a partial discharge measuring circuit using the calibration pulse generating circuit according to the first aspect, which comprises a step of calibrating the partial discharge measuring circuit and noise. It is characterized by the step of confirming the level.

【発明の実施の形態】DETAILED DESCRIPTION OF THE INVENTION

【0010】本発明者は、標準サンプル法の欠点が標準
電荷量の信頼性の乏しさ故に生じている点と、部分放電
装置或は耐電圧試験装置のような交流の高電圧発生装置
(以下「高電圧発生器」という。)も一種の信号発生器
である点に着目し、高電圧発生器の試験電圧を利用して
放電パルスと等価なパルス信号を発生させた上、このパ
ルス信号を試験電圧信号に重畳させることによって、部
分放電開始電圧及び発生電荷量の特定が容易になるばか
りか再現性の高い雑音レベルの確認や測定が可能になる
という着想を得、本発明を創出するに至った。以下に、
図1及び図2に基づき請求項1に記載の発明について説
明する。なお、図1は、本発明の一実施例を示したもの
であり、また図2はその動作波形を示している。
The inventor of the present invention has found that the shortcomings of the standard sample method are caused by the unreliability of the standard charge amount, and that an AC high voltage generator such as a partial discharge device or a withstand voltage test device (hereinafter "High voltage generator") is also a kind of signal generator, using the test voltage of the high voltage generator to generate a pulse signal equivalent to the discharge pulse, and then generate this pulse signal. By superimposing on the test voltage signal, not only the partial discharge inception voltage and the generated charge amount can be easily specified, but also it is possible to confirm and measure the noise level with high reproducibility, and to create the present invention. I arrived. less than,
The invention according to claim 1 will be described with reference to FIGS. 1 and 2. 1 shows an embodiment of the present invention, and FIG. 2 shows its operation waveform.

【0011】比較器4のプラス端子はコンデンサ2に接
続し、比較器4のマイナス端子は基準電圧3に接続す
る。そして、図1に示すA端子及びB端子を高電圧発生
器の試験電圧印加端子に夫々接続し、該高電圧発生器か
ら試験電圧を印加すると、コンデンサ1及びコンデンサ
2は充電状態となる。ここで、コンデンサ1の両端電圧
をVc1とし静電容量をC1とし、コンデンサ2の両端
電圧をVc2とし静電容量をC2とし、試験電圧をVa
とすると、夫々のコンデンサの両端電圧は、 となり、Vc2が比較電圧として比較器4に入力され
る。なお、本実施例でのコンデンサ1とコンデンサ2の
容量関係は、 C1≪C2 である。
The positive terminal of the comparator 4 is connected to the capacitor 2, and the negative terminal of the comparator 4 is connected to the reference voltage 3. When terminals A and B shown in FIG. 1 are respectively connected to the test voltage application terminals of the high voltage generator and the test voltage is applied from the high voltage generator, the capacitors 1 and 2 are in a charged state. Here, the voltage across the capacitor 1 is Vc1, the capacitance is C1, the voltage across the capacitor 2 is Vc2, the capacitance is C2, and the test voltage is Va.
Then, the voltage across each capacitor is And Vc2 is input to the comparator 4 as a comparison voltage. The capacitance relationship between the capacitors 1 and 2 in this embodiment is C1 << C2.

【0012】基準電圧3の電圧をVrとすると、試験電
圧Vaの印加に伴いコンデンサ2の両端電圧Vc2がV
rよりも高くなった瞬間、比較器4はスイッチ5をオン
にする。すると、スイッチ5はコンデンサ2の両端を短
絡してコンデンサ2に蓄えられた電荷を放電させ、Vc
2は瞬時にゼロボルトになる。また比較器4はVc2が
Vrよりも低くなった瞬間スイッチ5をオフにするた
め、Vc2が瞬時にゼロボルトになると同時にコンデン
サ2は充電を開始する。そして、Vc2がVrより高く
なった瞬間再びスイッチ5がオンとなり、Vc2は瞬時
にゼロボルトになる。このような一連の動作を繰り返す
ことでコンデンサ2の両端には図2の11に示す如く、
Vrの振幅を持つ鋸歯状波形が出現する。但し、周知の
とおり、コンデンサが充電状態にある期間は、出力波形
が上昇を開始してから最大値に到達するまでの期間であ
るため、高電圧発生器の試験電圧波形が下降状態にある
時には鋸歯状波形が出現することはない。なお、本実施
例では比較器4のプラス入力をVc2側としマイナス入
力をVr側としているが、Vc2がVrより高くなった
時にコンデンサ2の両端を短絡するようにスイッチ5を
動作させることが可能な場合は、比較器4の入力極性は
この逆でも良い。
Assuming that the reference voltage 3 is Vr, the voltage Vc2 across the capacitor 2 becomes V when the test voltage Va is applied.
At the moment when it becomes higher than r, the comparator 4 turns on the switch 5. Then, the switch 5 short-circuits both ends of the capacitor 2 to discharge the electric charge stored in the capacitor 2, and Vc
2 instantly goes to zero volts. Further, since the comparator 4 turns off the switch 5 at the moment when Vc2 becomes lower than Vr, Vc2 instantly becomes zero volt, and at the same time, the capacitor 2 starts charging. Then, at the moment when Vc2 becomes higher than Vr, the switch 5 is turned on again, and Vc2 instantly becomes zero volt. By repeating such a series of operations, as shown by 11 in FIG.
A sawtooth waveform with an amplitude of Vr appears. However, as is well known, the period when the capacitor is in the charging state is the period from when the output waveform starts to rise until it reaches the maximum value, so when the test voltage waveform of the high voltage generator is in the falling state. No serrated waveform appears. Although the positive input of the comparator 4 is on the Vc2 side and the negative input is on the Vr side in this embodiment, the switch 5 can be operated so as to short-circuit both ends of the capacitor 2 when Vc2 becomes higher than Vr. In that case, the input polarity of the comparator 4 may be reversed.

【0013】一方コンデンサ1は、コンデンサ1とコン
デンサ2の容量がC1≪C2の関係にあるため、瞬時に
フル充電状態になる。その結果コンデンサ1は、スイッ
チ5のオン/オフ動作に対応して図2の12に示す如
く、Vrの振幅を持つパルス状信号を発生するように機
能し且つ同図10に示す如く、パルス状信号を試験電圧
へ重畳させるように作用する。この時、該パルス状信号
の電荷量をqpとすると、qpは、 qp=C1×Vr〔C〕 であるから、コンデンサ1は、試験電圧にパルス状信号
を重畳させる作用のみに止まらず、一定の電荷量を注入
する効果も果たしている。そして、この効果は電荷注入
法の原理に等しいため、該qpは前記式の校正電荷量
qoに相当し、該パルス状信号の振幅Vrは部分放電開
始電圧Uoに相当し、C1はCoに相当する。よって、
校正電荷量qoは以下の式から求めることができる。
On the other hand, the capacitor 1 is instantly in a fully charged state because the capacities of the capacitor 1 and the capacitor 2 are C1 << C2. As a result, the capacitor 1 functions to generate a pulse-shaped signal having an amplitude of Vr as indicated by 12 in FIG. 2 in response to the ON / OFF operation of the switch 5, and as shown in FIG. It acts to superimpose the signal on the test voltage. At this time, if the charge amount of the pulsed signal is qp, then qp is qp = C1 × Vr [C]. Therefore, the capacitor 1 is not limited to the function of superimposing the pulsed signal on the test voltage, and is constant. It also has the effect of injecting the amount of electric charge. Since this effect is equivalent to the principle of the charge injection method, the qp corresponds to the calibration charge amount qo in the above equation, the amplitude Vr of the pulsed signal corresponds to the partial discharge starting voltage Uo, and C1 corresponds to Co. To do. Therefore,
The calibration charge amount qo can be obtained from the following formula.

【0014】以上説明したとおり、本発明は、高電圧発
生器と併用することで、高電圧型の電荷注入法を実現し
た上、基準電圧Vr及びC1を適宜設定することにより
所望の校正電荷量を自在に求めることが可能であるばか
りか部分放電開始電圧の特定も容易である。更に以下の
式から明らかな如く、C2の値を適宜設定すると、所
望の試験電圧Vaも自在に求めることができる。
As described above, the present invention realizes a high-voltage type charge injection method by using it together with a high-voltage generator, and further sets the reference voltages Vr and C1 appropriately to obtain a desired calibration charge amount. It is possible not only to freely obtain the above, but also to easily specify the partial discharge inception voltage. Further, as is apparent from the following equation, the desired test voltage Va can be freely obtained by appropriately setting the value of C2.

【0015】請求項2の発明は、本パルス信号発生回路
を用いた部分放電測定回路の動作確認方法であり、特
に、該測定回路の校正方法並びに雑音レベルの確認方法
に関する。以下に、図3に示す一実施例と図4に示すフ
ローチャートとに基づき本発明の測定回路の校正工程
(ステップa)及び雑音レベルの確認工程(ステップ
b)について説明する。なお、図3は、高電圧発生器と
測定回路の双方を装備する部分放電測定装置(以下「測
定装置」という。)を用いた一実施例であるが、本発明
は、高電圧発生器と部分放電測定回路とを独立させて試
験を行う場合であっても測定回路の校正や雑音レベルの
確認を行うことができる。
A second aspect of the present invention relates to a method of confirming the operation of a partial discharge measuring circuit using the pulse signal generating circuit, and more particularly to a method of calibrating the measuring circuit and a method of confirming a noise level. The calibration step (step a) and the noise level confirmation step (step b) of the measurement circuit of the present invention will be described below with reference to the embodiment shown in FIG. 3 and the flowchart shown in FIG. Although FIG. 3 shows an embodiment using a partial discharge measuring device (hereinafter referred to as “measuring device”) equipped with both a high voltage generator and a measuring circuit, the present invention is not limited to the high voltage generator. Even when the test is performed independently of the partial discharge measurement circuit, the measurement circuit can be calibrated and the noise level can be confirmed.

【0016】測定装置20、テストリード21、パルス
信号発生回路22、供試物23の他、電源、ジグなど、
測定に必要なすべての構成要素を接続する。このとき発
生回路22のA端子及びB端子は、夫々対応する端子即
ち測定装置20の試験電圧出力端子A′及びB′と、供
試物23のA′電極及びB′電極に接続する。そして前
記式にて校正電荷量qoを所望の値になるようにC1
及びVrを設定し、前記式から、所望の試験電圧値V
aになるようにC2を設定する。但し、測定回路の校正
では不要な雑音の発生を除去する必要があるため、高電
圧を印加することが許されないので、最初にVa値を定
めておき、この値を満足するC1、C2、Vr、校正電
荷量qoを求めるか、或は最初に部分放電開始電圧Vr
を定めておき、所望の試験電圧VaになるようにC1及
びC2の値を設定しても良いが、それぞれの値の設定に
際しては、本ステップ開始前に予め最適値を計算してお
く方が望ましい。所定の設定を完了した後、測定装置2
0から試験電圧Vaを出力すると、Vaは放電現象と等
価なパルス信号を重畳し且つ校正電荷量qoが注入され
たVa′に変化する。そして、該Va′にて測定回路の
校正を行い、本工程を終了する。
In addition to the measuring device 20, the test lead 21, the pulse signal generating circuit 22, the sample 23, a power source, a jig, etc.
Connect all components required for measurement. At this time, the A terminal and the B terminal of the generating circuit 22 are connected to the corresponding terminals, that is, the test voltage output terminals A ′ and B ′ of the measuring device 20, and the A ′ electrode and the B ′ electrode of the sample 23. Then, C1 is set so that the calibration charge quantity qo becomes a desired value by the above equation.
And Vr are set, and the desired test voltage value V is obtained from the above equation.
Set C2 to be a. However, in the calibration of the measurement circuit, it is not possible to apply a high voltage because it is necessary to remove the generation of unnecessary noise. Therefore, the Va value is set first, and C1, C2, and Vr satisfying this value are set. , The calibration charge quantity qo is calculated, or the partial discharge start voltage Vr is first determined.
However, it is possible to set the values of C1 and C2 so as to obtain the desired test voltage Va. However, when setting the respective values, it is better to calculate the optimum values in advance before starting this step. desirable. After completing the predetermined settings, the measuring device 2
When the test voltage Va is output from 0, Va superimposes a pulse signal equivalent to the discharge phenomenon and the calibration charge quantity qo changes to injected Va '. Then, the measuring circuit is calibrated at Va ', and this step is completed.

【0017】次に雑音レベルの確認工程(ステップb)
について説明する。ステップa同様、先ず雑音レベルの
確認に必要なすべての構成要素を接続する。そして、ス
テップaと同様の手順と計算式を用いて校正電荷量q
o、部分放電開始電圧Vr、試験電圧Va、C1、C
2、など、本工程に必要な値を設定する。但し、規格な
どによって試験電圧が定められている場合は、先ずその
値に適合させなければならないので、各規格における試
験或は測定条件などを考慮して、予め最適値を計算して
おく方が望ましい。これらの値を設定した後、測定装置
20から試験電圧Vaを印加すると、Vaは放電現象と
等価なパルス信号を重畳し且つ校正電荷量qoが注入さ
れたVa′に変化する。そこで該Va′にて雑音レベル
の確認を行う。この時、雑音レベルの実測値がqo′で
あったとすると、すべての構成要素の雑音qosは となる。従って、qo =qoであれば、異常な部分放
電現象はまったく出現していないことになり、また、 qo′≧1.5qo であれば、雑音レベルが50%以上との判定を行い、異
常雑音の発生原因を除去し、50%以下の雑音レベルで
あることが確認できた時点で本工程を終了する。なお、
また、本工程はステップaに関係なく独立して行えるた
め、図4のフローチャートに示すステップaとステップ
bの順序を逆にして、最初に本ステップbを実行しても
良い。
Next, the noise level confirmation step (step b)
Will be described. Similar to step a, first, all the components necessary for checking the noise level are connected. Then, using the same procedure and calculation formula as in step a, the calibration charge amount q
o, partial discharge starting voltage Vr, test voltage Va, C1, C
Set a value required for this process, such as 2. However, if the test voltage is specified by a standard, etc., it must first be adapted to that value.Therefore, it is better to calculate the optimum value in advance in consideration of the test or measurement conditions in each standard. desirable. When the test voltage Va is applied from the measuring device 20 after setting these values, Va changes to Va 'into which the pulse signal equivalent to the discharge phenomenon is superimposed and the calibration charge amount qo is injected. Therefore, the noise level is confirmed by the Va '. At this time, if the measured value of the noise level is qo ′, the noise qos of all components is Becomes Therefore, if qo = qo, no abnormal partial discharge phenomenon appears, and if qo ′ ≧ 1.5qo, it is determined that the noise level is 50% or more, and the abnormal noise is detected. The cause of occurrence of is removed, and when it is confirmed that the noise level is 50% or less, the present process is terminated. In addition,
Further, since this process can be independently performed regardless of step a, the order of step a and step b shown in the flowchart of FIG. 4 may be reversed and this step b may be executed first.

【0018】[0018]

【発明の効果】以上説明したとおり、請求項1の発明
は、極めて簡易な回路でありながら放電パルスと等価の
パルスを高電圧発生器の試験電圧信号に重畳させること
で電荷注入法を実現し、またこの発生回路を用いた請求
項2の発明は、標準サンプル法の欠点即ち校正電荷や部
分放電開始電圧を自在に設定し得ない点及び各構成要素
の接続経路間における断線事故による異常電荷の発見が
不確実であるという点の解消はもとより、電荷注入法を
用いた高電圧の印加も実現しているため、極めて再現性
の高い雑音レベルの確認が可能である。更にこれらの発
明では短時間に始業点検を実行することができる上、信
号発生器や標準試料を不要としているため、コスト面や
工数の面においても格段の改善が図れるなど、数多の効
果を奏することができる。
As described above, the invention of claim 1 realizes the charge injection method by superimposing a pulse equivalent to the discharge pulse on the test voltage signal of the high voltage generator, though it is an extremely simple circuit. The invention of claim 2 using this generation circuit has the drawback of the standard sampling method, that is, the calibration charge and the partial discharge inception voltage cannot be freely set, and the abnormal charge due to a disconnection accident between the connection paths of the respective components. In addition to eliminating the uncertainties in the discovery of, the application of a high voltage using the charge injection method has also been realized, so it is possible to confirm a noise level with extremely high reproducibility. Furthermore, in these inventions, the start-up inspection can be executed in a short time, and since the signal generator and the standard sample are not required, the cost and man-hours can be remarkably improved. Can play.

【図面の簡単な説明】[Brief description of drawings]

【図1】請求項1の発明の一実施例を示した図である。FIG. 1 is a diagram showing an embodiment of the invention of claim 1;

【図2】請求項1の発明によって発生される信号波形を
示した図である。
FIG. 2 is a diagram showing a signal waveform generated by the invention of claim 1.

【図3】請求項1の発明を用いる校正方法の一実施例を
示した図である。
FIG. 3 is a diagram showing an embodiment of a calibration method using the invention of claim 1.

【図4】校正及び雑音レベルの確認手順をフローチャー
トで示した図である。
FIG. 4 is a flowchart showing a procedure of calibration and confirmation of a noise level.

【符号の説明】[Explanation of symbols]

1 コンデンサ 2 コンデンサ 3 基準電圧 4 比較器 5 スイッチ 10 高電圧波形 11 コンデンサ2の両端電圧波形 12 パルス状信号 20 部分放電測定装置 21 テストリード 22 パルス信号発生器 23 供試物 1 capacitor 2 capacitors 3 Reference voltage 4 comparator 5 switches 10 High voltage waveform 11 Voltage waveform across capacitor 2 12 pulse signals 20 Partial discharge measuring device 21 Test lead 22 pulse signal generator 23 sample

───────────────────────────────────────────────────── フロントページの続き (72)発明者 長尾 雅行 豊橋市天伯町雲雀ケ丘1−1 豊橋技術科 学大学内 Fターム(参考) 2G015 AA00 BA04 CA01    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Masayuki Nagao             Toyohashi Technical Department 1-1 Hibarigaoka, Tenhaku-cho, Toyohashi City             Inside university F-term (reference) 2G015 AA00 BA04 CA01

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 比較器と、直列接続した第1のコンデン
サ及び第2のコンデンサとを具え、 前記第2のコンデンサの両端にスイッチ手段を並列接続
し、 前記第2のコンデンサの両端電圧を前記比較器の比較電
圧とし、 前記比較電圧が基準電圧よりも高くなった瞬間、前記ス
イッチ手段は前記第2のコンデンサの両端を短絡するこ
とを特徴とする部分放電測定回路の校正用パルス発生回
路。
1. A comparator, and a first capacitor and a second capacitor connected in series, wherein switching means are connected in parallel across the second capacitor, and the voltage across the second capacitor A calibration pulse generating circuit for a partial discharge measuring circuit, wherein the switching means short-circuits both ends of the second capacitor at a moment when the comparison voltage becomes a comparison voltage of a comparator and becomes higher than a reference voltage.
【請求項2】 請求項1に記戴する発明を用いた部分放
電測定回路の動作確認方法であって、 部分放電測定回路を校正するステップと、雑音レベルの
確認を行うステップからなることを特徴とする動作確認
方法。
2. A method for confirming the operation of a partial discharge measuring circuit using the invention described in claim 1, comprising a step of calibrating the partial discharge measuring circuit and a step of confirming a noise level. How to check the operation.
JP2002040790A 2002-01-11 2002-01-11 Pulse generation circuit for calibration of partial discharge measuring circuit and operation confirmation method Expired - Lifetime JP4061617B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002040790A JP4061617B2 (en) 2002-01-11 2002-01-11 Pulse generation circuit for calibration of partial discharge measuring circuit and operation confirmation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002040790A JP4061617B2 (en) 2002-01-11 2002-01-11 Pulse generation circuit for calibration of partial discharge measuring circuit and operation confirmation method

Publications (2)

Publication Number Publication Date
JP2003207536A true JP2003207536A (en) 2003-07-25
JP4061617B2 JP4061617B2 (en) 2008-03-19

Family

ID=27655169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002040790A Expired - Lifetime JP4061617B2 (en) 2002-01-11 2002-01-11 Pulse generation circuit for calibration of partial discharge measuring circuit and operation confirmation method

Country Status (1)

Country Link
JP (1) JP4061617B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100295555A1 (en) * 2007-12-10 2010-11-25 Mtronix Precision Measuring Instruments Gmbh Apparatus and method for generating a defined charge pulse for carrying out a partial discharge measurement
KR101034243B1 (en) 2009-10-29 2011-05-12 한국전기연구원 Standard apparatus for calibrating pulse generator of partial discharge
CN103439680A (en) * 2013-08-30 2013-12-11 国家电网公司 Calibration method for ultrahigh frequency partial discharge state detecting instrument
CN103675623A (en) * 2013-12-07 2014-03-26 西安交通大学 Method and system for detecting partial discharging of GIS under impulse voltage
CN104502818A (en) * 2014-12-26 2015-04-08 武汉大学 Observation method for discharge phenomena in gas discharge tests
JP2015169470A (en) * 2014-03-05 2015-09-28 三菱電線工業株式会社 Simulation sample for partial discharge measuring device and partial discharge measuring device inspection method
CN105606973A (en) * 2016-03-04 2016-05-25 云南电网有限责任公司电力科学研究院 System for detecting partial discharge by using 360-degree holographic imaging stereoscopic spectroscopy
CN107887182A (en) * 2017-09-27 2018-04-06 华电电力科学研究院 A kind of assembly method for the capacitance group that series resonant inverter uses
JP2021032854A (en) * 2019-08-29 2021-03-01 富士電機株式会社 Discharge detector and discharge detection method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100295555A1 (en) * 2007-12-10 2010-11-25 Mtronix Precision Measuring Instruments Gmbh Apparatus and method for generating a defined charge pulse for carrying out a partial discharge measurement
US8575943B2 (en) * 2007-12-10 2013-11-05 Mtronix Precision Measuring Instruments Gmbh Apparatus and method for generating a defined charge pulse for carrying out a partial discharge measurement
KR101034243B1 (en) 2009-10-29 2011-05-12 한국전기연구원 Standard apparatus for calibrating pulse generator of partial discharge
CN103439680A (en) * 2013-08-30 2013-12-11 国家电网公司 Calibration method for ultrahigh frequency partial discharge state detecting instrument
CN103675623A (en) * 2013-12-07 2014-03-26 西安交通大学 Method and system for detecting partial discharging of GIS under impulse voltage
JP2015169470A (en) * 2014-03-05 2015-09-28 三菱電線工業株式会社 Simulation sample for partial discharge measuring device and partial discharge measuring device inspection method
CN104502818A (en) * 2014-12-26 2015-04-08 武汉大学 Observation method for discharge phenomena in gas discharge tests
CN105606973A (en) * 2016-03-04 2016-05-25 云南电网有限责任公司电力科学研究院 System for detecting partial discharge by using 360-degree holographic imaging stereoscopic spectroscopy
CN107887182A (en) * 2017-09-27 2018-04-06 华电电力科学研究院 A kind of assembly method for the capacitance group that series resonant inverter uses
JP2021032854A (en) * 2019-08-29 2021-03-01 富士電機株式会社 Discharge detector and discharge detection method
JP7276009B2 (en) 2019-08-29 2023-05-18 富士電機株式会社 DISCHARGE DETECTION DEVICE AND DISCHARGE DETECTION METHOD

Also Published As

Publication number Publication date
JP4061617B2 (en) 2008-03-19

Similar Documents

Publication Publication Date Title
JP6633585B2 (en) Ground fault detector
JP5687484B2 (en) Insulation state detection unit flying capacitor fault detection device
JP5406614B2 (en) Insulation state detector
EP2605026A1 (en) Method and device for detecting insulating state of ungrounded power supply
CN107478908B (en) Electric vehicle insulation detection device and detection method thereof
JP6247154B2 (en) Ground fault detection device for vehicles
TW200914843A (en) Capacitive measurements with fast recovery current return
JP2003207536A (en) Pulse generation circuit for calibration of partial discharge measuring circuit and operation confirmation method
JP5528370B2 (en) Leakage detection device, threshold setting method etc. in leakage detection device
WO2019176173A1 (en) Electricity leakage detection circuit and vehicle power supply system
EP1610139A1 (en) Battery state monitoring device and its method, and dischargeable capacity detecting method
EP1950575A2 (en) Method and apparatus for determining impedance of live-earth loop of electrical power supply
US20060273763A1 (en) Battery status monitoring apparatus and method
EP3164727B1 (en) A method, a circuit, and a battery charger
JP5320929B2 (en) Current measuring device
US7378857B2 (en) Methods and apparatuses for detecting the level of a liquid in a container
JP2017219352A (en) Power supply device for insulation inspection
KR101046854B1 (en) A measurement apparatus for response time of high capacity current sensor and the method thereof
GB2559120A (en) Method and apparatus for determining impedance of live-earth loop of an electrical power supply
JP2005077128A (en) Detector and method for detecting battery condition
JP2010520583A5 (en)
CN114264886B (en) Rapid measurement method for super capacitor parameters
KR20150083802A (en) Method for detecting the functionality of a load switch of a battery, and battery having a device for detecting the functionality of a load switch of the battery
JP6541456B2 (en) Test equipment
CN211943025U (en) Automobile battery monitoring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071214

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4061617

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140111

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term